JP2019001994A - Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device - Google Patents

Ultraviolet-curable resin composition, method of manufacturing organic el light-emitting device, and organic el light-emitting device Download PDF

Info

Publication number
JP2019001994A
JP2019001994A JP2018074072A JP2018074072A JP2019001994A JP 2019001994 A JP2019001994 A JP 2019001994A JP 2018074072 A JP2018074072 A JP 2018074072A JP 2018074072 A JP2018074072 A JP 2018074072A JP 2019001994 A JP2019001994 A JP 2019001994A
Authority
JP
Japan
Prior art keywords
curable resin
resin composition
composition
organic
polymerizable compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018074072A
Other languages
Japanese (ja)
Other versions
JP7209244B2 (en
Inventor
裕基 池上
Yuki Ikegami
裕基 池上
祐輔 浦岡
Yusuke Uraoka
祐輔 浦岡
山本 広志
Hiroshi Yamamoto
広志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2019001994A publication Critical patent/JP2019001994A/en
Application granted granted Critical
Publication of JP7209244B2 publication Critical patent/JP7209244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Sealing Material Composition (AREA)
  • Epoxy Resins (AREA)

Abstract

To provide an ultraviolet-curable resin composition capable of achieving low viscosity without impairing storage stability, a method of manufacturing an organic EL light-emitting device using the ultraviolet-curable resin composition, and an organic EL light-emitting device.SOLUTION: The ultraviolet-curable resin composition contains a polyfunctional cationically polymerizable compound (A), a cationic curing catalyst (B), and a monofunctional cationically polymerizable compound (D). The monofunctional cationically polymerizable compound (D) contains limonene oxide.SELECTED DRAWING: Figure 1

Description

本発明は、紫外線硬化性樹脂組成物、有機EL発光装置の製造方法及び有機EL発光装置に関し、詳しくは、有機EL発光装置における封止材を作製するために好適な紫外線硬化性樹脂組成物、この紫外線硬化性樹脂を用いる有機EL発光装置の製造方法、及びこの封止材を備える有機EL発光装置に関する。   The present invention relates to an ultraviolet curable resin composition, a method for producing an organic EL light emitting device, and an organic EL light emitting device, and more specifically, an ultraviolet curable resin composition suitable for producing a sealing material in an organic EL light emitting device, The present invention relates to a method for producing an organic EL light-emitting device using this ultraviolet curable resin, and an organic EL light-emitting device provided with this sealing material.

有機EL発光装置は、照明用途、ディスプレイ用途などに適用されており、今後の普及が期待されている。   Organic EL light-emitting devices are applied to lighting applications, display applications, and the like, and are expected to spread in the future.

有機EL発光装置のうち、トップエミッションタイプと呼ばれるものは、例えば支持基板上に有機EL素子を配置し、支持基板に対向するように透明基板を配置し、支持基板と透明基板との間に透明な封止材を充填して構成される。この場合、有機EL素子が発する光は封止材及び透明基板を通過して外部へ出射できる。   Among organic EL light-emitting devices, what is called the top emission type is, for example, an organic EL element is disposed on a support substrate, a transparent substrate is disposed so as to face the support substrate, and transparent between the support substrate and the transparent substrate. It is configured by filling a sealing material. In this case, the light emitted from the organic EL element can be emitted to the outside through the sealing material and the transparent substrate.

封止材は、有機EL素子への水分の侵入を抑制することで、有機EL素子におけるダークスポットの発生及び成長を抑制する。ダークスポットとは、有機EL素子が水分で劣化することで生じる、発光しない部分のことである。   A sealing material suppresses generation | occurrence | production and growth of the dark spot in an organic EL element by suppressing the penetration | invasion of the water | moisture content to an organic EL element. The dark spot is a portion that does not emit light, which is generated when the organic EL element is deteriorated by moisture.

封止材は、例えばカチオン硬化性樹脂とカチオン重合開始剤とを含有する組成物から作製される(特許文献1及び2参照)。この場合、紫外線照射等で組成物を硬化させて封止材を作製できるので、有機EL素子に熱による負荷をかけることなく封止材を作製できる。   The sealing material is produced from a composition containing, for example, a cationic curable resin and a cationic polymerization initiator (see Patent Documents 1 and 2). In this case, since the composition can be cured by ultraviolet irradiation or the like to produce the encapsulant, the encapsulant can be produced without applying a heat load to the organic EL element.

特許第5703429号公報Japanese Patent No. 5703429 特許第5887467号公報Japanese Patent No. 5887467

特許文献1及び特許文献2に記載の有機EL封止用の組成物の粘度は50mPa・s以上であり、それほどの低粘度化は要求されておらず、インクジェット法で塗布することも想定されていない。   The viscosity of the organic EL sealing composition described in Patent Document 1 and Patent Document 2 is 50 mPa · s or more, so that a low viscosity is not required, and application by an inkjet method is also assumed. Absent.

本発明の課題は、保存安定性を損なうことなく低粘度化が可能な紫外線硬化性樹脂組成物、この紫外線硬化性樹脂組成物を用いる有機EL発光装置の製造方法、及び有機EL発光装置を提供することである。   An object of the present invention is to provide an ultraviolet curable resin composition capable of lowering viscosity without impairing storage stability, a method for producing an organic EL light emitting device using the ultraviolet curable resin composition, and an organic EL light emitting device It is to be.

本発明の一態様に係る紫外線硬化性樹脂組成物は、多官能カチオン重合性化合物(A)、カチオン硬化触媒(B)、及び単官能カチオン重合性化合物(D)を含有する。前記単官能カチオン重合性化合物(D)は、リモネンオキシドを含有する。   The ultraviolet curable resin composition which concerns on 1 aspect of this invention contains a polyfunctional cation polymeric compound (A), a cation curing catalyst (B), and a monofunctional cation polymeric compound (D). The monofunctional cation polymerizable compound (D) contains limonene oxide.

本発明の一態様に係る有機EL発光装置の製造方法は、有機EL素子と前記有機EL素子を覆う封止材とを備える有機EL発光装置を製造する方法である。この方法は、前記紫外線硬化性樹脂組成物をインクジェット法で成形してから、前記紫外線硬化性樹脂組成物に紫外線を照射して硬化することで前記封止材を作製することを含む。   The manufacturing method of the organic EL light-emitting device which concerns on 1 aspect of this invention is a method of manufacturing an organic EL light-emitting device provided with the organic EL element and the sealing material which covers the said organic EL element. This method includes forming the sealing material by forming the ultraviolet curable resin composition by an inkjet method and then curing the ultraviolet curable resin composition by irradiating the ultraviolet curable resin composition with ultraviolet rays.

本発明の一態様に係る有機EL発光装置は、有機EL素子と、前記有機EL素子を覆う封止材とを備える。前記封止材は、前記紫外線硬化性樹脂組成物の硬化物である。   The organic EL light emitting device according to one embodiment of the present invention includes an organic EL element and a sealing material that covers the organic EL element. The sealing material is a cured product of the ultraviolet curable resin composition.

本発明の一態様には、保存安定性を損なうことなく低粘度化された紫外線硬化性樹脂組成物、この紫外線硬化性樹脂組成物を用いる有機EL発光装置の製造方法、及びこの紫外線硬化性樹脂組成物の硬化物からなる封止材を備える有機EL発光装置が得られる、という利点がある。   One embodiment of the present invention includes an ultraviolet curable resin composition having a reduced viscosity without impairing storage stability, a method for producing an organic EL light-emitting device using the ultraviolet curable resin composition, and the ultraviolet curable resin. There exists an advantage that an organic electroluminescent light emitting device provided with the sealing material which consists of hardened | cured material of a composition is obtained.

有機EL発光装置の第一例を示す概略の断面図である。It is a schematic sectional drawing which shows the 1st example of an organic electroluminescent light-emitting device. 有機EL発光装置の第二例を示す概略の断面図である。It is a schematic sectional drawing which shows the 2nd example of an organic electroluminescent light-emitting device.

以下、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

本実施形態に係る有機EL発光装置1は、有機EL素子4と、有機EL素子4を覆う封止材5とを備える。有機EL発光装置1の構造の第一例を、図1を参照して説明する。この有機EL発光装置1は、トップエミッションタイプである。有機EL発光装置1は、支持基板2、支持基板2と間隔をあけて対向する透明基板3、支持基板2の透明基板3と対向する面の上にある有機EL素子4、及び支持基板2と透明基板3との間に充填されている封止材5とを備える。また、図1に示す例では、有機EL発光装置1は、支持基板2の透明基板3と対向する面及び有機EL素子4を覆うパッシベーション層6を備える。   The organic EL light emitting device 1 according to this embodiment includes an organic EL element 4 and a sealing material 5 that covers the organic EL element 4. A first example of the structure of the organic EL light emitting device 1 will be described with reference to FIG. The organic EL light emitting device 1 is a top emission type. The organic EL light emitting device 1 includes a support substrate 2, a transparent substrate 3 that faces the support substrate 2 with a space therebetween, an organic EL element 4 on the surface of the support substrate 2 that faces the transparent substrate 3, and the support substrate 2. The sealing material 5 filled between the transparent substrates 3 is provided. In the example shown in FIG. 1, the organic EL light emitting device 1 includes a passivation layer 6 that covers the surface of the support substrate 2 facing the transparent substrate 3 and the organic EL element 4.

支持基板2は、例えば樹脂材料から作製されるが、これに限定されない。透明基板3は透光性を有する材料から作製される。透明基板3は、例えば、ガラス製基板又は透明樹脂製基板である。有機EL素子4は有機発光ダイオードとも呼ばれる。有機EL素子4は、例えば一対の電極と、電極間にある有機発光層とを備える。パッシベーション層6は窒化ケイ素又は酸化ケイ素から作製されることが好ましい。   The support substrate 2 is made of, for example, a resin material, but is not limited to this. The transparent substrate 3 is made from a material having translucency. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate. The organic EL element 4 is also called an organic light emitting diode. The organic EL element 4 includes, for example, a pair of electrodes and an organic light emitting layer located between the electrodes. The passivation layer 6 is preferably made from silicon nitride or silicon oxide.

有機EL発光装置1の構造の第二例を、図2を参照して説明する。なお、図1に示す第一例と共通する要素については、図1と同じ符号を付して、詳細な説明を適宜省略する。図2に示す有機EL発光装置1も、トップエミッションタイプである。有機EL発光装置1は、支持基板2、支持基板2と間隔をあけて対向する透明基板3、支持基板2の透明基板3と対向する面の上にある有機EL素子4、及び有機EL素子4を覆う封止材5を備える。   A second example of the structure of the organic EL light emitting device 1 will be described with reference to FIG. Elements common to the first example shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted as appropriate. The organic EL light emitting device 1 shown in FIG. 2 is also a top emission type. The organic EL light-emitting device 1 includes a support substrate 2, a transparent substrate 3 facing the support substrate 2 with a gap, an organic EL element 4 on the surface of the support substrate 2 facing the transparent substrate 3, and the organic EL element 4 The sealing material 5 which covers is provided.

有機EL素子4は、第一例の場合と同様、例えば一対の電極41、43と、電極41、43間にある有機発光層42とを備える。有機発光層42は、例えば正孔注入層421、正孔輸送層422、発光層423及び電子輸送層424を備え、これらの層は前記の順番に積層している。   As in the case of the first example, the organic EL element 4 includes, for example, a pair of electrodes 41 and 43 and an organic light emitting layer 42 between the electrodes 41 and 43. The organic light emitting layer 42 includes, for example, a hole injection layer 421, a hole transport layer 422, a light emitting layer 423, and an electron transport layer 424, and these layers are stacked in the order described above.

有機EL発光装置1は複数の有機EL素子4を備え、かつ複数の有機EL素子4が、支持基板2上でアレイ9(以下素子アレイ9という)を構成している。素子アレイ9は、隔壁7も備える。隔壁7は、支持基板2上にあり、隣合う二つの有機EL素子4の間を仕切っている。隔壁7は、例えば感光性の樹脂材料をフォトグラフィ法で成形することで作製される。素子アレイ9は、隣合う有機EL素子4の電極43及び電子輸送層424同士を電気的に接続する接続配線8も備える。接続配線8は、隔壁7上に設けられている。   The organic EL light emitting device 1 includes a plurality of organic EL elements 4, and the plurality of organic EL elements 4 constitutes an array 9 (hereinafter referred to as an element array 9) on the support substrate 2. The element array 9 also includes a partition wall 7. The partition wall 7 is on the support substrate 2 and partitions between the two adjacent organic EL elements 4. The partition wall 7 is produced, for example, by molding a photosensitive resin material by a photolithography method. The element array 9 also includes connection wirings 8 that electrically connect the electrodes 43 and the electron transport layers 424 of the adjacent organic EL elements 4. The connection wiring 8 is provided on the partition wall 7.

有機EL発光装置1は、有機EL素子4を覆うパッシベーション層6も備える。パッシベーション層6は窒化ケイ素又は酸化ケイ素から作製されることが好ましい。パッシベーション層6は、第一パッシベーション層61と第二パッシベーション層62とを含む。第一パッシベーション層61は素子アレイ9に直接接触した状態で、素子アレイ9を覆うことで、有機EL素子4を覆っている。第二パッシベーション層62は、第一パッシベーション層61に対して、素子アレイ9とは反対側の位置に配置され、かつ第二パッシベーション層62と第一パッシベーション層61との間には間隔があけられている。第一パッシベーション層61と第二パッシベーション層62との間に、封止材5が充填されている。すなわち、有機EL素子4と、有機EL素子4を覆う封止材5との間に、第一パッシベーション層61が介在している。   The organic EL light emitting device 1 also includes a passivation layer 6 that covers the organic EL element 4. The passivation layer 6 is preferably made from silicon nitride or silicon oxide. The passivation layer 6 includes a first passivation layer 61 and a second passivation layer 62. The first passivation layer 61 covers the organic EL element 4 by covering the element array 9 while in direct contact with the element array 9. The second passivation layer 62 is disposed at a position opposite to the element array 9 with respect to the first passivation layer 61, and a space is provided between the second passivation layer 62 and the first passivation layer 61. ing. A sealing material 5 is filled between the first passivation layer 61 and the second passivation layer 62. That is, the first passivation layer 61 is interposed between the organic EL element 4 and the sealing material 5 that covers the organic EL element 4.

さらに、第二パッシベーション層62と透明基板3との間に、第二封止材52が充填されている。第二封止材52は、例えば透明な樹脂材料から作製される。第二封止材52の材質は特に制限されない。第二封止材52の材質は、封止材5と同じであっても、異なっていてもよい。
封止材5を、本実施形態に係る紫外線硬化性樹脂組成物(以下、組成物(X)という)から作製することができる。すなわち、封止材5は組成物(X)の硬化物であってもよい。さらに言い換えれば、組成物(X)は、好ましくは封止材作製用の組成物、有機EL素子封止用の組成物、あるいは有機EL発光装置製造用の組成物である。
Further, a second sealing material 52 is filled between the second passivation layer 62 and the transparent substrate 3. The second sealing material 52 is made of, for example, a transparent resin material. The material of the second sealing material 52 is not particularly limited. The material of the second sealing material 52 may be the same as or different from that of the sealing material 5.
The sealing material 5 can be produced from the ultraviolet curable resin composition (hereinafter referred to as composition (X)) according to this embodiment. That is, the sealing material 5 may be a cured product of the composition (X). In other words, the composition (X) is preferably a composition for preparing a sealing material, a composition for sealing an organic EL element, or a composition for manufacturing an organic EL light emitting device.

[組成物(X)]
以下、組成物(X)について説明する。
[Composition (X)]
Hereinafter, the composition (X) will be described.

封止材5をインクジェット法で製造できれば、有機EL発光装置1を効率良く製造できる。そのためには、封止材5を作製するための組成物が低い粘度を有する必要がある。しかし、単に低粘度の成分を組成物に含有させるだけでは、組成物の保存時に低粘度の成分が揮発することで組成物の組成が変化してしまうことがある。また低粘度の成分が組成物の反応性を損なうこともある。   If the sealing material 5 can be manufactured by the inkjet method, the organic EL light-emitting device 1 can be manufactured efficiently. For that purpose, the composition for producing the sealing material 5 needs to have a low viscosity. However, if the composition simply contains a low viscosity component, the composition of the composition may change due to volatilization of the low viscosity component during storage of the composition. In addition, low viscosity components may impair the reactivity of the composition.

上記事情を鑑み、本実施形態は、保存安定性を損なうことなく低粘度化された組成物(X)を提供する。   In view of the above circumstances, the present embodiment provides a composition (X) having a reduced viscosity without impairing storage stability.

組成物(X)は、多官能カチオン重合性化合物(A)、カチオン硬化触媒(B)及び単官能カチオン重合性化合物(D)を含有する。単官能カチオン重合性化合物(D)は、リモネンオキシドを含有する。   The composition (X) contains a polyfunctional cation polymerizable compound (A), a cation curing catalyst (B), and a monofunctional cation polymerizable compound (D). The monofunctional cationically polymerizable compound (D) contains limonene oxide.

多官能カチオン重合性化合物(A)は、シロキサン骨格を有さない多官能カチオン重合性化合物(A1)と、シロキサン骨格を有する多官能カチオン重合性化合物(A2)とのうち、いずれか一方又は両方を含有できる。   The polyfunctional cation polymerizable compound (A) is either or both of a polyfunctional cation polymerizable compound (A1) having no siloxane skeleton and a polyfunctional cation polymerizable compound (A2) having a siloxane skeleton. Can be contained.

組成物(X)は、吸湿剤を含有できるが、含有しなくてもよい。   Although the composition (X) can contain a hygroscopic agent, it does not need to contain it.

組成物(X)に紫外線を照射すると、組成物(X)が光カチオン重合反応によって硬化することで、硬化物を作製できる。組成物(X)は、単官能カチオン重合性化合物(D)を含有することで、低い粘度を有することができる。このため、封止材5を作製する際などに組成物(X)を塗布する場合の塗布性が良好である。このため、キャスティング法、インクジェット法などで組成物(X)を塗布することが可能であり、常温下でインクジェット法で組成物(X)を塗布することも可能である。   When the composition (X) is irradiated with ultraviolet rays, the composition (X) is cured by a cationic photopolymerization reaction, whereby a cured product can be produced. The composition (X) can have a low viscosity by containing the monofunctional cationic polymerizable compound (D). For this reason, the applicability | paintability in the case of apply | coating composition (X) at the time of producing the sealing material 5 is favorable. For this reason, it is possible to apply the composition (X) by a casting method, an inkjet method or the like, and it is also possible to apply the composition (X) by an inkjet method at room temperature.

さらに、リモネンオキシドは、低い粘度を有するわりには、揮発しにくい性質を有する。そのため、単官能カチオン重合性化合物(D)がリモネンオキシドを含有すると、組成物(X)を保存していても、組成物(X)には単官能カチオン重合性化合物(D)の揮発による組成の変化が生じにくい。このため、単官能カチオン重合性化合物(D)がリモネンオキシドを含有することで、組成物(X)の保存安定性を損わずに組成物(X)を低粘度化することができる。   Furthermore, limonene oxide has the property of being less volatile in spite of having a low viscosity. Therefore, when the monofunctional cation polymerizable compound (D) contains limonene oxide, even if the composition (X) is stored, the composition (X) contains a composition by volatilization of the monofunctional cation polymerizable compound (D). It is difficult for changes to occur. For this reason, composition (X) can be viscosity-reduced, without impairing the storage stability of composition (X) because a monofunctional cation polymeric compound (D) contains limonene oxide.

したがって、組成物(X)は、保存安定性を損なうことなく低粘度化されることができる。   Therefore, the composition (X) can be reduced in viscosity without impairing the storage stability.

また、組成物(X)が吸湿剤を含有すると、硬化物は吸湿性を有することができる。吸湿剤の平均粒径は制限されない。吸湿剤が平均粒径200nm以下、特に平均粒径が100nm以下の吸湿剤(C)を含有すると、硬化物は高い透明性も有することができる。また、組成物(X)は、粒径の小さい吸湿剤(C)を含有しても、単官能カチオン重合性化合物(E)を含有することで、低い粘度を有することができる。   Further, when the composition (X) contains a hygroscopic agent, the cured product can have hygroscopicity. The average particle size of the hygroscopic agent is not limited. When the hygroscopic agent contains a hygroscopic agent (C) having an average particle size of 200 nm or less, particularly an average particle size of 100 nm or less, the cured product can also have high transparency. Moreover, even if the composition (X) contains the hygroscopic agent (C) having a small particle diameter, the composition (X) can have a low viscosity by containing the monofunctional cation polymerizable compound (E).

また、組成物(X)が多官能カチオン重合性化合物(A2)を含有すると、組成物(X)が平均粒径が100nm以下の吸湿剤(C)を含有する場合の低粘度化が、更に容易である。   Further, when the composition (X) contains the polyfunctional cation polymerizable compound (A2), the viscosity can be further reduced when the composition (X) contains a hygroscopic agent (C) having an average particle size of 100 nm or less. Easy.

組成物(X)の25℃における粘度は、1〜20mPa・sの範囲内であることが好ましい。この場合、組成物(X)を膜状等に成形することが容易であり、キャスティング法、インクジェット法といった方法で組成物(X)を成形することができる。組成物(X)の50℃における粘度が、1〜20mPa・sの範囲内であることも好ましい。この場合、常温における組成物(X)の粘度がいかなる値であっても、組成物(X)を僅かに加熱すれば低粘度化することが可能であり、このため、組成物(X)をインクジェット法で成形することが容易である。このような組成物(X)の低い粘度は、下記で詳細に説明される組成物(X)の組成によって達成可能である。   The viscosity at 25 ° C. of the composition (X) is preferably in the range of 1 to 20 mPa · s. In this case, it is easy to form the composition (X) into a film or the like, and the composition (X) can be formed by a method such as a casting method or an inkjet method. It is also preferable that the viscosity at 50 ° C. of the composition (X) is in the range of 1 to 20 mPa · s. In this case, even if the viscosity of the composition (X) at room temperature is any value, the viscosity can be lowered by slightly heating the composition (X). For this reason, the composition (X) can be reduced. It is easy to mold by an inkjet method. Such a low viscosity of the composition (X) can be achieved by the composition of the composition (X) described in detail below.

組成物(X)の、25℃の乾燥アルゴン雰囲気に6時間曝露された場合の重量減少割合は、1重量%以下であることが好ましい。この場合、組成物(X)は特に高い保存安定性を有することができる。このような組成物(X)の低い重量減少割合は、下記で詳細に説明される組成物(X)の組成によって達成可能である。   The weight reduction ratio of the composition (X) when exposed to a dry argon atmosphere at 25 ° C. for 6 hours is preferably 1% by weight or less. In this case, the composition (X) can have particularly high storage stability. Such a low weight loss ratio of the composition (X) can be achieved by the composition of the composition (X) described in detail below.

また、組成物(X)の硬化物は、有機EL発光装置1における封止材5として相応しい十分に高い屈折率を有することが好ましい。例えば硬化物は1.45以上、1.55未満の範囲内の屈折率を有することが好ましい。この場合、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を向上できる。このような硬化物の高い屈折率も、下記で詳細に説明される組成物(X)の組成によって達成可能である。   The cured product of the composition (X) preferably has a sufficiently high refractive index suitable as the sealing material 5 in the organic EL light emitting device 1. For example, the cured product preferably has a refractive index in the range of 1.45 or more and less than 1.55. In this case, when the cured product is applied to the sealing material 5 in the organic EL light-emitting device 1, it is possible to improve the extraction efficiency of light that passes through the sealing material 5 and is emitted to the outside. Such a high refractive index of the cured product can also be achieved by the composition of the composition (X) described in detail below.

以上により、組成物(X)を紫外線硬化させて作製される硬化物は、有機EL発光装置1における封止材5として好適である。   As described above, a cured product produced by ultraviolet curing the composition (X) is suitable as the sealing material 5 in the organic EL light emitting device 1.

以下、組成物(X)の成分について更に詳しく説明する。   Hereinafter, the components of the composition (X) will be described in more detail.

組成物(X)中の多官能カチオン重合性化合物(A)に含まれる成分に特に制限はない。多官能カチオン重合性化合物(A)は、上記の通り、多官能カチオン重合性化合物(A1)と多官能カチオン重合性化合物(A2)のうちいずれか一方又は両方を含有してよい。   There is no restriction | limiting in particular in the component contained in the polyfunctional cation polymeric compound (A) in composition (X). As described above, the polyfunctional cation polymerizable compound (A) may contain either one or both of the polyfunctional cation polymerizable compound (A1) and the polyfunctional cation polymerizable compound (A2).

多官能カチオン重合性化合物(A1)は、シロキサン骨格を有さず、一分子あたり二以上のカチオン重合性官能基を有する。多官能カチオン重合性化合物(A1)の一分子あたりのカチオン重合性官能基の数は2〜4個であることが好ましく、2〜3個であれば更に好ましい。   The polyfunctional cationically polymerizable compound (A1) does not have a siloxane skeleton and has two or more cationically polymerizable functional groups per molecule. The number of cation polymerizable functional groups per molecule of the polyfunctional cation polymerizable compound (A1) is preferably 2 to 4, more preferably 2 to 3.

カチオン重合性官能基は、例えばエポキシ基、オキセタン基及びビニルエーテル基からなる群から選択される少なくとも一種の基である。   The cationically polymerizable functional group is at least one group selected from the group consisting of, for example, an epoxy group, an oxetane group, and a vinyl ether group.

多官能カチオン重合性化合物(A1)は、例えば多官能脂環式エポキシ化合物(A11)、多官能ヘテロ環式エポキシ化合物、多官能オキセタン化合物、アルキレングリコールジグリシジルエーテル、及びアルキレングリコールモノビニルモノグリシジルエーテルからなる群から選択される化合物のうち、少なくとも一種の化合物を含有する。   The polyfunctional cationic polymerizable compound (A1) is, for example, from polyfunctional alicyclic epoxy compound (A11), polyfunctional heterocyclic epoxy compound, polyfunctional oxetane compound, alkylene glycol diglycidyl ether, and alkylene glycol monovinyl monoglycidyl ether. Among the compounds selected from the group consisting of, at least one compound is contained.

多官能脂環式エポキシ化合物(A11)は、例えば下記式(1)に示す化合物と下記式(20)に示す化合物とのうち、いずれか一方又は両方を含有する。   The polyfunctional alicyclic epoxy compound (A11) contains, for example, one or both of a compound represented by the following formula (1) and a compound represented by the following formula (20).

式(1)において、R1〜R18の各々は独立に水素原子、ハロゲン原子、又は炭化水素基である。炭化水素基の炭素数は1〜20の範囲内であることが好ましい。炭化水素基は、例えばメチル基、エチル基、プロピル基といった炭素数1〜20のアルキル基;ビニル基、アリル基といった炭素数2〜20のアルケニル基;又はエチリデン基、プロピリデン基といった炭素数2〜20のアルキリデン基である。炭化水素基は、酸素原子若しくはハロゲン原子を含んでいてもよい。R1〜R18の各々は独立に、水素原子又は炭素数1〜20の炭化水素基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが最も好ましい。 In Formula (1), each of R 1 to R 18 is independently a hydrogen atom, a halogen atom, or a hydrocarbon group. The hydrocarbon group preferably has 1 to 20 carbon atoms. The hydrocarbon group is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a propyl group; an alkenyl group having 2 to 20 carbon atoms such as a vinyl group or an allyl group; or 2 to 2 carbon atoms such as an ethylidene group or a propylidene group. 20 alkylidene groups. The hydrocarbon group may contain an oxygen atom or a halogen atom. Each of R 1 to R 18 is preferably independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.

式(1)において、Xは単結合又は二価の有機基であり、有機基は、例えば−CO−O−CH2−である。 In the formula (1), X is a single bond or a divalent organic group, and the organic group is, for example, —CO—O—CH 2 —.

式(1)に示す化合物の例は、下記式(1a)に示す化合物及び下記式(1b)に示す化合物を含む。   Examples of the compound represented by the formula (1) include a compound represented by the following formula (1a) and a compound represented by the following formula (1b).

式(20)中、R1〜R12の各々は独立に、水素原子、ハロゲン原子、又は炭素数1〜20の炭化水素基である。ハロゲン原子は、例えばフッ素原子、塩素原子、臭素原子又はヨウ素原子である。炭素数1〜20の炭化水素基は、例えばメチル基、エチル基、プロピル基といった炭素数1〜20のアルキル基;ビニル基、アリル基といった炭素数2〜20のアルケニル基;又はエチリデン基、プロピリデン基といった炭素数2〜20のアルキリデン基である。炭素数1〜20の炭化水素基は、酸素原子若しくはハロゲン原子を含んでいてもよい。 In formula (20), each of R 1 to R 12 is independently a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms. The halogen atom is, for example, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. The hydrocarbon group having 1 to 20 carbon atoms is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group or a propyl group; an alkenyl group having 2 to 20 carbon atoms such as a vinyl group or an allyl group; or an ethylidene group or propylidene group An alkylidene group having 2 to 20 carbon atoms such as a group; The hydrocarbon group having 1 to 20 carbon atoms may contain an oxygen atom or a halogen atom.

1〜R12の各々は独立に、水素原子又は炭素数1〜20の炭化水素基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが最も好ましい。 Each of R 1 to R 12 is preferably independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.

式(20)に示す化合物の例は、下記式(20a)に示すテトラヒドロインデンジエポキシドを含む。   Examples of the compound represented by the formula (20) include tetrahydroindene diepoxide represented by the following formula (20a).

多官能ヘテロ環式エポキシ化合物は、例えば下記式(2)に示すような三官能エポキシ化合物を含有する。   The polyfunctional heterocyclic epoxy compound contains, for example, a trifunctional epoxy compound as shown in the following formula (2).

多官能オキセタン化合物は、例えば下記式(3)に示すような二官能オキセタン化合物を含有する。   The polyfunctional oxetane compound contains, for example, a bifunctional oxetane compound as shown in the following formula (3).

アルキレングリコールジグリシジルエーテルは、例えば下記式(4)〜(7)に示す化合物からなる群から選択される少なくとも一種の化合物を含有する。   The alkylene glycol diglycidyl ether contains at least one compound selected from the group consisting of compounds represented by the following formulas (4) to (7), for example.

アルキレングリコールモノビニルモノグリシジルエーテルは、例えば下記式(8)に示す化合物を含有する。   The alkylene glycol monovinyl monoglycidyl ether contains, for example, a compound represented by the following formula (8).

より具体的には、多官能カチオン重合性化合物(A1)は、例えばダイセル製のセロキサイド2021P及びセロキサイド8010、日産化学製のTEPIC−VL、東亞合成製のOXT−221、並びに四日市合成製の1,3−PD−DEP、1,4−BG−DEP、1,6−HD−DEP、NPG−DEP及びブチレングリコールモノビニルモノグリシジルエーテルからなる群から選択される少なくとも一種の成分を含有できる。   More specifically, the polyfunctional cationically polymerizable compound (A1) is, for example, Daicel's Celoxide 2021P and Celoxide 8010, Nissan Chemical's TEPIC-VL, Toagosei's OXT-221, and Yokkaichi Synthetic 1, At least one component selected from the group consisting of 3-PD-DEP, 1,4-BG-DEP, 1,6-HD-DEP, NPG-DEP, and butylene glycol monovinyl monoglycidyl ether can be contained.

多官能カチオン重合性化合物(A1)は、多官能脂環式エポキシ化合物(A11)を含有することが好ましい。この場合、組成物(X)は特に高いカチオン重合反応性を有することができる。   The polyfunctional cation polymerizable compound (A1) preferably contains a polyfunctional alicyclic epoxy compound (A11). In this case, the composition (X) can have particularly high cationic polymerization reactivity.

多官能脂環式エポキシ化合物(A11)は、特に式(1)に示す化合物及び式(20)に示す化合物のうち、いずれか一方又は両方を含有することが好ましい。この場合、組成物(X)はより高いカチオン重合反応性を有することができる。   The polyfunctional alicyclic epoxy compound (A11) preferably contains either one or both of the compound represented by the formula (1) and the compound represented by the formula (20). In this case, the composition (X) can have higher cationic polymerization reactivity.

多官能脂環式エポキシ化合物(A11)が式(1)に示す化合物を含有する場合、式(1)に示す化合物は、式(1a)に示す化合物を含有することが好ましい。この場合、組成物(X)は、より高いカチオン重合反応性を有するとともに、特に低い粘度を有することができる。   When the polyfunctional alicyclic epoxy compound (A11) contains the compound represented by the formula (1), the compound represented by the formula (1) preferably contains the compound represented by the formula (1a). In this case, the composition (X) can have a higher cationic polymerization reactivity and a particularly low viscosity.

また、特に式(20)に示す化合物は、低い粘度を有するため、式(20)に示す化合物を含有する場合、組成物(X)は、良好な紫外線硬化性を有することができるとともに、特に低い粘度を有することができる。さらに、式(20)に示す化合物は、低い粘度を有するわりには、揮発しにくい性質を有する。そのため、組成物(X)が式(20)に示す化合物を含有しても、組成物(X)には、式(20)に示す化合物の揮発による組成の変化が生じにくい。このため、組成物(X)は、式(20)に示す化合物を含有することで、保存安定性を損なうことなく低粘度化されうる。   In particular, since the compound represented by the formula (20) has a low viscosity, when the compound represented by the formula (20) is contained, the composition (X) can have good ultraviolet curability, Can have a low viscosity. Furthermore, the compound represented by the formula (20) has a property of being less volatile in spite of having a low viscosity. Therefore, even if the composition (X) contains a compound represented by the formula (20), the composition (X) is unlikely to change in composition due to volatilization of the compound represented by the formula (20). For this reason, the composition (X) can be reduced in viscosity without impairing the storage stability by containing the compound represented by the formula (20).

式(20)に示す化合物は、例えばテトラヒドロインデン骨格を有する環状オレフィン化合物を、酸化剤を用いて酸化することで合成できる。   The compound represented by the formula (20) can be synthesized, for example, by oxidizing a cyclic olefin compound having a tetrahydroindene skeleton using an oxidizing agent.

式(20)に示す化合物は、2つのエポキシ環の立体配置に基づく4つの立体異性体を含みうる。式(20)に示す化合物は、4つの立体異性体のいずれを含んでもよい。すなわち、式(20)に示す化合物は、4つの立体異性体からなる群から選択される少なくとも一種の成分を含有できる。式(20)に示す化合物中における、4つの立体異性体のうちのエキソ−エンド体とエンド−エンド体の合計量の割合は、エポキシ化合物(A1)全体に対して10質量%以下であることが好ましく、5質量%以下であれば更に好ましい。この場合、硬化物の耐熱性を向上できる。なお、式(20)に示す化合物中の特定の立体異性体の割合は、ガスクロマトグラフィーで得られるクロマトグラムに現れるピーク面積比に基づいて、求めることができる。   The compound represented by formula (20) may contain four stereoisomers based on the configuration of two epoxy rings. The compound represented by the formula (20) may include any of the four stereoisomers. That is, the compound represented by the formula (20) can contain at least one component selected from the group consisting of four stereoisomers. In the compound represented by the formula (20), the ratio of the total amount of the exo-endo form and the endo-endo form among the four stereoisomers is 10% by mass or less based on the entire epoxy compound (A1). Is preferable, and if it is 5 mass% or less, it is still more preferable. In this case, the heat resistance of the cured product can be improved. In addition, the ratio of the specific stereoisomer in the compound shown in Formula (20) can be calculated | required based on the peak area ratio which appears in the chromatogram obtained by a gas chromatography.

式(20)に示す化合物中のエキソ−エンド体及びエンド−エンド体の量を少なくするためには、式(20)に示す化合物を精密蒸留する方法、シリカゲルなどを充填剤として用いたカラムクロマトグラフィーを適用する方法といった、適宜の方法を適用できる。   In order to reduce the amount of exo-endo and endo-endo in the compound represented by formula (20), a method of precision distillation of the compound represented by formula (20), column chromatography using silica gel or the like as a packing material. An appropriate method such as a method of applying a graphic can be applied.

組成物(X)が多官能カチオン重合性化合物(A1)を含有する場合、樹脂成分全量に対する多官能カチオン重合性化合物(A1)の割合は、5〜95質量%の範囲内であることが好ましい。なお、樹脂成分とは、組成物(X)中のカチオン重合性を有する化合物のことをいい、多官能カチオン重合性化合物(A)及び単官能カチオン重合性化合物(D)を含む。多官能カチオン重合性化合物(A1)の割合が5質量%以上であれば組成物(X)は光カチオン重合反応時に特に優れた反応性を有することができ、またそれによって、硬化物が高い強度(硬度)を有することができる。また、多官能カチオン重合性化合物(A1)の割合が95質量%以下であれば、組成物(X)が吸湿剤(C)を含有する場合に、組成物(X)中で吸湿剤(C)を特に均一に分散させやすくできる。この多官能カチオン重合性化合物(A1)の割合は、12質量%以上であればより好ましく、15質量%以上であれば更に好ましく、20質量%以上であれば更に好ましく、25質量%以上であれば特に好ましい。またこの多官能カチオン重合性化合物(A1)の割合は、85質量%以下であればより好ましく、60質量%以下であれば更に好ましい。例えば多官能カチオン重合性化合物(A1)の割合が20〜60質量%の範囲内であることが好ましい。   When the composition (X) contains the polyfunctional cation polymerizable compound (A1), the ratio of the polyfunctional cation polymerizable compound (A1) to the total amount of the resin components is preferably in the range of 5 to 95% by mass. . The resin component means a compound having cationic polymerizability in the composition (X), and includes a polyfunctional cationic polymerizable compound (A) and a monofunctional cationic polymerizable compound (D). If the ratio of the polyfunctional cationically polymerizable compound (A1) is 5% by mass or more, the composition (X) can have particularly excellent reactivity during the photocationic polymerization reaction, whereby the cured product has high strength. (Hardness). Moreover, if the ratio of the polyfunctional cation polymerizable compound (A1) is 95% by mass or less, when the composition (X) contains the hygroscopic agent (C), the hygroscopic agent (C ) Can be easily dispersed particularly uniformly. The proportion of the polyfunctional cation polymerizable compound (A1) is more preferably 12% by mass or more, further preferably 15% by mass or more, further preferably 20% by mass or more, and 25% by mass or more. Is particularly preferred. Further, the ratio of the polyfunctional cation polymerizable compound (A1) is more preferably 85% by mass or less, and further preferably 60% by mass or less. For example, the ratio of the polyfunctional cation polymerizable compound (A1) is preferably in the range of 20 to 60% by mass.

多官能カチオン重合性化合物(A1)が多官能脂環式エポキシ化合物(A11)を含有する場合、多官能脂環式エポキシ化合物(A11)は、多官能カチオン重合性化合物(A1)の一部であってもよく、全部であってもよい。多官能カチオン重合性化合物(A1)に対する、多官能脂環式エポキシ化合物(A11)の割合は、15〜100質量%の範囲内であることが好ましい。この割合が15質量%以上であると、多官能脂環式エポキシ化合物(A11)は組成物(X)の紫外線硬化性の向上に特に寄与できる。   When the polyfunctional cation polymerizable compound (A1) contains the polyfunctional alicyclic epoxy compound (A11), the polyfunctional alicyclic epoxy compound (A11) is a part of the polyfunctional cation polymerizable compound (A1). It may be all or all. The ratio of the polyfunctional alicyclic epoxy compound (A11) to the polyfunctional cationic polymerizable compound (A1) is preferably in the range of 15 to 100% by mass. When this proportion is 15% by mass or more, the polyfunctional alicyclic epoxy compound (A11) can particularly contribute to the improvement of the ultraviolet curable property of the composition (X).

多官能カチオン重合性化合物(A2)は、シロキサン骨格と、一分子あたり二以上のカチオン重合性官能基とを有する。多官能カチオン重合性化合物(A2)の一分子あたりのカチオン重合性官能基の数は、2〜6個であることが好ましく、2〜4個であれば更に好ましい。多官能カチオン重合性化合物(A2)は、組成物(X)のカチオン重合反応性の向上に寄与できるとともに、硬化物及び封止材5の耐熱変色性の向上に寄与できる。封止材5の耐熱変色性が高いと、封止材5を備える有機EL発光装置1の発光強度の経時劣化及び発光色の経時変化を抑制できる。また、多官能カチオン重合性化合物(A2)は硬化物及び封止材5の低弾性率化にも寄与することができ、このため、封止材5を備える有機EL発光装置1にフレキシブル性を付与することも可能である。また、組成物(X)が吸湿剤を含有する場合、多官能カチオン重合性化合物(A2)は組成物(X)中及び硬化物中の吸湿剤の分散性の向上に寄与できる。このため、たとえ吸湿剤に分散性向上のための表面処理などを施さない場合であっても、組成物(X)中及び硬化物中において、吸湿剤が良好に分散できる。   The polyfunctional cation polymerizable compound (A2) has a siloxane skeleton and two or more cation polymerizable functional groups per molecule. The number of cation polymerizable functional groups per molecule of the polyfunctional cation polymerizable compound (A2) is preferably 2 to 6, more preferably 2 to 4. The polyfunctional cation polymerizable compound (A2) can contribute to the improvement of the cationic polymerization reactivity of the composition (X) and can contribute to the improvement of the heat discoloration of the cured product and the sealing material 5. When the heat resistant discoloration of the sealing material 5 is high, it is possible to suppress deterioration over time of the light emission intensity and change over time of the emission color of the organic EL light emitting device 1 including the sealing material 5. In addition, the polyfunctional cation polymerizable compound (A2) can contribute to lowering the elastic modulus of the cured product and the sealing material 5, and therefore, the organic EL light-emitting device 1 including the sealing material 5 has flexibility. It is also possible to grant. Moreover, when composition (X) contains a hygroscopic agent, polyfunctional cation polymeric compound (A2) can contribute to the improvement of the dispersibility of the hygroscopic agent in composition (X) and hardened | cured material. For this reason, even if it is a case where surface treatment for a dispersibility improvement etc. is not given to a hygroscopic agent, a hygroscopic agent can be favorably disperse | distributed in a composition (X) and hardened | cured material.

多官能カチオン重合性化合物(A2)は、25℃で液体であることが好ましい。特に多官能カチオン重合性化合物(A2)の25℃における粘度は、10〜300mPa・sの範囲内であることが好ましい。この場合、組成物(X)の粘度上昇を抑制できる。   The polyfunctional cation polymerizable compound (A2) is preferably liquid at 25 ° C. In particular, the viscosity at 25 ° C. of the polyfunctional cationically polymerizable compound (A2) is preferably in the range of 10 to 300 mPa · s. In this case, an increase in the viscosity of the composition (X) can be suppressed.

多官能カチオン重合性化合物(A2)が有するカチオン重合性官能基は、例えばエポキシ基、オキセタン基及びビニルエーテル基からなる群から選択される少なくとも一種の基である。   The cationically polymerizable functional group that the polyfunctional cationically polymerizable compound (A2) has is at least one group selected from the group consisting of, for example, an epoxy group, an oxetane group, and a vinyl ether group.

多官能カチオン重合性化合物(A2)が有するシロキサン骨格は、直鎖状でも分岐鎖状でも環状でもよい。シロキサン骨格が有するSi原子の数は、2〜14の範囲内であることが好ましい。この場合、組成物(X)は特に低い粘度を有することができる。このSi原子の数は、2〜10の範囲内であればより好ましく、2〜7の範囲内であれば更に好ましく、3〜6の範囲内であれば特に好ましい。   The siloxane skeleton of the polyfunctional cation polymerizable compound (A2) may be linear, branched or cyclic. The number of Si atoms contained in the siloxane skeleton is preferably in the range of 2-14. In this case, the composition (X) can have a particularly low viscosity. The number of Si atoms is more preferably in the range of 2 to 10, more preferably in the range of 2 to 7, and particularly preferably in the range of 3 to 6.

多官能カチオン重合性化合物(A2)は、例えば式(10)に示す化合物と、式(11)に示す化合物とのうち、少なくとも一方を含有する。   The polyfunctional cation polymerizable compound (A2) contains at least one of, for example, a compound represented by the formula (10) and a compound represented by the formula (11).

式(10)及び式(11)の各々におけるRは、単結合又は二価の有機基であり、アルキレン基であることが好ましい。Yはシロキサン骨格であり、直鎖状、分岐状及び環状のいずれでもよく、そのSi原子の数は2〜14の範囲内の範囲内であることが好ましく、2〜10の範囲内であることがより好ましく、2〜7の範囲内であれば更に好ましく、3〜6の範囲内であれば特に好ましい。nは2以上の整数であり、2〜4の範囲内であることが好ましい。   R in each of the formula (10) and the formula (11) is a single bond or a divalent organic group, and is preferably an alkylene group. Y is a siloxane skeleton, which may be linear, branched or cyclic, and the number of Si atoms is preferably in the range of 2 to 14, preferably in the range of 2 to 10. Is more preferable, and is more preferably in the range of 2 to 7, and particularly preferably in the range of 3 to 6. n is an integer greater than or equal to 2, and it is preferable to exist in the range of 2-4.

より具体的には、例えば多官能カチオン重合性化合物(A2)は、次の式(10a)に示す化合物を含有する。   More specifically, for example, the polyfunctional cation polymerizable compound (A2) contains a compound represented by the following formula (10a).

式(10a)におけるRは、単結合又は二価の有機基であり、炭素数1〜4のアルキレン基であることが好ましい。式(10a)におけるnは0以上の整数である。nは、0〜12の範囲内であることが好ましく、0〜8の範囲内であることがより好ましく、0〜5の範囲内であれば更に好ましく、1〜4の範囲内であれば特に好ましい。   R in Formula (10a) is a single bond or a divalent organic group, and is preferably an alkylene group having 1 to 4 carbon atoms. N in the formula (10a) is an integer of 0 or more. n is preferably in the range of 0 to 12, more preferably in the range of 0 to 8, more preferably in the range of 0 to 5, and particularly preferably in the range of 1 to 4. preferable.

式(10a)に示す化合物は、下記式(30)に示す化合物を含有することが好ましい。すなわち、多官能カチオン重合性化合物(A2)は、下記式(30)に示す化合物を含有することが好ましい。   The compound represented by the formula (10a) preferably contains a compound represented by the following formula (30). That is, the polyfunctional cation polymerizable compound (A2) preferably contains a compound represented by the following formula (30).

式(30)中、nは0以上の整数であり、0〜12の範囲内であることが好ましく、0〜8の範囲内であることがより好ましく、0〜5の範囲内であれば更に好ましく、1〜4の範囲内であれば特に好ましい。   In the formula (30), n is an integer of 0 or more, preferably within a range of 0 to 12, more preferably within a range of 0 to 8, and further within a range of 0 to 5. Preferably, it is especially preferable if it is in the range of 1-4.

式(30)に示す化合物の例は、下記式(10a−1)に示す化合物を含む。   Examples of the compound represented by the formula (30) include a compound represented by the following formula (10a-1).

多官能カチオン重合性化合物(A2)は、式(10a)に示す化合物に代えて、或いは式(10a)に示す化合物とともに、次の式(10b)〜(10d)並びに(11a)〜(11b)に示す化合物のうち少なくとも一種の化合物を含有してもよい。   The polyfunctional cation polymerizable compound (A2) is replaced with the compound represented by the formula (10a) or together with the compound represented by the formula (10a), and the following formulas (10b) to (10d) and (11a) to (11b): You may contain at least 1 type of compound among the compounds shown to.

式(10d)におけるRは、単結合又は二価の有機基であり、炭素数1〜4のアルキレン基であることが好ましい。式(10d)におけるnは0以上の整数である。式(10d)におけるmは2以上の整数である。   R in Formula (10d) is a single bond or a divalent organic group, and is preferably an alkylene group having 1 to 4 carbon atoms. N in the formula (10d) is an integer of 0 or more. M in the formula (10d) is an integer of 2 or more.

式(11a)におけるRは、単結合又は二価の有機基であり、炭素数1〜4のアルキレン基であることが好ましい。式(11a)におけるnは0以上の整数であり、8〜80の範囲内であることが好ましい。式(11a)におけるmは2以上の整数であり、2〜6の範囲内であることが好ましい。   R in Formula (11a) is a single bond or a divalent organic group, and is preferably an alkylene group having 1 to 4 carbon atoms. N in the formula (11a) is an integer of 0 or more, and preferably in the range of 8-80. M in the formula (11a) is an integer of 2 or more, and preferably in the range of 2 to 6.

式(11b)におけるRは、単結合又は二価の有機基であり、炭素数1〜4のアルキレン基であることが好ましい。式(11b)におけるnは0以上の整数であり、8〜80の範囲内であることが好ましい。   R in Formula (11b) is a single bond or a divalent organic group, and is preferably an alkylene group having 1 to 4 carbon atoms. N in the formula (11b) is an integer of 0 or more, and preferably in the range of 8-80.

より具体的には、多官能カチオン重合性化合物(A2)は、例えば信越化学株式会社製の品番X−40−2669、X−40−2670、X−40−2715、X−40−2732、X−22−169AS、X−22−169B、X−22−2046、X−22−343、X−22−163、及びX−22−163Bからなる群から選択される少なくとも一種の成分を含有することが好ましい。   More specifically, the polyfunctional cationic polymerizable compound (A2) is, for example, product numbers X-40-2669, X-40-2670, X-40-2715, X-40-2732, X manufactured by Shin-Etsu Chemical Co., Ltd. It contains at least one component selected from the group consisting of -22-169AS, X-22-169B, X-22-2046, X-22-343, X-22-163, and X-22-163B. Is preferred.

多官能カチオン重合性化合物(A2)は脂環式エポキシ構造を有することが好ましく、多官能カチオン重合性化合物(A2)が式(10a)に示す化合物を含有すれば特に好ましい。式(10a)に示す化合物は、組成物(X)のカチオン重合反応性の向上と低粘度化とに特に寄与できるとともに、硬化物及び封止材5の耐熱変色性の向上及び低弾性率化に特に寄与できる。組成物(X)が吸湿剤(C)を含有する場合は組成物(X)中の吸湿剤(C)の分散性向上にも特に寄与できる。   The polyfunctional cation polymerizable compound (A2) preferably has an alicyclic epoxy structure, and it is particularly preferable if the polyfunctional cation polymerizable compound (A2) contains a compound represented by the formula (10a). The compound represented by the formula (10a) can particularly contribute to the improvement of the cationic polymerization reactivity of the composition (X) and the reduction of the viscosity, as well as the improvement of the heat discoloration and the low elastic modulus of the cured product and the sealing material 5. Can particularly contribute. When the composition (X) contains a hygroscopic agent (C), it can also contribute particularly to the improvement of the dispersibility of the hygroscopic agent (C) in the composition (X).

組成物(X)が多官能カチオン重合性化合物(A2)を含有する場合、樹脂成分全量に対する多官能カチオン重合性化合物(A2)の割合は、5〜95質量%の範囲内であることが好ましい。多官能カチオン重合性化合物(A2)の割合が5質量%以上であれば、特に組成物(X)が吸湿剤(C)を含有する場合に、組成物(X)中及び硬化物中での吸湿剤(C)の分散性が特に向上することで、硬化物の透明性が特に向上する。また、多官能カチオン重合性化合物(A2)の割合が95質量%以下であれば、組成物(X)が特に高い光カチオン重合反応性を有することができ、そのため、硬化物は特に高い強度(硬度)を有することができる。この多官能カチオン重合性化合物(A2)の割合は、6質量%以上であればより好ましく13質量%以上であれば更に好まく、20質量%以上であれば特に好ましい。また、この多官能カチオン重合性化合物(A2)の割合は、70質量%以下であればより好ましく、この場合、硬化物を高屈折率化できる。多官能カチオン重合性化合物(A2)の割合は、45質量%以下であれば更に好ましい。例えば多官能カチオン重合性化合物(A2)の割合が20〜70質量%の範囲内であることが好ましい。   When the composition (X) contains the polyfunctional cation polymerizable compound (A2), the ratio of the polyfunctional cation polymerizable compound (A2) to the total amount of the resin component is preferably in the range of 5 to 95% by mass. . If the ratio of the polyfunctional cation polymerizable compound (A2) is 5% by mass or more, particularly in the case where the composition (X) contains a hygroscopic agent (C), in the composition (X) and in the cured product. When the dispersibility of the moisture absorbent (C) is particularly improved, the transparency of the cured product is particularly improved. Moreover, if the ratio of the polyfunctional cationically polymerizable compound (A2) is 95% by mass or less, the composition (X) can have particularly high photocationic polymerization reactivity, and therefore the cured product has particularly high strength ( Hardness). The ratio of the polyfunctional cation polymerizable compound (A2) is more preferably 6% by mass or more, further preferably 13% by mass or more, and particularly preferably 20% by mass or more. Further, the ratio of the polyfunctional cation polymerizable compound (A2) is more preferably 70% by mass or less, and in this case, the cured product can have a high refractive index. The ratio of the polyfunctional cation polymerizable compound (A2) is more preferably 45% by mass or less. For example, the ratio of the polyfunctional cation polymerizable compound (A2) is preferably in the range of 20 to 70% by mass.

カチオン硬化触媒(B)は、光照射を受けてプロトン酸又はルイス酸を発生する触媒であれば、特に制限されない。カチオン硬化触媒(B)は、イオン性光酸発生型のカチオン硬化触媒と、非イオン性光酸発生剤のカチオン硬化触媒とのうち、少なくとも一方を含有できる。   The cationic curing catalyst (B) is not particularly limited as long as it is a catalyst that generates protonic acid or Lewis acid when irradiated with light. The cationic curing catalyst (B) can contain at least one of an ionic photoacid-generating cationic curing catalyst and a nonionic photoacid generator cationic curing catalyst.

イオン性光酸発生型のカチオン硬化触媒は、オニウム塩類と有機金属錯体とのうち少なくとも一方を含有できる。オニウム塩類の例は、芳香族ジアゾニウム塩、芳香族ハロニウム塩、及び芳香族スルホニウム塩を含む。有機金属錯体の例は、鉄−アレン錯体、チタノセン錯体、及びアリールシラノール−アルミニウム錯体を含む。イオン性光酸発生型のカチオン硬化触媒は、これらの成分のうち少なくとも一種の成分を含有できる。   The ionic photoacid-generating cationic curing catalyst can contain at least one of onium salts and organometallic complexes. Examples of onium salts include aromatic diazonium salts, aromatic halonium salts, and aromatic sulfonium salts. Examples of organometallic complexes include iron-allene complexes, titanocene complexes, and arylsilanol-aluminum complexes. The ionic photoacid-generating cationic curing catalyst can contain at least one of these components.

非イオン性光酸発生剤のカチオン硬化触媒は、例えばニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン、及びN−ヒドロキシイミドホスホナートからなる群から選択される少なくとも一種の成分を含有できる。   The cationic curing catalyst of the nonionic photoacid generator is, for example, at least one selected from the group consisting of nitrobenzyl esters, sulfonic acid derivatives, phosphate esters, phenol sulfonate esters, diazonaphthoquinone, and N-hydroxyimide phosphonates. The component of this can be contained.

カチオン硬化触媒(B)が含有できる化合物のより具体的な例は、みどり化学製のDPIシリーズ(105,106、109、201など)、BI−105、MPIシリーズ(103、105、106、109など)、BBIシリーズ(101、102、103、105、106、109、110、200、210、300、301など)、TSPシリーズ(102、103、105、106、109、200、300、1000など)、HDS−109、MDSシリーズ(103、105、109、203、205、209など)、BDS−109、MNPS−109、DTSシリーズ(102、103、105、200など)、NDSシリーズ(103、105、155、165など)、DAMシリーズ(101、102、103、105、201など)、SIシリーズ(105、106など)、PI−106、NDIシリーズ(105、106、109、1001、1004など)、PAIシリーズ(01、101、106、1001、1002、1003、1004など)、MBZ−101、PYR−100、NBシリーズ(101、201など)、NAIシリーズ(100、1002,1003、1004、101、105、106、109など)、TAZシリーズ(100、101、102、103、104、107、108、109、110、113、114、118、122、123、203、204など)、NBC−101、ANC−101、TPS−Acetate、DTS−Acetate、Di−Boc Bisphinol A、tert−Butyl lithocholate、tert−Butyl deoxycholate、tert−Butyl cholate、BX、BC−2、MPI−103、BDS−105、TPS−103、NAT−103、BMS−105、及びTMS−105;
米国ユニオンカーバイド社製のサイラキュアUVI−6970、サイラキュアUVI−6974、サイラキュアUVI−6990、及びサイラキュアUVI−950;
BASF社製のイルガキュア250、イルガキュア261及びイルガキュア264;
チバガイギー社製のCG−24−61;
株式会社ADEKA製のアデカオプトマーSP−150、アデカオプトマーSP−151、アデカオプトマーSP−170及びアデカオプトマーSP−171;
株式会社ダイセル製のDAICAT II;
ダイセル・サイテック株式会社製のUVAC1590及びUVAC1591;
日本曹達株式会社製のCI−2064、CI−2639、CI−2624、CI−2481、CI−2734、CI−2855、CI−2823、CI−2758、及びCIT−1682;
ローディア社製のテトラキス(ペンタフルオロフェニル)ボレート トルイルクミルヨードニウム塩であるPI−2074;
3M社製のFFC509;
米国Sartomer社製のCD−1010、CD−1011及びCD−1012;
サンアプロ株式会社製のCPI−100P、CPI−101A、CPI−110P、CPI−110A及びCPI−210S;並びに
ダウ・ケミカル社製のUVI−6992及びUVI−6976を、含む。カチオン硬化触媒(B)は、これらの化合物からなる群から選択される少なくとも一種の化合物を含有できる。
More specific examples of compounds that the cationic curing catalyst (B) can contain include DPI series (105, 106, 109, 201, etc.), BI-105, MPI series (103, 105, 106, 109, etc.) manufactured by Midori Chemical. ), BBI series (101, 102, 103, 105, 106, 109, 110, 200, 210, 300, 301 etc.), TSP series (102, 103, 105, 106, 109, 200, 300, 1000 etc.), HDS-109, MDS series (103, 105, 109, 203, 205, 209, etc.), BDS-109, MNPS-109, DTS series (102, 103, 105, 200, etc.), NDS series (103, 105, 155) , 165, etc.), DAM series (101, 102, 103, 10) 201, SI series (105, 106, etc.), PI-106, NDI series (105, 106, 109, 1001, 1004, etc.), PAI series (01, 101, 106, 1001, 1002, 1003, 1004, etc.) ), MBZ-101, PYR-100, NB series (101, 201, etc.), NAI series (100, 1002, 1003, 1004, 101, 105, 106, 109 etc.), TAZ series (100, 101, 102, 103) , 104, 107, 108, 109, 110, 113, 114, 118, 122, 123, 203, 204, etc.), NBC-101, ANC-101, TPS-Acetate, DTS-Acetate, Di-Boc Bispinol A, tert -Butyl l thocholate, tert-Butyl deoxycholate, tert-Butyl cholate, BX, BC-2, MPI-103, BDS-105, TPS-103, NAT-103, BMS-105, and TMS-105;
Cyracure UVI-6970, Cyracure UVI-6974, Cyracure UVI-6990, and Cyracure UVI-950 from Union Carbide, USA;
Irgacure 250, Irgacure 261 and Irgacure 264 made by BASF;
CG-24-61 manufactured by Ciba Geigy;
Adekaoptomer SP-150, Adekaoptomer SP-151, Adekaoptomer SP-170 and Adekaoptomer SP-171 manufactured by ADEKA Corporation;
DAICAT II manufactured by Daicel Corporation;
UVAC1590 and UVAC1591 manufactured by Daicel-Cytec Corporation;
CI-2064, CI-2638, CI-2624, CI-2434, CI-2734, CI-2855, CI-2823, CI-2758, and CIT-1682 manufactured by Nippon Soda Co., Ltd .;
PI-2074, a tetrakis (pentafluorophenyl) borate toluylcumyl iodonium salt manufactured by Rhodia;
FFC509 manufactured by 3M;
CD-1010, CD-1011 and CD-1012 from Sartomer, USA;
CPI-100P, CPI-101A, CPI-110P, CPI-110A and CPI-210S manufactured by San Apro Co., Ltd., and UVI-6922 and UVI-6976 manufactured by Dow Chemical Co., Ltd. are included. The cationic curing catalyst (B) can contain at least one compound selected from the group consisting of these compounds.

樹脂成分全量に対するカチオン硬化触媒(B)の割合は、1〜4質量%の範囲内であることが好ましい。この割合が1質量%以上であることで、組成物(X)は特に良好なカチオン重合反応性を有することができる。また、この割合が4質量%以下であることで、組成物(X)は良好な保存安定性を有することができ、また過剰なカチオン硬化触媒(B)を含有しないことで製造コスト削減が可能である。   The ratio of the cationic curing catalyst (B) to the total amount of the resin component is preferably in the range of 1 to 4% by mass. When this ratio is 1% by mass or more, the composition (X) can have particularly good cationic polymerization reactivity. Moreover, composition (X) can have favorable storage stability because this ratio is 4 mass% or less, and a manufacturing cost can be reduced by not containing an excess cationic curing catalyst (B). It is.

組成物(X)は、上記の通り吸湿剤を含有してもよい。吸湿剤は、吸湿性を有する無機粒子であることが好ましく、例えばゼオライト粒子、シリカゲル粒子、塩化カルシウム粒子、及び酸化チタンナノチューブ粒子からなる群から選択される少なくとも一種の成分を含有することが好ましい。   Composition (X) may contain a hygroscopic agent as described above. The hygroscopic agent is preferably inorganic particles having hygroscopicity, and for example, preferably contains at least one component selected from the group consisting of zeolite particles, silica gel particles, calcium chloride particles, and titanium oxide nanotube particles.

組成物(X)は、好ましくは平均粒径200nm以下、より好ましくは平均粒径100nm以下の吸湿剤(C)を含有してもよい。すなわち、組成物(X)中の吸湿剤が、好ましくは平均粒径200nm以下、より好ましくは平均粒径100nm以下の吸湿剤(C)を含有してもよい。   The composition (X) may contain a hygroscopic agent (C) preferably having an average particle size of 200 nm or less, more preferably an average particle size of 100 nm or less. That is, the hygroscopic agent in the composition (X) may contain a hygroscopic agent (C) having an average particle size of preferably 200 nm or less, more preferably an average particle size of 100 nm or less.

吸湿剤(C)は、吸湿性を有する無機粒子であることが好ましく、例えばゼオライト粒子、シリカゲル粒子、塩化カルシウム粒子、及び酸化チタンナノチューブ粒子からなる群から選択される少なくとも一種の成分を含有することが好ましい。吸湿剤(C)がゼオライト粒子を含有することが特に好ましい。   The hygroscopic agent (C) is preferably inorganic particles having hygroscopicity, and contains at least one component selected from the group consisting of zeolite particles, silica gel particles, calcium chloride particles, and titanium oxide nanotube particles, for example. Is preferred. It is particularly preferred that the hygroscopic agent (C) contains zeolite particles.

平均粒径200nm以下又は平均粒径100nm以下のゼオライト粒子は、例えば一般的な工業的用ゼオライトを粉砕することで製造できる。ゼオライトを粉砕してから水熱合成などによって結晶化させてもよく、この場合、ゼオライト粒子は特に高い吸湿性を有することができる。このようなゼオライト粒子の製造方法は、特開2016−69266号公報、特開2013−049602号公報などにより公知である。   Zeolite particles having an average particle size of 200 nm or less or an average particle size of 100 nm or less can be produced, for example, by pulverizing general industrial zeolite. The zeolite may be pulverized and then crystallized by hydrothermal synthesis or the like. In this case, the zeolite particles can have particularly high hygroscopicity. Such a method for producing zeolite particles is known from Japanese Patent Application Laid-Open Nos. 2006-69266 and 2013-049602.

平均粒径200nm以下又は平均粒径100nm以下のゼオライト粒子の製造方法の一具体例を示す。まず、ゼオライト粉を準備する。ゼオライト粉はLTA型(A型ゼオライト)などのナトリウムを含むゼオライトであることが好ましいが、これに限られない。このゼオライト粉を物理粉砕する。例えばゼオライト粉を水と混合してスラリーを調製し、このスラリーをビーズミル粉砕機にかけることで、ゼオライト粉を物理粉砕できる。   A specific example of a method for producing zeolite particles having an average particle size of 200 nm or less or an average particle size of 100 nm or less is shown. First, zeolite powder is prepared. The zeolite powder is preferably a zeolite containing sodium such as LTA type (A type zeolite), but is not limited thereto. The zeolite powder is physically pulverized. For example, the zeolite powder can be physically pulverized by mixing the zeolite powder with water to prepare a slurry and applying this slurry to a bead mill pulverizer.

続いて、水熱合成によりゼオライト粉を結晶化させる。例えば物理粉砕後のゼオライト粉を含むスラリーを、オートクレーブで加熱することで、水熱合成を行うことができる。水熱合成の条件は、例えば加熱温度150〜200℃の範囲内、加熱時間15〜24時間の範囲内である。   Subsequently, the zeolite powder is crystallized by hydrothermal synthesis. For example, hydrothermal synthesis can be performed by heating a slurry containing zeolite powder after physical pulverization in an autoclave. The conditions for hydrothermal synthesis are, for example, in the range of heating temperature 150 to 200 ° C. and in the range of heating time 15 to 24 hours.

続いて、ゼオライト粉を乾燥する。乾燥温度は例えば150〜200℃の範囲内であり、乾燥時間は例えば2〜3時間の範囲内である。続いて、必要に応じ、乾燥後のゼオライト粉を乳鉢などを用いて解砕してから篩いにかけることで粒径を整える。   Subsequently, the zeolite powder is dried. The drying temperature is, for example, in the range of 150 to 200 ° C., and the drying time is in the range of, for example, 2-3 hours. Subsequently, if necessary, the dried zeolite powder is crushed using a mortar or the like and then sieved to adjust the particle size.

続いて、必要に応じ、ゼオライト粉にイオン交換処理を施す。特にゼオライト粉がLTAなどのナトリウムを含むゼオライトである場合は、ゼオライト粉中のナトリウムをマグネシウムと交換するイオン交換処理を施すことが好ましい。   Subsequently, if necessary, the zeolite powder is subjected to ion exchange treatment. In particular, when the zeolite powder is a zeolite containing sodium such as LTA, it is preferable to perform an ion exchange treatment for exchanging sodium in the zeolite powder with magnesium.

イオン交換処理は、例えばゼオライト粉を、マグネシウムイオンを含有する水溶液中に分散させて混合物を調製し、この混合物を加熱することで行われる。より具体的には、イオン交換処理は例えば次のように行われる。まずゼオライト粉を、塩化マグネシウム及び水と混合し、得られた混合物を加熱しながら撹拌する処理をする。この処理の間、撹拌を一時的に停止してから混合物の上澄みを捨て、続いて混合物に水を補充してから撹拌を再開するという操作を、適当な間隔をあけて複数回繰り返すことが好ましい。この処理における加熱温度は40〜80℃の範囲内、処理時間は6〜8時間の範囲内であることが好ましい。   The ion exchange treatment is performed, for example, by dispersing a zeolite powder in an aqueous solution containing magnesium ions to prepare a mixture and heating the mixture. More specifically, the ion exchange process is performed as follows, for example. First, the zeolite powder is mixed with magnesium chloride and water, and the resulting mixture is stirred while heating. During this treatment, it is preferable to repeat the operation of temporarily stopping the stirring and then discarding the supernatant of the mixture, and then replenishing the mixture with water and restarting the stirring a plurality of times at appropriate intervals. . The heating temperature in this treatment is preferably in the range of 40 to 80 ° C., and the treatment time is preferably in the range of 6 to 8 hours.

イオン交換処理を施した場合、続いて、ゼオライト粉を乾燥する。乾燥温度は例えば150〜200℃の範囲内であり、乾燥時間は例えば2〜3時間の範囲内である。続いて、必要に応じ、乾燥後のゼオライト粉を乳鉢などを用いて解砕してから篩いにかけることで粒径を整える。   When the ion exchange treatment is performed, the zeolite powder is subsequently dried. The drying temperature is, for example, in the range of 150 to 200 ° C., and the drying time is in the range of, for example, 2-3 hours. Subsequently, if necessary, the dried zeolite powder is crushed using a mortar or the like and then sieved to adjust the particle size.

これにより、平均粒径200nm以下又は平均粒径100nm以下のゼオライト粒子を得ることができる。   Thereby, zeolite particles having an average particle size of 200 nm or less or an average particle size of 100 nm or less can be obtained.

ゼオライト粉の結晶化を、シリケート及びアルカリ金属酸化物の存在下で行うこともできる。その場合の平均粒径200nm以下又は平均粒径100nm以下のゼオライト粒子の製造方法の具体例を示す。まず、ゼオライト粉を準備する。ゼオライト粉は、aM12O・bSiO2・Al23・cMeの組成を有することが好ましい。M1はアルカリ金属、プロトン、又はアンモニウムイオン(NH4 +)であり、Meはアルカリ土類金属であり、aは0.01〜1の範囲内の数であり、bは20〜80の範囲内の数であり、cは0〜1の範囲内の数である。ゼオライト粉は、例えばFAU型、CHA型、BEA型、MFI型、MOR型、又はFER型であってよい。 Crystallization of the zeolite powder can also be performed in the presence of silicate and alkali metal oxide. The specific example of the manufacturing method of the zeolite particle of the average particle diameter 200nm or less in that case or an average particle diameter of 100 nm or less is shown. First, zeolite powder is prepared. The zeolite powder preferably has a composition of aM1 2 O · bSiO 2 · Al 2 O 3 · cMe. M1 is an alkali metal, proton, or ammonium ion (NH 4 + ), Me is an alkaline earth metal, a is a number in the range of 0.01 to 1, and b is in the range of 20 to 80. C is a number within the range of 0-1. The zeolite powder may be, for example, FAU type, CHA type, BEA type, MFI type, MOR type, or FER type.

このゼオライト粉を物理粉砕する。例えばゼオライト粉をビーズミル粉砕機にかけることで、ゼオライト粉を物理粉砕できる。   The zeolite powder is physically pulverized. For example, zeolite powder can be physically pulverized by applying it to a bead mill pulverizer.

物理粉砕後のゼオライト粉を、M22O、SiO2及びH2Oを含有する溶液に分散させ、スラリーを調製する。M2はアルカリ金属であり、好ましくはK又はNaである。M22O/H2Oのモル比は例えば0.003〜0.01の範囲内であり、SiO2/H2Oのモル比は例えば0.006〜0.025である。ゼオライト粉の量は、例えば溶液100mlに対して0.5〜10gである。 The zeolite powder after the physical pulverization is dispersed in a solution containing M2 2 O, SiO 2 and H 2 O to prepare a slurry. M2 is an alkali metal, preferably K or Na. The molar ratio of M2 2 O / H 2 O is, for example, in the range of 0.003 to 0.01, and the molar ratio of SiO 2 / H 2 O is, for example, 0.006 to 0.025. The amount of the zeolite powder is, for example, 0.5 to 10 g with respect to 100 ml of the solution.

このスラリーをオートクレーブで加熱することで、ゼオライト粉の結晶化を行うことができる。その条件は、例えば加熱温度100〜230℃の範囲内、加熱時間1〜24時間の範囲内である。続いて、ゼオライト粉を洗浄してから乾燥させる。   By heating this slurry in an autoclave, the zeolite powder can be crystallized. The conditions are, for example, in the range of heating temperature 100 to 230 ° C. and in the range of heating time 1 to 24 hours. Subsequently, the zeolite powder is washed and dried.

これにより、平均粒径200nm以下又は平均粒径100nm以下のゼオライト粒子を得ることができる。   Thereby, zeolite particles having an average particle size of 200 nm or less or an average particle size of 100 nm or less can be obtained.

ゼオライト粒子のpHは6〜9の範囲内であることが好ましい。ゼオライト粒子のpHが6以上であると、ゼオライト粒子の結晶が破壊されにくくなり、そのためゼオライト粒子を含有する組成物(X)から作製された封止材が特に高い吸湿性を有することができる。また、ゼオライト粒子のpHが9以下であると、組成物(X)を硬化させる場合にゼオライト粒子が硬化を阻害しにくい。ゼオライト粒子のpHが6〜8の範囲内であればより好ましく、6.5〜8の範囲内であれば更に好ましい。   The pH of the zeolite particles is preferably in the range of 6-9. When the pH of the zeolite particles is 6 or more, the crystals of the zeolite particles are not easily broken, and therefore the sealing material made from the composition (X) containing the zeolite particles can have a particularly high hygroscopic property. Moreover, when the pH of the zeolite particles is 9 or less, the zeolite particles hardly inhibit the curing when the composition (X) is cured. More preferably, the pH of the zeolite particles is in the range of 6-8, more preferably in the range of 6.5-8.

なお、ゼオライト粒子のpHは、イオン交換水99.95gにゼオライト粒子0.05gを入れて得られた分散液を、90℃で24時間加熱してから、分散液の上澄みのpHをpH測定器で測定することで得られる値である。pH測定器としては、例えば堀場製作所製のコンパクトpHメータ<LAQUAtwin>B−711を用いることができる。   The pH of the zeolite particles was determined by heating the dispersion obtained by adding 0.05 g of zeolite particles to 99.95 g of ion-exchanged water at 90 ° C. for 24 hours, and then adjusting the pH of the supernatant of the dispersion to a pH measuring device. It is a value obtained by measuring with. As a pH measuring device, for example, a compact pH meter <LAQUATwin> B-711 manufactured by HORIBA, Ltd. can be used.

ゼオライト粒子のpHが6〜9の範囲内であるためには、ゼオライト粒子が、カウンターカチオンとしてプロトンを有するFAU Y型のゼオライトからなることが好ましい。   In order for the pH of the zeolite particles to be in the range of 6 to 9, it is preferable that the zeolite particles are made of FAU Y type zeolite having protons as counter cations.

ゼオライト粒子を作製する過程において、ゼオライトの水熱合成を行う場合に、pHの調整のための処理を施してもよい。pHの調整のための処理は、例えば水熱合成のために調製されたゼオライト粉を含むスラリーを加熱する前、スラリーの加熱中、又はスラリーの加熱後に行われる。pHの調整は、例えばスラリーに酸を添加することで行われる。酸は、例えば塩酸、硫酸、硝酸といった無機酸と、ギ酸、酢酸、シュウ酸といった有機酸とからなる群から選択される少なくとも一種の成分を含有する。   In the process of producing zeolite particles, when hydrothermal synthesis of zeolite is performed, a treatment for adjusting pH may be performed. The treatment for adjusting the pH is performed, for example, before heating the slurry containing the zeolite powder prepared for hydrothermal synthesis, during the heating of the slurry, or after the heating of the slurry. Adjustment of pH is performed by adding an acid to a slurry, for example. The acid contains at least one component selected from the group consisting of inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid and organic acids such as formic acid, acetic acid and oxalic acid.

吸湿剤(C)の平均粒径は、10〜100nmの範囲内であることが好ましい。この平均粒径が100nm以下であれば、硬化物は特に高い透明性を有することができる。また、この平均粒径が10nm以上であれば、吸湿剤(C)の良好な吸湿性を維持できる。なお、この平均粒径は、動的光散乱法による測定結果から算出されるメディアン径、すなわち累積50%径(D50)である。なお、測定装置としては、マイクロトラック・ベル株式会社のナノトラックNanotrac Waveシリーズを用いることができる。   The average particle diameter of the hygroscopic agent (C) is preferably in the range of 10 to 100 nm. If this average particle diameter is 100 nm or less, the cured product can have particularly high transparency. Moreover, if this average particle diameter is 10 nm or more, the good hygroscopicity of the hygroscopic agent (C) can be maintained. The average particle diameter is a median diameter calculated from a measurement result by a dynamic light scattering method, that is, a cumulative 50% diameter (D50). In addition, as a measuring apparatus, the nano track Nanotrac Wave series of Microtrack Bell Inc. can be used.

吸湿剤(C)の平均粒径が5〜70nmの範囲内であれば特に好ましい。この場合、硬化物は、特に良好な透明性と吸湿性とを有することができる。   It is particularly preferable if the average particle diameter of the hygroscopic agent (C) is in the range of 5 to 70 nm. In this case, the cured product can have particularly good transparency and hygroscopicity.

吸湿剤(C)の累積90%径(D90)が100nm以下であることも好ましい。この場合、硬化物は特に高い透明性を有することができる。   It is also preferable that the cumulative 90% diameter (D90) of the hygroscopic agent (C) is 100 nm or less. In this case, the cured product can have particularly high transparency.

組成物(X)の全量に対する吸湿剤(C)の割合は、1〜20質量%の範囲内であることが好ましい。吸湿剤(C)の割合が1質量%以上であれば硬化物は特に高い吸湿性を有することができる。また、吸湿剤(C)の割合が20質量%以下であれば組成物(X)の粘度を特に低減でき、組成物(X)がインクジェット法により塗布可能な程度の十分な低粘度を有することもできる。吸湿剤(C)の割合は、1〜20質量%の範囲内であればより好ましく、5〜15質量%の範囲内であれば更に好ましく、3〜13質量%の範囲内でれば特に好ましい。   The ratio of the hygroscopic agent (C) to the total amount of the composition (X) is preferably in the range of 1 to 20% by mass. If the ratio of the hygroscopic agent (C) is 1% by mass or more, the cured product can have particularly high hygroscopicity. Further, if the proportion of the moisture absorbent (C) is 20% by mass or less, the viscosity of the composition (X) can be particularly reduced, and the composition (X) has a sufficiently low viscosity that can be applied by an ink jet method. You can also. The proportion of the hygroscopic agent (C) is more preferably in the range of 1 to 20% by mass, further preferably in the range of 5 to 15% by mass, and particularly preferably in the range of 3 to 13% by mass. .

単官能カチオン重合性化合物(D)は、カチオン重合性官能基を一分子に対して一つのみ有する。カチオン重合性官能基は、例えばエポキシ基、オキセタン基及びビニルエーテル基からなる群から選択される少なくとも一種の基である。   The monofunctional cationic polymerizable compound (D) has only one cationic polymerizable functional group per molecule. The cationically polymerizable functional group is at least one group selected from the group consisting of, for example, an epoxy group, an oxetane group, and a vinyl ether group.

上記の通り、本実施形態では、単官能カチオン重合性化合物(D)がリモネンオキシドを含有する。リモネンオキシドは、単官能カチオン重合性化合物(D)が含有しうる成分のなかでは、沸点が高く、揮発性が低いため、組成物(X)の粘度の経時的な上昇を効果的に抑制できる。そのため、組成物(X)は、長期間保存された場合でも、良好な塗布性を有することができ、良好なインクジェット塗布性を維持することも可能である。単官能カチオン重合性化合物(D)がリモネンオキシドのみを含有してもよい。リモネンオキシドの光化学活性に特に制限はないが、リモネンオキシドは例えば(+)−リモネンオキシドを含有し、或いは(+)−リモネンオキシドのみからなるものであってもよい。   As described above, in this embodiment, the monofunctional cation polymerizable compound (D) contains limonene oxide. Limonene oxide has a high boiling point and low volatility among the components that can be contained in the monofunctional cationically polymerizable compound (D), and therefore can effectively suppress an increase in the viscosity of the composition (X) with time. . Therefore, even when the composition (X) is stored for a long period of time, the composition (X) can have good coatability and can maintain good ink jet coatability. The monofunctional cation polymerizable compound (D) may contain only limonene oxide. The photochemical activity of limonene oxide is not particularly limited, but the limonene oxide may contain, for example, (+)-limonene oxide, or may be composed only of (+)-limonene oxide.

単官能カチオン重合性化合物(D)は、リモネンオキシド以外の化合物(以下、化合物(E1)という)を含有してもよい。化合物(E1)の25℃における粘度は8mPa・s以下であることが好ましい。この場合、組成物(X)が溶媒を含有しなくても、単官能カチオン重合性化合物(D)は組成物(X)の粘度を低減できる。特に化合物(E1)の25℃における粘度は、0.1〜8mPa・sの範囲内であることが好ましい。   The monofunctional cation polymerizable compound (D) may contain a compound other than limonene oxide (hereinafter referred to as compound (E1)). The viscosity of the compound (E1) at 25 ° C. is preferably 8 mPa · s or less. In this case, even if the composition (X) does not contain a solvent, the monofunctional cation polymerizable compound (D) can reduce the viscosity of the composition (X). In particular, the viscosity of the compound (E1) at 25 ° C. is preferably in the range of 0.1 to 8 mPa · s.

化合物(E1)は、例えば下記式(12)〜(17)に示す化合物からなる群から選択される少なくとも一種の化合物を含有できる。   The compound (E1) can contain at least one compound selected from the group consisting of compounds represented by the following formulas (12) to (17), for example.

化合物(E1)は、特に上記式(16)で示される化合物を含有することが好ましい。この場合、組成物(X)の低粘度化が可能である。さらに、式(16)で示される化合物は、化合物(E1)が含有しうる成分のなかでは、沸点が高く、揮発性が低いため、組成物(X)の粘度の経時的な上昇を効果的に抑制できる。そのため、組成物(X)は、長期間保存された場合でも、良好な塗布性を有することができ、良好なインクジェット塗布性を維持することも可能である。   The compound (E1) particularly preferably contains a compound represented by the above formula (16). In this case, the viscosity of the composition (X) can be reduced. Furthermore, since the compound represented by the formula (16) has a high boiling point and low volatility among the components that the compound (E1) can contain, the viscosity of the composition (X) is effectively increased over time. Can be suppressed. Therefore, even when the composition (X) is stored for a long period of time, the composition (X) can have good coatability and can maintain good ink jet coatability.

樹脂成分全量に対する単官能カチオン重合性化合物(D)の割合は、5〜50質量%の範囲内であることが好ましい。単官能カチオン重合性化合物(D)の割合が5質量%以上であれば組成物(X)の粘度を特に低減できる。また、単官能カチオン重合性化合物(D)の割合が50質量%以下であれば、組成物(X)は光カチオン重合反応時に特に優れた反応性を有することができ、またそれによって、硬化物が高い強度(硬度)を有することができる。この単官能カチオン重合性化合物(D)の割合は、10質量%以上であればより好ましく、15質量%以上であれば更に好ましい。また、この単官能カチオン重合性化合物(D)の割合は、40質量%以下であればより好ましく、35質量%以下であれば更に好ましく、30質量%以下であれば特に好ましい。単官能カチオン重合性化合物(D)の割合が特に35質量%以下であれば、組成物(X)を保管している間の組成物(X)中の成分の揮発量を効果的に低減でき、そのため組成物(X)を長期間保存しても組成物(X)の特性が損なわれにくい。さらに、硬化物にタックが生じることを特に抑制できる。例えば単官能カチオン重合性化合物(D)の割合が10〜35質量%の範囲内であることが好ましい。   The ratio of the monofunctional cation polymerizable compound (D) to the total amount of the resin component is preferably in the range of 5 to 50% by mass. If the ratio of the monofunctional cation polymerizable compound (D) is 5% by mass or more, the viscosity of the composition (X) can be particularly reduced. Further, if the proportion of the monofunctional cation polymerizable compound (D) is 50% by mass or less, the composition (X) can have particularly excellent reactivity at the time of the photocation polymerization reaction. Can have high strength (hardness). The proportion of the monofunctional cation polymerizable compound (D) is more preferably 10% by mass or more, and further preferably 15% by mass or more. Further, the proportion of the monofunctional cation polymerizable compound (D) is more preferably 40% by mass or less, further preferably 35% by mass or less, and particularly preferably 30% by mass or less. If the proportion of the monofunctional cationic polymerizable compound (D) is particularly 35% by mass or less, the amount of volatilization of the components in the composition (X) during storage of the composition (X) can be effectively reduced. Therefore, even if the composition (X) is stored for a long period of time, the properties of the composition (X) are not easily impaired. Furthermore, it can suppress especially that a hardened | cured material produces a tack. For example, the ratio of the monofunctional cation polymerizable compound (D) is preferably in the range of 10 to 35% by mass.

単官能カチオン重合性化合物(D)全体に対するリモネンオキシドの割合は、50〜100質量%の範囲内であることが好ましい。この場合、組成物(X)の粘度の経時的な上昇を特に効果的に抑制できる。リモネンオキシドの割合は、75〜100質量%の範囲内であれば更に好ましい。   It is preferable that the ratio of limonene oxide with respect to the whole monofunctional cation polymeric compound (D) exists in the range of 50-100 mass%. In this case, an increase in the viscosity of the composition (X) with time can be particularly effectively suppressed. The ratio of limonene oxide is more preferably within the range of 75 to 100% by mass.

また、特に組成物(X)が多官能カチオン重合性化合物(A11)と多官能カチオン重合性化合物(A2)とを含有する場合、樹脂成分全量に対して、多官能カチオン重合性化合物(A11)の割合は、30〜60質量%の範囲内、多官能カチオン重合性化合物(A2)の割合は15〜30質量%の範囲内、単官能カチオン重合性化合物(D)の割合は15〜40質量%の範囲内であることが好ましい。この場合、組成物(X)の良好な保存安定性と低い粘度と良好なカチオン重合反応性とをバランス良く達成でき、更に硬化物の優れた透明性、優れた吸湿性及び高い屈折率をバランス良く達成できる。   In particular, when the composition (X) contains the polyfunctional cation polymerizable compound (A11) and the polyfunctional cation polymerizable compound (A2), the polyfunctional cation polymerizable compound (A11) with respect to the total amount of the resin component. Is within the range of 30 to 60% by mass, the ratio of the polyfunctional cation polymerizable compound (A2) is within the range of 15 to 30% by mass, and the ratio of the monofunctional cation polymerizable compound (D) is 15 to 40% by mass. % Is preferable. In this case, good storage stability, low viscosity, and good cationic polymerization reactivity of the composition (X) can be achieved in a well-balanced manner, and the cured product has excellent transparency, excellent hygroscopicity, and high refractive index. Can be achieved well.

組成物(X)は増感剤(E)を含有することが好ましい。この場合、組成物(X)は特に高いカチオン重合反応性を有することができる。増感剤(E)は、例えば9,10−ジブトキシアントラセン及び9,10−ジエトキシアントラセンのうちいずれか一方又は両方を含有する。樹脂成分全量に対する増感剤(E)の割合は、0質量%より多く、1質量%以下の範囲内であることが好ましい。この場合、増感剤(E)が硬化物の透明性を阻害しにくく、そのため硬化物は良好な透明性を有することができる。   The composition (X) preferably contains a sensitizer (E). In this case, the composition (X) can have particularly high cationic polymerization reactivity. The sensitizer (E) contains, for example, one or both of 9,10-dibutoxyanthracene and 9,10-diethoxyanthracene. The proportion of the sensitizer (E) with respect to the total amount of the resin component is preferably more than 0% by mass and in the range of 1% by mass or less. In this case, the sensitizer (E) hardly inhibits the transparency of the cured product, and thus the cured product can have good transparency.

組成物(X)が吸湿剤を含有する場合に、組成物(X)は、分散剤(F)を含有することが好ましい。この場合、組成物(X)中の吸湿剤の分散性を更に向上できるとともに、組成物(X)の粘度を更に低減できる。   When the composition (X) contains a hygroscopic agent, the composition (X) preferably contains a dispersant (F). In this case, the dispersibility of the hygroscopic agent in the composition (X) can be further improved, and the viscosity of the composition (X) can be further reduced.

分散剤(F)は、例えば金属石鹸とシランカップリング剤とのうち少なくとも一方を含有できる。   The dispersant (F) can contain at least one of a metal soap and a silane coupling agent, for example.

シランカップリング剤は、ビニルシラン、エポキシシラン、メタクリルシラン、アミンシラン、及びアルコキシシランからなる群から選択される少なくとも一種の成分を含有できる。   The silane coupling agent can contain at least one component selected from the group consisting of vinyl silane, epoxy silane, methacryl silane, amine silane, and alkoxy silane.

分散剤(F)は非アミン系であることが好ましい。アミン系の分散剤は、光カチオン重合を阻害するおそれがあるからである。このため、分散剤(F)は、上記のアミンシランを含有してもよいが、含有しない方がより好ましい。   The dispersant (F) is preferably non-amine-based. This is because amine-based dispersants may inhibit photocationic polymerization. For this reason, although a dispersing agent (F) may contain said amine silane, the direction which does not contain is more preferable.

シランカップリング剤は、エポキシシランを含有することが好ましく、3−グリシドキシプロピルトリメトキシシランと8−グリシドキシオクチルトリメトキシシランとのうち少なくとも一方を含有することがより好ましい。   The silane coupling agent preferably contains an epoxy silane, and more preferably contains at least one of 3-glycidoxypropyltrimethoxysilane and 8-glycidoxyoctyltrimethoxysilane.

分散剤(F)の割合は、フィラーの全量に対して20質量%以上であることが好ましい。この場合、吸湿剤の分散性を特に向上するとともに組成物(X)の粘度を特に低減できる。分散剤(F)の割合が、フィラーの量に対して40質量%以下であることも好ましい。この場合、組成物(X)からのアウトガスの発生を抑制し、硬化物とガラス製基板などとの密着性を高めることができる。分散剤(F)の割合は、フィラーの全量に対して20〜40質量%の範囲内であればより好ましく、25〜35質量%の範囲内であれば更に好ましい。なお、フィラーとは、組成物(X)中の無機質粒子のことであり、吸湿剤を含む。組成物(X)が後述する吸湿剤以外の無機充填材を含有する場合には、フィラーは無機充填材も含む。   It is preferable that the ratio of a dispersing agent (F) is 20 mass% or more with respect to the whole quantity of a filler. In this case, the dispersibility of the hygroscopic agent can be particularly improved and the viscosity of the composition (X) can be particularly reduced. It is also preferable that the ratio of the dispersing agent (F) is 40% by mass or less with respect to the amount of the filler. In this case, generation | occurrence | production of the outgas from a composition (X) can be suppressed and adhesiveness with hardened | cured material and a glass-made board | substrate etc. can be improved. The ratio of the dispersant (F) is more preferably in the range of 20 to 40% by mass with respect to the total amount of the filler, and further preferably in the range of 25 to 35% by mass. In addition, a filler is an inorganic particle in composition (X) and contains a hygroscopic agent. When the composition (X) contains an inorganic filler other than the hygroscopic agent described later, the filler also includes an inorganic filler.

組成物(X)は、吸湿剤以外の無機充填材を含有してもよい。特に、組成物(X)は、ナノサイズの高屈折率粒子を含有することが好ましい。高屈折率粒子の例はジルコニア粒子を含む。組成物(X)が高屈折率粒子を含有すると、硬化物の良好な透明性を維持しながら、硬化物を高屈折率化することができる。そのため、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を向上することができる。高屈折率粒子の平均粒径は、5〜30nmの範囲内であることが好ましく、10〜20nmの範囲内であれば更に好ましい。   The composition (X) may contain an inorganic filler other than the hygroscopic agent. In particular, the composition (X) preferably contains nano-sized high refractive index particles. Examples of high refractive index particles include zirconia particles. When the composition (X) contains high refractive index particles, the cured product can have a high refractive index while maintaining good transparency of the cured product. Therefore, when the cured product is applied to the sealing material 5 in the organic EL light emitting device 1, it is possible to improve the extraction efficiency of light that passes through the sealing material 5 and is emitted to the outside. The average particle diameter of the high refractive index particles is preferably in the range of 5 to 30 nm, and more preferably in the range of 10 to 20 nm.

組成物(X)中の高屈折率粒子の割合は、硬化物が所望の屈折率を有するように適宜設計される。特に高屈折率粒子は、硬化物の屈折率が1.45以上、1.55未満の範囲内になるように組成物(X)に含有されることが好ましい。この場合、有機EL発光装置1の光の取り出し効率が特に向上する。   The ratio of the high refractive index particles in the composition (X) is appropriately designed so that the cured product has a desired refractive index. In particular, the high refractive index particles are preferably contained in the composition (X) such that the refractive index of the cured product is in the range of 1.45 or more and less than 1.55. In this case, the light extraction efficiency of the organic EL light emitting device 1 is particularly improved.

組成物(X)は、溶媒を含有しないことが好ましい。この場合、組成物(X)から硬化物を作製する際に組成物(X)を乾燥させて溶媒を揮発させるような必要がなくなる。   It is preferable that the composition (X) does not contain a solvent. In this case, it is not necessary to dry the composition (X) and volatilize the solvent when producing a cured product from the composition (X).

上述の成分を混合することで、組成物(X)を調製できる。組成物(X)は25℃で液状であることが好ましい。   Composition (X) can be prepared by mixing the above-mentioned components. The composition (X) is preferably liquid at 25 ° C.

組成物(X)の硬化物の厚み寸法が10μmである場合の、硬化物の全光透過率は、90%以上であることが好ましい。この場合、硬化物を有機EL発光装置1における封止材5に適用した場合に、封止材5を透過して外部へ出射する光の取り出し効率を特に向上できる。このような硬化物の高い光透過性は、上述の組成物(X)の組成、特に組成物(X)が吸湿剤を含有する場合は吸湿剤が平均粒径100nm以下の吸湿剤(C)を含有することで、達成可能である。   When the thickness dimension of the cured product of the composition (X) is 10 μm, the total light transmittance of the cured product is preferably 90% or more. In this case, when the cured product is applied to the sealing material 5 in the organic EL light-emitting device 1, it is possible to particularly improve the extraction efficiency of light that passes through the sealing material 5 and is emitted to the outside. The high light transmittance of such a cured product is that the composition of the composition (X) described above, particularly when the composition (X) contains a hygroscopic agent, the hygroscopic agent (C) having an average particle size of 100 nm or less. It can be achieved by containing.

硬化物の吸湿率は、0.5質量%以上であることが好ましく、1質量%以上であればより好ましく、2質量%以上であれば最も好ましい。なお、吸湿率は、次の方法で求められる。Ar雰囲気下で、組成物(X)を塗布してから紫外線を照射することで、厚み10μmのフィルムを作製する。紫外線照射条件は、例えば紫外線のピーク波長365nm、紫外線強度3000mW/cm2、紫外線照射時間10秒間である。このフィルムを、例えば真空乾燥器を用いて、加熱温度120℃、加熱時間3時間の条件で、真空乾燥する。乾燥後のフィルムの質量を測定する。この測定結果を初期質量(M0)とする。続いて、フィルムを十分に吸湿させる。そのために、例えばフィルムを85℃、85%RHの条件下に24時間曝露する。吸湿後のフィルムの質量を測定する。この測定結果を吸湿後質量(M)という。これらの初期質量(M0)及び吸湿後質量(M)から、吸湿率を、(M−M0)/M0×100(質量%)の式で算出できる。 The moisture absorption rate of the cured product is preferably 0.5% by mass or more, more preferably 1% by mass or more, and most preferably 2% by mass or more. In addition, a moisture absorption rate is calculated | required with the following method. A film having a thickness of 10 μm is produced by applying the composition (X) in an Ar atmosphere and then irradiating with ultraviolet rays. The ultraviolet irradiation conditions are, for example, an ultraviolet peak wavelength of 365 nm, an ultraviolet intensity of 3000 mW / cm 2 , and an ultraviolet irradiation time of 10 seconds. This film is vacuum-dried using, for example, a vacuum dryer under the conditions of a heating temperature of 120 ° C. and a heating time of 3 hours. The mass of the film after drying is measured. This measurement result is defined as an initial mass (M 0 ). Subsequently, the film is sufficiently absorbed. For this purpose, for example, the film is exposed under conditions of 85 ° C. and 85% RH for 24 hours. The mass of the film after moisture absorption is measured. This measurement result is referred to as mass after moisture absorption (M). From these initial mass (M 0 ) and mass after moisture absorption (M), the moisture absorption rate can be calculated by the formula (M−M 0 ) / M 0 × 100 (% by mass).

硬化物は、窒化ケイ素及び酸化ケイ素との間で高い密着性を有することができる。窒化ケイ素及び酸化ケイ素は有機EL発光装置1におけるパッシベーション層6の材料として使用されることがある。このため、パッシベーション層6が窒化ケイ素又は酸化ケイ素から作製されている場合、封止材5とパッシベーション層6との密着性を向上することができ、このため有機EL発光装置1の信頼性が向上する。多官能カチオン重合性化合物(A)がエポキシ基を有する場合、硬化物は窒化ケイ素及び酸化ケイ素との特に高い密着性を有することができる。   The cured product can have high adhesion between silicon nitride and silicon oxide. Silicon nitride and silicon oxide may be used as a material for the passivation layer 6 in the organic EL light emitting device 1. For this reason, when the passivation layer 6 is made of silicon nitride or silicon oxide, the adhesion between the sealing material 5 and the passivation layer 6 can be improved, and thus the reliability of the organic EL light emitting device 1 is improved. To do. When the polyfunctional cation polymerizable compound (A) has an epoxy group, the cured product can have particularly high adhesion to silicon nitride and silicon oxide.

[封止材の作製方法及び有機EL発光装置の作製方法]
組成物(X)を用いる封止材5の作製方法及び有機EL発光装置1の作製方法について説明する。
[Method for producing sealing material and method for producing organic EL light-emitting device]
A method for producing the sealing material 5 using the composition (X) and a method for producing the organic EL light-emitting device 1 will be described.

本実施形態では、組成物(X)をインクジェット法により成形してから、組成物(X)に紫外線を照射して硬化することで、封止材5を作製することが好ましい。本実施形態では、インクジェット法で組成物(X)を塗布して成形することが可能である。   In the present embodiment, it is preferable to prepare the encapsulant 5 by molding the composition (X) by an inkjet method and then curing the composition (X) by irradiating the composition with ultraviolet rays. In the present embodiment, the composition (X) can be applied and molded by an inkjet method.

組成物(X)をインクジェット法で塗布するに当たっては、組成物(X)が常温で十分に低い粘度を有する場合には、組成物(X)を加熱せずにインクジェット法で塗布することで成形できる。   In applying the composition (X) by the ink jet method, if the composition (X) has a sufficiently low viscosity at room temperature, the composition (X) is applied by the ink jet method without heating. it can.

組成物(X)が加熱されることで低粘度化する性質を有する場合、組成物(X)を加熱してから組成物(X)をインクジェット法で塗布して成形してもよい。組成物(X)の50℃における粘度が1mPa・s以上30mPa・s以下である場合、組成物(X)を加熱して低粘度化させてから、組成物(X)をインクジェット法で吐出することが好ましい。組成物(X)の加熱温度は、例えば20℃以上70℃以下である。   In the case where the composition (X) has a property of lowering viscosity by being heated, the composition (X) may be heated and then applied by an inkjet method to be molded. When the viscosity at 50 ° C. of the composition (X) is 1 mPa · s or more and 30 mPa · s or less, the composition (X) is heated to reduce the viscosity, and then the composition (X) is discharged by an ink jet method. It is preferable. The heating temperature of the composition (X) is, for example, 20 ° C. or higher and 70 ° C. or lower.

まず、支持基板2を準備する。この支持基板2の一面上に、有機EL素子4を設ける。有機EL素子4は、蒸着法、塗布法といった適宜の方法で作製できる。特に有機EL素子4をインクジェット法などの塗布法で作製することが好ましい。   First, the support substrate 2 is prepared. An organic EL element 4 is provided on one surface of the support substrate 2. The organic EL element 4 can be produced by an appropriate method such as a vapor deposition method or a coating method. In particular, the organic EL element 4 is preferably produced by a coating method such as an inkjet method.

次に、パッシベーション層6を設ける。パッシベーション層6は、例えば蒸着法で作製できる。   Next, a passivation layer 6 is provided. The passivation layer 6 can be produced by, for example, a vapor deposition method.

次に、支持基板2の一面及び有機EL素子4を覆うように組成物(X)を塗布する。なお、パッシベーション層6を設けている場合にはパッシベーション層6を覆うように組成物(X)を塗布する。組成物(X)を塗布する方法は、例えばキャスティング法又はインクジェット法である。本実施形態では組成物(X)の低粘度化が可能であるため、インクジェット法で組成物(X)を塗布することが可能である。有機EL素子4の形成と組成物(X)の塗布のいずれにもインクジェット法を適用すれば、有機EL発光装置1の製造効率を特に向上できる。   Next, the composition (X) is applied so as to cover one surface of the support substrate 2 and the organic EL element 4. When the passivation layer 6 is provided, the composition (X) is applied so as to cover the passivation layer 6. The method for applying the composition (X) is, for example, a casting method or an inkjet method. In this embodiment, since the viscosity of the composition (X) can be reduced, the composition (X) can be applied by an inkjet method. If the inkjet method is applied to both the formation of the organic EL element 4 and the application of the composition (X), the production efficiency of the organic EL light-emitting device 1 can be particularly improved.

次に、透明基板3を組成物(X)に重ねる。透明基板3は、例えばガラス製基板又は透明樹脂製基板である。   Next, the transparent substrate 3 is overlaid on the composition (X). The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.

次に外部から透明基板3へ向けて紫外線を照射する。紫外線は透明基板3を透過して組成物(X)へ到達する。これにより、組成物(X)内でカチオン重合反応が進行して組成物(X)が硬化し、硬化物からなる封止材5が作製される。封止材5の厚みは例えば5〜50μmの範囲内である。   Next, ultraviolet rays are irradiated from the outside toward the transparent substrate 3. The ultraviolet rays pass through the transparent substrate 3 and reach the composition (X). Thereby, cationic polymerization reaction advances in composition (X), composition (X) hardens | cures, and the sealing material 5 which consists of hardened | cured material is produced. The thickness of the sealing material 5 is in the range of 5 to 50 μm, for example.

図2に示す第二例の有機EL発光装置1の作製方法について説明する。   A method for producing the organic EL light emitting device 1 of the second example shown in FIG. 2 will be described.

まず、支持基板2を準備する。この支持基板2の一面上に隔壁7を、例えば感光性の樹脂材料を用いてフォトグラフィ法で作製する。続いて、支持基板2の一面上に複数の有機EL素子4を設ける。有機EL素子4は、蒸着法、塗布法といった適宜の方法で作製できる。特に有機EL素子4を、インクジェット法といった塗布法で作製することが好ましい。これにより、支持基板2に素子アレイ9を作製する。   First, the support substrate 2 is prepared. A partition wall 7 is formed on one surface of the support substrate 2 by, for example, a photolithography method using a photosensitive resin material. Subsequently, a plurality of organic EL elements 4 are provided on one surface of the support substrate 2. The organic EL element 4 can be produced by an appropriate method such as a vapor deposition method or a coating method. In particular, the organic EL element 4 is preferably produced by a coating method such as an inkjet method. Thereby, the element array 9 is produced on the support substrate 2.

次に、素子アレイ9の上に第一パッシベーション層61を設ける。第一パッシベーション層61は、例えばプラズマCVD法といった蒸着法で作製できる。   Next, a first passivation layer 61 is provided on the element array 9. The first passivation layer 61 can be produced by a vapor deposition method such as a plasma CVD method.

次に、第一パッシベーション層61の上に組成物(X)を、例えばインクジェット法で成形して、塗膜を作製する。有機EL素子4の形成と組成物(X)の塗布のいずれにもインクジェット法を適用すれば、有機EL発光装置1の製造効率を特に向上できる。続いて、塗膜に紫外線を照射することで硬化させて、封止材5を作製する。封止材5の厚みは例えば5μm以上50μm以下である。   Next, composition (X) is shape | molded on the 1st passivation layer 61, for example with the inkjet method, and a coating film is produced. If the inkjet method is applied to both the formation of the organic EL element 4 and the application of the composition (X), the production efficiency of the organic EL light-emitting device 1 can be particularly improved. Subsequently, the encapsulant 5 is produced by curing the coating film by irradiating it with ultraviolet rays. The thickness of the sealing material 5 is, for example, 5 μm or more and 50 μm or less.

次に、封止材5の上に第二パッシベーション層62を設ける。第二パッシベーション層62は、例えばプラズマCVD法といった蒸着法で作製できる。   Next, a second passivation layer 62 is provided on the sealing material 5. The second passivation layer 62 can be produced by an evaporation method such as a plasma CVD method.

次に、支持基板2の一面上に、第二パッシベーション層62を覆うように、紫外線硬化性の樹脂材料を設けてから、この樹脂材料に透明基板3を重ねる。透明基板3は、例えばガラス製基板又は透明樹脂製基板である。   Next, an ultraviolet curable resin material is provided on one surface of the support substrate 2 so as to cover the second passivation layer 62, and then the transparent substrate 3 is overlaid on the resin material. The transparent substrate 3 is, for example, a glass substrate or a transparent resin substrate.

次に外部から透明基板3へ向けて紫外線を照射する。紫外線は透明基板3を透過して紫外線硬化性の樹脂材料へ到達する。これにより、紫外線硬化性の樹脂材料が硬化し、第二封止材52が作製される。   Next, ultraviolet rays are irradiated from the outside toward the transparent substrate 3. The ultraviolet rays pass through the transparent substrate 3 and reach the ultraviolet curable resin material. Thereby, the ultraviolet curable resin material is cured and the second sealing material 52 is produced.

以下、本発明の具体的な実施例を提示する。ただし、本発明は実施例のみに制限されない。   Hereinafter, specific examples of the present invention will be presented. However, the present invention is not limited to the examples.

1.組成物の調製
表の「組成」の欄に示す成分を混合することで、実施例及び比較例の組成物を調製した。
1. Preparation of compositions Compositions of Examples and Comparative Examples were prepared by mixing the components shown in the "Composition" column of the table.

なお、表中に示される成分の詳細は次の通りである。また、下記の各成分の粘度はレオメータ(アントンパール・ジャパン社製、型番DHR−2)を使用し、温度25℃、せん断速度100s-1の条件で測定された値である。 Details of the components shown in the table are as follows. Moreover, the viscosity of each of the following components is a value measured using a rheometer (manufactured by Anton Paar Japan, model number DHR-2) under conditions of a temperature of 25 ° C. and a shear rate of 100 s −1 .

(1)シロキサン骨格を有さない多官能カチオン重合性化合物
・セロキサイド8010:ダイセル製、品名セロキサイド8010、式(1a)に示す化合物、比重1.11、粘度60mPa・s、屈折率1.5071。
・THI−DE:JXエネルギー株式会社製、品番THI−DE、式(20a)に示す化合物、沸点260℃、比重1.18、粘度20mPa・s、屈折率154.7。
・OXT−221:東亞合成製、品番OXT−221、式(3)に示す化合物、比重0.998、粘度10mPa・s、屈折率1.4538。
(1) Polyfunctional cationically polymerizable compound having no siloxane skeleton, Celoxide 8010: manufactured by Daicel, product name Celoxide 8010, compound represented by Formula (1a), specific gravity 1.11, viscosity 60 mPa · s, refractive index 1.5071.
THI-DE: manufactured by JX Energy Corporation, product number THI-DE, compound represented by the formula (20a), boiling point 260 ° C., specific gravity 1.18, viscosity 20 mPa · s, refractive index 154.7.
OXT-221: manufactured by Toagosei Co., Ltd., product number OXT-221, compound represented by formula (3), specific gravity 0.998, viscosity 10 mPa · s, refractive index 1.4538.

(2)シロキサン骨格を有する多官能カチオン重合性化合物
・X−40−2669:信越化学製、品番X−40−2669、式(10a−1)に示す化合物、比重0.996、粘度55mPa・s。屈折率1.475。
・X−40−2732:信越化学製、品番X−40−2732、式(10a)に示す化合物(n=1〜4の混合物、R=C24)、比重0.996、粘度20mPa・s、屈折率1.4512。
・X−22−169AS:信越化学製、品番X−22−169AS、式(10a)に示す化合物(n=8、R=C24)、比重0.98、粘度25mPa・s。
(2) Polyfunctional cationically polymerizable compound having a siloxane skeleton X-40-2669: manufactured by Shin-Etsu Chemical Co., Ltd., product number X-40-2669, compound represented by formula (10a-1), specific gravity 0.996, viscosity 55 mPa · s . Refractive index 1.475.
X-40-2732: manufactured by Shin-Etsu Chemical Co., Ltd., product number X-40-2732, compound represented by formula (10a) (mixture of n = 1 to 4, R = C 2 H 4 ), specific gravity 0.996, viscosity 20 mPa · s, refractive index 1.4512.
X-22-169AS: manufactured by Shin-Etsu Chemical Co., Ltd., product number X-22-169AS, compound represented by formula (10a) (n = 8, R = C 2 H 4 ), specific gravity 0.98, viscosity 25 mPa · s.

(3)カチオン硬化触媒
・CPI210S:サンアプロ製、品番CPI210S、トリアリールスルホニウム塩、融点72℃、沸点300℃以上。
(3) Cationic curing catalyst / CPI210S: manufactured by San Apro, product number CPI210S, triarylsulfonium salt, melting point 72 ° C., boiling point 300 ° C. or higher.

(4)単官能カチオン重合性化合物
・AL−OX:四日市合成製、品名AL−OX、式(17)に示す化合物、沸点146℃、屈折率0.979、粘度1mPa・s、屈折率1.4385。
・ALEOX:四日市合成製、式(16)に示す化合物、沸点200℃、比重0.933、粘度2mPa・s、屈折率1.4445。
・(+)−リモネンオキシド:日本テルペン製、比重0.936、粘度1.9mPa・s、屈折率1.4657。
(4) Monofunctional cationically polymerizable compound / AL-OX: manufactured by Yokkaichi Chemical Co., Ltd., product name AL-OX, compound represented by formula (17), boiling point 146 ° C., refractive index 0.979, viscosity 1 mPa · s, refractive index 1. 4385.
ALEOX: Yokkaichi Gosei Co., Ltd., compound represented by formula (16), boiling point 200 ° C., specific gravity 0.933, viscosity 2 mPa · s, refractive index 1.4445.
(+)-Limonene oxide: manufactured by Nippon Terpene, specific gravity 0.936, viscosity 1.9 mPa · s, refractive index 1.4657.

(5)増感剤
・UVS−1331:川崎化成製、品番UVS−1331、9,10−ジブトキシアントラセン、融点111℃、比重1.17。
・UVS−1101:川崎化成製、品番UVS−1101、9,10−ジエトキシアントラセン、融点148℃。
(5) Sensitizer UVS-1331: manufactured by Kawasaki Kasei, product number UVS-1331, 9,10-dibutoxyanthracene, melting point 111 ° C., specific gravity 1.17.
UVS-1101: Kawasaki Chemicals, product number UVS-1101, 9,10-diethoxyanthracene, melting point 148 ° C.

2.評価試験
実施例及び比較例について、次の評価試験を実施した。その結果を表に示す。
2. Evaluation Test The following evaluation tests were conducted on the examples and comparative examples. The results are shown in the table.

(1)粘度
組成物の粘度を、レオメータ(アントンパール・ジャパン社製、型番DHR−2)を使用して、温度25℃、せん断速度100s-1の条件で測定した。
(1) Viscosity The viscosity of the composition was measured using a rheometer (manufactured by Anton Paar Japan, model number DHR-2) under conditions of a temperature of 25 ° C. and a shear rate of 100 s −1 .

(2)反応性
光化学反応熱熱量計(フォトDSC)(日立ハイテクサイエンス社製、型番PDC−7)を使用し、組成物3mgをAl製オープン容器に入れ、温度25℃下、ピーク波長365nm、強度150mW/cm2、照射時間180秒間の条件で紫外線を組成物に照射した場合の、組成物の発熱量を測定した。
(2) Reactivity Using a photochemical reaction calorimeter (Photo DSC) (manufactured by Hitachi High-Tech Science Co., model number PDC-7), 3 mg of the composition was placed in an Al open container, at a temperature of 25 ° C., a peak wavelength of 365 nm, The calorific value of the composition was measured when the composition was irradiated with ultraviolet rays under the conditions of an intensity of 150 mW / cm 2 and an irradiation time of 180 seconds.

(3)揮発性
組成物1gを直径30mmのシャーレに入れ、これを25℃の乾燥アルゴン雰囲気のドライボックス内に入れて6時間放置した。続いて直ちに組成物の重量を測定し、その結果から、組成物の重量減少量を算出した。
(3) Volatility 1 g of the composition was placed in a petri dish having a diameter of 30 mm, and this was placed in a dry box at 25 ° C. in a dry argon atmosphere and left for 6 hours. Subsequently, the weight of the composition was immediately measured, and the weight reduction amount of the composition was calculated from the result.

(4)屈折率
組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約3000mW/cm2の条件で10秒間紫外線照射して光硬化させることで、厚み10μmのフィルムを作製した。
(4) Refractive index A coating film is prepared by applying the composition, and this coating film is subjected to a condition of about 3000 mW / cm 2 using an LED-UV irradiator (peak wavelength 365 nm) manufactured by Panasonic Electric Works Co., Ltd. A film having a thickness of 10 μm was produced by photo-curing by irradiating with ultraviolet rays for 10 seconds.

このフィルムの屈折率を、京都電子工業製の屈折率計(型番RA−130)で測定した。   The refractive index of this film was measured with a refractometer (model number RA-130) manufactured by Kyoto Electronics Industry.

(5)表面張力
組成物の表面張力を、協和界面製の接触角計(型番PCA−1)で測定した。
(5) Surface tension The surface tension of the composition was measured with a contact angle meter (model number PCA-1) manufactured by Kyowa Interface.

(6)密着性
石英ガラス片(寸法76mm×52mm×1mm)の表面上に、組成物を塗布して厚み50μmの塗膜を形成し、この塗膜の上に別の石英ガラス片(寸法76mm×52mm×1mm)を重ねた。続いて、塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約3000mW/cm2の条件で10秒間紫外線照射することで、硬化させた。次に、二つの石英ガラス片の間の密着強度を、JIS K6854に基づくT字ピール試験を行うことで、評価した。
(6) Adhesiveness On the surface of a quartz glass piece (dimension 76 mm × 52 mm × 1 mm), the composition is applied to form a 50 μm-thick coating film, and another quartz glass piece (dimension 76 mm) is formed on this coating film. × 52 mm × 1 mm). Subsequently, the coating film was cured by UV irradiation for 10 seconds under the condition of about 3000 mW / cm 2 using an LED-UV irradiator (peak wavelength 365 nm) manufactured by Panasonic Electric Works Co., Ltd. Next, the adhesion strength between two quartz glass pieces was evaluated by performing a T-peel test based on JIS K6854.

(7)ガラス転移温度(Tg)
組成物を塗布して塗膜を作製し、この塗膜を、パナソニック電工株式会社製のLED−UV照射器(ピーク波長365nm)を用いて、約3000mW/cm2の条件で10秒間紫外線照射することで光硬化させ、厚み200μmのフィルムを作製した。このフィルムから切り出したサンプルのガラス転移温度を、粘弾性測定装置(日立ハイテクサイエンス社製、型番DMA7100)を用いて測定した。
(7) Glass transition temperature (Tg)
A coating film is prepared by applying the composition, and this coating film is irradiated with ultraviolet rays for 10 seconds under the condition of about 3000 mW / cm 2 using an LED-UV irradiator (peak wavelength 365 nm) manufactured by Panasonic Electric Works Co., Ltd. This was photocured to produce a 200 μm thick film. The glass transition temperature of the sample cut out from this film was measured using a viscoelasticity measuring apparatus (manufactured by Hitachi High-Tech Science Co., Ltd., model number DMA7100).

(8)水分量
組成物中にモレキュラーシーブ4Aタイプ(ユニオン昭和製)を20phrの割合で加えてから、組成物を振とう機で5時間振とうすることで水分を除去し、サンプルを得た。
(8) Moisture content After adding a molecular sieve 4A type (made by Union Showa) at a rate of 20 phr to the composition, the composition was shaken for 5 hours to remove water to obtain a sample. .

このサンプルの水分量を、カールフィッシャー水分量計MKC−710M(京都電子工業)で測定した。   The moisture content of this sample was measured with a Karl Fischer moisture meter MKC-710M (Kyoto Electronics Industry).

Claims (17)

多官能カチオン重合性化合物(A)、
カチオン硬化触媒(B)、及び
単官能カチオン重合性化合物(D)を含有し、
前記単官能カチオン重合性化合物(D)は、リモネンオキシドを含有する、
紫外線硬化性樹脂組成物。
Polyfunctional cationically polymerizable compound (A),
A cationic curing catalyst (B), and a monofunctional cationic polymerizable compound (D),
The monofunctional cationically polymerizable compound (D) contains limonene oxide.
UV curable resin composition.
前記多官能カチオン重合性化合物(A)は、シロキサン骨格を有さない多官能カチオン重合性化合物(A1)を含有する、
請求項1に記載の紫外線硬化性樹脂組成物。
The polyfunctional cation polymerizable compound (A) contains a polyfunctional cation polymerizable compound (A1) having no siloxane skeleton,
The ultraviolet curable resin composition according to claim 1.
前記多官能カチオン重合性化合物(A1)は、多官能脂環式エポキシ化合物(A11)を含有する、
請求項2に記載の紫外線硬化性樹脂組成物。
The polyfunctional cation polymerizable compound (A1) contains a polyfunctional alicyclic epoxy compound (A11).
The ultraviolet curable resin composition according to claim 2.
前記多官能脂環式エポキシ化合物(A11)は、下記構造式(1)で示される化合物と下記構造式(20)で示される化合物とのうちいずれか一方又は両方を含有し、
式(1)において、R1〜R18の各々は独立に水素原子、ハロゲン原子、又は炭化水素基であり、前記炭化水素基は酸素原子又はハロゲン原子を含んでいてもよく、Xは単結合、又は二価の有機基であり、
式(20)において、R1〜R12の各々は独立に水素原子、ハロゲン原子、又は炭素数1〜20の炭化水素基である、
請求項3に記載の紫外線硬化性樹脂組成物。
The polyfunctional alicyclic epoxy compound (A11) contains one or both of a compound represented by the following structural formula (1) and a compound represented by the following structural formula (20),
In formula (1), each of R 1 to R 18 is independently a hydrogen atom, a halogen atom, or a hydrocarbon group, and the hydrocarbon group may contain an oxygen atom or a halogen atom, and X is a single bond. Or a divalent organic group,
In Formula (20), each of R 1 to R 12 is independently a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms.
The ultraviolet curable resin composition according to claim 3.
前記多官能カチオン重合性化合物(A)は、シロキサン骨格を有する多官能カチオン重合性化合物(A2)を含有する、
請求項1から4のいずれか一項に記載の紫外線硬化性樹脂組成物。
The polyfunctional cation polymerizable compound (A) contains a polyfunctional cation polymerizable compound (A2) having a siloxane skeleton,
The ultraviolet curable resin composition according to any one of claims 1 to 4.
前記多官能カチオン重合性化合物(A)は、シロキサン骨格を有する多官能カチオン重合性化合物(A2)を含有し、
前記紫外線硬化性樹脂組成物中の樹脂成分全量に対して、前記多官能脂環式エポキシ化合物(A11)の割合は30〜60質量%の範囲内、前記多官能カチオン重合性化合物(A2)の割合は15〜30質量%の範囲内、前記単官能カチオン重合性化合物(D)の割合は15〜40質量%の範囲内である、
請求項3又は4に記載の紫外線硬化性樹脂組成物。
The polyfunctional cation polymerizable compound (A) contains a polyfunctional cation polymerizable compound (A2) having a siloxane skeleton,
The ratio of the polyfunctional alicyclic epoxy compound (A11) is within a range of 30 to 60% by mass with respect to the total amount of the resin components in the ultraviolet curable resin composition, and the polyfunctional cation polymerizable compound (A2). The ratio is in the range of 15 to 30% by mass, and the ratio of the monofunctional cationic polymerizable compound (D) is in the range of 15 to 40% by mass.
The ultraviolet curable resin composition according to claim 3 or 4.
前記多官能カチオン重合性化合物(A2)における前記シロキサン骨格のSi原子数は、2〜14の範囲内である、
請求項5又は6に記載の紫外線硬化性樹脂組成物。
The number of Si atoms of the siloxane skeleton in the polyfunctional cation polymerizable compound (A2) is in the range of 2 to 14.
The ultraviolet curable resin composition according to claim 5 or 6.
前記多官能カチオン重合性化合物(A2)は、下記式(30)に示す化合物を含有し、
前記式(30)中、nは0以上の整数である、
請求項5から7のいずれか一項に記載の紫外線硬化性樹脂組成物。
The polyfunctional cation polymerizable compound (A2) contains a compound represented by the following formula (30),
In the formula (30), n is an integer of 0 or more.
The ultraviolet curable resin composition according to any one of claims 5 to 7.
前記式(30)中、nは0〜8の範囲内の整数である、
請求項8に記載の紫外線硬化性樹脂組成物。
In the formula (30), n is an integer in the range of 0-8.
The ultraviolet curable resin composition according to claim 8.
前記紫外線硬化性樹脂組成物中の樹脂成分全量に対する、前記カチオン硬化触媒(B)の割合は、1〜4質量%の範囲内である、
請求項1から9のいずれか一項に記載の紫外線硬化性樹脂組成物。
The ratio of the cationic curing catalyst (B) to the total amount of the resin components in the ultraviolet curable resin composition is in the range of 1 to 4% by mass.
The ultraviolet curable resin composition according to any one of claims 1 to 9.
増感剤(E)を更に含有し、
前記紫外線硬化性樹脂組成物中の樹脂成分全量に対する、前記増感剤(E)の割合は、0質量%より多く1質量%以下の範囲内である、
請求項1から10のいずれか一項に記載の紫外線硬化性樹脂組成物。
Further containing a sensitizer (E),
The ratio of the sensitizer (E) to the total amount of the resin components in the ultraviolet curable resin composition is in the range of more than 0% by mass and 1% by mass or less.
The ultraviolet curable resin composition according to any one of claims 1 to 10.
溶媒を含有しない、
請求項1から11のいずれか一項に記載の紫外線硬化性樹脂組成物。
Does not contain solvent,
The ultraviolet curable resin composition according to any one of claims 1 to 11.
25℃における粘度が1〜20mPa・sの範囲内である、
請求項1から12のいずれか一項に記載の紫外線硬化性樹脂組成物。
The viscosity at 25 ° C. is in the range of 1 to 20 mPa · s,
The ultraviolet curable resin composition according to any one of claims 1 to 12.
25℃の乾燥アルゴン雰囲気に6時間曝露された場合の重量減少割合が1重量%以下である、
請求項1から13のいずれか一項に記載の紫外線硬化性樹脂組成物。
The weight loss ratio when exposed to a dry argon atmosphere at 25 ° C. for 6 hours is 1% by weight or less.
The ultraviolet curable resin composition according to any one of claims 1 to 13.
有機EL素子のための封止材を作製するために用いられる、
請求項1から14のいずれか一項に記載の紫外線硬化性樹脂組成物。
Used to produce a sealing material for organic EL elements,
The ultraviolet curable resin composition according to any one of claims 1 to 14.
有機EL素子と前記有機EL素子を覆う封止材とを備える有機EL発光装置を製造する方法であり、
請求項1から15のいずれか一項に記載の紫外線硬化性樹脂組成物をインクジェット法で成形してから、前記紫外線硬化性樹脂組成物に紫外線を照射して硬化することで前記封止材を作製することを含む、
有機EL発光装置の製造方法。
An organic EL light emitting device comprising an organic EL element and a sealing material covering the organic EL element,
The ultraviolet curable resin composition according to any one of claims 1 to 15 is molded by an inkjet method, and then the ultraviolet curable resin composition is irradiated with ultraviolet rays to be cured, whereby the sealing material is formed. Including producing,
Manufacturing method of organic EL light-emitting device.
有機EL素子と、前記有機EL素子を覆う封止材とを備え、前記封止材は、請求項1から15のいずれか一項に記載の紫外線硬化性樹脂組成物の硬化物である、
有機EL発光装置。
It comprises an organic EL element and a sealing material that covers the organic EL element, and the sealing material is a cured product of the ultraviolet curable resin composition according to any one of claims 1 to 15.
Organic EL light emitting device.
JP2018074072A 2017-06-13 2018-04-06 Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device Active JP7209244B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017116200 2017-06-13
JP2017116200 2017-06-13

Publications (2)

Publication Number Publication Date
JP2019001994A true JP2019001994A (en) 2019-01-10
JP7209244B2 JP7209244B2 (en) 2023-01-20

Family

ID=65006777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074072A Active JP7209244B2 (en) 2017-06-13 2018-04-06 Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device

Country Status (1)

Country Link
JP (1) JP7209244B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129792A1 (en) * 2018-12-18 2020-06-25 積水化学工業株式会社 Curable resin composition, cured product and organic el display element
JP2020105482A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP2020105483A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
CN112062936A (en) * 2019-06-10 2020-12-11 松下知识产权经营株式会社 Ultraviolet-curable resin composition, method for producing light-emitting device, and light-emitting device
JP7489612B2 (en) 2019-06-10 2024-05-24 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147016A (en) * 1983-02-07 1984-08-23 ユニオン,カ−バイド,コ−ポレ−シヨン Mixture of epoxy containing organic substance
US4622349A (en) * 1983-02-07 1986-11-11 Union Carbide Corporation Blends of epoxides and monoepoxides
JP2002256058A (en) * 2001-03-01 2002-09-11 Ricoh Co Ltd Photocuring type epoxy resin composition and photocuring type sealant for display element
US20100079568A1 (en) * 2008-09-30 2010-04-01 Brother Kogyo Kabushiki Kaisha Active Energy Beam-Curable Ink and Ink-Jet Recording Method Using Active Energy Beam-Curable Ink
WO2016167347A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Sealant for electronic device, and method for manufacturing electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147016A (en) * 1983-02-07 1984-08-23 ユニオン,カ−バイド,コ−ポレ−シヨン Mixture of epoxy containing organic substance
US4622349A (en) * 1983-02-07 1986-11-11 Union Carbide Corporation Blends of epoxides and monoepoxides
JP2002256058A (en) * 2001-03-01 2002-09-11 Ricoh Co Ltd Photocuring type epoxy resin composition and photocuring type sealant for display element
US20100079568A1 (en) * 2008-09-30 2010-04-01 Brother Kogyo Kabushiki Kaisha Active Energy Beam-Curable Ink and Ink-Jet Recording Method Using Active Energy Beam-Curable Ink
WO2016167347A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Sealant for electronic device, and method for manufacturing electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129792A1 (en) * 2018-12-18 2020-06-25 積水化学工業株式会社 Curable resin composition, cured product and organic el display element
JPWO2020129792A1 (en) * 2018-12-18 2021-10-28 積水化学工業株式会社 Curable resin composition, cured product, and organic EL display element
JP7457644B2 (en) 2018-12-18 2024-03-28 積水化学工業株式会社 Curable resin composition, cured product, and organic EL display element
JP2020105482A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP2020105483A (en) * 2018-12-27 2020-07-09 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP2020164881A (en) * 2018-12-27 2020-10-08 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
CN112062936A (en) * 2019-06-10 2020-12-11 松下知识产权经营株式会社 Ultraviolet-curable resin composition, method for producing light-emitting device, and light-emitting device
JP7489612B2 (en) 2019-06-10 2024-05-24 パナソニックIpマネジメント株式会社 Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device

Also Published As

Publication number Publication date
JP7209244B2 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP6410158B2 (en) Ultraviolet curable resin composition, organic EL light emitting device manufacturing method, and organic EL light emitting device
JP7209244B2 (en) Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device
JP7199004B2 (en) UV curable resin composition and organic EL light emitting device
JP7209245B2 (en) Ultraviolet curable resin composition, method for manufacturing organic EL light emitting device, and organic EL light emitting device
JP7170245B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP6735494B2 (en) Ultraviolet curable resin composition, method for manufacturing light emitting device, and light emitting device
JP7029696B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
JP7065396B2 (en) Ultraviolet curable resin composition, manufacturing method of organic EL light emitting device and organic EL light emitting device
JP7489612B2 (en) Ultraviolet-curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP2021064541A (en) UV curable resin composition, manufacturing method of light emitting device, light emitting device, and touch panel
JP2020105483A (en) Ultraviolet curable resin composition, method for manufacturing light-emitting device, and light-emitting device
JP6715486B1 (en) Ultraviolet curable resin composition, method for manufacturing light emitting device, and light emitting device
JP7296591B2 (en) UV-Curable Resin Composition, Method for Manufacturing Light-Emitting Device, and Light-Emitting Device
JP2022047977A (en) Uv-curable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device
JP2020200461A (en) Ultraviolet curable resin composition, method for producing light emitting device and light emitting device
JP2020200463A (en) Ultraviolet curable resin composition, method for producing light emitting device and light emitting device
JP2022052566A (en) Ultraviolet curable resin composition, optical component, method for manufacturing optical component, light-emitting device, and method for manufacturing light-emitting device
JP2022052565A (en) Uv curable resin composition, optical component, manufacturing method of optical component, light emitting device, manufacturing method of light emitting device
CN112062936A (en) Ultraviolet-curable resin composition, method for producing light-emitting device, and light-emitting device
WO2023008542A1 (en) Curable resin composition, sealant for display elements, sealant for organic el display elements, optical adhesive, and optical member
CN115073952A (en) Photocurable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device
JP2022142673A (en) Photocurable resin composition, optical component, manufacturing method of optical component, light emitting device, and manufacturing method of light emitting device
JP2022142674A (en) Photocurable resin composition, optical component, manufacturing method of optical component, light emitting device, and manufacturing method of light emitting device
JP2022093086A (en) Uv-curable resin composition, optical component, method for producing optical component, light-emitting device, and method for producing light-emitting device
JP2020196858A (en) Uv-curable resin composition, method for producing uv-curable resin composition, method for producing light-emitting device, and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R151 Written notification of patent or utility model registration

Ref document number: 7209244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151