JP2019000887A - Flux-cored wire for gas shield arc welding of steel for low temperature - Google Patents

Flux-cored wire for gas shield arc welding of steel for low temperature Download PDF

Info

Publication number
JP2019000887A
JP2019000887A JP2017119383A JP2017119383A JP2019000887A JP 2019000887 A JP2019000887 A JP 2019000887A JP 2017119383 A JP2017119383 A JP 2017119383A JP 2017119383 A JP2017119383 A JP 2017119383A JP 2019000887 A JP2019000887 A JP 2019000887A
Authority
JP
Japan
Prior art keywords
flux
total
oxide
low temperature
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017119383A
Other languages
Japanese (ja)
Other versions
JP6772108B2 (en
Inventor
水本 学
Manabu Mizumoto
学 水本
寛規 水田
Hironori Mizuta
寛規 水田
飛史 行方
Takashi Namekata
飛史 行方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2017119383A priority Critical patent/JP6772108B2/en
Priority to KR1020180065246A priority patent/KR102456990B1/en
Publication of JP2019000887A publication Critical patent/JP2019000887A/en
Application granted granted Critical
Publication of JP6772108B2 publication Critical patent/JP6772108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a flux-cored wire for gas shield arc welding of steel for low temperature which has preferable welding operability upon all postures, does not cause weld defect and can stably provide low temperature toughness of welded metal.SOLUTION: A flux-cored wire for gas shield arc welding of steel for low temperature contains, in terms of stainless-steel skin whole mass%, C of 0.015% or less, in terms of mass% with respect to wire whole mass, C of 0.003 to 0.02%, Si of 0.10 to 0.40%, Mn of 1.0 to 2.5%, Ni of 7.0 to 12.0%, Cr of 17.0 to 24.5%, Ti of 0.5 to 1.5%, Al of 0.05 to 0.20%, TiO-reduced value of 3.0 to 9.0%, SiO-reduced value of 0.2 to 1.0%, ZrO-reduced value of 0.2 to 1.0%, AlO-reduced value of 0.3 to 1.1%, FeO-reduced value of 0.10 to 0.45%, F-reduced value of 0.02 to 0.15%, Bi of 0.01 to 0.07%, and the sum of NaO-reduced value and KO-reduced value of 0.15 to 0.45%.SELECTED DRAWING: None

Description

本発明は、低温用3.5〜5%Ni鋼の溶接に用いられる低温用鋼のガスシールドアーク溶接用フラックス入りワイヤであって、溶接作業性が良好で、溶接欠陥がなく、低温靭性が良好な溶接金属が得られる低温用鋼のガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention is a flux cored wire for gas shielded arc welding of low temperature steel used for welding low temperature 3.5 to 5% Ni steel, which has good welding workability, no welding defects, and low temperature toughness. The present invention relates to a flux-cored wire for gas shielded arc welding of low temperature steel from which a good weld metal can be obtained.

低温用3.5〜5%Ni鋼(以下、低Ni鋼という。)は、アセチレン、エタン、エチレン等液化ガスの低温圧力容器や配管及び船舶による輸送用の容器に用いられている。   Low-temperature 3.5 to 5% Ni steel (hereinafter referred to as low Ni steel) is used in low-temperature pressure vessels and pipes for liquefied gases such as acetylene, ethane, and ethylene, and containers for transportation by ship.

低Ni鋼の溶接は、−100〜−140℃での低温靭性が求められることから被覆アーク溶接棒が多く使用されており、例えば特許文献1、2に示すように、溶接金属中のN及びOの低減を図り、Niを適量含むとともに酸化物及び弗化物の適量添加によりは低温靭性が得られるという技術の開示がある。また、サブマージアーク溶接においても、特許文献3に、3.5%Ni系のソリッドワイヤと組み合わせる焼成型のボンドフラックスの塩基度を高くして溶接金属の酸素量を低くし、低電流の溶接によって溶接金属全層を細粒化組織とすることによって靭性を改善する技術の開示がある。   Since welding of low Ni steel requires low temperature toughness at −100 to −140 ° C., many coated arc welding rods are used. For example, as shown in Patent Documents 1 and 2, N and N in the weld metal are used. There is a disclosure of a technique in which low temperature toughness can be obtained by reducing O, containing an appropriate amount of Ni, and adding appropriate amounts of oxides and fluorides. Also in submerged arc welding, in Patent Document 3, the basicity of firing type bond flux combined with 3.5% Ni-based solid wire is increased to reduce the oxygen content of the weld metal, and by low current welding. There is a disclosure of a technique for improving toughness by making the entire weld metal layer a fine-grained structure.

しかし、特許文献1及び特許文献2の開示技術は、被覆アーク溶接棒を対象としているため、溶接能率に問題があり、特許文献3に開示されているサブマージアーク溶接では、全姿勢溶接ができない。さらに、特許文献1〜特許文献3の開示技術では、低温における靭性を安定して得ることはできなかった。   However, since the disclosed techniques of Patent Document 1 and Patent Document 2 are directed to a covered arc welding rod, there is a problem in welding efficiency, and the submerged arc welding disclosed in Patent Document 3 cannot perform all-position welding. Furthermore, the disclosed techniques disclosed in Patent Documents 1 to 3 cannot stably obtain toughness at low temperatures.

一方、全姿勢溶接が可能で高能率の溶接が可能なフラックス入りワイヤを用いて低温における靭性を得る技術として、例えば特許文献4において、CaF2を含む塩基性のフラックス入りワイヤにNiを5%以下含有して低温靭性を得る技術が開示されている。また特許文献5には、TiO2の粒度を限定して溶接作業性を改善し、Niを5%以下含有することによって低温靭性を得る技術が開示されている。しかし、特許文献4及び特許文献5の開示技術では、−80℃までの低温靭性しか得られておらず、−100℃以下における低温靭性を得ることはできなかった。 On the other hand, as a technique for obtaining toughness at low temperature using a flux-cored wire capable of welding in all positions and capable of high-efficiency welding, for example, in Patent Document 4, 5% Ni is added to a basic flux-cored wire containing CaF 2. A technique for obtaining low temperature toughness by containing the following is disclosed. Patent Document 5 discloses a technique for improving the welding workability by limiting the grain size of TiO 2 and obtaining low temperature toughness by containing 5% or less of Ni. However, in the disclosed technologies of Patent Document 4 and Patent Document 5, only low temperature toughness up to −80 ° C. was obtained, and low temperature toughness at −100 ° C. or lower could not be obtained.

特開平3−285793号公報JP-A-3-285793 特開平9−327793号公報JP 9-327793 A 特開平7−155986号公報Japanese Patent Laid-Open No. 7-155986 特開平9−57488号公報JP-A-9-57488 特開2017−42812号公報JP 2017-42812 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、低Ni鋼を溶接するにあたり、全姿勢における溶接作業性が良好で、溶接欠陥がなく、溶接金属の低温靭性が−100℃以下においても安定して得られる低温用鋼のガスシールアーク溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems. In welding low Ni steel, the welding workability in all positions is good, there is no welding defect, and the low temperature toughness of the weld metal is − An object of the present invention is to provide a low temperature steel flux-cored wire for gas seal arc welding which can be obtained stably even at 100 ° C. or lower.

本発明の要旨は、低温用3.5〜5%Ni鋼の溶接に用いられ、オーステナイト系ステンレス鋼外皮にフラックスを充填してなる低温用鋼のガスシールドアーク溶接用フラックス入りワイヤにおいて、オーステナイト系ステンレス鋼外皮中のCがオーステナイト系ステンレス鋼外皮全質量%で0.015%以下であり、ワイヤ全質量に対する質量%で、オーステナイト系ステンレス鋼外皮とフラックスとの合計で、C:0.003〜0.02%、Si:0.10〜0.40%、Mn:1.0〜2.5%、Ni:7.0〜12.0%、Cr:17.0〜24.5%、Ti:0.5〜1.5%、Al:0.05〜0.20%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物のTiO2換算値の合計:3.0〜9.0%、Si酸化物のSiO2換算値の合計:0.2〜1.0%、Zr酸化物のZrO2換算値の合計:0.2〜1.0%、Al酸化物のAl23換算値の合計:0.3〜1.1%、鉄酸化物のFeO換算値の合計:0.10〜0.45%、弗素化合物のF換算値の合計:0.02〜0.15%、Bi:0.01〜0.07%、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計:0.15〜0.45%を含有し、残部がオーステナイト系ステンレス鋼外皮のFe分、鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is a flux cored wire for gas shielded arc welding of low temperature steel, which is used for welding low temperature 3.5 to 5% Ni steel and is filled with flux in an austenitic stainless steel outer shell. C in the stainless steel hull is 0.015% or less in terms of the total mass% of the austenitic stainless steel hull, and is the mass% with respect to the total mass of the wire. 0.02%, Si: 0.10-0.40%, Mn: 1.0-2.5%, Ni: 7.0-12.0%, Cr: 17.0-24.5%, Ti : 0.5 to 1.5%, Al: 0.05 to 0.20%, and further, in mass% with respect to the total mass of the wire, in the flux, the total of TiO 2 conversion values of Ti oxide: 3 0.0-9.0 The total of SiO 2 converted value of Si oxide: 0.2% to 1.0%, the total of ZrO 2 conversion value of Zr oxide: 0.2% to 1.0%, Al 2 O 3 in terms of Al oxide Total value: 0.3 to 1.1%, total FeO equivalent value of iron oxide: 0.10 to 0.45%, total F equivalent value of fluorine compound: 0.02 to 0.15%, Bi: 0.01-0.07%, Na compound and K compound Na 2 O converted value and K 2 O converted value: 0.15 to 0.45%, the balance being austenitic stainless steel skin Fe content, iron powder, Fe content of iron alloy powder and inevitable impurities.

本発明を適用した低温用鋼のガスシールドアーク溶接用フラックス入りワイヤによれば、低Ni鋼を溶接するにあたり、全姿勢における溶接作業性が良好で、溶接欠陥がなく、溶接金属の低温靭性が安定して得られるので、高能率に高品質の溶接部が得られる。   According to the flux-cored wire for gas shielded arc welding of low-temperature steel to which the present invention is applied, when welding low Ni steel, welding workability in all positions is good, there are no welding defects, and the low-temperature toughness of the weld metal is low. Since it can be obtained stably, a high-quality weld can be obtained with high efficiency.

溶接継手試験の試験方法について説明するための図である。It is a figure for demonstrating the test method of a welded joint test.

本発明者らは、低Ni鋼を溶接する低温用鋼のガスシールドアーク溶接用フラックス入りワイヤについて、全姿勢における溶接作業性が良好で、溶接欠陥がなく、特に−100℃以下で低温靭性が安定して得られる溶接金属を得るべく種々検討を行った。   The inventors of the present invention have good welding workability in all positions and no weld defects, particularly low temperature toughness at -100 ° C. or lower, for low temperature steel flux cored wire for low temperature steel welding low temperature steel. Various studies were conducted to obtain a stable weld metal.

まず、母材と同程度のNiを含有した溶接金属では、低温における靭性を安定させることはできないことが判明し、溶接金属をNiとCrを含むオーステナイト組織とすることで安定した低温靭性が得られる可能性について検討した。   First, it was found that a weld metal containing Ni at the same level as the base metal cannot stabilize the toughness at low temperatures, and a stable low temperature toughness can be obtained by making the weld metal an austenitic structure containing Ni and Cr. We examined the possibility of being.

その結果、オーステナイト系ステンレス鋼外皮とフラックス中のC、Si、Mn、Ni、Cr、Alを適量とすることで溶接金属の強度及び低温靭性が得られることを見出した。さらに、フラックス入りワイヤ中のTi及び鉄酸化物を適量とすることによって−100℃以下の低温においても安定した高靭性が得られることを見出した。   As a result, it has been found that the strength and low-temperature toughness of the weld metal can be obtained by setting appropriate amounts of C, Si, Mn, Ni, Cr, and Al in the austenitic stainless steel skin and the flux. Furthermore, it has been found that stable toughness can be obtained even at a low temperature of −100 ° C. or lower by adjusting Ti and iron oxide in the flux-cored wire to appropriate amounts.

全姿勢溶接における溶接作業性は、フラックス入りワイヤ中のTi酸化物、Si酸化物、Zr酸化物、Al酸化物、弗化物、Bi及びNa化合物とK化合物を適量とすることによって、アークが安定してスパッタ発生量が少なく、スラグ被包性や耐メタル垂れ性、スラグ剥離性及び耐欠陥性が良好になることを見出した。   Welding workability in all-position welding ensures stable arcs by appropriate amounts of Ti oxide, Si oxide, Zr oxide, Al oxide, fluoride, Bi, Na compound and K compound in the flux-cored wire. As a result, the inventors have found that the amount of spatter generated is small, and the slag encapsulation, metal sag resistance, slag peelability and defect resistance are improved.

また、低Cのオーステナイト系ステンレス鋼を外皮とすることによって、生産性が向上することも知見した。   It has also been found that productivity is improved by using low C austenitic stainless steel as the outer skin.

以下、本発明を適用した低温用鋼のガスシールドアーク溶接用フラックス入りワイヤのオーステナイト系ステンレス鋼外皮の成分組成及びその含有量と、各成分組成の限定理由について説明する。なお、各成分組成の含有量は質量%で表すこととし、その質量%を表す時には単に%と記載して表すこととする。   Hereinafter, the component composition and content of the austenitic stainless steel shell of the flux-cored wire for gas shielded arc welding of the low temperature steel to which the present invention is applied, and the reasons for limitation of each component composition will be described. The content of each component composition is expressed by mass%, and when the mass% is expressed, it is simply expressed as%.

[オーステナイト系ステンレス鋼外皮のC:オーステナイト系ステンレス鋼外皮全質量に対する質量%で0.015%以下]
オーステナイト系ステンレス鋼外皮のCが0.015%を超えると、フラックス入りワイヤの製造時にCr炭化物を生成して、伸線工程において断線が生じやすくする。したがって、オーステナイト系ステンレス鋼外皮のCはオーステナイト系ステンレス鋼外皮全質量に対する質量%で0.015%以下とする。なお、オーステナイト系ステンレス鋼外皮のCの下限は特に限定しないが、オーステナイト系ステンレス鋼外皮の製造コストから0.001%以上であることが好ましい。
[C of austenitic stainless steel hull: 0.015% or less by mass% with respect to the total mass of austenitic stainless steel hull]
When C of the austenitic stainless steel outer shell exceeds 0.015%, Cr carbide is generated during the manufacture of the flux-cored wire, and breakage is likely to occur in the wire drawing process. Therefore, C of the austenitic stainless steel outer shell is 0.015% or less in mass% with respect to the total mass of the austenitic stainless steel outer shell. The lower limit of C of the austenitic stainless steel hull is not particularly limited, but is preferably 0.001% or more from the production cost of the austenitic stainless steel hull.

以下、各成分組成の含有量は、フラックス入りワイヤ全質量に対する質量%で表す。   Hereinafter, the content of each component composition is represented by mass% with respect to the total mass of the flux-cored wire.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でC:0.003〜0.02%]
Cは、溶接金属の強度を向上させる効果がある。Cが0.003%未満であると、十分な溶接金属の強度が得られない。一方、Cが0.02%を超えると、溶接金属の低温靭性が低下する。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でCは0.003〜0.02%とする。なお、Cは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属粉及び合金粉等から添加できる。
[C: 0.003 to 0.02% in total of austenitic stainless steel skin and flux]
C has an effect of improving the strength of the weld metal. If C is less than 0.003%, sufficient weld metal strength cannot be obtained. On the other hand, when C exceeds 0.02%, the low temperature toughness of the weld metal is lowered. Therefore, C is 0.003 to 0.02% in total of the austenitic stainless steel skin and the flux. In addition, C can be added from the metal powder, alloy powder, etc. from a flux other than the component contained in an austenitic stainless steel outer skin.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でSi:0.10〜0.40%]
Siは、溶接時の脱酸反応によって生じたスラグがビード形状を良好にする効果がある。Siが0.10%未満であると、溶接時の脱酸作用によって生じるスラグが少なくなってビード形状が不良となる。一方、Siが0.40%を超えると、溶接金属の低温靭性が低下する。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でSiは0.10〜0.40%とする。なお、Siは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Si、Fe−Si、Fe−Si−Mn等の合金粉から添加できる。
[The total of the austenitic stainless steel shell and flux is Si: 0.10 to 0.40%]
Si has the effect that the slag produced by the deoxidation reaction during welding makes the bead shape good. If Si is less than 0.10%, the slag generated by the deoxidizing action during welding is reduced and the bead shape becomes poor. On the other hand, when Si exceeds 0.40%, the low temperature toughness of the weld metal is lowered. Therefore, Si is 0.10 to 0.40% in total of the austenitic stainless steel skin and the flux. Si can be added from alloy powders such as metal Si, Fe-Si, Fe-Si-Mn, etc. from the flux, in addition to the components contained in the austenitic stainless steel shell.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でMn:1.0〜2.5%]
Mnは、溶接金属のオーステナイト地に固溶して強度及び低温靭性を向上する効果がある。Mnが1.0%未満であると、溶接金属の強度及び低温靭性が低下する。一方、Mnが2.5%を超えると、スパッタ発生量が多くなる。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でMnは1.0〜2.5%とする。なお、Mnは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉から添加できる。
[Mn: 1.0 to 2.5% in total of austenitic stainless steel shell and flux]
Mn has the effect of improving the strength and low temperature toughness by dissolving in the austenite of the weld metal. When Mn is less than 1.0%, the strength and low temperature toughness of the weld metal are lowered. On the other hand, when Mn exceeds 2.5%, the amount of spatter generated increases. Therefore, Mn is 1.0 to 2.5% in total of the austenitic stainless steel skin and the flux. In addition, Mn can be added from alloy powders, such as metal Mn from a flux, Fe-Mn, Fe-Si-Mn other than the component contained in an austenitic stainless steel outer skin.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でNi:7.0〜12.0%]
Niは、溶接金属のオーステナイト組織を安定させ低温靭性を向上する効果がある。Niが7.0%未満であると、溶接金属の低温靭性が低下する。一方、Niが12.0%を超えると、溶接金属のオーステナイト組織が粗大化して強度が低下する。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でNiは7.0〜12.0%とする。なお、Niは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Ni、Fe−Ni等の合金粉から添加できる。
[Ni: 7.0 to 12.0% in total of austenitic stainless steel skin and flux]
Ni has the effect of stabilizing the austenitic structure of the weld metal and improving the low temperature toughness. When Ni is less than 7.0%, the low temperature toughness of the weld metal is lowered. On the other hand, if Ni exceeds 12.0%, the austenite structure of the weld metal becomes coarse and the strength decreases. Therefore, Ni is 7.0 to 12.0% in total of the austenitic stainless steel outer skin and the flux. Ni can be added from alloy powder such as metal Ni, Fe-Ni, etc. from the flux in addition to the components contained in the austenitic stainless steel skin.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でCr:17.0〜24.5%]
Crは、溶接金属のフェライトを晶出する主元素であり、オーステナイトとフェライト量を調整して耐高温割れ性を向上する効果がある。Crが17.0%未満であると、溶接金属のフェライト量が少なくなって高温割れが生じやすくなる。一方、Crが24.5%を超えると、溶接金属のフェライト量が過多となって低温靭性が低下する。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でCrは17.0〜24.5%とする。なお、Crは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Cr、Fe−Cr等の合金粉から添加できる。
[Total of austenitic stainless steel shell and flux: Cr: 17.0 to 24.5%]
Cr is a main element for crystallizing the weld metal ferrite, and has the effect of improving the hot cracking resistance by adjusting the amount of austenite and ferrite. If the Cr content is less than 17.0%, the amount of ferrite in the weld metal decreases and high temperature cracking tends to occur. On the other hand, if Cr exceeds 24.5%, the ferrite content of the weld metal becomes excessive and the low-temperature toughness decreases. Therefore, Cr is 17.0 to 24.5% in total of the austenitic stainless steel shell and the flux. In addition, Cr can be added from alloy powders, such as metal Cr from a flux, Fe-Cr other than the component contained in an austenitic stainless steel outer skin.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でTi:0.5〜1.5%]
Tiは、溶接金属中にTiO2の介在物として分散し、オーステナイト組織の成長を抑制するとともに、一部固溶して微細なフェライトを晶出させて強度及び低温靭性を向上する効果がある。Tiが0.5%未満であると、溶接金属中のTiO2の介在物が少なくなってオーステナイト組織が粗大化するとともに固溶Tiも少なくなって強度及び低温靭性が低下する。一方、Tiが1.5%を超えると、スパッタ発生量が多くなる。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でTiは0.5〜1.5%とする。なお、Tiは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉から添加できる。
[Ti: 0.5 to 1.5% in total of austenitic stainless steel skin and flux]
Ti is dispersed as an inclusion of TiO 2 in the weld metal, and suppresses the growth of the austenite structure, and also has an effect of improving the strength and low-temperature toughness by partially solid-solving to crystallize fine ferrite. If Ti is less than 0.5%, the inclusion of TiO 2 in the weld metal is reduced, the austenite structure is coarsened, and solid solution Ti is also reduced, resulting in a decrease in strength and low temperature toughness. On the other hand, when Ti exceeds 1.5%, the amount of spatter generated increases. Therefore, Ti is 0.5 to 1.5% in total of the austenitic stainless steel skin and the flux. Ti can be added from alloy powders such as metal Ti and Fe-Ti from the flux in addition to components contained in the austenitic stainless steel skin.

[オーステナイト系ステンレス鋼外皮とフラックスとの合計でAl:0.05〜0.20%]
Alは、脱酸剤であり溶接金属の酸素量を調整する。また、立向上進溶接でメタルが垂れるのを防止する効果がある。Alが0.05%未満であると、溶接金属中の酸素量が多くなってブローホールが生じやすくなる。また、立向上進溶接ではメタルが垂れてビード形状が不良となる。一方、Alが0.20%を超えると、溶接金属中の酸素量が低くなってTiO2介在物が少なくなりオーステナイト組織が粗大化するとともに固溶Tiも少なくなって強度及び低温靭性が低下する。したがって、オーステナイト系ステンレス鋼外皮とフラックスとの合計でAlは0.05〜0.20%とする。なお、Alは、オーステナイト系ステンレス鋼外皮に含まれる成分の他、フラックスからの金属Al、Fe−Al等の合金粉から添加できる。
[Al: 0.05 to 0.20% in total of austenitic stainless steel skin and flux]
Al is a deoxidizer and adjusts the oxygen content of the weld metal. In addition, there is an effect of preventing the metal from dripping in the vertical improvement welding. If Al is less than 0.05%, the amount of oxygen in the weld metal increases and blowholes are likely to occur. Further, in the vertical improvement welding, the metal droops and the bead shape becomes defective. On the other hand, if Al exceeds 0.20%, the amount of oxygen in the weld metal decreases, TiO 2 inclusions decrease, the austenite structure coarsens, and solid solution Ti also decreases, reducing the strength and low temperature toughness. . Therefore, Al is 0.05 to 0.20% in total of the austenitic stainless steel outer skin and the flux. In addition, Al can be added from alloy powders, such as metal Al from a flux, Fe-Al other than the component contained in an austenitic stainless steel outer shell.

[フラックス中のTi酸化物のTiO2換算値の合計:3.0〜9.0%]
Ti酸化物は、アークを安定にするとともに立向上進溶接でメタルが垂れるのを防止する効果がある。Ti酸化物のTiO2換算値の合計が3.0%未満であると、アークが不安定となる。またTi酸化物のTiO2換算値の合計が3.0%未満であると、立向上進溶接ではメタルが垂れてビード形状が不良となる。一方、Ti酸化物のTiO2換算値の合計が9.0%を超えると、溶接時に生成するスラグが多くなってアークが不安定でビード形状も不良となる。したがって、フラックス中のTi酸化物のTiO2換算値の合計は3.0〜9.0%とする。なお、Ti酸化物は、フラックスからのルチール、酸化チタン、チタンスラグ、イルミナイト等から添加できる
[Total of TiO 2 converted values of Ti oxide in flux: 3.0 to 9.0%]
Ti oxide has the effect of stabilizing the arc and preventing the metal from sagging during vertical welding. When the total of TiO 2 conversion values of the Ti oxide is less than 3.0%, the arc becomes unstable. If the total TiO 2 conversion value of the Ti oxide is less than 3.0%, the metal droops in the vertical improvement welding and the bead shape becomes poor. On the other hand, if the total TiO 2 conversion value of the Ti oxide exceeds 9.0%, the slag generated during welding increases, the arc becomes unstable, and the bead shape becomes poor. Therefore, the total of TiO 2 converted values of the Ti oxide in the flux is set to 3.0 to 9.0%. Ti oxide can be added from rutile, titanium oxide, titanium slag, illuminite, etc. from the flux.

[フラックス中のSi酸化物のSiO2換算値の合計:0.2〜1.0%]
Si酸化物は、スラグの粘性を調整してスラグ被包性を良好にする効果がある。Si酸化物のSiO2換算値の合計が0.2%未満であると、スラグの粘性が低くなりスラグ被包性が悪くなってビード形状が不良となる。一方、Si酸化物のSiO2換算値が1.0%を超えると、スラグ量が過多となってビード形状が不良となる。したがって、フラックス中のSi酸化物のSiO2換算値の合計は0.2〜1.0%とする。なお、Si酸化物は、フラックスからの珪砂、ジルコンサンド等から添加できる。
[Total of SiO 2 conversion value of Si oxide in flux: 0.2 to 1.0%]
Si oxide has the effect of adjusting the viscosity of the slag to improve the slag encapsulation. When the total of SiO 2 conversion values of the Si oxide is less than 0.2%, the viscosity of the slag is lowered, the slag encapsulation is deteriorated, and the bead shape is deteriorated. On the other hand, if the SiO 2 equivalent value of the Si oxide exceeds 1.0%, the amount of slag becomes excessive and the bead shape becomes poor. Therefore, the total of SiO 2 conversion values of the Si oxide in the flux is 0.2 to 1.0%. Si oxide can be added from silica sand, zircon sand, etc. from the flux.

[フラックス中のZr酸化物のZrO2換算値の合計:0.2〜1.0%]
Zr酸化物は、スラグの粘性を調整し、溶滴移行時の際に発生するスパッタ発生量を低減する効果がある。Zr酸化物のZrO2換算値の合計が0.2%未満であると、スラグの粘性が低くなって溶滴移行時に小粒のスパッタが発生する。一方、Zr酸化物のZrO2の合計が1.0%を超えると、スラグの粘性が高くなり、溶滴が大きく成長して溶滴移行が円滑に行われずアークが不安定になる。したがって、フラックス中のZr酸化物のZrO2換算値の合計は0.2〜1.0%とする。なお、Zr酸化物は、フラックスからのジルコンサンド、酸化ジルコニウム等から添加できる。
[Total ZrO 2 conversion value of Zr oxide in flux: 0.2 to 1.0%]
Zr oxide has the effect of adjusting the viscosity of the slag and reducing the amount of spatter generated during droplet transfer. If the total of ZrO 2 converted values of the Zr oxide is less than 0.2%, the viscosity of the slag is lowered, and small particles are sputtered during droplet transfer. On the other hand, if the total amount of ZrO 2 in the Zr oxide exceeds 1.0%, the viscosity of the slag increases, the droplets grow large, and the droplets do not move smoothly and the arc becomes unstable. Therefore, the total of ZrO 2 conversion values of the Zr oxide in the flux is 0.2 to 1.0%. The Zr oxide can be added from zircon sand, zirconium oxide or the like from the flux.

[フラックス中のAl酸化物のAl23換算値の合計:0.3〜1.1%]
Al酸化物は、スラグの融点を調整してビード形状を良好にする。Al酸化物のAl23の合計が0.3%未満であると、スラグの融点が低くなって、溶接金属とスラグの凝固が不均一となってビード形状が不良となる。一方、Al酸化物のAl23の合計が1.1%を超えると、スラグの融点が高くなって、スラグ剥離性が不良となる。したがって、フラックス中のAl酸化物のAl23換算値の合計は0.3〜1.1%とする。なお、Al酸化物は、フラックスからのアルミナ、カリ長石、曹長石等から添加できる。
[Total of Al 2 O 3 converted values of Al oxide in flux: 0.3 to 1.1%]
Al oxide adjusts melting | fusing point of slag and makes bead shape favorable. When the total Al 2 O 3 content of the Al oxide is less than 0.3%, the melting point of the slag is lowered, the solidification of the weld metal and the slag is not uniform, and the bead shape becomes poor. On the other hand, when the total of Al 2 O 3 in the Al oxide exceeds 1.1%, the melting point of the slag becomes high and the slag peelability becomes poor. Therefore, the total of Al 2 O 3 conversion values of the Al oxide in the flux is 0.3 to 1.1%. The Al oxide can be added from alumina, potassium feldspar, feldspar, etc. from the flux.

[鉄酸化物のFeO換算値の合計:0.10〜0.45%]
鉄酸化物は、溶接金属中の酸素量を調整して、TiO2介在物の生成量を調整してオーステナイト粒の成長を抑制して組織を微細化させて低温靭性を向上する効果がある。鉄酸化物のFeO換算値の合計が0.10%未満であると、TiO2介在物の生成量が少なくなって低温靭性が低下する。一方、鉄酸化物のFeO換算値が0.45%を超えると、溶接金属中の酸素量が多くなってブローホールが生じやすくなる。また、立向上進溶接ではメタルが垂れてビード形状が不良となる。したがって、フラックス中の鉄酸化物のFeO換算値の合計は0.10〜0.45%とする。なお、鉄酸化物は、フラックス中の赤鉄鉱、磁鉄鉱、ヘマタイト、ミルスケール等から添加できる。
[Total of FeO equivalent value of iron oxide: 0.10 to 0.45%]
Iron oxide has the effect of adjusting the amount of oxygen in the weld metal, adjusting the amount of TiO 2 inclusions generated, suppressing the growth of austenite grains, refining the structure, and improving low-temperature toughness. When the total FeO equivalent value of the iron oxide is less than 0.10%, the amount of TiO 2 inclusions produced is reduced and the low temperature toughness is lowered. On the other hand, if the FeO equivalent value of iron oxide exceeds 0.45%, the amount of oxygen in the weld metal increases and blowholes are likely to occur. Further, in the vertical improvement welding, the metal droops and the bead shape becomes defective. Therefore, the total FeO equivalent value of the iron oxide in the flux is 0.10 to 0.45%. Iron oxide can be added from hematite, magnetite, hematite, mill scale, etc. in the flux.

[弗素化合物のF換算値の合計:0.02〜0.15%]
弗素化合物は、溶滴の離脱性を良好にしてスパッタ発生量を低減する効果がある。弗素化合物のF換算値の合計が0.02%未満であると、溶滴の離脱が不安定でスパッタ発生量が多くなる。一方、弗素化合物のF換算値の合計が0.15%を超えると、溶滴が成長して、かえってスパッタ発生量が多くなる。したがって、弗素化合物のF換算値の合計は0.02〜0.15%とする。なお、フラックス中の弗素化合物は、弗化ソーダ、珪弗化カリ、ジルコン弗化カリ、氷晶石、弗化アルミ、蛍石等から添加できる。
[Total F converted value of fluorine compound: 0.02 to 0.15%]
The fluorine compound has an effect of reducing the amount of spatter generated by improving the detachability of the droplets. If the total F converted value of the fluorine compound is less than 0.02%, the detachment of the droplets is unstable and the amount of spatter generated increases. On the other hand, when the total F converted value of the fluorine compound exceeds 0.15%, droplets grow and the amount of spatter generated increases. Therefore, the total F converted value of the fluorine compound is 0.02 to 0.15%. The fluorine compound in the flux can be added from sodium fluoride, potassium silicofluoride, zircon potassium fluoride, cryolite, aluminum fluoride, fluorite and the like.

[Bi:0.01〜0.07%]
Biは、溶接金属からスラグの剥離を促進する効果がある。Biが0.01%未満であると、スラグ剥離性が不良となる。一方、Biが0.07%を超えると、溶接金属のオーステナイト粒界に偏析して結合力を弱め低温靭性が低下する。したがって、Biは0.01〜0.07%とする。なお、フラックスからのBiは、金属Bi等から添加できる。
[Bi: 0.01 to 0.07%]
Bi has an effect of promoting slag peeling from the weld metal. If Bi is less than 0.01%, the slag peelability is poor. On the other hand, if Bi exceeds 0.07%, it segregates at the austenite grain boundary of the weld metal, weakens the bonding force, and lowers the low temperature toughness. Therefore, Bi is set to 0.01 to 0.07%. Note that Bi from the flux can be added from metal Bi or the like.

[Na化合物及びK化合物のNa2O換算値とK2O換算値の合計:0.15〜0.45%]
Na化合物及びK化合物は、アークを安定にしてスパッタ発生量を低減する効果がある。Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.15%未満であると、アークが不安定でスパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.45%を超えると、スラグの凝固が早くなってビード形状が不良となる。したがって、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計は0.15〜0.45%とする。なお、フラックス中のNa化合物及びK化合物は、珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分、弗化ソーダ、チタン酸ナトリウム、珪弗化カリ、珪弗化ソーダ等から添加できる。
[Total of Na 2 O converted value and K 2 O converted value of Na compound and K compound: 0.15 to 0.45%]
Na compound and K compound have the effect of stabilizing the arc and reducing the amount of spatter generated. When the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is less than 0.15%, the arc is unstable and the amount of spatter generated increases. On the other hand, if the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound exceeds 0.45%, solidification of slag is accelerated and the bead shape becomes poor. Therefore, the total of Na 2 O equivalent value and K 2 O equivalent value of Na compound and K compound is 0.15 to 0.45%. The Na compound and K compound in the flux can be added from a solid component of water glass composed of sodium silicate and potassium silicate, sodium fluoride, sodium titanate, potassium silicate fluoride, sodium silicofluoride and the like.

本発明の低温用鋼のガスシールドアーク溶接用フラックス入りワイヤの残部は、オーステナイト系ステンレス鋼外皮のFe、鉄粉、Fe−Si、Fe−Mn、Fe−Ti、Fe−Al合金等の鉄合金粉のFe分及び不可避不純物である。不可避不純物については特に限定しないが、溶接金属の低温靭性に影響することから、Pは0.030%以下、Sは0.020%以下が好ましい。なお、Mo、Cu、V及びNbは、溶接金属の強度の調整として合計で0.20%以下の範囲で添加することができる。   The balance of the flux-cored wire for gas shielded arc welding of the low temperature steel of the present invention is an iron alloy such as Fe, iron powder, Fe-Si, Fe-Mn, Fe-Ti, Fe-Al alloy of an austenitic stainless steel sheath Fe content and inevitable impurities in the powder. The inevitable impurities are not particularly limited. However, since they affect the low temperature toughness of the weld metal, P is preferably 0.030% or less and S is preferably 0.020% or less. Mo, Cu, V, and Nb can be added in a range of 0.20% or less in total for adjusting the strength of the weld metal.

本発明の低温用鋼のガスシールドアーク溶接用フラックス入りワイヤは、オーステナイト系ステンレス鋼外皮をパイプに形成し、内部にフラックスを充填した後に所定のワイヤ径まで伸線したシーム有りのフラックス入りワイヤまたはオーステナイト系ステンレス鋼外皮を溶接してシームレスタイプのフラックス入りワイヤのいずれも適用できる。   The flux-cored wire for gas shielded arc welding of low-temperature steel according to the present invention is formed by forming an austenitic stainless steel skin into a pipe, filling the flux inside, and then drawing to a predetermined wire diameter with a seamed flux-cored wire or Any of the seamless-type flux-cored wires can be applied by welding the austenitic stainless steel skin.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

表1に示す化学成分のオーステナイト系ステンレス鋼外皮を用い、表2に示す各種成分組成の低温用鋼のガスシールドアーク溶接用フラックス入りワイヤを試作した。フラックス入りワイヤの製造はオーステナイト系ステンレス鋼外皮を溶接してシームレスタイプのフラックス入りワイヤとし、縮径してワイヤ素線径1.5mmを各1トン試作した。なお、フラックスの充填率は19〜24%とした。   Using the austenitic stainless steel outer skin having chemical components shown in Table 1, low temperature steel flux-cored wires for low temperature steels having various component compositions shown in Table 2 were produced. The flux-cored wire was manufactured by welding the austenitic stainless steel sheath to a seamless type flux-cored wire, and reducing the diameter to produce a 1-ton prototype of the wire strand diameter of 1.5 mm. The flux filling rate was 19 to 24%.

Figure 2019000887
Figure 2019000887

Figure 2019000887
Figure 2019000887

生産性の評価として、1.5mm径のワイヤ素線を1.2mmの製品径まで縮径するまでの断線の回数を調査し、断線回数が2回以下を良好とした。また、各試作ワイヤについて、溶接作業性及び溶接継手試験を行った。   As an evaluation of productivity, the number of disconnections until a 1.5 mm diameter wire strand was reduced to a product diameter of 1.2 mm was investigated, and the number of disconnections was determined to be 2 or less. Each prototype wire was subjected to welding workability and a welded joint test.

溶接作業性の評価は、板厚16mmのJIS G 3106に規定されるSM490B鋼板をT字に組んだ試験体に表3に示す溶接条件で、水平すみ肉溶接及び立向上進溶接を行い、水平すみ肉溶接でアークの安定性、スパッタ発生状態、スラグ剥離性、ビード形状を調査し、立向上進溶接でメタル垂れの有無を調査した。   Welding workability was evaluated by performing horizontal fillet welding and vertical improvement welding under the welding conditions shown in Table 3 on a test body in which a SM490B steel plate specified in JIS G 3106 with a thickness of 16 mm was assembled in a T shape. We investigated arc stability, spatter generation, slag peelability, and bead shape by fillet welding, and investigated the presence or absence of metal dripping by vertical welding.

溶接継手試験は、板厚20mmのNK規格に規定される低温用鋼のKL3N32及びKL5N43を図1に示す開先角度60°、ギャップ0mmの開先形状として、表3に示す溶接条件で溶接し、JIS Z 3106に準じてX線透過試験を実施して溶接欠陥の有無を調査した後、当接継手の板表面下7mmから引張試験片(A0号)及び衝撃試験片(Vノッチ試験片)を採取して、機械試験を実施した。引張試験の評価は、引張強さが570MPa以上のものを良好とし、靭性の評価は、−140℃におけるシャルピー衝撃試験を行い、各々繰り返し5本の吸収エネルギーの最低値が34J以上を良好とした。これらの結果を表4にまとめて示す。   In the welded joint test, KL3N32 and KL5N43 low-temperature steels stipulated in the NK standard with a plate thickness of 20 mm were welded under the welding conditions shown in Table 3 with a groove angle of 60 ° and a gap of 0 mm shown in FIG. After carrying out an X-ray transmission test according to JIS Z 3106 and investigating the presence or absence of welding defects, a tensile test piece (A0) and an impact test piece (V notch test piece) from 7 mm below the plate surface of the contact joint Were collected and subjected to a mechanical test. The tensile test was evaluated as good when the tensile strength was 570 MPa or more, and the toughness was evaluated as a Charpy impact test at -140 ° C., and the minimum value of the five absorbed energy was determined to be 34 J or higher. . These results are summarized in Table 4.

Figure 2019000887
Figure 2019000887

Figure 2019000887
Figure 2019000887

表2及び表4中のワイヤ記号W1〜W10が本発明例、ワイヤ記号W11〜W24は比較例である。本発明例であるワイヤ記号W1〜W10は、オーステナイト系ステンレス鋼外皮のCが適正であるので、フラックス入りワイヤ製造時に断線は生じなかった。また、フラックス入りワイヤのC、Si、Mn、Ni、Cr、Ti、Al、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Zr酸化物のZrO2換算値の合計、Al酸化物のAl23換算値の合計、鉄酸化物のFeO換算値の合計、弗素化合物のF換算値の合計、Bi、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が適正であるので、水平すみ肉溶接及び立向上進溶接において、アークが安定してスパッタ発生量が少なく、スラグ剥離性及びビード形状が良好で、立向上進溶接でメタル垂れが生じることがないなど良好な溶接作業性が得られた。また、溶接継手試験においても、溶接欠陥が生じることがなく、引張強さ及び吸収エネルギーも良好な値が得られるなど極めて満足な結果であった。 The wire symbols W1 to W10 in Tables 2 and 4 are examples of the present invention, and the wire symbols W11 to W24 are comparative examples. In the wire symbols W1 to W10, which are examples of the present invention, since the C of the austenitic stainless steel skin is appropriate, no breakage occurred during the manufacture of the flux-cored wire. Also, C, Si, Mn, Ni, Cr, Ti, Al of flux-cored wire, the total of TiO 2 converted values of Ti oxide, the total of SiO 2 converted values of Si oxide, ZrO 2 converted value of Zr oxide , Total Al 2 O 3 conversion value of Al oxide, FeO conversion value of iron oxide, total F conversion value of fluorine compound, Na 2 O conversion value and K of Bi, Na compound and K compound Since the total of 2 O-converted values is appropriate, in horizontal fillet welding and vertical improvement welding, the arc is stable and the amount of spatter is small, and the slag peelability and bead shape are good. Good welding workability such as no dripping occurred. In the welded joint test, weld defects were not generated, and the tensile strength and absorbed energy were excellent, and the results were extremely satisfactory.

比較例中ワイヤ記号W11は、オーステナイト系ステンレス鋼外皮のCが多いので、フラックス入りワイヤ製造時に5回断線が生じた。また、Ti酸化物のTiO2換算値の合計が少ないので、アークが不安定で、立向上進溶接ではメタルが垂れてビード形状が不良であった。 In the comparative example, the wire symbol W11 has a large amount of C in the austenitic stainless steel outer skin, and thus breakage occurred five times during the production of the flux-cored wire. In addition, since the total of TiO 2 conversion values of the Ti oxide was small, the arc was unstable, and the metal was dripped in the vertical improvement welding and the bead shape was poor.

ワイヤ記号W12は、フラックス入りワイヤのCが少ないので、溶接金属の引張強さが低値であった。また、Ti酸化物のTiO2換算値の合計が多いので、アークが不安定で、ビード形状も不良であった。 In the wire symbol W12, since the C of the flux-cored wire is small, the tensile strength of the weld metal was low. Further, since the sum of TiO 2 converted value of Ti oxides is large, the arc was unstable, bead shape was also poor.

ワイヤ記号W13は、フラックス入りワイヤのCが多いので、溶接金属の吸収エネルギーが低値であった。また、Si酸化物のSiO2換算値の合計が少ないので、ビード形状が不良であった。 Since the wire symbol W13 has a large amount of C in the flux-cored wire, the absorbed energy of the weld metal was low. Moreover, since the total of SiO 2 conversion values of Si oxide was small, the bead shape was poor.

ワイヤ記号W14は、Siが少ないので、ビード形状が不良であった。また、弗素化合物のF換算値の合計が多いので、スパッタ発生量が多かった。さらに、鉄酸化物のFeO換算値の合計が少ないので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol W14 has a small amount of Si, the bead shape was poor. Further, since the total of F converted values of the fluorine compound is large, the amount of spatter generated was large. Furthermore, since the total FeO equivalent value of the iron oxide is small, the absorbed energy of the weld metal was low.

ワイヤ記号W15は、Siが多いので、溶接金属の吸収エネルギーが低値であった。また、Si酸化物のSiO2換算値の合計が多いので、ビード形状が不良であった。 Since the wire symbol W15 contains a large amount of Si, the absorbed energy of the weld metal was low. Moreover, since the total of SiO 2 conversion values of Si oxide was large, the bead shape was poor.

ワイヤ記号W16は、Mnが少ないので、溶接金属の引張強さ及び吸収エネルギーともに低値であった。また、Zr酸化物のZrO2換算値の合計が少ないので、スパッタ発生量が多かった。 The wire symbol W16 had low Mn, so both the tensile strength and absorbed energy of the weld metal were low. Moreover, since the total of ZrO 2 conversion values of the Zr oxide was small, the amount of spatter generated was large.

ワイヤ記号W17は、Mnが多いので、スパッタ発生量が多かった。また、Biが多いので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol W17 has a large amount of Mn, the amount of spatter generated was large. Moreover, since there is much Bi, the absorbed energy of the weld metal was low.

ワイヤ記号W18は、Niが少ないので、溶接金属の吸収エネルギーが低値であった。また、Zr酸化物のZrO2換算値の合計が多いので、アークが不安定であった。 Since the wire symbol W18 has a small amount of Ni, the absorbed energy of the weld metal was low. Further, since the total of ZrO 2 converted values of the Zr oxide was large, the arc was unstable.

ワイヤ記号W19は、Niが多いので、溶接金属の引張強さが低値であった。また、Al酸化物のAl23換算値が少ないので、ビード形状が不良であった。 Since the wire symbol W19 has a large amount of Ni, the tensile strength of the weld metal was low. Moreover, since the Al 2 O 3 conversion value of the Al oxide was small, the bead shape was poor.

ワイヤ記号W20は、Crが少ないので、溶接継手試験のクレータ部に高温割れが生じた。また、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が多いので、ビード形状が不良であった。 Since the wire symbol W20 is low in Cr, hot cracking occurred in the crater portion of the welded joint test. Further, since the sum is larger in terms of Na 2 O values and K 2 O conversion value of Na compounds and K compounds, bead shape was poor.

ワイヤ記号W21は、Crが多いので、溶接金属の吸収エネルギーが低値であった。また、Al酸化物のAl23換算値が多いので、スラグ剥離性が不良であった。 Since the wire symbol W21 has a large amount of Cr, the absorbed energy of the weld metal was low. Also, since in terms of Al 2 O 3 value is often an Al oxide, slag removability was poor.

ワイヤ記号W22は、Tiが少ないので、溶接金属の引張強さ及び吸収エネルギーが低値であった。また、弗素化合物のF換算値の合計が少ないので、スパッタ発生量が多かった。さらに、Biが少ないので、スラグ剥離性が不良であった。   Since the wire symbol W22 has a small amount of Ti, the tensile strength and absorbed energy of the weld metal were low. Moreover, since the total of F conversion values of the fluorine compound is small, the amount of spatter generated was large. Furthermore, since there was little Bi, slag peelability was unsatisfactory.

ワイヤ記号W23は、Tiが多いので、スパッタ発生量が多かった。また、Alが多いので、溶接金属の引張強さ及び吸収エネルギーが低値であった。さらに、鉄酸化物のFeO換算値が多いので、立向上進溶接でメタル垂れが生じてビード形状が不良で、溶接継手試験でブローホールが生じた。   The wire symbol W23 has a large amount of spatter due to a large amount of Ti. Moreover, since there is much Al, the tensile strength and absorbed energy of the weld metal were low. Furthermore, since there are many FeO conversion values of an iron oxide, metal dripping occurred in the vertical improvement welding, the bead shape was poor, and a blowhole was generated in the weld joint test.

ワイヤ記号W24は、Alが少ないので、立向上進溶接でメタル垂れが生じてビード形状が不良で、溶接継手試験でブローホールが生じた。また、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が少ないので、アークが不安定でスパッタ発生量が多かった。 Since the wire symbol W24 has a small amount of Al, metal dripping occurred in the vertical improvement welding, the bead shape was poor, and a blow hole occurred in the weld joint test. Further, since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound was small, the arc was unstable and the amount of spatter was large.

Claims (1)

低温用3.5〜5%Ni鋼の溶接に用いられ、オーステナイト系ステンレス鋼外皮にフラックスを充填してなる低温用鋼のガスシールドアーク溶接用フラックス入りワイヤにおいて、
オーステナイト系ステンレス鋼外皮中のCがオーステナイト系ステンレス鋼外皮全質量%で0.015%以下であり、
ワイヤ全質量に対する質量%で、オーステナイト系ステンレス鋼外皮とフラックスとの合計で、
C:0.003〜0.02%、
Si:0.10〜0.40%、
Mn:1.0〜2.5%、
Ni:7.0〜12.0%、
Cr:17.0〜24.5%、
Ti:0.5〜1.5%、
Al:0.05〜0.20%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物のTiO2換算値の合計:3.0〜9.0%、
Si酸化物のSiO2換算値の合計:0.2〜1.0%、
Zr酸化物のZrO2換算値の合計:0.2〜1.0%、
Al酸化物のAl23換算値の合計:0.3〜1.1%、
鉄酸化物のFeO換算値の合計:0.10〜0.45%、
弗素化合物のF換算値の合計:0.02〜0.15%、
Bi:0.01〜0.07%、
Na化合物及びK化合物のNa2O換算値とK2O換算値の合計:0.15〜0.45%を含有し、
残部がオーステナイト系ステンレス鋼外皮のFe分、鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする低温用鋼のガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shielded arc welding of low temperature steel, which is used for welding of low temperature 3.5-5% Ni steel, and the austenitic stainless steel outer shell is filled with flux,
C in the austenitic stainless steel hull is 0.015% or less in terms of the total mass% of the austenitic stainless steel hull,
It is the mass% with respect to the total mass of the wire, and is the sum of the austenitic stainless steel shell and the flux
C: 0.003 to 0.02%,
Si: 0.10 to 0.40%,
Mn: 1.0 to 2.5%
Ni: 7.0 to 12.0%,
Cr: 17.0 to 24.5%,
Ti: 0.5 to 1.5%,
Al: 0.05 to 0.20% is contained,
Furthermore, in the flux in mass% with respect to the total mass of the wire,
Total of TiO 2 converted values of Ti oxide: 3.0 to 9.0%,
Total of SiO 2 conversion value of Si oxide: 0.2 to 1.0%,
Total of ZrO 2 converted values of Zr oxide: 0.2 to 1.0%,
Total Al 2 O 3 conversion value of Al oxide: 0.3 to 1.1%,
Total of FeO equivalent value of iron oxide: 0.10 to 0.45%,
Total F converted value of fluorine compound: 0.02 to 0.15%,
Bi: 0.01-0.07%,
Total terms of Na 2 O values and K 2 O conversion value of Na compounds and K compounds: containing 0.15 to 0.45%,
A flux cored wire for gas shielded arc welding of low-temperature steel, wherein the balance consists of Fe content of an austenitic stainless steel skin, iron powder, Fe content of iron alloy powder and inevitable impurities.
JP2017119383A 2017-06-19 2017-06-19 Flux-cored wire for gas shielded arc welding of low temperature steel Active JP6772108B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017119383A JP6772108B2 (en) 2017-06-19 2017-06-19 Flux-cored wire for gas shielded arc welding of low temperature steel
KR1020180065246A KR102456990B1 (en) 2017-06-19 2018-06-07 Flux-cored wire for gas shielded arc welding of low temperature steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119383A JP6772108B2 (en) 2017-06-19 2017-06-19 Flux-cored wire for gas shielded arc welding of low temperature steel

Publications (2)

Publication Number Publication Date
JP2019000887A true JP2019000887A (en) 2019-01-10
JP6772108B2 JP6772108B2 (en) 2020-10-21

Family

ID=65004562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119383A Active JP6772108B2 (en) 2017-06-19 2017-06-19 Flux-cored wire for gas shielded arc welding of low temperature steel

Country Status (2)

Country Link
JP (1) JP6772108B2 (en)
KR (1) KR102456990B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002259A1 (en) 2019-07-01 2021-01-07 株式会社神戸製鋼所 Austenitic stainless steel flux cored wire, welded metal, and welding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113878204A (en) * 2021-10-18 2022-01-04 唐禹明 Welding method of stainless steel composite plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176492A (en) * 1985-01-29 1986-08-08 Nippon Steel Corp Flux-cored wire for welding stainless steel
US20080093352A1 (en) * 2006-10-20 2008-04-24 Jong Hun Jang Flux Cored Wire for Duplex Stainless Steel and Method of Manufacturing the Same
JP2009154183A (en) * 2007-12-26 2009-07-16 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding stainless steel and method of manufacturing it
JP2011194412A (en) * 2010-03-17 2011-10-06 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for welding austenitic stainless steel
CN103949796A (en) * 2014-05-05 2014-07-30 常州新德焊材科技有限公司 Austenitic stainless steel flux-cored wire having no oxidation tint on surface of welding joint
JP2017013118A (en) * 2015-07-06 2017-01-19 新日鐵住金ステンレス株式会社 Flux-cored wire for stainless steel welding, stainless steel welded joint, and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829431B2 (en) 1990-03-30 1996-03-27 株式会社神戸製鋼所 Low-hydrogen coated arc welding rod
JP2667629B2 (en) 1993-12-03 1997-10-27 株式会社神戸製鋼所 Bond flux for submerged arc welding
JP3559806B2 (en) 1995-08-18 2004-09-02 日鐵住金溶接工業株式会社 Basic flux cored wire for low temperature steel
JP3154661B2 (en) 1996-06-13 2001-04-09 株式会社神戸製鋼所 Low hydrogen coated arc welding rod
JP6399984B2 (en) 2015-08-28 2018-10-03 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176492A (en) * 1985-01-29 1986-08-08 Nippon Steel Corp Flux-cored wire for welding stainless steel
US20080093352A1 (en) * 2006-10-20 2008-04-24 Jong Hun Jang Flux Cored Wire for Duplex Stainless Steel and Method of Manufacturing the Same
JP2009154183A (en) * 2007-12-26 2009-07-16 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding stainless steel and method of manufacturing it
JP2011194412A (en) * 2010-03-17 2011-10-06 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for welding austenitic stainless steel
CN103949796A (en) * 2014-05-05 2014-07-30 常州新德焊材科技有限公司 Austenitic stainless steel flux-cored wire having no oxidation tint on surface of welding joint
JP2017013118A (en) * 2015-07-06 2017-01-19 新日鐵住金ステンレス株式会社 Flux-cored wire for stainless steel welding, stainless steel welded joint, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002259A1 (en) 2019-07-01 2021-01-07 株式会社神戸製鋼所 Austenitic stainless steel flux cored wire, welded metal, and welding method
KR20220008917A (en) 2019-07-01 2022-01-21 가부시키가이샤 고베 세이코쇼 Austenitic Stainless Steel Flux Cored Wire, Weld Metals and Welding Methods
EP3974098A4 (en) * 2019-07-01 2022-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Austenitic stainless steel flux cored wire, welded metal, and welding method

Also Published As

Publication number Publication date
JP6772108B2 (en) 2020-10-21
KR102456990B1 (en) 2022-10-21
KR20180138140A (en) 2018-12-28

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP4566899B2 (en) High strength stainless steel welding flux cored wire
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2007203350A (en) Flux cored nickel-based alloy wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6566928B2 (en) Stainless steel flux cored wire
JP5885618B2 (en) Stainless steel flux cored wire
JP6434381B2 (en) Stainless steel flux cored wire
JP6140069B2 (en) Stainless steel flux cored wire
KR102456990B1 (en) Flux-cored wire for gas shielded arc welding of low temperature steel
JP2018034170A (en) Flux-cored wire for gas shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP5863570B2 (en) Flux-cored wire for gas shielded arc welding
JP2017164772A (en) Flux-cored wire for carbon dioxide gas shield arc welding
JP2565831B2 (en) Flux-cored wire with Ni-based alloy as outer skin
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP7257189B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP2019123012A (en) Flux-cored wire for gas shield arc welding
JP7321958B2 (en) Flux-cored wire for gas-shielded arc welding of seawater-resistant steel
WO2022130905A1 (en) Flux cored wire
JP7247079B2 (en) Flux-cored wire for gas-shielded arc welding
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6772108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250