JP2018509523A - Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel - Google Patents

Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel Download PDF

Info

Publication number
JP2018509523A
JP2018509523A JP2017535920A JP2017535920A JP2018509523A JP 2018509523 A JP2018509523 A JP 2018509523A JP 2017535920 A JP2017535920 A JP 2017535920A JP 2017535920 A JP2017535920 A JP 2017535920A JP 2018509523 A JP2018509523 A JP 2018509523A
Authority
JP
Japan
Prior art keywords
steel pipe
support material
boron
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017535920A
Other languages
Japanese (ja)
Inventor
マン キム、ドン
マン キム、ドン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seo Dong Co ltd
Seodong Innotek Co ltd
Original Assignee
Seo Dong Co ltd
Seodong Innotek Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seo Dong Co ltd, Seodong Innotek Co ltd filed Critical Seo Dong Co ltd
Publication of JP2018509523A publication Critical patent/JP2018509523A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H3/00Making helical bodies or bodies having parts of helical shape
    • B21H3/02Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

ボロン鋼を用いた超高強度鋼管支保材の製造方法及び支保材アセンブリに関し、本発明の実施例によると、岩盤、傾斜面などの崩壊防止のために設置される支保材が、ボロンが添加された鋼板で鋼管成形によって製造されることによって、大きな荷重にも耐えることができ、破損可能性を著しく低下できるという効果がある。また、支保材が中空構造で形成されることによって重さが減少し、製作及び生産費用を節減することができ、岩盤又は斜面などに形成された穿孔の内部で支保材が外部に離脱することを防止できるという効果がある。また、支保材を介してモルタルが穿孔の内部に注入されるので、施工性を向上できるという効果がある。【選択図】図1According to an embodiment of the present invention, a support material installed for preventing collapse of a rock mass, an inclined surface, and the like is added to boron. By manufacturing the steel plate by steel pipe forming, there is an effect that it can withstand a large load and can significantly reduce the possibility of breakage. In addition, since the support material is formed in a hollow structure, the weight is reduced, and manufacturing and production costs can be reduced. There is an effect that can be prevented. Further, since the mortar is injected into the perforations through the support material, there is an effect that the workability can be improved. [Selection] Figure 1

Description

本発明は、ボロン鋼を用いた超高強度鋼管支保材の製造方法及び支保材アセンブリに関する。   The present invention relates to a method for manufacturing an ultrahigh strength steel pipe support material using boron steel and a support material assembly.

本出願は、2015年12月30日に出願された特許文献1に基づいた優先権を主張し、該当出願の明細書及び図面に開示した全ての内容は本出願に援用される。   This application claims the priority based on the patent document 1 for which it applied on December 30, 2015, and all the content disclosed in the specification and drawing of the applicable application are used for this application.

一般に、道路、トンネルなどを作るための土木工事には、山や地面を削り取ったり掘削したりする作業が伴われる。   In general, civil engineering work for creating roads, tunnels, etc. is accompanied by the work of shaving or excavating mountains and ground.

このうち、トンネル工事は、トンネルを形成する位置に基礎穴を形成し、ダイナマイトなどの爆発物を用いて基礎穴を少しずつ広げながら基礎トンネルを形成している。   Among these, tunnel construction forms foundation holes at the position where the tunnel is formed, and forms foundation tunnels by gradually expanding the foundation holes using explosives such as dynamite.

このように基礎トンネルが形成されると、ショットクリート打設装置を用いて基礎トンネルの内壁にコンクリートを打設する補強膜工事を進める。   When the foundation tunnel is formed in this way, the reinforcement film construction for placing concrete on the inner wall of the foundation tunnel using the shotcrete placing apparatus is advanced.

その後、トンネルの崩壊を防止するために補強膜に穿孔を形成し、穿孔内にロックボルトを挿入した後、モルタルを注入して岩盤と共に固定する作業を行う。   After that, in order to prevent the tunnel from collapsing, a perforation is formed in the reinforcing membrane, and after inserting a lock bolt into the perforation, a mortar is injected and fixed together with the rock mass.

このようなロックボルトに対する従来技術の一例は、韓国登録実用新案第20−0372672号の「スペーサーロックボルト」に開示されている。   An example of the prior art for such a lock bolt is disclosed in “Spacer Lock Bolt” of Korean Registered Utility Model No. 20-0372672.

一方、一般に、床堀り、鉄道及び道路などに隣接した自然斜面及び人工斜面の補強などの構造物築造に必要な地盤補強、擁壁の補修、設置などの工事では、その掘削面の崩壊を防止するための地盤補強法が適用されるが、土留め工事、アースアンカリング及びソイルネイリング工法が主に用いられている。   On the other hand, in general, ground excavation, repair of retaining walls, installation, etc. required for building structures such as floor digging, reinforcement of natural slopes and artificial slopes adjacent to railways and roads, etc. will cause the excavation surface to collapse. The ground reinforcement method to prevent is applied, but earth retaining work, earth anchoring and soil nailing method are mainly used.

このうち、ソイルネイリング工法は、傾斜地盤や掘削面を異形鉄筋(ネイル)で補強する工法であって、通常、斜面や床堀りの掘削面に対してショットクリートで表面保護面を施工し、地盤を穿孔してネイルを挿入した後、これをグラウティング処理し、ソイルネイルアンカー体を造成する過程で進める。   Among them, the soil nailing method is a method to reinforce the sloped ground and excavated surface with deformed reinforcing bars (nails), and usually the surface protection surface is constructed with shotcrete on the excavated surface of the slope and floor excavation, After drilling the ground and inserting the nail, it is grouting and proceeding in the process of building the soil nail anchor body.

このようなソイルネイリング工法は、韓国公開特許第10−2015−0000992号の「除去式ネイル組立構造及びこれを用いたネイル回収工法」に紹介されている。   Such a soil nailing method is introduced in “Removable Nail Assembly Structure and Nail Recovery Method Using the Same” of Korean Patent No. 10-2015-0000992.

上述したロックボルト、ネイルなどを含む支保材の場合、岩盤、傾斜面などの崩壊防止のために大きな荷重に耐えられなければならないので、超高強度の鋼管支保材を製造する技術開発が要求されている。   In the case of supporting materials including the rock bolts and nails mentioned above, it is necessary to withstand large loads in order to prevent collapse of rocks, inclined surfaces, etc., so it is necessary to develop technology to produce ultra-high strength steel pipe supporting materials. ing.

韓国特許出願第10−2015−0189290号Korean Patent Application No. 10-2015-0189290

本発明は、前記のような従来の問題を解決するために提案されたものであって、その目的は、岩盤、傾斜面などの崩壊防止のために設置される支保材が、ボロンが添加された鋼板で鋼管成形によって製造されることによって、大きな荷重にも耐えることができ、破損可能性を著しく低下できるボロン鋼を用いた超高強度鋼管支保材の製造方法及び支保材アセンブリを提供することにある。   The present invention has been proposed in order to solve the above-described conventional problems. The purpose of the present invention is to add boron to a support material installed to prevent collapse of rocks, slopes, and the like. To provide a manufacturing method of a super-high-strength steel pipe support material and a support material assembly using boron steel that can withstand a large load and can significantly reduce the possibility of breakage by being manufactured by forming a steel pipe with a steel plate. It is in.

本発明の目的はこれに制限されなく、言及していない他の目的は、下記の記載から通常の技術者に明確に理解され得るだろう。   The object of the present invention is not limited to this, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

本発明が提案するボロン鋼を用いた超高強度鋼管支保材の製造方法は、ボロンが添加された鋼板を巻いて製造された鋼管を既に設定された長さにカッティングする鋼管製造段階;前記鋼管製造段階後、前記鋼管内に発生した応力を除去するために既に設定された温度範囲内で熱処理する熱処理段階;前記熱処理段階後、前記鋼管の外周面に既に設定された深さでねじ溝を成形する成形段階;前記成形段階後、前記鋼管を熱処理して硬化する硬化熱処理段階;及び前記硬化熱処理段階後、前記鋼管の外周面に防錆剤を塗布する防錆段階;を含むことを特徴とする。   The manufacturing method of the super high strength steel pipe support material using boron steel proposed by the present invention is a steel pipe manufacturing stage in which a steel pipe manufactured by winding a steel sheet to which boron is added is cut to a preset length; After the manufacturing stage, a heat treatment stage in which heat treatment is performed within a preset temperature range in order to remove stress generated in the steel pipe; after the heat treatment stage, a thread groove is formed on the outer peripheral surface of the steel pipe at a preset depth. A molding step for forming; a curing heat treatment step for heat-treating the steel pipe after the molding step; and a rust-preventing step for applying a rust preventive agent to the outer peripheral surface of the steel pipe after the curing heat-treatment step. And

前記ボロンが添加された鋼板は、重量%として、炭素(C):0.10%〜0.39%、シリコーン(Si):0.10%〜0.40%、マンガン(Mn):0.70%〜1.50%、リン(P):0.035%以下、硫黄(S):0.035%以下、チタン(Ti):0.06%以下、ボロン(B):0.001%〜0.005%、クロム(Cr):0.6%以下、アルミニウム(Al):0.2%以下及び残量の鉄(Fe)と、その他の不可避な不純物とを含むことを特徴とする。   The steel sheet to which boron is added has, as weight percentage, carbon (C): 0.10% to 0.39%, silicone (Si): 0.10% to 0.40%, manganese (Mn): 0.00. 70% to 1.50%, phosphorus (P): 0.035% or less, sulfur (S): 0.035% or less, titanium (Ti): 0.06% or less, boron (B): 0.001% -0.005%, chromium (Cr): 0.6% or less, aluminum (Al): 0.2% or less, and remaining iron (Fe) and other inevitable impurities .

前記熱処理段階では、前記鋼管が前記既に設定された温度範囲である500℃〜700℃で炉冷又は空冷処理されることを特徴とする。   In the heat treatment step, the steel pipe is furnace-cooled or air-cooled at a temperature range of 500 ° C. to 700 ° C. that is the preset temperature range.

前記成形段階では、前記鋼管の外周面に前記既に設定された深さである0.1mm〜4mmでねじ溝が成形されることを特徴とする。   In the forming step, a thread groove is formed on the outer peripheral surface of the steel pipe at a depth of 0.1 mm to 4 mm which is the already set depth.

前記硬化熱処理段階では、前記鋼管が700℃〜1000℃で高周波熱処理されて急冷されることを特徴とする。   In the hardening heat treatment step, the steel pipe is subjected to high-frequency heat treatment at 700 ° C. to 1000 ° C. and rapidly cooled.

前記高周波熱処理が実施されて急冷された前記鋼管が150℃〜400℃でテンパリングされることを特徴とする。   The steel pipe quenched by the induction heat treatment is tempered at 150 to 400 ° C.

また、本発明が提案する支保材アセンブリは、モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する前記ボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造された支保材;前記支保材と結合され、前記傾斜面に密着するプレート;及び前記支保材と結合され、前記プレートを前記傾斜面に密着するように固定させる締結部材;を含むことを特徴とする。   In addition, the support material assembly proposed by the present invention is a method of manufacturing an ultra-high-strength steel pipe support material using the boron steel, which is inserted into an inclined surface in which a perforation filled with mortar is formed and prevents the inclined surface from collapsing. A support member manufactured by: a plate coupled to the support member and in close contact with the inclined surface; and a fastening member coupled to the support member and configured to fix the plate in close contact with the inclined surface. Features.

また、本発明が提案する支保材アセンブリは、モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する前記ボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造された支保材を含み、前記支保材の端部又は前記支保材と前記穿孔の入口との間にコーキング(caulking)処理されることを特徴とする。   In addition, the support material assembly proposed by the present invention is a method of manufacturing an ultra-high-strength steel pipe support material using the boron steel, which is inserted into an inclined surface in which a perforation filled with mortar is formed and prevents the inclined surface from collapsing. And a caulking process is performed between the end of the support material or between the support material and the inlet of the perforation.

前記支保材の下部に挿入され、モルタル注入器が挿入される貫通ホールが形成された胴体部;及び前記胴体部の上側面に設置され、前記貫通ホールを開閉し、注入されたモルタルの逆流を防止する開閉部;を含む逆流防止キャップをさらに含むことを特徴とする。   A body part inserted in a lower part of the support material and formed with a through-hole into which a mortar injector is inserted; and an upper surface of the body part, which opens and closes the through-hole, and reverses the injected mortar And a backflow prevention cap including an opening / closing portion for preventing.

本発明の実施例によると、岩盤、傾斜面などの崩壊防止のために設置される支保材が、ボロンが添加された鋼板で鋼管成形によって製造されることによって、大きな荷重にも耐えることができ、破損可能性を著しく低下できるという効果がある。   According to the embodiment of the present invention, the support material installed to prevent the collapse of the bedrock, the inclined surface, etc. can be endured to a large load by being manufactured by steel pipe forming with a steel plate to which boron is added. There is an effect that the possibility of breakage can be significantly reduced.

また、支保材が中空構造で形成されることによって重さが減少し、製作及び生産費用を節減することができ、岩盤又は斜面などに形成された穿孔の内部で支保材が外部に離脱することを防止できるという効果がある。   In addition, since the support material is formed in a hollow structure, the weight can be reduced, manufacturing and production costs can be reduced, and the support material can be released to the outside inside the perforations formed in the rock or slope. There is an effect that can be prevented.

また、支保材を介してモルタルが穿孔の内部に注入されるので、施工性を向上できるという効果がある。   Further, since the mortar is injected into the perforations through the support material, there is an effect that the workability can be improved.

本発明の一実施例に係るボロン鋼を用いた超高強度鋼管支保材の製造方法の順序を示したブロック図The block diagram which showed the order of the manufacturing method of the super high strength steel pipe support material using the boron steel which concerns on one Example of this invention 本発明の他の実施例に係る支保材アセンブリを示した説明図Explanatory drawing which showed the support material assembly which concerns on the other Example of this invention. 図2の一部に対する断面を示した斜視図The perspective view which showed the cross section with respect to a part of FIG. 図2の一部に対する拡大図Enlarged view of part of FIG. 本発明の更に他の実施例に係る支保材アセンブリを示した説明図Explanatory drawing which showed the support material assembly which concerns on other Example of this invention.

以下、本発明の好適な実施例を添付の図面を参照してより詳細に説明する。
図1は、本発明の一実施例に係るボロン鋼を用いた超高強度鋼管支保材の製造方法の順序を示したブロック図である。図2は、本発明の他の実施例に係る支保材アセンブリを示した図である。図3は、図2の一部に対する断面を示した斜視図である。図4は、図2の一部に対する拡大図である。図5は、本発明の更に他の実施例に係る支保材アセンブリを示した図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing the sequence of a method for manufacturing an ultra high strength steel pipe support material using boron steel according to an embodiment of the present invention. FIG. 2 is a view showing a support material assembly according to another embodiment of the present invention. FIG. 3 is a perspective view showing a cross section of a part of FIG. FIG. 4 is an enlarged view of a part of FIG. FIG. 5 is a view showing a support material assembly according to still another embodiment of the present invention.

これらの図面に示したように、本発明の一実施例に係るボロン鋼を用いた超高強度鋼管支保材の製造方法は、ボロン(B)が添加された鋼板を巻いて製造された鋼管を既に設定された長さにカッティングする鋼管製造段階(101);鋼管製造段階(101)後、鋼管内に発生した応力を除去するために既に設定された温度範囲内で熱処理する熱処理段階(103);熱処理段階(103)後、鋼管の外周面に既に設定された深さでねじ溝を成形する成形段階(105);成形段階(105)後、鋼管を熱処理して硬化する硬化熱処理段階(107);及び硬化熱処理段階(107)後、鋼管の外周面に防錆剤を塗布する防錆段階(109);を含むことを特徴とする。   As shown in these drawings, a method for manufacturing an ultra-high strength steel pipe support material using boron steel according to an embodiment of the present invention is a method of manufacturing a steel pipe manufactured by winding a steel sheet to which boron (B) is added. Steel pipe manufacturing stage (101) for cutting to a preset length; after the steel pipe manufacturing stage (101), a heat treatment stage (103) for heat treatment within a preset temperature range to remove stress generated in the steel pipe After the heat treatment step (103), a forming step (105) for forming a screw groove at a predetermined depth on the outer peripheral surface of the steel pipe; after the forming step (105), a hardening heat treatment step (107) for heat-treating and hardening the steel pipe And a hardening heat treatment step (107), and a rust prevention step (109) for applying a rust inhibitor to the outer peripheral surface of the steel pipe.

以下、各段階別に説明する。
まず、鋼管製造段階(101)は、ボロン(B)が添加された鋼板を巻いて製造された鋼管を既に設定された長さにカッティングする段階である。
Hereinafter, each step will be described.
First, the steel pipe manufacturing stage (101) is a stage in which a steel pipe manufactured by winding a steel plate to which boron (B) is added is cut to a preset length.

ここで、ボロン(B)が添加された鋼板の元素組成比を見ると、重量%として、炭素(C):0.10%〜0.39%、シリコーン(Si):0.10%〜0.40%、マンガン(Mn):0.70%〜1.50%、リン(P):0.035%以下、硫黄(S):0.035%以下、チタン(Ti):0.06%以下、ボロン(B):0.001%〜0.005%、クロム(Cr):0.6%以下、アルミニウム(Al):0.2%以下、残量の鉄(Fe)及びその他の不可避な不純物からなる。   Here, looking at the elemental composition ratio of the steel sheet to which boron (B) was added, carbon (C): 0.10% to 0.39%, silicone (Si): 0.10% to 0 as weight%. 40%, manganese (Mn): 0.70% to 1.50%, phosphorus (P): 0.035% or less, sulfur (S): 0.035% or less, titanium (Ti): 0.06% Hereinafter, boron (B): 0.001% to 0.005%, chromium (Cr): 0.6% or less, aluminum (Al): 0.2% or less, remaining amount of iron (Fe) and other inevitable Consisting of various impurities.

以下、各元素に対して説明する。
炭素(C)
炭素(C)は、強度を付与するために添加され、オーステナイトを安定化させ、Ac3変態点を低下させることによって熱処理(quenching)温度を低下させるのに寄与する。
Hereinafter, each element will be described.
Carbon (C)
Carbon (C) is added to impart strength and stabilizes austenite and contributes to lowering the heat treatment (quenching) temperature by lowering the Ac3 transformation point.

このような炭素(C)は、全体重量の0.10重量%〜0.39重量%で添加される。   Such carbon (C) is added at 0.10 wt% to 0.39 wt% of the total weight.

炭素(C)の含量が0.10重量%未満である場合は強度確保が不十分であり、その反対に、炭素(C)の含量が0.39重量%を超える場合は、クエンチング(quenching)される部分の靭性が急激に低下し得る。   If the carbon (C) content is less than 0.10% by weight, the strength cannot be ensured. Conversely, if the carbon (C) content exceeds 0.39% by weight, quenching is performed. ) Toughness of the portion to be abruptly decreased.

シリコーン(Si)
シリコーン(Si)は、脱酸効果を発揮し、また、熱処理後、強度の安定化を高める効果を与える。
Silicone (Si)
Silicone (Si) exerts a deoxidizing effect and gives an effect of increasing strength stabilization after heat treatment.

併せて、パーライトの生成を遅延させることによって鋼材の成形性を向上させるという機能がある。   In addition, there is a function of improving the formability of the steel material by delaying the generation of pearlite.

このようなシリコーン(Si)は、全体重量の0.10重量%〜0.40重量%で添加される。   Such silicone (Si) is added at 0.10 wt% to 0.40 wt% of the total weight.

シリコーン(Si)が0.10重量%未満で添加される場合は、熱処理後、強度の安定化改善効果が不十分であり、その反対に、シリコーン(Si)が0.40重量%を超える場合は、素材の表面特性を低下させる。   When silicone (Si) is added in an amount of less than 0.10% by weight, the effect of improving the stabilization of strength is insufficient after heat treatment, and conversely, when silicone (Si) exceeds 0.40% by weight. Reduces the surface properties of the material.

マンガン(Mn)
マンガン(Mn)は、固溶強化元素として非常に効果的であり、鋼の硬化能を向上させ、強度の確保に効果的な元素である。
Manganese (Mn)
Manganese (Mn) is very effective as a solid solution strengthening element, is an element that improves the hardenability of steel and is effective in securing strength.

このようなマンガン(Mn)は、全体重量の0.70重量%〜1.50重量%で添加される。   Such manganese (Mn) is added at 0.70% to 1.50% by weight of the total weight.

マンガン(Mn)が0.70重量%未満で添加される場合は、マンガン(Mn)の添加による固溶強化効果及び硬化能向上効果が不十分であり、その反対に、マンガン(Mn)が1.50重量%を超える場合は、溶接性を大きく低下させるという問題が発生する。   When manganese (Mn) is added in an amount of less than 0.70% by weight, the solid solution strengthening effect and the hardening ability improving effect due to the addition of manganese (Mn) are insufficient, and conversely, manganese (Mn) is 1 When it exceeds 50% by weight, there arises a problem that the weldability is greatly lowered.

リン(P)、硫黄(S)
リン(P)は、強度確保に有用な元素である。しかし、多量で添加されると、加工性を低下させるだけでなく、溶接性も低下させる。
Phosphorus (P), sulfur (S)
Phosphorus (P) is an element useful for ensuring strength. However, when added in a large amount, not only the workability is lowered, but also the weldability is lowered.

併せて、リン(P)は、鋼の製造時、偏析可能性が大きい元素であって、中心偏析はもちろん、微細偏析も形成し、材質に良くない影響を及ぼす。   In addition, phosphorus (P) is an element that has a high possibility of segregation during the production of steel, and forms fine segregation as well as central segregation, which adversely affects the material.

このような理由で、リン(P)は、全体重量の0.035重量%以下にその添加量が制限される。   For this reason, the amount of phosphorus (P) added is limited to 0.035% by weight or less of the total weight.

硫黄(S)は、鋼の製造時に不可避に添加される元素であって、鋼材の衝撃強度確保に寄与する元素である。   Sulfur (S) is an element that is unavoidably added during the production of steel, and is an element that contributes to securing the impact strength of the steel material.

但し、硫黄(S)の過多添加時、粗大な介在物を増加させ、却って疲労特性が劣化し得る。   However, when sulfur (S) is excessively added, coarse inclusions are increased, and fatigue characteristics may be deteriorated.

また、過多添加された硫黄(S)は、マンガン(Mn)との結合によってMnSなどの非金属介在物を形成し、成形工程中にクラックなどの欠陥を発生させ得る。   Further, excessively added sulfur (S) can form non-metallic inclusions such as MnS by bonding with manganese (Mn), and can generate defects such as cracks during the molding process.

したがって、硫黄(S)は、全体重量の0.035重量%以下にその添加量が制限される。   Therefore, the amount of sulfur (S) added is limited to 0.035% by weight or less of the total weight.

チタン(Ti)
チタン(Ti)は、鋼中の炭素(C)又は窒素(N)との結合によってTiNなどの窒化物の形態で析出される。
Titanium (Ti)
Titanium (Ti) is deposited in the form of a nitride such as TiN by bonding with carbon (C) or nitrogen (N) in the steel.

したがって、チタン(Ti)は、鋼中の窒素(N)との結合によってBN(ボロン窒素化合物)の形成を抑制させる役割をする。   Accordingly, titanium (Ti) plays a role of suppressing the formation of BN (boron nitrogen compound) by bonding with nitrogen (N) in the steel.

このようなチタン(Ti)は、全体重量の0.06重量%以下にその添加量が制限される。   The amount of such titanium (Ti) is limited to 0.06% by weight or less of the total weight.

チタン(Ti)が0.06重量%を超える場合は、多量のTiCが析出されるので、溶接熱影響部(HAZ、Heat Affected Zone)の靭性を低下させるという問題が発生し得る。   When titanium (Ti) exceeds 0.06% by weight, a large amount of TiC is precipitated, which may cause a problem that the toughness of the weld heat affected zone (HAZ) is lowered.

ボロン(B)
ボロン(B)は、連続冷却変態時、オーステナイトのフェライト変態を遅延させることによって、鋼材の焼入性を向上させる役割をする。
Boron (B)
Boron (B) plays the role of improving the hardenability of the steel material by delaying the ferrite transformation of austenite during the continuous cooling transformation.

また、焼入後の強度の安定的な確保効果をさらに増大させる。   In addition, the effect of stably securing the strength after quenching is further increased.

このようなボロン(B)は、全体重量の0.001重量%〜0.005重量%で添加される。   Such boron (B) is added in an amount of 0.001% to 0.005% by weight of the total weight.

ボロン(B)が0.001重量%未満で添加される場合はその効果が不十分であり、その反対に、ボロン(B)が0.005重量%を超える場合は、赤熱脆性(鋼鉄が赤く熱せされたときに砕ける性質)を起こす。   When boron (B) is added at less than 0.001% by weight, the effect is insufficient, and conversely, when boron (B) exceeds 0.005% by weight, red hot brittleness (the steel becomes red) Causes the ability to crumble when heated.

クロム(Cr)
本発明の一実施例において、クロム(Cr)は、素材の硬度増加及び焼入性向上のために全体重量の0.6重量%以下に限定されることが好ましい。
Chrome (Cr)
In one embodiment of the present invention, chromium (Cr) is preferably limited to 0.6% by weight or less of the total weight in order to increase the hardness of the material and improve hardenability.

クロム(Cr)が0.6重量%を超える場合は、素材の結晶粒界に過度なCr炭化物が形成され、素材の強度が急激に低下し得る。   When chromium (Cr) exceeds 0.6% by weight, excessive Cr carbide is formed at the grain boundaries of the material, and the strength of the material can be drastically reduced.

アルミニウム(Al)
アルミニウム(Al)は、チタン(Ti)と同様に、窒素(N)との結合によってAlNなどの窒化物の形態に析出され、鋼中の窒素(N)との結合によってBN(ボロン窒素化合物)の形成を抑制させる役割をする。
Aluminum (Al)
Similar to titanium (Ti), aluminum (Al) is precipitated in the form of a nitride such as AlN by bonding with nitrogen (N), and BN (boron nitrogen compound) by bonding with nitrogen (N) in the steel. It plays a role of suppressing the formation of.

このようなアルミニウム(Al)は、全体重量の0.2重量%以下にその添加量が制限される。   The amount of such aluminum (Al) is limited to 0.2% by weight or less of the total weight.

アルミニウム(Al)が0.2重量%を超える場合は、非金属介在物の生成によって素材の疲労強度が急激に低下し得る。   When aluminum (Al) exceeds 0.2% by weight, the fatigue strength of the material can be drastically reduced due to the formation of non-metallic inclusions.

このような合成成分が提示された含量組成比と、残量の鉄(Fe)と、その他の不可避な不純物とで組成される鋼板が巻かれて鋼管に製造され、既に設定された長さにカッティングされる。   A steel plate composed of the composition ratio, the remaining amount of iron (Fe), and other inevitable impurities, which are presented with such synthetic components, is rolled into a steel pipe, and the length is already set. Cutting.

ここで、既に設定された長さは、一例として、3m〜12mになってよい。   Here, the length that has already been set may be 3 to 12 m as an example.

続いて、熱処理段階(103)は、鋼管製造段階(101)後、鋼管内に発生した応力を除去するために既に設定された温度範囲内で熱処理する段階である。   Subsequently, the heat treatment stage (103) is a stage in which heat treatment is performed within a temperature range that has already been set in order to remove stress generated in the steel pipe after the steel pipe manufacturing stage (101).

このような熱処理段階(103)は、溶接部位の応力集中で強度が不均一になり、鋼管の加工時に屈曲が発生することを防止するために応力を除去する段階である。   Such a heat treatment step (103) is a step of removing the stress in order to prevent the strength from becoming non-uniform due to the stress concentration at the welded portion and bending during the processing of the steel pipe.

ここで、鋼管の応力除去のための熱処理の既に設定された温度範囲は500℃〜700℃として与えられ、炉冷又は空冷処理される。   Here, the preset temperature range of the heat treatment for removing stress from the steel pipe is given as 500 ° C. to 700 ° C., and furnace cooling or air cooling treatment is performed.

続いて、成形段階(105)は、熱処理段階(103)後、鋼管の外周面に既に設定された深さでねじ溝を成形する段階である。   Subsequently, in the forming step (105), after the heat treatment step (103), a thread groove is formed at a depth already set on the outer peripheral surface of the steel pipe.

ここで、ねじ溝が成形される既に設定された深さは0.1mm〜4mmである。   Here, the already set depth at which the thread groove is formed is 0.1 mm to 4 mm.

また、ねじ溝が成形される長さは、一例として、10cm〜600cmになってよく、このような長さに成形される多数のねじ溝が一定の間隔を置いて鋼管の外周面に形成される。   Moreover, the length by which a thread groove is shape | molded may be 10 cm-600 cm as an example, and many thread grooves shape | molded by such length are formed in the outer peripheral surface of a steel pipe at fixed intervals. The

一方、成形段階(105)は、鋼管にホールを形成する段階を含んでよい。   On the other hand, the forming step (105) may include forming a hole in the steel pipe.

このようなホールは、支保材を介して投入されるモルタルが支保材の外部に流出する流出口としての役割をする。   Such a hole serves as an outlet through which the mortar introduced through the support material flows out of the support material.

ここで、鋼管に形成されるホールの直径は、一例として、1cm〜6cmになってよい。   Here, the diameter of the hole formed in the steel pipe may be 1 cm to 6 cm as an example.

そして、このように鋼管の外周面にねじ溝、ホールなどを形成する成形段階(105)が後述する硬化熱処理段階(107)前に実施される理由は、硬化熱処理段階(107)を経た後、鋼管の外周面にねじ溝、ホールなどを形成することが難しいためである。   The reason why the forming step (105) for forming the screw grooves, holes and the like on the outer peripheral surface of the steel pipe is performed before the hardening heat treatment step (107) described later is that after the hardening heat treatment step (107), This is because it is difficult to form a thread groove, a hole, or the like on the outer peripheral surface of the steel pipe.

続いて、硬化熱処理段階(107)は、成形段階(105)後、鋼管を熱処理して硬化する段階である。   Subsequently, the hardening heat treatment step (107) is a step of hardening the steel pipe by heat treatment after the forming step (105).

ここで、硬化熱処理段階(107)は、鋼管を700℃〜1000℃で高周波熱処理して急冷する段階と、急冷した鋼管を150℃〜400℃でテンパリングする段階とを含む。   Here, the hardening heat treatment step (107) includes a step of quenching the steel pipe by high-frequency heat treatment at 700 ° C to 1000 ° C and a step of tempering the rapidly cooled steel pipe at 150 ° C to 400 ° C.

このようにテンパリングする段階を通じて脆弱な鋼管製品に靭性が向上し、機械的性質が安定化される。   Through this tempering stage, the toughness of the fragile steel pipe product is improved and the mechanical properties are stabilized.

一方、高周波熱処理は、高周波誘導加熱の熱源で金属部品の表面を加熱又は冷却して表面を硬化させ、耐磨耗性及び強度を向上させることによって機械的性質を高める。   On the other hand, in the high frequency heat treatment, the surface of the metal part is heated or cooled with a heat source of high frequency induction heating to harden the surface and improve the mechanical properties by improving the wear resistance and strength.

続いて、防錆段階(109)は、硬化熱処理段階(107)後、鋼管の外周面に防錆剤を塗布する段階である。   Subsequently, the rust prevention step (109) is a step of applying a rust preventive agent to the outer peripheral surface of the steel pipe after the hardening heat treatment step (107).

ここで、防錆剤としては、水性防錆剤、又は溶融亜鉛めっき、電気亜鉛めっき、エポキシコーティング、防錆塗料などが用いられる。   Here, as the rust preventive agent, an aqueous rust preventive agent, hot dip galvanizing, electrogalvanizing, epoxy coating, rust preventive paint, or the like is used.

硬化熱処理段階(107)後、上述した防錆段階(109)は、ユーザーの要求によって行われなくてもよく、ユーザーの要求時には、使用環境に応じて上述した方法などが適用される。   After the curing heat treatment step (107), the above-described rust prevention step (109) may not be performed according to the user's request, and at the time of the user's request, the method described above is applied according to the use environment.

一方、本発明の他の実施例によると、上述した段階を含む製造方法によって製造され、モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する支保材201;支保材201と結合され、傾斜面に密着するプレート203;及び支保材201と結合され、プレート203を傾斜面に密着するように固定させる締結部材205;を含む支保材アセンブリを提供することを特徴とする。   Meanwhile, according to another embodiment of the present invention, the supporting material 201 is manufactured by the manufacturing method including the above-described steps and is inserted into the inclined surface formed with the perforations filled with mortar to prevent the inclined surface from collapsing; A support member assembly including: a plate 203 coupled to the support member 201 and closely contacting the inclined surface; and a fastening member 205 coupled to the support member 201 and fixing the plate 203 to contact the inclined surface. And

支保材201は、上述したボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造されるものであって、支保材201の外周面には既に設定された長さ区間にねじ溝401が形成される。   The support material 201 is manufactured by the above-described method for manufacturing an ultra-high-strength steel pipe support material using boron steel, and the outer circumferential surface of the support material 201 has a thread groove 401 in a predetermined length section. It is formed.

プレート203は支保材201と結合されるが、プレート203は傾斜面に密着するようになる。   The plate 203 is coupled to the support material 201, but the plate 203 comes into close contact with the inclined surface.

併せて、穿孔の入口とプレート203との間には密閉部材207が備えられるが、密閉部材207は、プレート203から遠くなる方向に外径が漸次縮小される形状(すなわち、円錐台形状)に提供され、穿孔の入口を堅固に密閉させるようになっている。   In addition, a sealing member 207 is provided between the perforation inlet and the plate 203. The sealing member 207 has a shape in which the outer diameter is gradually reduced in a direction far from the plate 203 (that is, a truncated cone shape). Provided, so that the perforation inlet is tightly sealed.

一方、穿孔内に挿入された支保材201を支持するために、密閉部材207の内側に固定具209が嵌められて備えられるが、固定具209には、壁面の一部が切開され、外側方向に折り曲げられて突出した外側羽根部301と、壁面の一部が切開され、内側方向に折り曲げられて突出した内側羽根部303とが形成されてよい。   On the other hand, in order to support the supporting member 201 inserted into the perforation, a fixing tool 209 is fitted inside the sealing member 207, and a part of the wall surface is incised in the fixing tool 209 so as to extend outwardly. The outer blade portion 301 that is bent and protruded, and the inner blade portion 303 that is partially bent and protruded in the inner direction may be formed.

このような固定具209は、穿孔内で支保材201が位置・固定されて支持されるようにするが、外側羽根部301は穿孔の壁面を支持するようになり、内側羽根部303は支保材201の外周面を支持するようになる。   Such a fixture 209 allows the support material 201 to be positioned and fixed within the perforation, while the outer blade 301 supports the wall surface of the drill, and the inner blade 303 is the support. The outer peripheral surface of 201 is supported.

一方、本発明の更に他の実施例によると、上述した段階を含む製造方法によって製造され、モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する支保材201を含み、支保材201の端部又は支保材201と穿孔の入口との間にコーキング処理されることを特徴とする支保材アセンブリを提供する。   Meanwhile, according to another embodiment of the present invention, the support material 201 is manufactured by the manufacturing method including the above-described steps and is inserted into the inclined surface formed with the perforations filled with the mortar to prevent the inclined surface from collapsing. The support material assembly is characterized in that it is coked between the end of the support material 201 or between the support material 201 and the perforation inlet.

支保材201は、上述したボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造されるものであって、支保材201の外周面には既に設定された長さ区間にねじ溝401が形成される。   The support material 201 is manufactured by the above-described method for manufacturing an ultra-high-strength steel pipe support material using boron steel, and the outer circumferential surface of the support material 201 has a thread groove 401 in a predetermined length section. It is formed.

このような支保材201は、岩盤又は斜面に形成された穿孔の内部に挿入され、外部から注入されるモルタルを穿孔の内部に注入させる役割をする。   Such a support material 201 is inserted into the borehole formed in the rock or slope, and serves to inject mortar injected from the outside into the borehole.

一方、支保材201を介した穿孔の内部へのモルタルの注入が完了した後、穿孔の内部に注入されたモルタルが外部に流出することを防止するために、支保材201の端部又は支保材201と穿孔の入口との間にコーキング処理が行われてよい。ここで、コーキングは隙間を埋める作業であって、このときに充填材やコーキング材が用いられてよい。   On the other hand, in order to prevent the mortar injected into the inside of the perforation from flowing out after completion of the injection of the mortar into the inside of the perforation through the support material 201, the end of the support material 201 or the support material A coking process may be performed between 201 and the entrance of the perforation. Here, the caulking is an operation for filling a gap, and at this time, a filler or a caulking material may be used.

また、上述したコーキング処理のために、支保材201と穿孔の入口との間に密閉部材207が備えられるが、密閉部材207は、一例として、ラバーなどの弾性材質で形成されてよく、密閉部材207は、穿孔の入口側から反対方向に行くほど直径が漸次減少する形状からなってよい。   Further, for the above-described caulking process, a sealing member 207 is provided between the support material 201 and the perforation inlet, but the sealing member 207 may be formed of an elastic material such as rubber as an example. 207 may have a shape in which the diameter gradually decreases in the opposite direction from the entrance side of the perforation.

また、密閉部材207には、支保材201が穿孔の内部に挿入できるように支保材201が貫通する貫通ホール211が形成される。   Further, the sealing member 207 is formed with a through hole 211 through which the support material 201 passes so that the support material 201 can be inserted into the perforation.

このような密閉部材207は、穿孔の内部に注入されたモルタルが外部に漏れることを防止する機能を行う。   Such a sealing member 207 performs a function of preventing the mortar injected into the perforation from leaking to the outside.

一方、支保材201の下部には、モルタルの逆流を防止する逆流防止キャップ501が嵌め合わされてよい。   On the other hand, a backflow prevention cap 501 that prevents backflow of mortar may be fitted to the lower portion of the support material 201.

このような逆流防止キャップ501の一例をより具体的に説明すると、逆流防止キャップ501は支保材201の下部に挿入され、モルタル注入器(図示せず)が挿入される貫通ホール503が形成された胴体部505;及び胴体部505の上側面に設置され、貫通ホール503を開閉し、注入されたモルタルの逆流を防止する開閉部507;を含む。   An example of the backflow prevention cap 501 will be described more specifically. The backflow prevention cap 501 is inserted into the lower portion of the support material 201, and a through hole 503 into which a mortar injector (not shown) is inserted is formed. A body portion 505; and an opening / closing portion 507, which is installed on the upper surface of the body portion 505, opens and closes the through-hole 503, and prevents backflow of the injected mortar.

胴体部505は、支保材201の下部に挿入されて結合されるが、胴体部505は、外周面の直径が下側から上側に行くほど漸次減少するように形成され、胴体部505の外周面の下端が支保材201の内周面に密着・結合されるようになっている。   The body part 505 is inserted and coupled to the lower part of the support member 201. The body part 505 is formed so that the diameter of the outer peripheral surface gradually decreases from the lower side to the upper side, and the outer peripheral surface of the body part 505 is formed. The lower end of the support member 201 is in close contact with and coupled to the inner peripheral surface of the support material 201.

また、胴体部505の上部面にはモルタル注入器(図示せず)が挿入される貫通ホール503が形成される。   A through hole 503 into which a mortar injector (not shown) is inserted is formed on the upper surface of the body portion 505.

開閉部507は、胴体部505の上側面に設置されて貫通ホール503を開閉し、図面には示していないが、開閉部507は胴体部505の上側面に連結部で連結されており、貫通ホール503の開放時にも胴体部505から開閉部507が完全に離脱しないようになっている。   The opening / closing part 507 is installed on the upper side surface of the body part 505 to open and close the through hole 503. Although not shown in the drawing, the opening / closing part 507 is connected to the upper side surface of the body part 505 with a connecting part. Even when the hole 503 is opened, the opening / closing part 507 is not completely detached from the body part 505.

このような開閉部507は、モルタル注入器が貫通ホール503を介して挿入されるときは貫通ホール503を開放し、その後、モルタル注入器が貫通ホール503を抜け出ると、注入されたモルタルの下方向圧力によって貫通ホール503を閉鎖することによって、注入されたモルタルの逆流を防止するようになる。   Such an opening / closing part 507 opens the through hole 503 when the mortar injector is inserted through the through hole 503, and then, when the mortar injector exits the through hole 503, the downward direction of the injected mortar By closing the through hole 503 by pressure, the injected mortar is prevented from flowing backward.

以上説明したように、本発明の実施例によると、岩盤、傾斜面などの崩壊防止のために設置される支保材が、ボロンが添加された鋼板で鋼管成形によって製造されることによって、大きな荷重にも耐えることができ、破損可能性を著しく低下できるという効果がある。   As described above, according to the embodiment of the present invention, the support material installed for preventing the collapse of the rock mass, the inclined surface, etc. is manufactured by steel pipe forming with a steel plate to which boron is added, so that a large load is applied. It is possible to withstand, and the effect that the possibility of breakage can be significantly reduced is obtained.

また、支保材が中空構造で形成されることによって重さが減少し、製作及び生産費用を節減することができ、岩盤又は斜面などに形成された穿孔の内部で支保材が外部に離脱することを防止できるという効果がある。   In addition, since the support material is formed in a hollow structure, the weight can be reduced, manufacturing and production costs can be reduced, and the support material can be released to the outside inside the perforations formed in the rock or slope. There is an effect that can be prevented.

また、支保材を介してモルタルが穿孔の内部に注入されるので、施工性を向上できるという効果がある。   Further, since the mortar is injected into the perforations through the support material, there is an effect that the workability can be improved.

以上、本発明の好適な実施例が例示のために説明されているが、これに制限されることなく、特許請求の範囲、発明の詳細な説明及び添付の図面の範囲内で多様に変形して実施することも可能である。   The preferred embodiments of the present invention have been described above for the purpose of illustration, but the present invention is not limited thereto, and various modifications may be made within the scope of the claims, the detailed description of the invention, and the accompanying drawings. It is also possible to implement.

101 鋼管製造段階
103 熱処理段階
105 成形段階
107 硬化熱処理段階
109 防錆段階
201 支保材
203 プレート
205 締結部材
207 密閉部材
209 固定具
211 貫通ホール
301 外側羽根部
303 内側羽根部
401 ねじ溝
501 逆流防止キャップ
503 貫通ホール
505 胴体部
507 開閉部
DESCRIPTION OF SYMBOLS 101 Steel pipe manufacturing stage 103 Heat treatment stage 105 Molding stage 107 Hardening heat treatment stage 109 Rust prevention stage 201 Support material 203 Plate 205 Fastening member 207 Sealing member 209 Fixing tool 211 Through hole 301 Outer blade part 303 Inner blade part 401 Screw groove 501 Backflow prevention cap 503 Through hole 505 Body part 507 Opening / closing part

Claims (9)

ボロンが添加された鋼板を巻いて製造された鋼管を既に設定された長さにカッティングする鋼管製造段階と;
前記鋼管製造段階後、前記鋼管内に発生した応力を除去するために既に設定された温度範囲内で熱処理する熱処理段階と;
前記熱処理段階後、前記鋼管の外周面に既に設定された深さでねじ溝を成形する成形段階と;
前記成形段階後、前記鋼管を熱処理して硬化する硬化熱処理段階と;
前記硬化熱処理段階後、前記鋼管の外周面に防錆剤を塗布する防錆段階とを含む
ことを特徴とするボロン鋼を用いた超高強度鋼管支保材の製造方法。
A steel pipe manufacturing stage in which a steel pipe manufactured by winding a steel sheet to which boron is added is cut to a predetermined length;
A heat treatment step in which heat treatment is performed within a temperature range that has already been set in order to remove stress generated in the steel pipe after the steel pipe manufacturing step;
After the heat treatment step, forming a thread groove at a depth already set on the outer peripheral surface of the steel pipe;
A hardening heat treatment step of hardening the steel pipe by heat treatment after the forming step;
The manufacturing method of the super high strength steel pipe support material using the boron steel characterized by including the rust prevention stage which apply | coats a rust preventive agent to the outer peripheral surface of the said steel pipe after the said hardening heat treatment stage.
前記ボロンが添加された鋼板は、
重量%として、炭素(C):0.10%〜0.39%、シリコーン(Si):0.10%〜0.40%、マンガン(Mn):0.70%〜1.50%、リン(P):0.035%以下、硫黄(S):0.035%以下、チタン(Ti):0.06%以下、ボロン(B):0.001%〜0.005%、クロム(Cr):0.6%以下、アルミニウム(Al):0.2%以下、残量の鉄(Fe)、及びその他の不可避な不純物からなる
請求項1に記載のボロン鋼を用いた超高強度鋼管支保材の製造方法。
The steel sheet to which boron is added is
As weight%, carbon (C): 0.10% to 0.39%, silicone (Si): 0.10% to 0.40%, manganese (Mn): 0.70% to 1.50%, phosphorus (P): 0.035% or less, sulfur (S): 0.035% or less, titanium (Ti): 0.06% or less, boron (B): 0.001% to 0.005%, chromium (Cr ): 0.6% or less, aluminum (Al): 0.2% or less, remaining amount of iron (Fe), and other inevitable impurities, ultra high strength steel pipe using the boron steel according to claim 1 Production method of support material.
前記熱処理段階では、
前記鋼管が前記既に設定された温度範囲である500℃〜700℃で炉冷又は空冷処理される
請求項1に記載のボロン鋼を用いた超高強度鋼管支保材の製造方法。
In the heat treatment step,
The manufacturing method of the ultra-high-strength steel pipe support material using the boron steel of Claim 1. The said steel pipe is furnace-cooled or air-cooled at the said preset temperature range of 500 to 700 degreeC.
前記成形段階は、
前記鋼管の外周面に前記既に設定された深さである0.1mm〜4mmでねじ溝が成形される
請求項1に記載のボロン鋼を用いた超高強度鋼管支保材の製造方法。
The molding step includes
The manufacturing method of the super-high-strength steel pipe support material using the boron steel of Claim 1 by which a thread groove is shape | molded by 0.1 mm-4 mm which is the said preset depth on the outer peripheral surface of the said steel pipe.
前記硬化熱処理段階では、
前記鋼管が700℃〜1000℃で高周波熱処理されて急冷される
請求項1に記載のボロン鋼を用いた超高強度鋼管支保材の製造方法。
In the curing heat treatment stage,
The manufacturing method of the ultra-high-strength steel pipe support material using the boron steel of Claim 1. The said steel pipe is rapidly heat-cooled by 700 degreeC-1000 degreeC.
前記高周波熱処理が実施されて急冷された前記鋼管が150℃〜400℃でテンパリングされる
請求項5に記載のボロン鋼を用いた超高強度鋼管支保材の製造方法。
The manufacturing method of the ultra-high-strength steel pipe support material using the boron steel according to claim 5, wherein the steel pipe that has been quenched by the induction heat treatment is tempered at 150 ° C. to 400 ° C. 6.
モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する請求項1から6のいずれか1項のボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造された支保材と;
前記支保材と結合され、前記傾斜面に密着するプレートと;
前記支保材と結合され、前記プレートを前記傾斜面に密着するように固定させる締結部材とを含む
ことを特徴とする支保材アセンブリ。
It is inserted into an inclined surface formed with a perforation filled with mortar, and is produced by the method for producing an ultrahigh strength steel pipe support material using boron steel according to any one of claims 1 to 6, wherein the inclined surface is prevented from collapsing. Supported support materials;
A plate coupled to the support material and in close contact with the inclined surface;
A support member assembly, comprising: a fastening member coupled to the support member and fixing the plate so as to be in close contact with the inclined surface.
モルタルが充填される穿孔が形成された傾斜面に挿入され、傾斜面の崩壊を防止する請求項1ないし6のいずれかに記載のボロン鋼を用いた超高強度鋼管支保材の製造方法によって製造された支保材を含み、
前記支保材の端部又は前記支保材と前記穿孔の入口との間にコーキング処理される
ことを特徴とする支保材アセンブリ。
It is inserted in the inclined surface in which the perforation filled with mortar was formed, and it manufactures with the manufacturing method of the ultra high strength steel pipe support material using the boron steel in any one of Claim 1 thru | or 6 which prevents collapse of an inclined surface. Including supported support materials,
A support material assembly, wherein the support material assembly is caulked between an end portion of the support material or between the support material and an entrance of the perforation.
前記支保材の下部に挿入され、モルタル注入器が挿入される貫通ホールが形成された胴体部と、
前記胴体部の上側面に設置され、前記貫通ホールを開閉し、注入されたモルタルの逆流を防止する開閉部とを含む逆流防止キャップを含む
請求項8に記載の支保材アセンブリ。
A body part that is inserted into the lower part of the support material and has a through-hole into which a mortar injector is inserted; and
The support material assembly according to claim 8, further comprising a backflow prevention cap that is installed on an upper surface of the body portion and includes an opening / closing portion that opens and closes the through hole and prevents backflow of the injected mortar.
JP2017535920A 2015-12-30 2016-11-30 Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel Pending JP2018509523A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150189290A KR101666646B1 (en) 2015-12-30 2015-12-30 Ultra high strength steel pipe support manufacturing method using a boron steel and Ultra high sterngth steel pipe support assembly
KR10-2015-0189290 2015-12-30
PCT/KR2016/013922 WO2017116017A1 (en) 2015-12-30 2016-11-30 Method for manufacturing ultra-high strength steel pipe support using boron steel, and support assembly

Publications (1)

Publication Number Publication Date
JP2018509523A true JP2018509523A (en) 2018-04-05

Family

ID=57157319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017535920A Pending JP2018509523A (en) 2015-12-30 2016-11-30 Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel

Country Status (4)

Country Link
JP (1) JP2018509523A (en)
KR (1) KR101666646B1 (en)
CN (1) CN107148502A (en)
WO (1) WO2017116017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163538A (en) * 2018-02-28 2019-09-26 Jfeスチール株式会社 Mechanical screw and manufacturing method therefor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221200U (en) * 1985-07-23 1987-02-07
JPH07316744A (en) * 1994-05-23 1995-12-05 Nippon Steel Corp Martensitic stainless steel wire rod excellent in cold workability and its production
JPH10196627A (en) * 1997-01-14 1998-07-31 Toa Steel Co Ltd Screw without head crack and its manufacture
JP2000045043A (en) * 1998-07-29 2000-02-15 Nippon Steel Corp H shape steel for tunnel support having 440n square mm and more in cross-sectional average and good in bending workability
JP2002038477A (en) * 2000-07-23 2002-02-06 Okabe Co Ltd Stabilizing method for slope face
JP2003074068A (en) * 2001-08-30 2003-03-12 Okabe Co Ltd Slope stabilizing method
JP2005200893A (en) * 2004-01-14 2005-07-28 Nisshin Steel Co Ltd Steel pipe expansion type rock bolt with high bearing capacity and its manufacturing method
JP2005214301A (en) * 2004-01-29 2005-08-11 Nsk Ltd Ball screw
JP2006274373A (en) * 2005-03-30 2006-10-12 Jfe Bars & Shapes Corp Steel for high strength screw having excellent toughness and cold workability and method for producing high strength screw
JP2009041335A (en) * 2007-08-10 2009-02-26 Japan Found Eng Co Ltd Repair method for existing lining object
JP2012224900A (en) * 2011-04-19 2012-11-15 Jfe Steel Corp Super high strength electric resistance welded steel pipe for hollow member excellent in workability and low temperature toughness, and method for manufacturing the same
KR20150103862A (en) * 2014-03-04 2015-09-14 (주)서동 Rock bolt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540396B1 (en) * 2005-04-04 2006-01-10 지에스건설 주식회사 Self drilled soil nail
KR101258766B1 (en) * 2011-03-08 2013-04-29 현대하이스코 주식회사 METHOD OFMAUFACTURING DOOR BEAM WITH A FUNCTION 1800MPa TENSILE STRENGTH
CN102345048A (en) * 2011-06-28 2012-02-08 南阳汉冶特钢有限公司 Large-thickness boron steel SS400-B plate and production method thereof
KR101400578B1 (en) * 2012-09-27 2014-05-28 현대제철 주식회사 Shape steel and method of manufacturing the same
KR101505260B1 (en) * 2013-01-31 2015-03-24 현대제철 주식회사 Hot rolled steel sheet for steel pipe and method of manufacturing the steel pope
KR20150077660A (en) * 2013-12-30 2015-07-08 현대다이모스(주) Using the gear manufacturing method of high frequency heat material

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221200U (en) * 1985-07-23 1987-02-07
JPH07316744A (en) * 1994-05-23 1995-12-05 Nippon Steel Corp Martensitic stainless steel wire rod excellent in cold workability and its production
JPH10196627A (en) * 1997-01-14 1998-07-31 Toa Steel Co Ltd Screw without head crack and its manufacture
JP2000045043A (en) * 1998-07-29 2000-02-15 Nippon Steel Corp H shape steel for tunnel support having 440n square mm and more in cross-sectional average and good in bending workability
JP2002038477A (en) * 2000-07-23 2002-02-06 Okabe Co Ltd Stabilizing method for slope face
JP2003074068A (en) * 2001-08-30 2003-03-12 Okabe Co Ltd Slope stabilizing method
JP2005200893A (en) * 2004-01-14 2005-07-28 Nisshin Steel Co Ltd Steel pipe expansion type rock bolt with high bearing capacity and its manufacturing method
JP2005214301A (en) * 2004-01-29 2005-08-11 Nsk Ltd Ball screw
JP2006274373A (en) * 2005-03-30 2006-10-12 Jfe Bars & Shapes Corp Steel for high strength screw having excellent toughness and cold workability and method for producing high strength screw
JP2009041335A (en) * 2007-08-10 2009-02-26 Japan Found Eng Co Ltd Repair method for existing lining object
JP2012224900A (en) * 2011-04-19 2012-11-15 Jfe Steel Corp Super high strength electric resistance welded steel pipe for hollow member excellent in workability and low temperature toughness, and method for manufacturing the same
KR20150103862A (en) * 2014-03-04 2015-09-14 (주)서동 Rock bolt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163538A (en) * 2018-02-28 2019-09-26 Jfeスチール株式会社 Mechanical screw and manufacturing method therefor

Also Published As

Publication number Publication date
WO2017116017A1 (en) 2017-07-06
KR101666646B1 (en) 2016-10-14
CN107148502A (en) 2017-09-08

Similar Documents

Publication Publication Date Title
KR101062087B1 (en) Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
WO2008138642A1 (en) Use of a steel alloy for well pipes for perforation of borehole casings, and well pipe
KR102627470B1 (en) Construction equipment bucket parts and methods of manufacturing the same
JP2009001910A (en) High-hardness, high-toughness steel
US20210189536A1 (en) Npr non-magnetic steel material for rock bolt and production method thereof
KR102021002B1 (en) Bainitic steel for rock drilling component
JP2018509523A (en) Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel
US11384415B2 (en) Steel alloy with high energy absorption capacity and tubular steel product
JP6847899B2 (en) Ring-shaped tip hardware
CN106869137A (en) One kind mixing steel reinforcement cage and foundation pit supporting pile
CN111396088A (en) Constraint pile, integral structure for controlling deformation of tunnel bottom and construction method
KR100540396B1 (en) Self drilled soil nail
KR20210142164A (en) Ribs for digging buckets
EP3158099B1 (en) Expandable high-strength steel material and expanded high-strength steel pipe having superior expandability and collapse resistance, and methods for manufacturing thereof
CN108842800A (en) A kind of drilling backfill The End-bearing Piles Foundation and its construction method
US20180245468A1 (en) Cable bolts
KR101463313B1 (en) stainless steel pipe with excellent abrasion resistance and manufacturing method thereof
KR100798219B1 (en) Sewage pipe joint repair reinforcement method
TWI384107B (en) Steel pipe pile
JP6263598B2 (en) Retaining method of retaining wall
JP2009197472A (en) Steel pipe pile and foundation structure
JP3912334B2 (en) Oil well pipe for buried pipe expansion
CN203924051U (en) Overlength cement earth pile Shaped Steel separate type anchor ear joint design
US20220412406A1 (en) Hammer bushings with hardened inner region
KR200394180Y1 (en) metal tubing picket with reinforced tip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190212