JP2018207684A - 平滑コンデンサの放電方法及び放電装置 - Google Patents

平滑コンデンサの放電方法及び放電装置 Download PDF

Info

Publication number
JP2018207684A
JP2018207684A JP2017111145A JP2017111145A JP2018207684A JP 2018207684 A JP2018207684 A JP 2018207684A JP 2017111145 A JP2017111145 A JP 2017111145A JP 2017111145 A JP2017111145 A JP 2017111145A JP 2018207684 A JP2018207684 A JP 2018207684A
Authority
JP
Japan
Prior art keywords
smoothing capacitor
discharge
voltage
change rate
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017111145A
Other languages
English (en)
Inventor
広之 山井
Hiroyuki Yamai
広之 山井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017111145A priority Critical patent/JP2018207684A/ja
Publication of JP2018207684A publication Critical patent/JP2018207684A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】放電抵抗を大とすることなく、平滑コンデンサを短時間で放電可能な平滑コンデンサの放電装置を実現する。
【解決手段】放電回路15が、コンタクタ16の正常異常を問わず、平滑コンデンサ12の両端電圧の電圧時間変化率が所定値未満か否かを判断する。平滑コンデンサ12の両端電圧の電圧時間変化率が所定値以下の場合は、第1のレベルの放電電流指令で放電抵抗20に放電し、平滑コンデンサ12の両端電圧の電圧時間変化率が所定値を超えた場合は、第1のレベルの放電電流指令より大の第2のレベルの放電電流指令で放電抵抗20に放電する。
【選択図】図2

Description

この発明は、電力変換装置における平滑コンデンサの放電方法および放電装置に関する。
電圧形インバータ(インバータと略称する)は、直流電圧を交流電圧に変換する電力変換装置であり、広く、交流モータの可変速駆動用途に使われている。近年、環境意識の高まりを背景に市場規模を拡大するハイブリッド電気自動車や電気自動車の中核部品のひとつでもある。
これら自動車用途では、特に、何らかの不具合により起こる危険から搭乗者を守るため、各種異常の検出手段を設け、異常検出結果に応じて、安全な動作状態にシステムを遷移させている。
また、インバータに供給される直流電圧が60Vを超える場合には、スイッチング動作に伴う電圧リプルを除去するためにインバータに並列接続された平滑コンデンサの電荷を所定時間内に放電するための電力消費手段が設けられている。
自動車のイグニッションをオフにする事で車両を停止状態にした場合や、事故などによりシステムが必要と判断した場合に、電力消費手段を動作させ、平滑コンデンサの放電を行い、その電圧が人身の感電がないレベル(60V未満)にし、安全を確保している。
なお、電力消費手段としては、最低2手段の採用(冗長性)が求められ、放電に係る時間は、例えば、第1の手段では5s以内、第2の手段では5分以内に60V未満にする必要がある。
こうした技術は、例えば、特許文献1や特許文献2などに記載されている。
実開昭63−29391号公報 特許第4418318号公報
特許文献1には、平滑コンデンサの電荷を所定時間内に放電するための電力消費手段として、放電抵抗並びに、スイッチ素子を直列に接続した回路を平滑コンデンサに並列接続する回路(放電回路)が例示され、何らかの制御が実施される事が記載されている。
しかしながら、特許文献1には、制御の詳細については記載がない。
一方、特許文献2には、例えば、特許文献1に例示された放電回路を制御する方法が詳細に示されている。この方法によれば、平滑コンデンサの電圧を検出し、車両のイグニッションをオフとすることにより、直流バッテリとインバータとの間に直列接続されたコンタクタの開放指令が与えられた時を基点に、所定時間毎に検出した平滑コンデンサの電圧値変化を算出し、その結果と所定の閾値とを比較判定して、コンデンサ放電が正常に行われているか否かを判定している。
これにより、例えば、コンタクタが故障して、指令に反し、閉路を形成している場合は、異常と判定することができ、その場合は平滑コンデンサの放電動作を停止することで、放電抵抗の不具合発生(過熱による焼損など)を未然に防ぐことが出来る。
しかし、特許文献2に記載された方法では、平滑コンデンサの電圧変化を演算し、閾値と比較するような複雑な処理が必要で、正常か異常かの診断確定には所定の時間が必要である。
また、上位コントローラがコンタクタの異常判断を行うために、その期間の放電継続が要求される場合がある。これは、診断時間はシステム的に決められるため、ユニット単位の診断時間よりも長くなる場合があるからである。
そして、正常か異常かの診断結果を確定させるまでに消費される電力を加味して、放電抵抗の定格電力を設定すると、放電抵抗の体格が大きくなり、延いては、インバータのコストアップや実装のためのサイズが大きくなるなどの課題があった。
本発明の目的は、放電抵抗を大とすることなく、平滑コンデンサを短時間で放電可能な平滑コンデンサの放電方法及び放電装置を実現することであり、放電抵抗などの電力消費体を流れる電流を所定値に制御し、簡易な方法で、コンタクタの正常・異常を問わず、その開放を判定し、放電を適切に行うものである。
上記目的を達成するため、本発明は、次のように構成される。
平滑コンデンサの放電方法において、平滑コンデンサの電圧時間変化率を検出し、検出した上記電圧時間変化率が、一定の電圧時間変化率以下のときは、上記平滑コンデンサから電力消費体に流れる電流を第1のレベルの放電電流値に設定し、検出した上記電圧時間変化率が、一定の電圧時間変化率を越えたときは、上記平滑コンデンサから上記電力消費体に流れる電流を、上記第1のレベルの放電電流値より大の第2のレベルの放電電流値に設定し、上記電力消費体に流れる電流が、設定された上記第1のレベルの放電電流値又は上記第2のレベルの放電電流値となるように制御する。
平滑コンデンサの放電装置において、平滑コンデンサの電圧時間変化率を検出する電圧時間変化率検出回路と、上記電圧時間変化率検出回路が検出した上記電圧時間変化率が、一定の電圧時間変化率以下のときは、上記平滑コンデンサから電力消費体に流れる電流を第1のレベルの放電電流値に設定し、検出した上記電圧時間変化率が、一定の電圧時間変化率を越えたときは、上記平滑コンデンサから上記電力消費体に流れる電流を、上記第1の放電電流値より大の第2のレベルの放電電流値に設定する放電電流指令部と、上記電力消費体に流れる電流が、設定された上記第1のレベルの放電電流値又は上記第2のレベルの放電電流値となるように制御する放電電流制御部と、を備える。
放電抵抗を大とすることなく、平滑コンデンサを短時間で放電可能な平滑コンデンサの放電方法及び放電装置を実現できる。
本発明の平滑コンデンサの放電装置が適用されるインバータを用いたモータ駆動システムの一例の構成図である。 本発明の実施例1に係る平滑コンデンサの放電装置の回路図である。 本発明の実施例1による放電回路の放電動作時の電圧変化を示す図である。 本発明の実施例1による放電回路の放電動作時の電流変化を示す図である。 本発明の実施例2の要部であり、過温度保護回路と放電停止回路とを示す図である。
以下、本発明の平滑コンデンサの放電方法及び放電装置の実施例について、添付図面を参照して詳細に説明する。
(実施例1)
図1は、本発明の実施例1による平滑コンデンサの放電装置(放電回路)が適用されるインバータ(電力変換装置)を用いたモータ駆動システムの一例の構成図である。
図1において、自動車用途の可変速駆動系は、高圧バッテリ1と、複数のトランジスタ(Tu、Tv、Tw)及び複数のダイオード(Du、Dv、Dw)を有するインバータ2と、交流モータ3と、直流入力電圧検出器4と、交流出力電流検出器5、6及び7と、回転角検出器8と、制御回路9と、ゲート駆動回路10と、制御やゲート駆動に必要な電源11とを備えている。
インバータ2には、平滑コンデンサ(C0)12と、直列接続されたコンデンサ(C1)13及びコンデンサ(C2)14とが並列に接続されている。それぞれのコンデンサ容量は、例えば、平滑コンデンサ12は800uFと大きく、コンデンサ13と14は、それぞれ0.1uFと小さい。
インバータ2には、平滑コンデンサ12に並列に接続された放電回路15が備えられている。
図1に示すように、低圧バッテリ17から供給される例えば12Vを入力としたスイッチング電源11から動作電圧が制御回路9に与えられ、制御回路9がゲート駆動回路10を介してゲート駆動制御することにより、インバータ2は、図示しない上位コントローラの指令に基づき、その出力電流が所定になるように制御され、モータ3が電動もしくは、発電の動作をする。
また、高圧バッテリ1の直流バス(+)及び直流バス(−)に直列に接続されているコンタクタ16は、図示しない例えば、高圧バッテリーコントローラにより、開閉が行われ、車両の運転中は高圧バッテリ1とインバータ2と間の閉路を構成する。モータ3が電動の動作では、バッテリ1からインバータ2に電流が流れ、モータ3が発電の動作では、インバータ2からバッテリ1に向かい、電流が流れる。
図2は、本発明の実施例1に係る、平滑コンデンサの放電装置の回路図である。
図2において、平滑コンデンサ12に接続された直流バス(+)及び(−)に、放電回路(放電装置)15並びに、それを駆動する電源回路30が接続されている。電源回路30は、平滑コンデンサ12に蓄積された電力を電源とする。
放電回路15は、電力消費体としての放電抵抗20と、平滑コンデンサ12から放電抵抗20に流れる電流を一定に制御するためのスイッチ素子21と、電流検出抵抗25と、ローパスフィルタ回路23と、電流検出抵抗25を介して得られる、放電抵抗20を流れる電流に比例したローパスフィルタ回路23通過後の電圧、及び、放電回路15の電源電圧を分圧抵抗により、所定電流に対応し設定した電圧を入力として、スイッチ素子21をオンオフ制御するためのヒステリシスコンパレータ回路22とを備える。
ローパスフィルタ回路23においては、抵抗23−1の一方端とコンデンサ23−2の一方端とが接続されてコンパレータ22−1の負入力端に接続され、抵抗23−1の他方端がOPアンプ23−3の出力端に接続され、コンデンサ23−2の他方端がGNDに接続され、OPアンプ23−3の出力端には抵抗23−4の一方端が接続され、抵抗23−4の他方端と抵抗23−5の一方端とが接続された直列抵抗回路の2抵抗の接続点は、OPアンプ23−3の負入力端に接続され、抵抗23−5の他方端はGNDに接続される。
スイッチ素子21においては、FET21−1のゲート端子に抵抗21−2の一方端が接続され、FET21−1のドレインは放電抵抗20の一方端に接続され、FET21−1のソースは電流検出抵抗25の一方端に接続されると共にOPアンプ23−3の正入力端に接続される。また、スイッチ素子21においては、放電抵抗20の他端は、直流バス(+)に接続される。FET21−1のソースに一方端は接続された電流検出抵抗25の他方端は直流バス(−)に接続される。
ヒステリシスコンパレータ回路22において、コンパレータ22−1の出力端とヒステリシス幅設定抵抗22−2の一方端及びヒステリシス幅設定抵抗22−3の一方端が接続され、抵抗22−2の他方端はコンパレータ22−1の正入力端に接続され、抵抗22−3の他方端は放電回路15の正電源に接続されている。
ローパスフィルタ回路23は、その周波数特性を決定するコンデンサ23−2と抵抗23−1に加えて、抵抗23−4と抵抗23−5により、所定ゲインを設定できるOPアンプ23−3を備えており、放電抵抗20を流れる電流の検出感度を設定できる。
上記所定電流に対応し設定した電圧を出力する電流指令設定回路24の出力電圧は、互いに直列接続された抵抗24−1と抵抗24−2との分圧比で決まるレベルと、抵抗24−1と抵抗24−3の分圧比で決まるレベルと、電流指令切替回路26のコンパレータ26−1の出力状態とにより選択される。抵抗24−3の一方端は抵抗24−1と抵抗24−2との接続点に接続されている。
電流指令設定回路24の出力電圧は、コンパレータ22−1の正入力端に供給される。
オープンコレクタ出力であるコンパレータ26−1は、コンパレータ26−1の出力がOFF(出力端−GND間がハイインピーダンス)の場合、抵抗24−1と抵抗24−2で決まる電流指令値がヒステリシスコンパレータ回路22に供給され、コンパレータ26−1の出力がON(出力端−GND間がローインピーダンス)の場合、抵抗24−1と抵抗24−3で決まる電流指令値がヒステリシスコンパレータ回路22に供給される。
ここで、抵抗24−3は抵抗24−2に比べて、十分小さく設定している。
電流指令切替回路26のコンパレータ26−1の負入力端には、平滑コンデンサ12の電圧時間変化率を検出する電圧時間変化率検出回路27におけるコンデンサ27−2と接続された抵抗27−4により構成された不完全微分回路が接続されている。コンパレータ26−1の負入力端には、一方端が放電回路15の正電源に接続された抵抗27−3の他方端も接続され、抵抗27−3および抵抗27−4は、コンパレータ26−1の負入力端の入力レベルをバイアスし、単電源動作のコンパレータ26−1で、上記微分回路出力が減少する場合においても、判定可能とする目的で接続されている。
コンパレータ26−1の正入力端は、上記微分回路により検知される電圧の時間変化率に基づき、電流設定回路24の電流指令値を切替えるための予定値を設定する。それは、コンパレータ26−1の正入力端に接続された抵抗26−2と26−3との分圧比により設定できる。
電圧時間変化率検出回路27のコンデンサ27−2と接続された抵抗27−3により構成された不完全微分回路の残る一方には、平滑コンデンサ12の両端電圧を分圧した信号を入力とするゲイン1のOPアンプ27−1の出力端が接続されているため、上記電圧の時間変化率は、平滑コンデンサ12の両端電圧の時間変化率を示す。
OPアンプ27−1の正入力端には、平滑コンデンサ12の両端電圧を分圧する抵抗27−6と抵抗27−5との接続点が接続されている。OPアンプ27−1の負入力端はOPアンプ27−1の出力端に接続されている。
電源回路30は、電流を制限するための抵抗30−1と、それに直列に接続され、所定の略一定電圧を得るためのツェナダイオード30−2と、それに並列接続されたリプル除去用のコンデンサ30−3とを備えている。
電流指令設定回路24と電流指令切替回路26とにより、放電電流指令部が構成される。
また、スイッチ素子21と、ヒステリシスコンパレータ回路22と、ローパスフィルタ回路23とにより、電力消費体である放電抵抗20に流れる電流が、設定された第1のレベルの放電電流値又は第2のレベルの放電電流値となるように制御する放電電流制御部が構成される。
図3は、本発明の実施例1による放電回路15の放電動作時の電圧変化を示す図であり、図4は、本発明の実施例1による放電回路15の放電動作時の電流変化を示す図である。図3及び図4は、直流バス(+)、(−)の両端電圧並びに、放電抵抗20に流れる電流をSPICE(シミュレーションプログラム)により、シミュレーションした結果を示している。図3及び図4に示した結果は、平滑コンデンサ12の容量C0は800uF、放電抵抗20は800Ω、電流検出抵抗25は0.2Ω、電流検出信号を得るローパスフィルタ回路23のOPアンプ23−3のゲインは36とした。
ヒステリシスコンパレータ回路22にて比較する電圧基準(電流指令)は電圧の時間変化率が所定値より低い場合は130mV(18mA)、そうでない場合は2315mV(320mA)とそれぞれ設定した。
上記電圧の時間変化率の所定値は、18mAの放電による平滑コンデンサ12の電圧の時間変化率以下に設定した。実施例1においては、上記電圧の時間変化率の所定値を18mAの放電による平滑コンデンサ12の電圧の時間変化率とし、例えば、22.5V/secと設定する。そして、平滑コンデンサ12の電圧の時間変化率が22.5V/sec以下であれば、平滑コンデンサ12を18mA(設定された第1のレベルの放電電流値)で放電し、平滑コンデンサ12の電圧の時間変化率が22.5V/secを超えたとき、平滑コンデンサ12を320mA(設定された第2のレベルの放電電流値)で放電するように設定することができる。また、平滑コンデンサ12の両端電圧の初期電圧は550Vとし、時刻0sにバッテリーコンタクタ16は解放されたと設定した。
図3は、平滑コンデンサ12の両端電圧と時間との関係を示し、図4は、放電抵抗20に流れる電流と時間との関係を示している。図4の(a)に示した時間軸を、拡大した図4の(b)及び(c)を参照すれば、スイッチ素子21により放電抵抗20に流れる電流は、パルス状に制御されている様子がわかる。
また、図4の(b)及び(c)では、後者が、通電パルスの幅が前者に比べ、広くなっている。図4の(b)に示した期間は、そのパルス電流の平均は概ね18mA、図4の(c)に示した期間は、平均は概ね300mAとなっている。
また、設定したスイッチ制御するためのヒステリシス幅では、スイッチング周波数は500Hz程度となっている。放電動作時は、このスイッチングに伴う損失とスイッチ素子21の導通損失が、消費電力に加算され、平滑コンデンサ12の放電の手助けとなる。
なお、0.95s以降は平滑コンデンサ12の両端電圧が256V(=800Ωx320mA)より下がったため、スイッチ素子21が常時オンの動作モードとなった。
図3の(a)、(b)に示すように、平滑コンデンサ12の両端電圧は、放電回路15の放電動作により、略22.5V/secにて下降する。そして、その下降により、設定した時間変化率の検出値が所定値を越えると、電流指令が320mAに切替り、放電動作による平滑コンデンサ12の両端電圧の時間変化率は、略400V/secに増大して、下降する。この変化は、概ね時刻0.13sで起こっている。
その結果、放電電流が1.8mA及び320mAにより、平滑コンデンサ12の両端電圧は概ね1.8sで60V未満になっている。本発明の実施例1を適用することで、所定の放電を短時間に達成できることがわかる。
つまり、平滑コンデンサ12の電圧の時間変化率が22.5V/sec以下であれば、平滑コンデンサ12の放電電流を小の値(18mA)に制限することで、放電抵抗20の過熱を抑制することができるということである。また、平滑コンデンサ12の電圧の時間変化率が22.5V/secを超えたときは、平滑コンデンサ12の電圧の低下が速くなるので、平滑コンデンサ12の放電電流を大の値(320mA)に設定することで、放電抵抗20の過熱を抑制することができると共に、短期に放電を実行することができるということである。
以上のように、本発明の実施例1によれば、放電回路15が、コンタクタ16の正常異常を問わず、平滑コンデンサ12の両端電圧の電圧時間変化率が所定値(一定の電圧時間変化率)以下か否かを判断し、平滑コンデンサ12の両端電圧の電圧時間変化率が所定値以下の場合は、第1のレベルの放電電流指令で放電抵抗20に放電し、平滑コンデンサ12の両端電圧の電圧時間変化率が所定値を超えた場合は、第1のレベルの放電電流指令より大の第2のレベルの放電電流指令で放電抵抗20に放電するように構成したので、放電抵抗20を大とすることなく、平滑コンデンサ12を短時間で放電可能な平滑コンデンサ12の放電方法及び放電装置を実現することができ、放電抵抗20などの電力消費体を流れる電流を所定値に制御し、簡易な方法で、コンタクタ16の正常・異常を問わず、その開放を判定し、放電を適切に行うことができる。
また、放電回路15を動作させる電源を平滑コンデンサ12の両端から得ているため、電圧が60V以上であれば、制御回路9の電源である低圧バッテリ17が切り離された状態であっても、放電動作を継続できるという特有の効果も有している。
さらに、放電回路15を動作させる電源は平滑コンデンサ12を放電させることができるため、常時放電回路としても活用することができる。
なお、コンタクタ16が異常か否かの判断は、上位のコントローラ(実施例1では図示せず)により行うように構成することも可能である。
また、平滑コンデンサ12の両端電圧が、一定時間、例えば、1.8s以下で60V未満となるように、第1のレベルの放電電流値及び第2のレベルの放電電流値のうちの少なくとも一つを設定することも可能である。
また、上述した例においては、平滑コンデンサ12に蓄積された電力を放電回路15の駆動源となるように電源回路30を備えるよう構成したが、放電回路15の駆動源を平滑コンデンサ12からではなく、別箇のバッテリを有する電源回路とすることも可能である。
(実施例2)
次に、本発明の実施例2について説明する。
本発明の実施例2は、実施例1の放電回路15に、過温度保護回路28と、放電停止回路29とを追加した例である。
過温度保護回路28は、何らかの故障により放電抵抗20の温度が、許容値を超えた場合に放電動作を停止し、抵抗の過温度保護を行う回路である。また、放電停止回路29は、外部のコントローラ40からの信号により、放電を停止できる回路である。
図5は、本発明の実施例2の要部であり、過温度保護回路28と、放電停止回路29とを示す図である。なお、図5は本実施例2の説明に必要な要部である図2に記載のスイッチ素子21、放電抵抗20を引用し、放電回路15のその他の部分は省略してある。
図5において、過温度保護回路28は、コンパレータ28−1と、放電抵抗20の温度を測定するサーミスタ28−2と、測定温度を電圧変化に換算するための抵抗28−3と、コンパレータ28−1の過温度検出値を電源電圧の分圧により、設定するための抵抗28−4及び28−5と、コンパレータ28−1の動作にヒステリシスを付与するための抵抗28−6及び28−7と、コンパレータ28−1の出力を入力として、そのロジックを反転するためのFETトランジスタ28−8とを備えている。
サーミスタ28−2と抵抗28−3との接続点は、コンパレータ28−1の負入力端に接続されている。
また、抵抗28−4と抵抗28−5との接続点は、コンパレータ28−1の正入力端に接続されている。
また、FETトランジスタ28−8のドレインはスイッチ素子21のゲート抵抗21−2に接続され、FETトランジスタ28−8のソースはGND端子に接続されている。
サーミスタ28−2は、放電抵抗20の温度上昇と共に、その抵抗値が減少する。その結果、サーミスタ28−2と抵抗28−3との接続点電圧は減少する。そして、サーミスタ28−2と抵抗28−3との接続点の電圧値が過温度検出値を下回ると、コンパレータ28−1の出力−GND間がローインピーダンスからハイインピーダンス状態に変り、FETトランジスタ28−8がオンすることで、FETトランジスタ28−8のドレイン−ソース間はローインピーダンスとなり、スイッチ素子21のゲート電圧は略0に保持される。すなわち、放電抵抗20への放電動作は停止する。
それにより、放電動作が停止したことに応答して、放電抵抗20の温度が下がると、サーミスタ28−2の抵抗は増加し、その結果、サーミスタ28−2と抵抗28−3の接続点電圧は増加する。
そして、コンパレータ28−1に設定したヒステリシス幅を超えると、コンパレータ28−1の出力−GND間がハイインピーダンスからローインピーダンス状態に変り、FETトランジスタ28−8がオフすることで、FETトランジスタ28−8のドレイン−ソース間はハイインピーダンスとなり、スイッチ素子21のゲート電圧は、図示を省略した図2のヒステリシスコンパレータ回路22のコンパレータ22−1の出力に応答して変化する。すなわち、放電動作を行う。
放電停止回路29は、フォトカプラ29−1を備え、その2次側トランジスタ29−2のコレクタがスイッチ素子21のゲート抵抗21−2に接続され、2次側トランジスタ29−2のエミッタはGND端子に接続されている。
フォトカプラ29−1の1次側のフォトダイオード29−3は。放電動作の停止指示をする外部のコントローラ40のGND並びに制御端子に接続されている。
コントローラ40から1次側フォトダイオード29−3に電流が供給されると、2次側トランジスタ29−2のコレクタとエミッタ間はローインピーダンスと変化し、スイッチ素子21のゲート電圧は略0に保持される。すなわち、放電動作は停止する。
1次側フォトダイオード29−3への電流の供給が停止すると、2次側トランジスタ29−2のコレクタとエミッタ間はハイインピーダンスとなり、スイッチ素子21のゲート電圧は、図示を省略した図2のヒステリシスコンパレータ22のコンパレータ22−1の出力に応答して変化する。すなわち、放電動作を行う。
コントローラ40は、コンタクタ16の異常や、その他の構成(コントローラ40により制御されるその他の回路等)の異常等の発生により、停止指令を発生し、放電抵抗20への放電動作を停止することができる。
以上のように、本発明の実施例2によれば、実施例1と同様な効果が得られる他、放電抵抗20の温度が許容値を超えた場合及び外部のコントローラ40から停止指令が発生された場合に、放電動作を停止することができるという効果を得ることができる。
なお、上述した本発明の実施例2においては、過温度保護回路28及び放電停止回路29を備えるように構成したが、過温度保護回路28及び放電停止回路29のうちの一つのみ備えるように構成することも可能である。
また、本発明は、自動車用途で高圧バッテリに接続されたインバータに適用することができる他、電車や産業用ロボット等の他の用途にも適用可能である。
また、上述した例においては、電力消費体として放電抵抗20としたが、放電抵抗に限らず、電力を消費するものであれば、その他の部材であってもよい。例えば、放電中であることを示すランプやブザーであってもよい。
1・・・高圧バッテリ、 2・・・電圧形インバータ、 3・・・交流モータ、 4・・・直流電圧検出器、 5、6、7・・・電流検出器、 8・・・回転位置検出器、 9・・・制御回路、 10・・・ゲート駆動回路、 11・・・スイッチング電源、 12・・・平滑コンデンサ、 15・・・放電回路(放電装置)、 16・・・コンタクタ、 17・・・低圧バッテリ、 20・・・放電抵抗、 21・・・スイッチ素子、 21−1・・FET、 21−2、 22−2、 22−3、 23−1、 23−4、 23−5、 24−1、 24−2、 24−3、 26−2、 26−3、 27−3、 27−4、 27−5、 27−6、 28−3、 28−4、 28−5、 28−6、 28−7、 30−1・・・抵抗、 28−2・・・サーミスタ、 22・・・ヒステリシスコンパレータ回路、 22−1、 26−1・・・コンパレータ、 23・・・ローパスフィルタ回路、 23−2・・コンデンサ、 23−3・・・OPアンプ、 24・・・電流指令設定回路、 25・・・電流検出抵抗、 26・・・電流指令切替回路、 27・・・電圧時間変化率検出回路、 27−1・・・OPアンプ、 27−2・・・コンデンサ、 28・・・過温度保護回路、 29・・・放電停止回路、 29−1・・・フォトカプラ、 29−2・・・トランジスタ、 29−3・・・ダイオード、 30・・・電源回路、 40・・・コントローラ

Claims (10)

  1. 平滑コンデンサの電圧時間変化率を検出し、
    検出した上記電圧時間変化率が、一定の電圧時間変化率以下のときは、上記平滑コンデンサから電力消費体に流れる電流を第1のレベルの放電電流値に設定し、検出した上記電圧時間変化率が、一定の電圧時間変化率を越えたときは、上記平滑コンデンサから上記電力消費体に流れる電流を、上記第1のレベルの放電電流値より大の第2のレベルの放電電流値に設定し、
    上記電力消費体に流れる電流が、設定された上記第1のレベルの放電電流値又は上記第2のレベルの放電電流値となるように制御することを特徴とする平滑コンデンサの放電方法。
  2. 請求項1に記載の平滑コンデンサの放電方法において、
    上記平滑コンデンサの電圧時間変化率の検出、電力消費体に流れる電流の第1のレベルの放電電流値への設定、上記電力消費体に流れる電流の第2のレベルの放電電流値への設定、及び上記電力消費体に流れる電流が上記第1のレベルの放電電流値又は上記第2のレベルの放電電流値となるように行う制御は、上記平滑コンデンサに蓄積された電力を駆動源とすることを特徴とする平滑コンデンサの放電方法。
  3. 請求項1又は2に記載の平滑コンデンサ放電方法において、
    上記第1のレベルの放電電流値及び第2のレベルの放電電流値のうちの少なくとも、一つは、上記平滑コンデンサの両端電圧が、一定時間以下で60V未満となるように設定されることを特徴とする平滑コンデンサの放電方法。
  4. 前記請求項1、2及び3のうちのいずれか一項に記載の平滑コンデンサの放電方法において、
    上記電力消費体の温度が、許容値を超えたときは、上記平滑コンデンサの放電動作を停止させることを特徴とする平滑コンデンサの放電方法。
  5. 請求項1、2、3及び4のうちのいずれか一項に記載の平滑コンデンサの放電方法において、
    外部コントローラからの指令信号により、上記平滑コンデンサの放電動作を停止させることを特徴とする平滑コンデンサの放電方法。
  6. 平滑コンデンサの電圧時間変化率を検出する電圧時間変化率検出回路と、
    上記電圧時間変化率検出回路が検出した上記電圧時間変化率が、一定の電圧時間変化率以下のときは、上記平滑コンデンサから電力消費体に流れる電流を第1のレベルの放電電流値に設定し、検出した上記電圧時間変化率が、一定の電圧時間変化率を越えたときは、上記平滑コンデンサから上記電力消費体に流れる電流を、上記第1の放電電流値より大の第2のレベルの放電電流値に設定する放電電流指令部と、
    上記電力消費体に流れる電流が、設定された上記第1のレベルの放電電流値又は上記第2のレベルの放電電流値となるように制御する放電電流制御部と、
    を備えることを特徴とする平滑コンデンサの放電装置。
  7. 請求項6に記載の平滑コンデンサの放電装置において、
    上記平滑コンデンサに蓄積された電力を電源とする電源回路をさらに備え、上記電源回路は、上記電圧時間変化率検出回路、上記放電電流指令部及び上記放電電流制御部の駆動源であることを特徴とする平滑コンデンサの放電装置。
  8. 請求項6又は7に記載の平滑コンデンサ放電装置において、
    上記第1のレベルの放電電流値及び第2のレベルの放電電流値のうちの少なくとも、一つは、上記平滑コンデンサの両端電圧が、一定時間以下で60V未満となるように設定されることを特徴とする平滑コンデンサの放電装置。
  9. 前記請求項6、7及び8のうちのいずれか一項に記載の平滑コンデンサの放電装置において、
    上記電力消費体の温度が、許容値を超えたときは、上記平滑コンデンサの放電動作を停止させる温度保護回路をさらに備えることを特徴とする平滑コンデンサの放電装置。
  10. 請求項6、7、8及び9のうちのいずれか一項に記載の平滑コンデンサの放電装置において、
    外部コントローラからの指令信号により、上記平滑コンデンサの放電動作を停止させる放電停止回路をさらに備えることを特徴とする平滑コンデンサの放電装置。
JP2017111145A 2017-06-05 2017-06-05 平滑コンデンサの放電方法及び放電装置 Pending JP2018207684A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111145A JP2018207684A (ja) 2017-06-05 2017-06-05 平滑コンデンサの放電方法及び放電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111145A JP2018207684A (ja) 2017-06-05 2017-06-05 平滑コンデンサの放電方法及び放電装置

Publications (1)

Publication Number Publication Date
JP2018207684A true JP2018207684A (ja) 2018-12-27

Family

ID=64958434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111145A Pending JP2018207684A (ja) 2017-06-05 2017-06-05 平滑コンデンサの放電方法及び放電装置

Country Status (1)

Country Link
JP (1) JP2018207684A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020114147A (ja) * 2019-01-16 2020-07-27 日立オートモティブシステムズ株式会社 放電制御装置
JP2021530188A (ja) * 2018-06-26 2021-11-04 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Dcリンクコンデンサを放電する制御装置及び方法、電力変換機、及び車両
JP7474171B2 (ja) 2020-09-29 2024-04-24 株式会社ミツバ モータ制御装置、モータ制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530188A (ja) * 2018-06-26 2021-11-04 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Dcリンクコンデンサを放電する制御装置及び方法、電力変換機、及び車両
JP7385607B2 (ja) 2018-06-26 2023-11-22 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハー Dcリンクコンデンサを放電する制御装置及び方法、電力変換機、及び車両
JP2020114147A (ja) * 2019-01-16 2020-07-27 日立オートモティブシステムズ株式会社 放電制御装置
JP7159061B2 (ja) 2019-01-16 2022-10-24 日立Astemo株式会社 放電制御装置
JP7474171B2 (ja) 2020-09-29 2024-04-24 株式会社ミツバ モータ制御装置、モータ制御方法

Similar Documents

Publication Publication Date Title
US10386419B2 (en) Battery management device, battery monitoring circuit, and control system
JP5381467B2 (ja) 駆動装置およびその絶縁抵抗低下箇所判定方法並びに車両
JP6652960B2 (ja) 電池管理装置、電池監視回路、制御システム
JP2006320176A (ja) インバータの診断方法及び装置
JP2010093934A (ja) 車載機器
JP2018207684A (ja) 平滑コンデンサの放電方法及び放電装置
JP2018054390A (ja) 電圧検出装置
JP5561197B2 (ja) 電子装置
EP1610453B1 (en) Inverter device
JP4556918B2 (ja) 回生エネルギー消費回路を備える電源装置
JP6240587B2 (ja) 断線検出装置および断線検出方法
WO2015190421A1 (ja) 電子制御装置
JP6334362B2 (ja) コンデンサ放電装置及びその制御方法
EP3627686B1 (en) Motor drive device
JP2011075314A (ja) 電池監視装置
JP2004289903A (ja) インバータ装置
JP6541414B2 (ja) 電源供給装置
JP6536812B2 (ja) 電力変換装置
JP2006271035A (ja) モータ制御装置
JP2020162384A (ja) 電力変換装置
JP2011172417A (ja) リレー溶着検出装置
JP6009969B2 (ja) 電源装置
KR101481281B1 (ko) 컨버터 입력 단선 검출시스템과 파워모듈 및 검출방법
WO2023228592A1 (ja) バッテリ遮断システムおよび故障検出方法
KR101796378B1 (ko) 전자식 능동형 스테빌라이저 시스템의 제어 장치