JP2018206465A - Electrode plate for power storage device, and power storage device with the same - Google Patents

Electrode plate for power storage device, and power storage device with the same Download PDF

Info

Publication number
JP2018206465A
JP2018206465A JP2015218233A JP2015218233A JP2018206465A JP 2018206465 A JP2018206465 A JP 2018206465A JP 2015218233 A JP2015218233 A JP 2015218233A JP 2015218233 A JP2015218233 A JP 2015218233A JP 2018206465 A JP2018206465 A JP 2018206465A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
current collector
electrode plate
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218233A
Other languages
Japanese (ja)
Inventor
金子 勝
Masaru Kaneko
勝 金子
元貴 衣川
Motoki Kinugawa
元貴 衣川
明心李 如月
Amiri Kisaragi
明心李 如月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2015218233A priority Critical patent/JP2018206465A/en
Priority to PCT/JP2016/004718 priority patent/WO2017077697A1/en
Publication of JP2018206465A publication Critical patent/JP2018206465A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an electrode plate for power storage device which is capable of realizing high capacity and in which an active material layer is hard to be released, and a power storage device with the same.SOLUTION: A cathode active material layer 30 is provided on at least one surface of a substantially rectangular cathode collector. On the at least one surface, a plain part 40 in which the cathode active material layer 30 is not provided is provided in one end in a width direction Y in a partial region in a length direction X. An outer edge of the plain part 40 includes: an outside edge 40d that is matched to a part of an outer edge of the cathode collector extending in the length direction X; two width-direction extending edges 40a and 40b extending from both ends of the outside edge 40d in the width direction Y of the cathode collector; and a substantially linear inside edge 40c that is coupled to an end of each of the two width-direction extending edges 40a and 40b via a curve part.SELECTED DRAWING: Figure 3

Description

本開示は、蓄電装置用電極板及びそれを備える蓄電装置に関する。   The present disclosure relates to an electrode plate for a power storage device and a power storage device including the same.

近年、電子機器のポータブル化やコードレス化が急速に進むにしたがって、電子機器の駆動用電源として使用する二次電池を高容量化することへの要請が高まっている。また、自動車用蓄電池や電力貯蔵用蓄電池への二次電池の適用も進みつつあり、この観点からも二次電池の高容量化が求められている。   In recent years, as electronic devices have become increasingly portable and cordless, there has been a growing demand for higher capacity secondary batteries used as power sources for driving electronic devices. Further, the application of secondary batteries to automobile storage batteries and power storage batteries is also progressing, and from this point of view, higher capacity of secondary batteries is required.

このような背景において、特許文献1の非水電解質二次電池では、正極用集電体上に正極活物質スラリーが塗布されて正極活物質層が形成された後、平面視において正極活物質層の矩形状の一部領域が剥離される。そして、正極活物質層の剥離箇所に正極活物質が存在しない矩形状の無地部が形成され、正極リードが無地部に溶接される。無地部の幅を正極板幅よりも短くすることによって、無地部を幅方向の一部領域のみに形成して正極活物質層領域を増大させる。このようにして、充放電反応を行う領域を増大させて高容量化を実現している。   In such a background, in the non-aqueous electrolyte secondary battery of Patent Document 1, after the positive electrode active material slurry is applied on the positive electrode current collector to form the positive electrode active material layer, the positive electrode active material layer in plan view A part of the rectangular shape is peeled off. Then, a rectangular solid portion where no positive electrode active material is present is formed at the peeled portion of the positive electrode active material layer, and the positive electrode lead is welded to the plain portion. By making the width of the plain portion shorter than the width of the positive electrode plate, the plain portion is formed only in a partial region in the width direction to increase the positive electrode active material layer region. In this way, the capacity is increased by increasing the area where the charge / discharge reaction is performed.

上記特許文献1記載の技術では、無地部を形成するのに剥離が必要となるため工数が増加する。特許文献2では、剥離を必要とせずに無地部の領域を低減できる塗布装置が提案されている。この塗布装置は複数のノズルを備える。複数のノズルの吐出口は正極集電体の長さ方向から見て互いに重ならないように配設される。この塗布装置では、正極集電体を一定速度で走行させながら各ノズルからの正極活物質スラリーの吐出又は停止を適宜実行することによって、矩形状の無地部を正極用集電体の幅方向の全体ではなく一部のみに形成している。   In the technique described in the above-mentioned Patent Document 1, since the peeling is necessary to form the plain portion, the number of steps increases. Patent Document 2 proposes a coating apparatus that can reduce the area of the plain portion without requiring peeling. This coating apparatus includes a plurality of nozzles. The discharge ports of the plurality of nozzles are arranged so as not to overlap each other when viewed from the length direction of the positive electrode current collector. In this coating apparatus, the rectangular solid portion is moved in the width direction of the positive electrode current collector by appropriately discharging or stopping the positive electrode active material slurry from each nozzle while running the positive electrode current collector at a constant speed. It is formed only in part, not in whole.

特開2003−68271号公報JP 2003-68271 A 特開2001−6664号公報JP 2001-6664 A

上記特許文献1,2に開示された正極板では、無地部領域が低減されるので電池の高容量化が実現される。しかし、上記特許文献1,2に開示された正極板では、正極活物質層が矩形状の無地部の角部を起点として剥離し易いことが見出された。   In the positive electrode plates disclosed in Patent Documents 1 and 2, the uncoated region is reduced, so that the capacity of the battery can be increased. However, in the positive electrode plates disclosed in Patent Documents 1 and 2, it has been found that the positive electrode active material layer is easily peeled off starting from the corners of the rectangular plain portion.

本開示の課題は、高容量で、活物質層の剥離が抑制された蓄電装置用電極板及びそれを備える蓄電装置を提供することにある。   The subject of this indication is providing the electrode plate for electrical storage apparatuses with high capacity | capacitance with which peeling of the active material layer was suppressed, and an electrical storage apparatus provided with the same.

本開示の蓄電装置用電極板は、略矩形の集電体と、集電体の少なくとも一方の表面上に設けられ、活物質を含む活物質層と、を備え、その表面は活物質層が設けられていない無地部を集電体の長さ方向の一部領域における幅方向の一端部に有し、無地部の外縁は、長さ方向に延在する集電体の外縁の一部に一致する外側縁、その外側縁の両端部のそれぞれから集電体の幅方向に沿って延在する2本の幅方向延在縁、及び2本の幅方向延在縁のそれぞれの端部に連結する略直線状の内側縁を有し、2本の幅方向延在縁のうち一方の幅方向延在縁の端部に内側縁が曲線部を介して連結され、2本の幅方向延在縁のうち他方の幅方向延在縁の端部に内側縁が曲線部を介して連結されているか又は直接連結されている。   An electrode plate for a power storage device according to the present disclosure includes a substantially rectangular current collector and an active material layer including an active material provided on at least one surface of the current collector, and the active material layer on the surface thereof There is a plain part that is not provided at one end in the width direction of a partial region in the length direction of the current collector, and the outer edge of the plain part is part of the outer edge of the current collector that extends in the length direction. A matching outer edge, two width-extending edges extending along the width direction of the current collector from each of both ends of the outer edge, and each end of the two width-extending edges It has a substantially straight inner edge to be connected, and the inner edge is connected to the end of one of the two widthwise extending edges via a curved portion, and the two widthwise extending edges The inner edge is connected to the end of the other extending edge in the width direction among the existing edges via a curved portion or directly connected thereto.

本開示に係る蓄電装置用電極板及び蓄電装置によれば、容量を大きくできて活物質層の剥離を抑制できる。   According to the electrode plate for a power storage device and the power storage device according to the present disclosure, the capacity can be increased and peeling of the active material layer can be suppressed.

本開示の一実施形態である非水電解質二次電池の構造を示す図である。It is a figure which shows the structure of the nonaqueous electrolyte secondary battery which is one Embodiment of this indication. 図2(a)は、正極板の平面図であり、図2(b)は図2(a)のA−A線断面図であり、図2(c)は図2(a)のB−B線断面図である。2A is a plan view of the positive electrode plate, FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 2C is a cross-sectional view taken along line B- in FIG. It is B line sectional drawing. 図2(a)における正極板の無地部周辺の拡大図である。FIG. 3 is an enlarged view of the periphery of a plain portion of the positive electrode plate in FIG. 正極集電体への正極活物質スラリーの塗布工程の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the application | coating process of the positive electrode active material slurry to a positive electrode electrical power collector. 正極集電体の表面の上方から見たときの正極集電体に対する吐出ノズルの相対位置を示す模式図である。It is a schematic diagram which shows the relative position of the discharge nozzle with respect to a positive electrode collector when it sees from the upper direction of the surface of a positive electrode collector. 正極集電体上にその長さ方向に延在する複数の帯状吐出領域を示す模式図である。It is a schematic diagram which shows the some strip | belt-shaped discharge area | region extended in the length direction on a positive electrode electrical power collector. 実施例2の正極板形状と比較例の正極板形状とを対比する図である。It is a figure which contrasts the positive electrode plate shape of Example 2, and the positive electrode plate shape of a comparative example. 実施例1、実施例2及び比較例の剥がれ試験の結果を示す表である。It is a table | surface which shows the result of the peeling test of Example 1, Example 2, and a comparative example.

以下に、本開示に係る実施の形態(以下、実施形態という)について添付図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本開示の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。また、実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは現物と異なる場合がある。本明細書において「略**」との記載は、略全域を例に挙げて説明すると、全域はもとより実質的に全域と認められる場合を含む意図である。   Hereinafter, embodiments (hereinafter referred to as embodiments) according to the present disclosure will be described in detail with reference to the accompanying drawings. In this description, specific shapes, materials, numerical values, directions, and the like are examples for facilitating understanding of the present disclosure, and can be appropriately changed according to the application, purpose, specification, and the like. In addition, when a plurality of embodiments and modifications are included in the following, it is assumed from the beginning that these characteristic portions are used in appropriate combinations. The drawings referred to in the description of the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual ones. In this specification, the description of “substantially **” is intended to include the case where substantially the entire region is recognized as well as the entire region.

図1は、本開示の一実施形態である非水電解質二次電池の構造を示す図である。   FIG. 1 is a diagram illustrating a structure of a nonaqueous electrolyte secondary battery according to an embodiment of the present disclosure.

この非水電解質二次電池10は、正極板1、正極リード2、負極板3、負極リード4、セパレータ5、電池ケース6、ガスケット7、正極蓋8及び封口板9を備える。正極板1及び負極板3がセパレータ5を介して巻回され、円筒形の電池ケース6内に電解液と共に収容される。電池ケース6の開口部はガスケット7を介して封口板9で封口され、電池ケース6内は密閉される。正極板1は正極リード2により封口板9上に配設された正極蓋8に接続され、正極蓋8は正極端子となる。また、負極板3は負極リード4により電池ケース6に接続され、電池ケース6は負極端子となる。   The nonaqueous electrolyte secondary battery 10 includes a positive electrode plate 1, a positive electrode lead 2, a negative electrode plate 3, a negative electrode lead 4, a separator 5, a battery case 6, a gasket 7, a positive electrode lid 8, and a sealing plate 9. The positive electrode plate 1 and the negative electrode plate 3 are wound through a separator 5 and are accommodated in a cylindrical battery case 6 together with an electrolytic solution. The opening of the battery case 6 is sealed with a sealing plate 9 via a gasket 7, and the inside of the battery case 6 is sealed. The positive electrode plate 1 is connected to the positive electrode lid 8 disposed on the sealing plate 9 by the positive electrode lead 2, and the positive electrode lid 8 serves as a positive electrode terminal. The negative electrode plate 3 is connected to the battery case 6 by a negative electrode lead 4, and the battery case 6 serves as a negative electrode terminal.

正極板1は、次のように作製される。正極活物質に導電剤や結着剤等を混合することによってペースト状の正極活物質スラリーを生成する。その後、正極活物質スラリーをアルミニウム等の金属箔で形成したフープ状の正極集電体上に塗布する。続いて、正極集電体に塗布された正極活物質スラリーを乾燥し、及び圧縮することによって正極集電体上に正極活物質層を設ける。最後に正極活物質層が設けられた正極集電体を所定寸法に切断することによって正極板1が作製される。   The positive electrode plate 1 is produced as follows. A paste-like positive electrode active material slurry is generated by mixing a conductive agent, a binder, or the like with the positive electrode active material. Thereafter, the positive electrode active material slurry is applied onto a hoop-shaped positive electrode current collector formed of a metal foil such as aluminum. Subsequently, the positive electrode active material slurry applied to the positive electrode current collector is dried and compressed to provide a positive electrode active material layer on the positive electrode current collector. Finally, the positive electrode plate 1 is produced by cutting the positive electrode current collector provided with the positive electrode active material layer into a predetermined size.

負極板3は、次のように作製される。負極活物質に導電剤や結着剤等を混合することによってペースト状の負極活物質スラリーを生成する。その後、負極活物質スラリーを銅等の金属箔で形成したフープ状の負極集電体上に塗布する。続いて、負極集電体に塗布された負極活物質スラリーを乾燥し、及び圧縮することによって負極集電体上に負極活物質層を設ける。最後に負極活物質層が設けられた負極集電体を所定寸法に切断することによって負極板3が作製される。   The negative electrode plate 3 is produced as follows. A paste-like negative electrode active material slurry is produced by mixing a conductive agent, a binder or the like with the negative electrode active material. Thereafter, the negative electrode active material slurry is applied onto a hoop-shaped negative electrode current collector formed of a metal foil such as copper. Subsequently, the negative electrode active material slurry applied to the negative electrode current collector is dried and compressed to provide a negative electrode active material layer on the negative electrode current collector. Finally, the negative electrode current collector provided with the negative electrode active material layer is cut into a predetermined size to produce the negative electrode plate 3.

正極板1及び負極板3はそれぞれ所定の位置に活物質スラリーが塗布されない無地部を有する。正極リード2及び負極リード4はそれぞれ正極板1及び負極板3の無地部に接合される。このように、上記の各無地部はリード接続部を構成する。   Each of the positive electrode plate 1 and the negative electrode plate 3 has a plain portion where the active material slurry is not applied at a predetermined position. The positive electrode lead 2 and the negative electrode lead 4 are joined to the plain portions of the positive electrode plate 1 and the negative electrode plate 3, respectively. Thus, each of the above-mentioned plain parts constitutes a lead connection part.

図2は正極板1の構造を示す図である。詳しくは、図2(a)は正極板1の平面図であり、図2(b)は図2(a)のA−A線断面図であり、図2(c)は図2(a)のB−B線断面図である。図2(a)のB−B線は無地部40を横断している。   FIG. 2 is a view showing the structure of the positive electrode plate 1. Specifically, FIG. 2 (a) is a plan view of the positive electrode plate 1, FIG. 2 (b) is a cross-sectional view taken along line AA of FIG. 2 (a), and FIG. 2 (c) is FIG. 2 (a). It is a BB sectional view taken on the line. A line BB in FIG. 2A crosses the plain portion 40.

図2(a)に示すように、正極板1は、略矩形の平面形状を有し、長さ方向Xの中央部における幅方向Yの一端部に無地部40を有している。無地部40は正極板1の幅方向Yの一端部に設けられるのであれば、無地部40は長さ方向Xの中央部以外の位置に設けることができる。図2(b)に示すように、正極板1は、正極集電体20と、正極集電体20の両側の表面に設けられた正極活物質層30を有する。正極活物質層30を正極集電体20の両側の表面に設ける場合は、図2(c)に示すように正極集電体20の表裏に重なるように無地部40を設けることが好ましい。なお、正極活物質層は正極集電体の一方の表面にのみ設けてもよい。   As shown in FIG. 2A, the positive electrode plate 1 has a substantially rectangular planar shape, and has a plain portion 40 at one end portion in the width direction Y at the central portion in the length direction X. If the plain portion 40 is provided at one end portion in the width direction Y of the positive electrode plate 1, the plain portion 40 can be provided at a position other than the central portion in the length direction X. As illustrated in FIG. 2B, the positive electrode plate 1 includes a positive electrode current collector 20 and a positive electrode active material layer 30 provided on both surfaces of the positive electrode current collector 20. When the positive electrode active material layer 30 is provided on both surfaces of the positive electrode current collector 20, it is preferable to provide the plain portion 40 so as to overlap the front and back of the positive electrode current collector 20 as shown in FIG. Note that the positive electrode active material layer may be provided only on one surface of the positive electrode current collector.

図3は、図2(a)における正極板1の無地部40周辺の拡大図である。   FIG. 3 is an enlarged view around the plain portion 40 of the positive electrode plate 1 in FIG.

図3に示すように、無地部40の外縁は、幅方向Yに延在する一対の幅方向延在縁40a,40bと、略長さ方向Xに延在する一対の長さ方向延在縁40c,40dとを有する。長さ方向延在縁40dは、正極集電体20の長さ方向Xに沿って延在する外縁の一部に一致し、外側縁を構成する。長さ方向延在縁40cは、幅方向延在縁40a,40bのそれぞれの端部と曲線部を介して連結され、内側縁を構成する(以下、外側縁40d、内側縁40cと表す)。幅方向延在縁40a,40bと内側縁40cとを連結する曲線部は内側角部40e,40fを占めている。幅方向延在縁40a,40bと内側縁40cの間には曲線部が介在していることが好ましいが、幅方向延在縁40a,40bの一方と内側縁40cは曲線部を介さずに直接内側縁40cに連結することができる。内側縁40cと外側縁40dは互いに平行となるように配置されることが好ましいが、内側縁40cの延在方向は略長さ方向Xに限られない。一方、幅方向延在縁40a,40bの延在方向は略幅方向Yであることが好ましい。   As shown in FIG. 3, the outer edge of the plain portion 40 includes a pair of width direction extending edges 40 a and 40 b extending in the width direction Y and a pair of length direction extending edges extending in the substantially length direction X. 40c, 40d. The lengthwise extending edge 40d coincides with a part of the outer edge extending along the length direction X of the positive electrode current collector 20, and constitutes an outer edge. The lengthwise extending edge 40c is connected to the respective ends of the widthwise extending edges 40a and 40b via curved portions, and constitutes an inner edge (hereinafter referred to as an outer edge 40d and an inner edge 40c). Curved portions connecting the width direction extending edges 40a, 40b and the inner edge 40c occupy the inner corners 40e, 40f. It is preferable that a curved portion is interposed between the width direction extending edges 40a and 40b and the inner edge 40c. However, one of the width direction extending edges 40a and 40b and the inner edge 40c are not directly connected to the curved portion. It can be connected to the inner edge 40c. The inner edge 40c and the outer edge 40d are preferably arranged so as to be parallel to each other, but the extending direction of the inner edge 40c is not limited to the substantially length direction X. On the other hand, the extending direction of the width direction extending edges 40a and 40b is preferably substantially the width direction Y.

内側角部40e及び内側角部40fのそれぞれの曲線部は、無地部40の外側に凸となる形状を有することが好ましく、その形状はR形状であることがより好ましい。また、正極活物質層30は、一方の幅方向延在縁40aから略長さ方向Xに延びる複数の尾引き部30aを有してもよい。尾引き部30aを有する場合は、尾引き部30aを無視して幅方向延在縁40aが特定される。   The curved portions of the inner corner portion 40e and the inner corner portion 40f preferably have a shape that protrudes outward from the plain portion 40, and the shape is more preferably an R shape. Moreover, the positive electrode active material layer 30 may have a plurality of trailing portions 30a extending in the substantially length direction X from one width direction extending edge 40a. When it has the tailing part 30a, the tailing part 30a is disregarded and the width direction extending edge 40a is specified.

以下、図4〜図6を用いて、正極板1の製造方法の一例を説明する。   Hereinafter, an example of a method for manufacturing the positive electrode plate 1 will be described with reference to FIGS.

図4は、フープ状の正極集電体20への正極活物質スラリー28の塗布工程の概要を示す模式図である。フープ状の正極集電体20を、図示しない駆動ロールによって巻き出す。このようにして、正極集電体20を第1及び第2吐出部11,12の下を矢印Aで示す方向に一定速度で走行させる。この状態で第1及び第2吐出部11,12から正極集電体20に向けて正極活物質スラリー28を吐出することによって正極集電体20上に正極活物質スラリー28を塗布する。第1吐出部11には、吐出ノズル11a,11bが設けられ、第2吐出部12には、吐出ノズル12aが設けられる。   FIG. 4 is a schematic diagram showing an outline of a process of applying the positive electrode active material slurry 28 to the hoop-shaped positive electrode current collector 20. The hoop-shaped positive electrode current collector 20 is unwound by a driving roll (not shown). In this way, the positive electrode current collector 20 is caused to travel at a constant speed in the direction indicated by the arrow A under the first and second discharge portions 11 and 12. In this state, the positive electrode active material slurry 28 is applied onto the positive electrode current collector 20 by discharging the positive electrode active material slurry 28 from the first and second discharge portions 11 and 12 toward the positive electrode current collector 20. The first discharge unit 11 is provided with discharge nozzles 11a and 11b, and the second discharge unit 12 is provided with a discharge nozzle 12a.

図5は、正極集電体20の表側面55の上方から見たときの正極集電体20に対する吐出ノズル11a,11b,12aの相対位置を示す模式図である。   FIG. 5 is a schematic diagram showing the relative positions of the discharge nozzles 11 a, 11 b, and 12 a with respect to the positive electrode current collector 20 when viewed from above the front side surface 55 of the positive electrode current collector 20.

図5に示すように、第1吐出部11は、第2吐出部12に対して正極集電体20の長さ方向に対して間隔をおいて位置する。正極集電体20の長さ方向Xは正極板1の長さ方向X(図2参照)に一致し、正極集電体20の幅方向Yは正極板1の幅方向Yに一致する。吐出ノズル11a,11b,12aはそれぞれ、長方形の吐出口18a,18b,19aを有する。吐出口18a,18b,19aは正極集電体20の幅方向Yに延在している。吐出口18a,18b,19aの長さ方向は正極集電体20の幅方向Yと一致し、吐出口18a,18b,19aの幅方向は正極集電体20の長さ方向Xと一致する。吐出ノズル11aの吐出口18aの幅方向の寸法は、吐出ノズル11bの吐出口18bの幅方向の寸法と同一である。吐出口18aと吐出口18bは、帯状の正極集電体20の長さ方向に対して同じ位置に存在する。吐出口18aは、吐出ノズル12aの吐出口19aに対して正極集電体20の長さ方向Xに間隔をおいて位置する。吐出ノズル11a,11b,12aはそれぞれ制御弁を有する。吐出ノズル11a,11b,12aの制御弁は互いに独立に制御されることができる。各制御弁を用いて吐出ノズル11a,11b,12aへの正極活物質スラリーの供給と停止が制御される。本実施形態では、吐出ノズル12aへの正極活物質スラリーの供給と停止を周期的に繰り返すことで、正極活物質スラリーが吐出ノズル12aから間欠的に吐出される。これにより、無地部40が正極集電体20に設けられる。   As shown in FIG. 5, the first discharge unit 11 is located at a distance from the second discharge unit 12 in the length direction of the positive electrode current collector 20. The length direction X of the positive electrode current collector 20 coincides with the length direction X (see FIG. 2) of the positive electrode plate 1, and the width direction Y of the positive electrode current collector 20 coincides with the width direction Y of the positive electrode plate 1. The discharge nozzles 11a, 11b, and 12a have rectangular discharge ports 18a, 18b, and 19a, respectively. The discharge ports 18 a, 18 b, 19 a extend in the width direction Y of the positive electrode current collector 20. The length direction of the discharge ports 18 a, 18 b, 19 a coincides with the width direction Y of the positive electrode current collector 20, and the width direction of the discharge ports 18 a, 18 b, 19 a coincides with the length direction X of the positive electrode current collector 20. The dimension in the width direction of the discharge port 18a of the discharge nozzle 11a is the same as the dimension in the width direction of the discharge port 18b of the discharge nozzle 11b. The discharge port 18 a and the discharge port 18 b exist at the same position with respect to the length direction of the strip-shaped positive electrode current collector 20. The discharge port 18a is located at an interval in the length direction X of the positive electrode current collector 20 with respect to the discharge port 19a of the discharge nozzle 12a. Each of the discharge nozzles 11a, 11b, and 12a has a control valve. The control valves of the discharge nozzles 11a, 11b, and 12a can be controlled independently of each other. The supply and stop of the positive electrode active material slurry to the discharge nozzles 11a, 11b, and 12a are controlled using each control valve. In the present embodiment, the positive electrode active material slurry is intermittently discharged from the discharge nozzle 12a by periodically repeating the supply and stop of the positive electrode active material slurry to the discharge nozzle 12a. Thereby, the plain part 40 is provided in the positive electrode current collector 20.

吐出口18aから吐出される正極活物質スラリーは、正極集電体20の幅方向Yの一方側領域に塗布され、吐出口18bから吐出される正極活物質スラリーは、正極集電体20の幅方向Yの他方側領域に塗布される。また、吐出口19aから吐出される正極活物質スラリーは、正極集電体20の幅方向Yの中央領域に塗布される。図5に示すように、吐出口19aにおける幅方向Yの一方側の一部は、吐出口18aにおける幅方向Yの他方側の一部に長さ方向Xから見て重なっている。それらの重なり量をf1〔mm〕としている。また、吐出口19aの幅方向Yの他方側の一部は、吐出口18bの幅方向Yの一方側の一部に長さ方向Xから見て重なっている。それらの重なり量をf2〔mm〕としている。吐出口19aは、吐出口18a及び吐出口18bのいずれにも長さ方向Xから見て重ならない領域を有する。 The positive electrode active material slurry discharged from the discharge port 18 a is applied to one side region in the width direction Y of the positive electrode current collector 20, and the positive electrode active material slurry discharged from the discharge port 18 b is the width of the positive electrode current collector 20. It is applied to the other side region in the direction Y. The positive electrode active material slurry discharged from the discharge port 19 a is applied to the central region in the width direction Y of the positive electrode current collector 20. As shown in FIG. 5, a part of one side in the width direction Y of the discharge port 19a overlaps a part of the other side of the width direction Y of the discharge port 18a when viewed from the length direction X. The overlapping amount is set to f 1 [mm]. Further, a part on the other side in the width direction Y of the discharge port 19a overlaps a part on one side in the width direction Y of the discharge port 18b when viewed from the length direction X. The amount of overlap is set to f 2 [mm]. The discharge port 19a has a region that does not overlap with either the discharge port 18a or the discharge port 18b when viewed from the length direction X.

図6は、吐出ノズル11a,11b,12aのそれぞれから吐出される正極活物質スラリーに対応する帯状吐出領域50,51,52を正極集電体20上に示す模式図である。図6に示すように、重なり部60a,60bと非重なり部70,71,72を形成するように帯状吐出領域50,51,52が設定される。重なり部60a,60bの幅方向Yの長さはそれぞれ上記の重なり量f1〔mm〕及びf2〔mm〕に一致する。帯状吐出領域50,51,52の設定後、吐出口18a,18b,19aの幅方向Yの両端がそれぞれ帯状吐出領域50,51,52の幅方向Yの両端に一致するように、第1吐出部11及び第2吐出部12が配置される。 FIG. 6 is a schematic diagram showing on the positive electrode current collector 20 strip-shaped discharge regions 50, 51, 52 corresponding to the positive electrode active material slurry discharged from the discharge nozzles 11 a, 11 b, 12 a. As shown in FIG. 6, the strip-shaped discharge regions 50, 51, 52 are set so as to form overlapping portions 60 a, 60 b and non-overlapping portions 70, 71, 72. The lengths of the overlapping portions 60a and 60b in the width direction Y are equal to the overlapping amounts f 1 [mm] and f 2 [mm], respectively. After setting the belt-like discharge regions 50, 51, 52, the first discharge is performed so that both ends of the discharge ports 18a, 18b, 19a in the width direction Y coincide with both ends of the belt-like discharge regions 50, 51, 52 in the width direction Y, respectively. The part 11 and the second discharge part 12 are arranged.

第1吐出部11及び第2吐出部12を正極集電体20の上部に配置した後、正極集電体20を巻き出すことによって静止している第1及び第2吐出部11,12に対して正極集電体20を矢印Aで示す方向に一定速度で相対移動させる。そして、吐出ノズル11a,11bで正極活物質スラリーを連続的に供給するように吐出ノズル11a,11bの各制御弁を制御することにより、吐出ノズル11a,11bから正極活物質スラリーがそれぞれ帯状吐出領域50,51に連続的に吐出される。一方、吐出ノズル12aへ正極活物質スラリーを間欠的に供給するように吐出ノズル12aの制御弁を制御することにより吐出ノズル12aから帯状吐出領域52に正極活物質スラリーが間欠的に吐出される。このことにより、正極集電体20に正極活物質スラリーが塗布されない無地部40が設けられる。   After disposing the first discharge part 11 and the second discharge part 12 on the upper part of the positive electrode current collector 20, the first and second discharge parts 11 and 12 that are stationary by unwinding the positive electrode current collector 20 are used. Then, the positive electrode current collector 20 is relatively moved at a constant speed in the direction indicated by the arrow A. Then, by controlling each control valve of the discharge nozzles 11a and 11b so that the positive electrode active material slurry is continuously supplied by the discharge nozzles 11a and 11b, the positive electrode active material slurry is respectively discharged from the discharge nozzles 11a and 11b in a strip-shaped discharge region. 50 and 51 are continuously discharged. On the other hand, the positive electrode active material slurry is intermittently discharged from the discharge nozzle 12a to the belt-like discharge region 52 by controlling the control valve of the discharge nozzle 12a so as to intermittently supply the positive electrode active material slurry to the discharge nozzle 12a. As a result, the plain portion 40 where the positive electrode active material slurry is not applied to the positive electrode current collector 20 is provided.

本実施形態では、正極集電体20の幅方向の両側に正極集電体20の長さ方向Xの全域にわたって正極活物質スラリーが塗布され、リード接続部をなす無地部40が正極集電体20の幅方向の中央部にしか存在しない。したがって、幅方向の全域で無地部が設けられる場合と比較して正極活物質スラリーの塗布面積を増大させることができるため、容量を増大させることができる。   In this embodiment, the positive electrode active material slurry is applied to both sides in the width direction of the positive electrode current collector 20 over the entire area in the length direction X of the positive electrode current collector 20, and the plain part 40 forming the lead connection portion is the positive electrode current collector. It exists only in the center part of 20 width direction. Therefore, the application area of the positive electrode active material slurry can be increased as compared with the case where the solid portion is provided in the entire region in the width direction, and thus the capacity can be increased.

また、本実施形態では、正極集電体20が第1及び第2吐出部11,12に対して矢印Aで示す方向に一定速度で相対移動する。したがって、吐出ノズル12aにおいて、第1所定時間の吐出と第2所定時間の吐出停止とを交互に繰り返すだけで、長さ方向Xに沿って無地部40が周期的に設けられた長尺の極板材45を簡易に生産できる。   In the present embodiment, the positive electrode current collector 20 moves relative to the first and second discharge units 11 and 12 at a constant speed in the direction indicated by the arrow A. Therefore, in the discharge nozzle 12a, a long pole in which the plain portion 40 is periodically provided along the length direction X is obtained simply by alternately repeating the discharge for the first predetermined time and the discharge stop for the second predetermined time. The plate material 45 can be easily produced.

上記周期性を有する極板材45は、正極活物質層が形成された後、帯状の正極集電体20の幅を二等分するように図6に示すKK線に沿って切断される。また、極板材45は、長さ方向Xに隣り合う各2つの無地部40間の中心線に沿って切断される。   After the positive electrode active material layer is formed, the electrode plate 45 having periodicity is cut along the line KK shown in FIG. 6 so as to divide the width of the belt-like positive electrode current collector 20 into two equal parts. Further, the electrode plate material 45 is cut along the center line between the two plain portions 40 adjacent to each other in the length direction X.

上述の製造方法で作製された正極板1の無地部40の内側角部40e,40fはR形状を有する。このように無地部にR形状が形成された理由は次のように推察される。図6に示すように、重なり部60a,60bでは、それぞれ吐出ノズル11a,11bから吐出された正極活物質スラリーが正極集電体20上に塗布される。次に、その塗布された正極活物質スラリー上に吐出ノズル12aから正極活物質スラリーが吐出される。そのため、重なり部60a,60bに塗布された正極活物質スラリーは周囲の領域にわずかにしみ出して、無地部40の内側角部40e,40fにR形状が形成される。なお、重なり部60a,60bの幅方向Yの寸法は吐出口18a,18b,19aの重なり量f1,f2に一致する。そのため、吐出口18a,18b,19aの重なり量f1,f2を変えることにより内側角部40e,40fの曲率半径を調整することが可能である。 Inner corners 40e and 40f of the plain portion 40 of the positive electrode plate 1 manufactured by the above-described manufacturing method have an R shape. The reason why the R shape is formed in the plain portion is presumed as follows. As shown in FIG. 6, in the overlapping portions 60a and 60b, the positive electrode active material slurry discharged from the discharge nozzles 11a and 11b is applied onto the positive electrode current collector 20. Next, the positive electrode active material slurry is discharged from the discharge nozzle 12a onto the applied positive electrode active material slurry. Therefore, the positive electrode active material slurry applied to the overlapping portions 60 a and 60 b slightly oozes out to the surrounding area, and R shapes are formed at the inner corner portions 40 e and 40 f of the plain portion 40. In addition, the dimension of the width direction Y of the overlapping parts 60a and 60b corresponds to the overlapping amounts f 1 and f 2 of the discharge ports 18a, 18b, and 19a. Therefore, the curvature radii of the inner corner portions 40e and 40f can be adjusted by changing the overlapping amounts f 1 and f 2 of the discharge ports 18a, 18b, and 19a.

以下に、実施例を用いて本開示に係る蓄電装置用電極板及び蓄電装置についてより詳細に説明する。また、無地部の形状と正極活物質層の関連性を調べるために正極活物質層の剥がれ試験を行ったので、その内容と結果を述べる。   Hereinafter, the electrode plate for a power storage device and the power storage device according to the present disclosure will be described in more detail using examples. Moreover, since the peeling test of the positive electrode active material layer was performed in order to investigate the relationship between the shape of the plain portion and the positive electrode active material layer, the contents and results will be described.

(実施例1)
正極活物質としてのリチウムニッケル複合酸化物と、導電剤としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを、N−メチル−2−ピロリドン(NMP)中に分散させてペースト状の正極活物質スラリーを作製した。その正極活物質スラリーを15μmの厚さのアルミニウム箔からなる正極集電体上に、上記の例に示した製造方法に従って塗布した。このとき、図5に示す重なり量f1,f2をいずれも3mmとして図2(a)に示すように略矩形の無地部40を正極集電体の幅方向の一端部に形成した。塗布された正極活物質スラリーを乾燥、及び圧縮することによって正極集電体上に正極活物質層を形成した。最後に正極活物質層が形成された正極集電体を所定寸法に切断することによって本開示に係る蓄電装置用電極板の一実施形態としての正極板1を作製した。
(Example 1)
Disperse lithium nickel composite oxide as a positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder in N-methyl-2-pyrrolidone (NMP) Thus, a paste-like positive electrode active material slurry was produced. The positive electrode active material slurry was applied onto a positive electrode current collector made of an aluminum foil having a thickness of 15 μm according to the production method shown in the above example. At this time, the overlapping amounts f 1 and f 2 shown in FIG. 5 were both set to 3 mm, and a substantially rectangular solid portion 40 was formed at one end in the width direction of the positive electrode current collector as shown in FIG. A positive electrode active material layer was formed on the positive electrode current collector by drying and compressing the applied positive electrode active material slurry. Finally, the positive electrode current collector having the positive electrode active material layer formed thereon was cut into a predetermined size to produce a positive electrode plate 1 as an embodiment of the electrode plate for a power storage device according to the present disclosure.

上記のようにして作製した正極板1の無地部40の内側角部40e,40fの曲率半径を測定した結果、それぞれ1.4mm及び1.9mmであった。また、外側縁40d、2本の幅方向延在縁40a,40bの延長線、及び内側縁40cの延長線で囲まれる長方形の面積S1〔cm2〕と無地部40の面積S2〔cm2〕を測定し、次式で表される被覆率(%)を算出した。算出した被覆率を、測定した内側角部40e,40fの曲率半径とともに図8に示す。
被覆率 = (S1−S2)÷S1×100
As a result of measuring the curvature radii of the inner corners 40e and 40f of the plain portion 40 of the positive electrode plate 1 produced as described above, they were 1.4 mm and 1.9 mm, respectively. In addition, the rectangular area S1 [cm2] and the plain area 40 area S2 [cm2] surrounded by the outer edge 40d, the extension lines of the two widthwise extending edges 40a and 40b, and the extension line of the inner edge 40c are measured. Then, the coverage (%) represented by the following formula was calculated. The calculated coverage is shown in FIG. 8 together with the measured radii of curvature of the inner corner portions 40e and 40f.
Coverage rate = (S1-S2) ÷ S1 × 100

負極板3は次のように作製した。負極活物質としての人造黒鉛と、結着剤としてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、水中に分散させてペースト状の負極活物質スラリーを作製した。その負極活物質スラリーを10μmの厚さの銅箔からなる負極集電体上に塗布した。塗布された負極活物質スラリーを乾燥、及び圧縮することによって負極集電体上に負極活物質層を形成した。最後に負極活物質層が形成された負極集電体を所定寸法に切断することによって負極板3を作製した。負極板3の一部に負極活物質スラリーが塗布されていない無地部を設けた。   The negative electrode plate 3 was produced as follows. Artificial graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were dispersed in water to prepare a paste-like negative electrode active material slurry. . The negative electrode active material slurry was applied on a negative electrode current collector made of a copper foil having a thickness of 10 μm. The applied negative electrode active material slurry was dried and compressed to form a negative electrode active material layer on the negative electrode current collector. Finally, the negative electrode current collector on which the negative electrode active material layer was formed was cut into a predetermined size to prepare the negative electrode plate 3. A plain portion where the negative electrode active material slurry was not applied was provided on a part of the negative electrode plate 3.

正極板1の無地部40に正極リード2を接合し、負極板3の無地部40に負極リード4を接合した。接合した正極リード2の表面と、正極リード2を接合した無地部40の裏面に絶縁テープを貼り付けた。正極板1及び負極板3をセパレータを介して巻回することによって電極群を作製した。セパレータとして、20μmの厚さを有するポリエチレン製微多孔膜を用いた。非水電解液は、体積比が80/5/15であるエチレンカーボネート(EC)/ジメチルカーボネート(DMC)/メチルエチルカーボネート(MEC)の混合溶媒に電解質塩としてのヘキサフルオロリン酸リチウム(LiPF6)を1Mとなるように溶解して調製した。電極群と非水電解液とを電池ケース6内に収容し、電池ケース6の開口部をガスケット7を介して封口板9で封口することにより実施例1に係る非水電解質二次電池10を作製した。   The positive electrode lead 2 was joined to the plain portion 40 of the positive electrode plate 1, and the negative electrode lead 4 was joined to the plain portion 40 of the negative electrode plate 3. An insulating tape was attached to the surface of the joined positive electrode lead 2 and the back surface of the plain portion 40 to which the positive electrode lead 2 was joined. The electrode group was produced by winding the positive electrode plate 1 and the negative electrode plate 3 through a separator. As the separator, a polyethylene microporous film having a thickness of 20 μm was used. The non-aqueous electrolyte is a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / methyl ethyl carbonate (MEC) having a volume ratio of 80/5/15, and lithium hexafluorophosphate (LiPF6) as an electrolyte salt. Was prepared by dissolving to 1M. The nonaqueous electrolyte secondary battery 10 according to the first embodiment is obtained by housing the electrode group and the nonaqueous electrolyte in the battery case 6 and sealing the opening of the battery case 6 with the sealing plate 9 via the gasket 7. Produced.

(実施例2)
図5に示す重なり量f1,f2をいずれも5mmとしたことを除いては実施例1と同様にして実施例2に係る正極板1を作製した。実施例2に係る正極板1の無地部40の内側角部40e,40fの曲率半径及び被覆率を図8に示す。
(Example 2)
A positive electrode plate 1 according to Example 2 was produced in the same manner as in Example 1 except that the overlapping amounts f 1 and f 2 shown in FIG. FIG. 8 shows the radii of curvature and the coverage of the inner corners 40e and 40f of the plain portion 40 of the positive electrode plate 1 according to the second embodiment.

(比較例)
図5に示す重なり量f1,f2をいずれも0mmとしたことを除いては実施例1と同様にして比較例に係る正極板を作製した。比較例に係る正極板の無地部の平面形状は、図7に示すように長方形であった。そのため、曲率半径は測定できず、被覆率は0%と算出された。
(Comparative example)
A positive electrode plate according to a comparative example was produced in the same manner as in Example 1 except that the overlapping amounts f 1 and f 2 shown in FIG. The planar shape of the plain portion of the positive electrode plate according to the comparative example was a rectangle as shown in FIG. Therefore, the radius of curvature could not be measured and the coverage was calculated as 0%.

(正極活物質層の剥がれ試験)
実施例1,2及び比較例の正極板の正極活物質層の剥がれ易さを次のような剥がれ試験により評価した。まず、無地部及び無地部を取り囲む正極活物質層にテープを圧着させ、テープの一方の端部を正極板の平面に対して45度の角度の方向に一気に引き剥がした。その後、無地部と正極活物質層の境界部からの正極活物質層の剥がれの有無を確認した。その結果を図8に示す。
(Peeling test of positive electrode active material layer)
The ease of peeling of the positive electrode active material layers of the positive and negative electrodes of Examples 1 and 2 and Comparative Example was evaluated by the following peeling test. First, the tape was pressure-bonded to the plain portion and the positive electrode active material layer surrounding the plain portion, and one end portion of the tape was peeled off in a direction at an angle of 45 degrees with respect to the plane of the positive electrode plate. Then, the presence or absence of peeling of the positive electrode active material layer from the boundary portion between the plain portion and the positive electrode active material layer was confirmed. The result is shown in FIG.

図8に示すように、被覆率がそれぞれ6%及び10%の実施例1及び2には正極活物質層の剥がれは確認されなかった。一方、無地部の平面形状が長方形であるため被覆率が0%と算出された比較例においては無地部と正極活物質層の境界部からの正極活物質層の剥がれが確認された。この結果から、被覆率は特に制限されないが、6%以上であることが好ましいことがわかる。   As shown in FIG. 8, peeling of the positive electrode active material layer was not confirmed in Examples 1 and 2 where the coverage was 6% and 10%, respectively. On the other hand, peeling of the positive electrode active material layer from the boundary between the plain portion and the positive electrode active material layer was confirmed in the comparative example in which the coverage was calculated to be 0% because the planar shape of the plain portion was rectangular. From this result, it is understood that the coverage is not particularly limited, but is preferably 6% or more.

図3に示すように、実施例1及び2においては、比較例の無地部に比べて余剰の正極活物質層が角部に設けられることによってR形状を有する内側角部40e,40fが形成されている。被覆率はその余剰の正極活物質層が占める面積の大きさの指標である。したがって、被覆率を大きくするにつれて内側角部40e,40fのR形状の曲率半径が大きくなる。これにより、正極活物質層の剥がれがより効果的に防止されるものと推察される。一方、被覆率が高すぎる場合は、リード部と正極活物質層との隙間が狭くなるためにリード部と正極活物質層とが接触する恐れがある。したがって、被覆率は30%以下に設定されるのが好ましく、被覆率は15%以下に設定されるのが更に好ましい。   As shown in FIG. 3, in Examples 1 and 2, the inner corner portions 40e and 40f having R shapes are formed by providing an excess positive electrode active material layer at the corner portions as compared with the plain portion of the comparative example. ing. The coverage is an index of the size of the area occupied by the excess positive electrode active material layer. Therefore, the radius of curvature of the R shape of the inner corners 40e and 40f increases as the coverage increases. Thereby, it is guessed that peeling of a positive electrode active material layer is prevented more effectively. On the other hand, when the coverage is too high, the gap between the lead portion and the positive electrode active material layer is narrowed, so that the lead portion and the positive electrode active material layer may come into contact with each other. Therefore, the coverage is preferably set to 30% or less, and more preferably, the coverage is set to 15% or less.

尚、本開示は、上記実施形態及びその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項及びその均等な範囲において種々の改良や変更が可能である。   Note that the present disclosure is not limited to the above-described embodiment and the modifications thereof, and various improvements and modifications can be made within the matters described in the claims of the present application and the equivalent scope thereof.

上記実施形態で示した無地部40を形成する方法の他に、無地部を設ける位置に正極活物質スラリーが塗布されないように正極集電体にマスキングする方法や、正極集電体に形成された正極活物質層を剥離する方法を採用することができる。これらの方法は、上記実施形態で示した方法に比べると工数は増えるものの無地部の形状を任意に変更することができる。   In addition to the method of forming the plain portion 40 shown in the above embodiment, a method of masking the positive electrode current collector so that the positive electrode active material slurry is not applied to the position where the plain portion is provided, or a method of forming the positive electrode current collector A method of peeling the positive electrode active material layer can be employed. These methods can arbitrarily change the shape of the plain portion although the number of steps is increased as compared with the method shown in the above embodiment.

上記実施形態では、蓄電装置用電極板の一例として非水電解質二次電池用正極板を詳細に説明した。しかし、本開示の蓄電装置には非水電解質二次電池だけでなく、ニッケルカドミウム電池やニッケル水素電池などの他の電池が含まれる。さらに、本開示の蓄電装置には電池以外にキャパシタも含まれる。そのため、本開示の蓄電装置用電極板には電池やキャパシタの正極板や負極板が含まれ、集電体及び活物質層の材料は上記実施形態に記載された材料に限定されない。   In the embodiment described above, the positive electrode plate for a nonaqueous electrolyte secondary battery has been described in detail as an example of the electrode plate for a power storage device. However, the power storage device of the present disclosure includes not only a non-aqueous electrolyte secondary battery but also other batteries such as a nickel cadmium battery and a nickel hydrogen battery. Furthermore, the power storage device of the present disclosure includes a capacitor in addition to the battery. Therefore, the electrode plate for a power storage device of the present disclosure includes a positive electrode plate and a negative electrode plate of a battery or a capacitor, and the materials of the current collector and the active material layer are not limited to the materials described in the above embodiment.

1 正極板、 10 非水電解質二次電池、 20 正極集電体、 30 正極活物質層、 40 無地部、 40a, 40b 幅方向延在縁、 40c 内側縁、 40d 外側縁、 40e, 40f 内側角部。   DESCRIPTION OF SYMBOLS 1 Positive electrode plate, 10 Nonaqueous electrolyte secondary battery, 20 Positive electrode collector, 30 Positive electrode active material layer, 40 Solid part, 40a, 40b Width direction extending edge, 40c Inner edge, 40d Outer edge, 40e, 40f Inner angle Department.

Claims (4)

略矩形の集電体と、
前記集電体の少なくとも一方の表面上に設けられ、活物質を含む活物質層と、
を備え、
前記表面は、前記活物質層が設けられていない無地部を前記集電体の長さ方向の一部領域における幅方向の一端部に有し、
前記無地部の外縁は、前記長さ方向に延在する前記集電体の外縁の一部に一致する外側縁、前記外側縁の両端部のそれぞれから前記集電体の幅方向に沿って延在する2本の幅方向延在縁、及び前記2本の幅方向延在縁のそれぞれの端部に連結する略直線状の内側縁を有し、
前記2本の幅方向延在縁のうち一方の幅方向延在縁の端部に前記内側縁が曲線部を介して連結され、
前記2本の幅方向延在縁のうち他方の幅方向延在縁の端部に前記内側縁が曲線部を介して連結されているか又は直接連結されている、
蓄電装置用電極板。
A substantially rectangular current collector;
An active material layer provided on at least one surface of the current collector and containing an active material;
With
The surface has a plain portion where the active material layer is not provided at one end portion in the width direction in a partial region in the length direction of the current collector,
The outer edge of the plain portion extends along the width direction of the current collector from each of an outer edge that coincides with a part of the outer edge of the current collector that extends in the length direction and both ends of the outer edge. Two widthwise extending edges present, and a substantially straight inner edge connected to each end of the two widthwise extending edges,
The inner edge is connected to an end portion of one of the two width direction extending edges through the curved portion,
Of the two widthwise extending edges, the inner edge is connected to the end of the other widthwise extending edge via a curved portion, or directly connected,
Electrode plate for power storage device.
請求項1に記載の蓄電装置用電極板において、
前記曲線部は、前記無地部の外側に凸となる形状を有する、蓄電装置用電極板。
The electrode plate for a power storage device according to claim 1,
The curved portion is a power storage device electrode plate having a shape that protrudes outward from the plain portion.
請求項1又は2に記載の蓄電装置用電極板において、
前記外側縁、前記2本の幅方向延在縁の延長線、及び前記内側縁の延長線で囲まれた矩形領域の面積をS1〔cm2〕とし、前記無地部の面積をS2〔cm2〕としたとき、6≦100×(S1−S2)/S1≦30の関係式を満たす、蓄電装置用電極板。
The electrode plate for a power storage device according to claim 1 or 2,
The area of the rectangular region surrounded by the outer edge, the extension line of the two widthwise extending edges, and the extension line of the inner edge is S1 [cm2], and the area of the plain part is S2 [cm2] When it does, the electrode plate for electrical storage devices which satisfy | fills the relational expression of 6 <= 100 * (S1-S2) / S1 <= 30.
請求項1乃至3のいずれか1つに記載の蓄電装置用電極板を備える、蓄電装置。   A power storage device comprising the electrode plate for a power storage device according to any one of claims 1 to 3.
JP2015218233A 2015-11-06 2015-11-06 Electrode plate for power storage device, and power storage device with the same Pending JP2018206465A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015218233A JP2018206465A (en) 2015-11-06 2015-11-06 Electrode plate for power storage device, and power storage device with the same
PCT/JP2016/004718 WO2017077697A1 (en) 2015-11-06 2016-10-27 Electrode plate for power storage apparatuses, and power storage apparatus provided with electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218233A JP2018206465A (en) 2015-11-06 2015-11-06 Electrode plate for power storage device, and power storage device with the same

Publications (1)

Publication Number Publication Date
JP2018206465A true JP2018206465A (en) 2018-12-27

Family

ID=58662445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218233A Pending JP2018206465A (en) 2015-11-06 2015-11-06 Electrode plate for power storage device, and power storage device with the same

Country Status (2)

Country Link
JP (1) JP2018206465A (en)
WO (1) WO2017077697A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057629A1 (en) * 2022-09-15 2024-03-21 パナソニックエナジー株式会社 Electrode plate for power storage device, and power storage device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167410A (en) * 1994-12-12 1996-06-25 Fuji Elelctrochem Co Ltd Manufacture of electrode sheet of battery
KR100774735B1 (en) * 2006-02-14 2007-11-08 엘에스전선 주식회사 Connecting structure between electrode and lead, electric double layer capacitor having the same, and Manufacturing method for the capacitor
EP1990814A4 (en) * 2006-05-29 2015-03-04 Panasonic Corp Electric double layer capacitor and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057629A1 (en) * 2022-09-15 2024-03-21 パナソニックエナジー株式会社 Electrode plate for power storage device, and power storage device

Also Published As

Publication number Publication date
WO2017077697A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6292678B2 (en) Secondary battery and electrode manufacturing method
US11329312B2 (en) Pre-lithiation apparatus, method of producing negative electrode unit and negative electrode unit
WO2015015663A1 (en) Secondary battery
WO2016121734A1 (en) Secondary battery
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
WO2015019514A1 (en) Secondary battery and method for manufacturing same
WO2015129320A1 (en) Electrode for secondary cell, secondary cell, and method for manufacturing electrode for secondary cell and secondary cell
WO2018180019A1 (en) Method and device for producing secondary battery
US20170033399A1 (en) Secondary battery and method for manufacturing the same
JP5617511B2 (en) Battery sheet manufacturing method and manufacturing apparatus
EP3131149B1 (en) Flat-type secondary battery
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
WO2017077697A1 (en) Electrode plate for power storage apparatuses, and power storage apparatus provided with electrode plate
US11511307B2 (en) Method for manufacturing electrode sheet for use in power storage device and applicator
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
WO2018154987A1 (en) Secondary battery and method for producing same
WO2013098968A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
EP3358652A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
WO2021192258A1 (en) Electrode body, power storage element, and power storage module
JP7079414B2 (en) Non-aqueous electrolyte secondary battery
WO2021192256A1 (en) Electrode body, electricity storage element, and electricity storage module
JP6821595B2 (en) Electrode plate for power storage device and power storage device including it
JP2015187961A (en) Manufacturing apparatus of power storage device and manufacturing method of power storage device
JP2022147190A (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2012119095A (en) Apparatus of manufacturing electrode plate and method of manufacturing battery