JP2018202753A - Method for manufacturing carbon fiber reinforced resin member - Google Patents

Method for manufacturing carbon fiber reinforced resin member Download PDF

Info

Publication number
JP2018202753A
JP2018202753A JP2017111171A JP2017111171A JP2018202753A JP 2018202753 A JP2018202753 A JP 2018202753A JP 2017111171 A JP2017111171 A JP 2017111171A JP 2017111171 A JP2017111171 A JP 2017111171A JP 2018202753 A JP2018202753 A JP 2018202753A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
reinforced resin
resin member
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017111171A
Other languages
Japanese (ja)
Other versions
JP6902753B2 (en
Inventor
正俊 岩間
Masatoshi Iwama
正俊 岩間
明弘 稲田
Akihiro Inada
明弘 稲田
直彦 杉田
Naohiko Sugita
直彦 杉田
通 木崎
Toru Kizaki
通 木崎
藤井 達也
Tatsuya Fujii
達也 藤井
和也 平岩
Kazuya Hiraiwa
和也 平岩
白石 勝
Masaru Shiraishi
勝 白石
誠人 寺島
Masato Terajima
誠人 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWAMA KOGYOSHO KK
Tech Lab Co Ltd
Toko Inc
Toko Co Ltd
Original Assignee
IWAMA KOGYOSHO KK
Tech Lab Co Ltd
Toko Inc
Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWAMA KOGYOSHO KK, Tech Lab Co Ltd, Toko Inc, Toko Co Ltd filed Critical IWAMA KOGYOSHO KK
Priority to JP2017111171A priority Critical patent/JP6902753B2/en
Publication of JP2018202753A publication Critical patent/JP2018202753A/en
Application granted granted Critical
Publication of JP6902753B2 publication Critical patent/JP6902753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a method for manufacturing a carbon fiber reinforced resin member obtaining a satisfactory dimensional accuracy in a direction needed by the member.SOLUTION: The method for manufacturing a carbon fiber reinforced resin member includes the steps of: prepreg sheet lamination for laminating a prescribed number of prepreg sheets containing a carbon fiber upon an outer circumferential surface of a core mold 101; forming into a prescribed shape by pressing an outer mold 106, having a prescribed inner shape and divided into a plurality, onto the outer circumferential surface of the laminated prepreg sheet 110; and heating and curing the prepreg sheet laminated in a state sandwiched by the core mold and the outer mold. The method also provides an allowance space 108, for absorbing a surplus part of the prepreg sheet 110 having lost the escape space between the core mold and the outer mold in the forming step and the heating and curing step, at a position away from the surface where dimensional accuracy of the carbon fiber reinforced resin member is required, on the inner circumferential surface configured by the plurality of the outer molds.SELECTED DRAWING: Figure 2

Description

本発明は、所定の方向における寸法精度が要求される分野に使用される炭素繊維強化樹脂部材の製造方法に関する。   The present invention relates to a method for manufacturing a carbon fiber reinforced resin member used in a field where dimensional accuracy in a predetermined direction is required.

炭素繊維強化樹脂は、軽量で高強度の特性を有しているので、例えば航空機の胴体、ロボットハンドなど、様々な分野で使用されている。   Since carbon fiber reinforced resin is lightweight and has high strength characteristics, it is used in various fields such as an aircraft fuselage and a robot hand.

このような炭素繊維強化樹脂からなる部材を成形する技術について開示された文献として、例えば下記特許文献1には、プリプレグを積層した円筒形状の積層体を硬化させる際に使用する成形型であって、前記積層体の内側に位置する円筒形状の芯型と、前記積層体の外側に位置し、複数の部分表面型からなる表面型と、を備え、前記各部分表面型は、前記積層体の周方向に並んで外周面全体を円筒を形成するようにして覆うとともに、前記円筒の周方向を繊維方向とする繊維の量と前記円筒の軸方向を繊維方向とする繊維の量が異なる繊維強化樹脂によって形成されており、前記各部分表面型は、前記円筒の軸方向に比べて前記円筒の周方向における熱膨張率が前記芯型の熱膨張率に近くなるように構成されている、成形型が開示されている。   As a document disclosed about the technique which shape | molds the member which consists of such a carbon fiber reinforced resin, for example in following patent document 1, it is a shaping | molding die used when hardening the cylindrical laminated body which laminated | stacked the prepreg, A cylindrical core mold located inside the laminate, and a surface mold consisting of a plurality of partial surface molds located outside the laminate, wherein each partial surface mold is a Fiber reinforcement that covers the entire outer peripheral surface in a line in the circumferential direction so as to form a cylinder, and the amount of fibers whose fiber direction is the circumferential direction of the cylinder and the amount of fibers whose fiber direction is the axial direction of the cylinder are different. Each partial surface mold is formed of resin, and is configured such that the thermal expansion coefficient in the circumferential direction of the cylinder is closer to the thermal expansion coefficient of the core mold than the axial direction of the cylinder. Type is disclosed .

また、下記特許文献2には、産業用ロボットのアーム部に取り付けられるロボットハンド部材を製造する方法において、所定温度以下では加熱非変形性を有する材料を用いて所定の断面形状とされた芯材の外周面に、強化繊維を含むプリプレグシートを巻き付けるステップと、上記巻き付けられたプリプレグシートの外周面に所定の内面形状を有する外型を押し付けて上記プリプレグシートの外面形状を所定寸法に成形するステップと、上記成形されたプリプレグシートを所定温度に加熱し熱硬化させて繊維強化複合材料とするステップと、上記繊維強化複合材料とされた部材から芯材を抜き取り中空構造とするステップと、を順次行うことを特徴とするロボットハンド部材の製造方法が開示されている。   Further, in Patent Document 2 below, in a method for manufacturing a robot hand member attached to an arm portion of an industrial robot, a core material having a predetermined cross-sectional shape using a material having heat non-deformability below a predetermined temperature. A step of winding a prepreg sheet containing reinforcing fibers around the outer peripheral surface of the sheet, and a step of pressing an outer mold having a predetermined inner surface shape onto the outer peripheral surface of the wound prepreg sheet to form the outer surface shape of the prepreg sheet into a predetermined dimension A step of heating the molded prepreg sheet to a predetermined temperature and thermosetting it to obtain a fiber reinforced composite material, and a step of extracting the core material from the member made of the fiber reinforced composite material to form a hollow structure. A method for manufacturing a robot hand member is disclosed.

特許第5698526号公報Japanese Patent No. 5698526

特開2002−292591号公報Japanese Patent Laid-Open No. 2002-292591

しかしながら、芯型に炭素繊維複合材料のプリプレグシートを積層して、その外側を複数の外型で押圧しつつ加熱硬化させる際に、プリプレグシートに皺が寄って、成形品の表面に不定形な皺が形成されるという問題があった。   However, when a prepreg sheet made of a carbon fiber composite material is laminated on a core mold and heat-cured while pressing the outside with a plurality of outer molds, the prepreg sheet is wrinkled, and the surface of the molded product is irregular. There was a problem that cocoons were formed.

炭素繊維強化樹脂を用いて、例えば工作機械等の部品を製作しようとした場合には、所定方向における寸法精度が高く要求されるので、表面に不定形な皺が形成されると、その後に切削加工などが必要となるだけでなく、切削加工によって強度が低下してしまうという問題があった。   For example, when trying to manufacture parts such as machine tools using carbon fiber reinforced resin, dimensional accuracy in a predetermined direction is required to be high. In addition to the need for processing, there was a problem that the strength was reduced by cutting.

したがって、本発明の目的は、その部材に必要とされる方向における寸法精度が十分に得られるようにした炭素繊維強化樹脂部材の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a carbon fiber reinforced resin member in which sufficient dimensional accuracy in the direction required for the member is obtained.

上記目的を達成するため、本発明は、炭素繊維を含むプリプレグシートを芯型の外周面に所定枚数積層するプリプレグシート積層工程と、前記積層されたプリプレグシートの外周面に所定の内面形状を有する、複数に分割された外型を押し付けて所定形状に成形する成形工程と、前記芯型及び前記外型で挟持した状態で前記積層されたプリプレグシートを加熱硬化する加熱硬化工程とを含む炭素繊維強化樹脂部材の製造方法において、前記複数の外型で構成される内周面の、前記炭素繊維強化樹脂部材の寸法精度が求められる面から外れた位置に、前記成形工程及び前記加熱硬化工程において、前記芯型及び前記外型の間で行き場を失った前記プリプレグシートの余剰部分を吸収する逃げ空間を設けることを特徴とする炭素繊維強化樹脂部材の製造方法を提供するものである。   In order to achieve the above object, the present invention has a prepreg sheet laminating step of laminating a predetermined number of prepreg sheets containing carbon fibers on an outer peripheral surface of a core mold, and a predetermined inner surface shape on the outer peripheral surface of the stacked prepreg sheets. A carbon fiber comprising: a molding step of pressing a plurality of outer molds into a predetermined shape; and a heat curing step of heat curing the laminated prepreg sheet while being sandwiched between the core mold and the outer mold In the manufacturing method of the reinforced resin member, in the molding step and the heat curing step, the inner peripheral surface constituted by the plurality of outer molds is positioned away from the surface where the dimensional accuracy of the carbon fiber reinforced resin member is required. A carbon fiber reinforced resin member characterized by providing a clearance space for absorbing the surplus portion of the prepreg sheet that has lost its place between the core mold and the outer mold. There is provided a manufacturing method.

本発明によれば、成型工程及び加熱硬化工程において、芯型及び外型の間で行き場を失ったプリプレグシートの余剰部分が、逃げ空間に流入することによって、寸法精度が求められる面に、プリプレグシートの皺が発生することを抑制できる。それによって、成形硬化させた後に、寸法精度を出すための研磨加工などの必要性を低減することができ、製造作業性を良好にすると共に、製造コストを低減することができる。   According to the present invention, in the molding process and the heat curing process, the excess portion of the prepreg sheet that has lost its place between the core mold and the outer mold flows into the escape space, so that the prepreg is provided on the surface where dimensional accuracy is required. It is possible to suppress sheet wrinkling. As a result, after molding and curing, the necessity for polishing processing or the like for obtaining dimensional accuracy can be reduced, the manufacturing workability can be improved, and the manufacturing cost can be reduced.

本発明の好ましい態様によれば、前記複数の外型の突き合わせ部となる内周角部を、R状又はテーパ状に面取りすることにより、前記逃げ空間を形成する。この態様によれば、成型工程及び加熱硬化工程において、芯型及び外型の間で行き場を失ったプリプレグシートの余剰部分が、複数の外型の突き合わせ部となる内周角部に設けられた逃げ空間に流入するので、それぞれの外型で押さえられる面、すなわち寸法精度が求められる面に皺が発生することを抑制することができる。   According to a preferred aspect of the present invention, the clearance space is formed by chamfering the inner peripheral corner portion, which is a butt portion of the plurality of outer molds, into an R shape or a taper shape. According to this aspect, in the molding process and the heat curing process, the surplus portion of the prepreg sheet that has lost its place between the core mold and the outer mold is provided at the inner peripheral corner that becomes the butted portion of the plurality of outer molds. Since it flows into the escape space, it is possible to prevent wrinkles from occurring on the surface pressed by each outer mold, that is, the surface where dimensional accuracy is required.

本発明においては、前記芯型の熱膨張率は、前記炭素繊維強化樹脂部材の熱膨張率よりも大きいものを用いることが好ましい。この態様によれば、加熱硬化工程の後、温度が低下すると、芯型の方が、成形硬化された炭素繊維強化樹脂部材よりも大きく縮まるので、芯型を抜き出しやすくすることができる。   In the present invention, it is preferable to use a material having a larger thermal expansion coefficient than that of the carbon fiber reinforced resin member. According to this aspect, when the temperature is lowered after the heat curing step, the core mold is contracted more greatly than the carbon fiber reinforced resin member that has been molded and cured, so that the core mold can be easily extracted.

本発明においては、前記外型の熱膨張率は、前記芯型の熱膨張率よりも小さいものを用いることが好ましい。この態様によれば、芯型と外型との間で、プリプレグシートの積層体を効果的に押圧することができると共に、成形される炭素繊維強化樹脂部材の外径の寸法精度を高めやすくなる。   In the present invention, it is preferable that the outer mold has a thermal expansion coefficient smaller than that of the core mold. According to this aspect, the laminate of the prepreg sheet can be effectively pressed between the core mold and the outer mold, and the dimensional accuracy of the outer diameter of the molded carbon fiber reinforced resin member can be easily increased. .

本発明の1つの好ましい態様においては、前記芯型は、円筒又は円柱状をなし、前記外型は、内面が周方向に等角度で4分割された円弧状曲面をなす、4つのブロックからなり、前記外型の4つのブロックの突き合わせ部となる内周角部を、R状又はテーパ状に面取りした形状をなす。この態様によれば、成型工程及び加熱硬化工程において、プリプレグシートの皺が寄せられてなるリブ状の突起が、外周面の周方向4箇所に、軸方向に沿って形成された、円筒状の炭素繊維強化樹脂部材を得ることができる。円筒状の炭素繊維強化樹脂部材は、外周面のリブ状の突起が形成された部分以外には皺の発生がなく、寸法精度の高い円筒状をなしている。   In one preferable aspect of the present invention, the core mold is formed in a cylindrical or columnar shape, and the outer mold is composed of four blocks having an arcuate curved surface whose inner surface is divided into four at equal angles in the circumferential direction. The inner peripheral corner portion that becomes the abutting portion of the four blocks of the outer mold is chamfered in an R shape or a taper shape. According to this aspect, in the molding step and the heat curing step, the rib-like protrusions formed by the wrinkles of the prepreg sheet are formed along the axial direction at four locations in the circumferential direction of the outer peripheral surface. A carbon fiber reinforced resin member can be obtained. The cylindrical carbon fiber reinforced resin member has a cylindrical shape with high dimensional accuracy with no generation of wrinkles other than the portion where the rib-shaped protrusions on the outer peripheral surface are formed.

本発明の別の好ましい態様においては、前記芯型は、角部をR状又はテーパ状に面取りされた角筒又は角柱状をなし、前記外型は、前記角筒又は角柱状の、端面側から見て各辺に相当する面をそれぞれ覆う複数のブロックで構成され、前記外型の各ブロックの突き合わせ部となる内周角部を、R状又はテーパ状に面取りした形状をなす。この態様によれば、成型工程及び加熱硬化工程において、プリプレグシートの皺が寄せられてなるリブ状の突起が各辺の角部に沿って形成された、角筒状の炭素繊維強化樹脂部材を得ることができる。この炭素繊維強化樹脂部材は、上記角部を除く、端面側から見て各辺に相当する面に皺の発生がなく、寸法精度の高い角筒状をなしている。   In another preferred embodiment of the present invention, the core mold has a rectangular tube or prismatic shape whose corners are chamfered in an R shape or a taper shape, and the outer mold is the end surface side of the rectangular tube or the prismatic shape. It comprises a plurality of blocks each covering a surface corresponding to each side when viewed from the side, and has an inner peripheral corner portion which becomes a butting portion of each block of the outer mold and is chamfered in an R shape or a taper shape. According to this aspect, in the molding process and the heat curing process, the rectangular tube-shaped carbon fiber reinforced resin member in which rib-shaped protrusions formed by the wrinkles of the prepreg sheet are formed along the corners of each side. Can be obtained. This carbon fiber reinforced resin member has a square tube shape with high dimensional accuracy without generating wrinkles on the surface corresponding to each side when viewed from the end surface side excluding the corner portion.

本発明によれば、成型工程及び加熱硬化工程において、芯型及び外型の間で行き場を失ったプリプレグシートの余剰部分が、逃げ空間に流入することによって、寸法精度が求められる面に、プリプレグシートの皺が発生することを抑制できる。それによって、成形硬化させた後に、寸法精度を出すための研磨加工などの必要性を低減することができ、製造作業性を良好にすると共に、製造コストを低減することができる。   According to the present invention, in the molding process and the heat curing process, the excess portion of the prepreg sheet that has lost its place between the core mold and the outer mold flows into the escape space, so that the prepreg is provided on the surface where dimensional accuracy is required. It is possible to suppress sheet wrinkling. As a result, after molding and curing, the necessity for polishing processing or the like for obtaining dimensional accuracy can be reduced, the manufacturing workability can be improved, and the manufacturing cost can be reduced.

本発明の炭素繊維強化樹脂部材の製造方法を実施するための成形型の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the shaping | molding die for enforcing the manufacturing method of the carbon fiber reinforced resin member of this invention. 同成形型を用いて、プリプレグシートの積層体を押圧する状態を示す端面図である。It is an end elevation which shows the state which presses the laminated body of a prepreg sheet using the same shaping | molding die. 同成形型を用いて製造された炭素繊維強化樹脂部材を示す斜視図である。It is a perspective view which shows the carbon fiber reinforced resin member manufactured using the same shaping | molding die. 本発明の炭素繊維強化樹脂部材の製造方法を実施するための成形型の他の例を示す分解斜視図である。It is a disassembled perspective view which shows the other example of the shaping | molding die for enforcing the manufacturing method of the carbon fiber reinforced resin member of this invention. 同成形型を用いて、プリプレグシートの積層体を押圧する状態を示す端面図である。It is an end elevation which shows the state which presses the laminated body of a prepreg sheet using the same shaping | molding die. 同成形型を用いて製造された炭素繊維強化樹脂部材を示す斜視図である。It is a perspective view which shows the carbon fiber reinforced resin member manufactured using the same shaping | molding die. 逃げ空間を有さない成形型を用いて、炭素繊維強化樹脂部材を製造した一例を示す写真である。It is a photograph which shows an example which manufactured the carbon fiber reinforced resin member using the shaping | molding die which does not have escape space. 逃げ空間を有する本発明の成形型を用いて、炭素繊維強化樹脂部材を製造した一例を示す写真である。It is a photograph which shows an example which manufactured the carbon fiber reinforced resin member using the shaping | molding die of this invention which has escape space.

以下、本発明の炭素繊維強化樹脂部材の製造方法の実施形態を説明するが、本発明はこれらの実施形態に限定されるものではない。  Hereinafter, although the embodiment of the manufacturing method of the carbon fiber reinforced resin member of the present invention is described, the present invention is not limited to these embodiments.

本発明において、炭素繊維を含むプリプレグシートとしては、炭素繊維を所定方向に配列した基材シートに、熱硬化性樹脂を含浸させたシートが好ましく用いられる。
炭素繊維としては、繊維径が好ましくは3〜15μm、より好ましくは5〜10μmの長繊維が好ましく用いられる。炭素繊維の基材シートは、炭素繊維を同方向に引き揃えて配列したものであってもよく、炭素繊維を編み込んだ織布であってもよく、炭素繊維の方向を変えて堆積したものでもあってもよい。
In the present invention, as the prepreg sheet containing carbon fibers, a sheet obtained by impregnating a thermosetting resin into a base sheet in which carbon fibers are arranged in a predetermined direction is preferably used.
As the carbon fiber, a long fiber having a fiber diameter of preferably 3 to 15 μm, more preferably 5 to 10 μm is preferably used. The carbon fiber base sheet may be one in which carbon fibers are aligned and aligned in the same direction, may be a woven fabric in which carbon fibers are knitted, or may be deposited by changing the direction of carbon fibers. There may be.

熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエステル樹脂、フェノール樹脂、グアナミン樹脂、また、ビスマレイド・トリアジン樹脂等のポリイミド樹脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタレート樹脂、さらにメラミン樹脂やユリア樹脂やアミノ樹脂等が挙げられる。   Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, polyvinyl ester resins, phenol resins, guanamine resins, polyimide resins such as bismaleide and triazine resins, furan resins, polyurethane resins, polydiallyl phthalate resins, Examples include melamine resin, urea resin, and amino resin.

中でも、成形時の熱収縮を抑える観点から、エポキシ樹脂が好ましく使用される。エポキシ樹脂の主剤としては、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂が好ましく用いられる。一方、硬化剤としては、ジシアンジアミドにジクロロフェニルジメチル尿素を組み合わせた硬化剤系が作業性、物性等のバランスに優れている点で好適に使用される。   Among these, an epoxy resin is preferably used from the viewpoint of suppressing thermal shrinkage during molding. As the main component of the epoxy resin, a bisphenol A type epoxy resin, a phenol novolac type epoxy resin, or a glycidylamine type epoxy resin is preferably used. On the other hand, as the curing agent, a curing agent system in which dichlorophenyldimethylurea is combined with dicyandiamide is preferably used because it has an excellent balance of workability and physical properties.

プリプレグシートの厚さは、特に限定されないが、通常0.05〜0.4mmが好ましく、0.1〜0.2mmがより好ましい。炭素繊維強化樹脂部材を製造する際のプリプレグシートの積層枚数も、特に限定されないが、通常2〜200枚が好ましく、4〜100枚がより好ましい。   Although the thickness of a prepreg sheet is not specifically limited, 0.05-0.4 mm is preferable normally and 0.1-0.2 mm is more preferable. The number of prepreg sheets laminated when the carbon fiber reinforced resin member is produced is also not particularly limited, but is usually preferably 2 to 200 and more preferably 4 to 100.

プリプレグシート中の炭素繊維の含有量は、20〜80質量%が好ましく、40〜70質量%がより好ましい。炭素繊維の含有量が高すぎると、成形時の柔軟性が十分に得られず、表面に繊維が浮き出してくる可能性があり、炭素繊維の含有量が低すぎると、所望とする強度が得られにくくなる。   20-80 mass% is preferable and, as for content of the carbon fiber in a prepreg sheet, 40-70 mass% is more preferable. If the carbon fiber content is too high, sufficient flexibility during molding may not be obtained, and the fiber may be raised on the surface. If the carbon fiber content is too low, the desired strength can be obtained. It becomes difficult to be.

本発明において、芯型、外型の材質は、特に限定されないが、成形工程及び加熱硬化工程における強度と耐熱性とを有するものであればよく、例えば、アルミニウム、アルミニウム合金等からなる金属、石膏、セラミックス、耐熱性の樹脂などが挙げられる。   In the present invention, the material of the core mold and the outer mold is not particularly limited as long as it has strength and heat resistance in the molding process and the heat curing process. For example, metals such as aluminum and aluminum alloys, gypsum , Ceramics, heat resistant resin, and the like.

この場合、芯型の材質としては、炭素繊維強化樹脂部材の熱膨張率よりも大きいものが好ましく用いられ、例えば、アルミニウム、アルミニウム合金などが好ましく採用される。芯型の材質として、熱膨張率が、炭素繊維強化樹脂部材の熱膨張率よりも大きいものを用いることにより、加熱硬化時には積層されたプリプレグシートに対する押圧力を高めることができると共に、加熱硬化終了して冷却した際には、成形された炭素繊維強化樹脂部材よりも大きく縮んで離型しやすくすることができる。   In this case, as the core material, a material having a coefficient of thermal expansion greater than that of the carbon fiber reinforced resin member is preferably used. For example, aluminum, an aluminum alloy, or the like is preferably used. By using a material having a thermal expansion coefficient larger than that of the carbon fiber reinforced resin member as the core material, it is possible to increase the pressing force on the laminated prepreg sheets during heat curing, and the heat curing is completed. Then, when cooled, it can shrink more greatly than the molded carbon fiber reinforced resin member to facilitate release.

また、外型の材質としては、熱膨張率が、芯型の熱膨張率よりも小さいものを用いることが好ましく、例えば、石膏などが好ましく採用される。外型の材質としては、熱膨張率が、芯型の熱膨張率よりも小さいものを用いることにより、加熱硬化の際に、内型と外型との間で、プリプレグシートの積層体が効果的に押圧されると共に、成形される炭素繊維強化樹脂部材の外径の寸法精度を高めやすくなる。   Further, as the material of the outer mold, it is preferable to use a material having a thermal expansion coefficient smaller than that of the core mold, and for example, plaster is preferably used. As the material of the outer mold, a laminate of prepreg sheets is effective between the inner mold and the outer mold at the time of heat curing by using a material having a thermal expansion coefficient smaller than that of the core mold. And the dimensional accuracy of the outer diameter of the carbon fiber reinforced resin member to be molded is easily increased.

本発明の炭素繊維強化樹脂部材の製造方法は、炭素繊維を含むプリプレグシートを芯型の外周面に所定枚数積層するプリプレグシート積層工程と、前記積層されたプリプレグシートの外周面に所定の内面形状を有する、複数に分割された外型を押し付けて所定形状に成形する成形工程と、前記芯型及び前記外型で挟持した状態で前記積層されたプリプレグシートを加熱硬化する加熱硬化工程とを含んでいる。   The method for producing a carbon fiber reinforced resin member of the present invention includes a prepreg sheet laminating step of laminating a predetermined number of prepreg sheets containing carbon fibers on an outer peripheral surface of a core mold, and a predetermined inner surface shape on the outer peripheral surface of the laminated prepreg sheets. A molding step of pressing a plurality of divided outer molds into a predetermined shape, and a heat curing step of heat curing the laminated prepreg sheets in a state of being sandwiched between the core mold and the outer mold. It is out.

成形工程において、外型と内型との間で、積層されたプリプレグシートを押圧する際の押圧力は、常法に従って適宜設定すればよいが、通常は、100〜600kPaが好ましく、200〜400kPaがより好ましい。   In the molding step, the pressing force when pressing the laminated prepreg sheet between the outer mold and the inner mold may be appropriately set according to a conventional method, but is usually preferably 100 to 600 kPa, and 200 to 400 kPa. Is more preferable.

加熱硬化工程における加熱温度も、採用する熱硬化性樹脂に応じて適宜定めればよいが、例えば、エポキシ樹脂を用いる場合には、100〜160℃が好ましく、120〜140℃がより好ましい。加熱硬化時間も、特に限定されないが、通常30分〜10時間分が好ましく、2時間〜7時間がより好ましい。   The heating temperature in the heat curing step may be appropriately determined according to the thermosetting resin to be employed. For example, when an epoxy resin is used, 100 to 160 ° C is preferable, and 120 to 140 ° C is more preferable. Although the heat curing time is not particularly limited, it is preferably 30 minutes to 10 hours, more preferably 2 hours to 7 hours.

なお、内型及び外型の内面には、離型剤を塗布したり、離型シートを介在させたりして、成形後の脱型がしやすくすることが好ましい。離型剤や離型シートとしては、一般に市販されているものを使用することができる。   In addition, it is preferable that a mold release agent is apply | coated to the inner surface of an inner mold | type and an outer mold | type, or a mold release sheet is interposed so that it may be easy to remove after molding. As the release agent and the release sheet, commercially available products can be used.

本発明の最大の特徴は、複数の外型で構成される内周面の、炭素繊維強化樹脂部材の寸法精度が求められる面から外れた位置に、成形工程及び加熱硬化工程において、芯型及び外型の間で行き場を失ったプリプレグシートの余剰部分を吸収する逃げ空間を設けることにある。以下、その具体的態様について、図面を参照して説明する。   The greatest feature of the present invention is that, in the molding process and the heat curing process, the core mold and the inner peripheral surface constituted by a plurality of outer molds are positioned away from the surface where the dimensional accuracy of the carbon fiber reinforced resin member is required. The object is to provide a clearance space for absorbing the excess portion of the prepreg sheet that has lost its place between the outer molds. Hereinafter, the specific aspect is demonstrated with reference to drawings.

図1には、本発明の炭素繊維強化樹脂部材の製造方法を実施するための成形型の一例が示されている。この成形型100は、芯型101と、外型106とを有している。芯型101は、この実施形態の場合、円柱状をなし、熱膨張率が、炭素繊維強化樹脂部材の熱膨張率よりも大きい材質が好ましく用いられ、例えばアルミニウム等で形成されている。   FIG. 1 shows an example of a mold for carrying out the method for producing a carbon fiber reinforced resin member of the present invention. The mold 100 includes a core mold 101 and an outer mold 106. In the case of this embodiment, the core mold 101 has a columnar shape, and a material having a thermal expansion coefficient larger than that of the carbon fiber reinforced resin member is preferably used. For example, the core mold 101 is made of aluminum or the like.

外型106は、4つの分割型102,103,104,105で構成されており、それらの内周面によって、芯型101を囲む円筒状内周面を構成するようになっている。4つの分割型102,103,104,105で形成される円筒状内周面の内径は、芯型101の外径よりも大きくなっており、それらの間に後述するプリプレグ積層体110を挟持できるようになっている。外型106は、熱膨張率が、芯型101の熱膨張率よりも小さい材質が好ましく用いられ、例えば石膏等で形成されている。   The outer mold 106 includes four divided molds 102, 103, 104, and 105, and a cylindrical inner peripheral surface that surrounds the core mold 101 is configured by the inner peripheral surfaces thereof. The inner diameter of the cylindrical inner peripheral surface formed by the four split molds 102, 103, 104, 105 is larger than the outer diameter of the core mold 101, and a prepreg laminate 110 described later can be sandwiched between them. It is like that. The outer mold 106 is preferably made of a material whose coefficient of thermal expansion is smaller than that of the core mold 101, and is formed of, for example, plaster.

図2を併せて参照すると、4つの分割型102,103,104,105の突き合わせ部の内周角部には、テーパ状又はR状の面取り部107が形成されている。そして、芯型101の外周に積層されたプリプレグ積層体110の外側に4つの分割型102,103,104,105を配置して、それらを付き合わせたとき、面取り部107によって、突き合わせ部の内周角部に逃げ空間108が形成されるようになっている。   Referring also to FIG. 2, a tapered or R-shaped chamfered portion 107 is formed at the inner peripheral corners of the butted portions of the four split molds 102, 103, 104, and 105. Then, when the four split molds 102, 103, 104, 105 are arranged outside the prepreg laminate 110 laminated on the outer periphery of the core mold 101 and they are put together, the chamfered portion 107 causes the inner portion of the butt portion to be aligned. A clearance space 108 is formed at the peripheral corner.

プリプレグ積層体110は、前述した炭素繊維を含むプリプレグシートを、芯型101の外周に複数枚積層することによって形成される(積層工程)。この場合、炭素繊維を同方向に引き揃えて配列した基材シートを用いたプリプレグシートにおいては、炭素繊維の方向を少しずつ変えながら積層することによって、方向による強度のばらつきを抑制することができる。また、用途に応じて、所定方向の強度を特に高めたい場合には、その方向に炭素繊維が多く配向するように、プリプレグシートの積層方向を調整することもできる。   The prepreg laminate 110 is formed by laminating a plurality of prepreg sheets containing the above-described carbon fibers on the outer periphery of the core mold 101 (lamination step). In this case, in the prepreg sheet using the base sheet in which the carbon fibers are aligned and aligned in the same direction, variation in strength due to the direction can be suppressed by stacking while changing the direction of the carbon fibers little by little. . Moreover, when it is desired to increase the strength in a predetermined direction depending on the application, the lamination direction of the prepreg sheets can be adjusted so that many carbon fibers are oriented in that direction.

また、炭素繊維を編み込んだ織布を基材シートとして用いたプリプレグシートにおいては、炭素繊維の方向を変えながら積層する必要性は必ずしもないが、用途によっては、織布を製造する際の、縦糸に対する横糸の比率などを変えることによって、所望の方向により多く炭素繊維が配列されるようにして、所望の方向の強度を高めることができる。   In addition, in a prepreg sheet using a woven fabric knitted with carbon fibers as a base sheet, it is not always necessary to laminate the carbon fiber while changing the direction of the carbon fibers. By changing the ratio of the weft yarn to the yarn, the carbon fibers can be arranged more in the desired direction, and the strength in the desired direction can be increased.

そして、プリプレグ積層体110の外周に4つの分割型102,103,104,105からなる外型106を配置して、芯型101と外型106とでプリプレグ積層体110を押圧して型締めすることにより、プリプレグ積層体110を円筒形状に成形する(成形工程)。   Then, an outer mold 106 including four divided molds 102, 103, 104, and 105 is arranged on the outer periphery of the prepreg laminate 110, and the prepreg laminate 110 is pressed and clamped between the core mold 101 and the outer mold 106. Thus, the prepreg laminate 110 is formed into a cylindrical shape (molding step).

更に、その状態で、全体をオートクレーブ等に入れて加熱することにより、エポキシ樹脂等からなる熱硬化性樹脂を硬化させる(加熱硬化工程)。
上記成形工程及び加熱硬化工程において、押圧されたプリプレグ積層体110の余剰部分が行き場を失ってしわになるところ、本発明においては、4つの分割型102,103,104,105の突き合わせ部の内周角部に逃げ空間108が形成されるので、プリプレグ積層体110の余剰部分が逃げ空間108に吸収されて、その他に部分に皺が生じることが抑制される。
Further, in this state, the whole is placed in an autoclave or the like and heated to cure the thermosetting resin made of epoxy resin or the like (heat curing step).
In the molding step and the heat curing step, the surplus portion of the pressed prepreg laminate 110 loses its place and becomes wrinkled. In the present invention, of the butted portions of the four split molds 102, 103, 104, and 105 Since the escape space 108 is formed at the peripheral corner, the surplus portion of the prepreg laminate 110 is absorbed by the escape space 108, and the occurrence of wrinkles in other portions is suppressed.

そして、熱硬化性樹脂が十分に硬化した後、冷却して、芯型101を引き抜くと共に、外型106の4つの分割型102,103,104,105を取り外して、成形された炭素繊維強化樹脂部材を得ることができる。この場合、芯型101の材質として、熱膨張率が、炭素繊維強化樹脂部材の熱膨張率よりも大きいものを用いることにより、芯型101が、成形された炭素繊維強化樹脂部材よりも大きく縮んで離型しやすくすることができる。   Then, after the thermosetting resin is sufficiently cured, it is cooled, the core mold 101 is pulled out, and the four divided molds 102, 103, 104, 105 of the outer mold 106 are removed, and the molded carbon fiber reinforced resin. A member can be obtained. In this case, as the material of the core mold 101, the core mold 101 is contracted more greatly than the molded carbon fiber reinforced resin member by using a material having a thermal expansion coefficient larger than that of the carbon fiber reinforced resin member. Can make it easy to release.

こうして得られた炭素繊維強化樹脂部材111は、図3に示すように、全体として円筒状をなし、円筒面112の周方向4箇所に軸方向に沿ったリブ113が形成された形状をなす。円筒面112のリブ113以外の部分は、皺の発生がなく、寸法精度の高い面となっている。このため、工作機械などの部品として用いる際には、円筒面112のリブ113以外の部分を保持面として組み込むことにより、所定の位置に正確に炭素繊維強化樹脂部材111を配置することができる。   As shown in FIG. 3, the carbon fiber reinforced resin member 111 thus obtained has a cylindrical shape as a whole, and has a shape in which ribs 113 are formed along the axial direction at four locations in the circumferential direction of the cylindrical surface 112. The portions other than the rib 113 of the cylindrical surface 112 are free from wrinkles and have high dimensional accuracy. For this reason, when using as parts, such as a machine tool, the carbon fiber reinforced resin member 111 can be correctly arrange | positioned in a predetermined position by incorporating parts other than the rib 113 of the cylindrical surface 112 as a holding surface.

図4には、本発明の炭素繊維強化樹脂部材の製造方法を実施するための成形型の一例が示されている。この成形型200は、目的とする成形品の形状を円筒から、角部がR状に面取りされた角筒にしただけで、基本的な構成は前記実施形態と同様なので、同様な部分には100桁の数字を2に変えただけで、10桁、1桁の数字を共通化して表すことにより、その説明を簡略化することにする。   FIG. 4 shows an example of a mold for carrying out the method for producing a carbon fiber reinforced resin member of the present invention. The molding die 200 has a basic configuration similar to that of the embodiment described above except that the shape of the target molded product is changed from a cylinder to a square tube whose corners are chamfered in an R shape. The description will be simplified by simply changing the 100-digit number to 2 and expressing the 10-digit and single-digit numbers in common.

すなわち、この成形型200は、角部がR状に面取りされた角筒状をなす芯型201と、その外周に配置される4つの分割型202,203,204,205からなる外型206とで構成されている。4つの分割型202,203,204,205は、芯型201の平面部に対応して設けられており、それらの突き合わせ部が芯型201のR状に面取りされた角部を囲む部分となっている。4つの分割型202,203,204,205を突き合わせたときの内周面の内径は、芯型201の外径よりも大きくなっており、それらの間にプリプレグ積層体210が挟持されるようになっている。   That is, the mold 200 includes a core mold 201 having a rectangular tube shape with corners chamfered in an R shape, and an outer mold 206 including four divided molds 202, 203, 204, and 205 disposed on the outer periphery thereof. It consists of The four divided molds 202, 203, 204, and 205 are provided corresponding to the planar portion of the core mold 201, and their butted portions are portions that surround the corner portions of the core mold 201 that are chamfered in an R shape. ing. The inner diameter of the inner peripheral surface when the four divided molds 202, 203, 204, 205 are abutted is larger than the outer diameter of the core mold 201, so that the prepreg laminate 210 is sandwiched between them. It has become.

図5を併せて参照すると、4つの分割型202,203,204,205の突き合わせ部の内周角部には、テーパ状又はR状の面取り部207が形成されており、同内周角部を突き合わせたときに、逃げ空間208が形成されるようになっている。   Referring also to FIG. 5, a tapered or R-shaped chamfered portion 207 is formed at the inner peripheral corner of the butt portion of the four split molds 202, 203, 204, 205. When the two are brought into contact with each other, a relief space 208 is formed.

この成形型200を用いた炭素繊維強化樹脂部材の製造方法は、前記実施形態と同様なので、その説明を省略するが、前記実施例と同様に、成形工程及び加熱硬化工程において、プリプレグ積層体210の余剰部分が逃げ空間208に吸収されるため、その他の部分に皺が生じることが抑制される。   Since the manufacturing method of the carbon fiber reinforced resin member using the molding die 200 is the same as that of the above embodiment, the description thereof is omitted. However, in the molding process and the heat curing process, the prepreg laminate 210 is not described. Since the surplus portion is absorbed by the escape space 208, the occurrence of wrinkles in other portions is suppressed.

こうして得られた炭素繊維強化樹脂部材211は、図6に示すように、4つの平面部212と、それらの間に設けられたR状の角部に、軸方向に沿って形成された4つのリブ213とを有している。リブ213は、プリプレグ積層体210の余剰部分が逃げ空間208に吸収されることによって形成されたものであり、それによって平面部212には皺の発生がなく、寸法精度の高い面となっている。このため、工作機械などの部品として用いる際には、平面部212を保持面として組み込むことにより、所定の位置に正確に炭素繊維強化樹脂部材211を配置することができる。   As shown in FIG. 6, the carbon fiber reinforced resin member 211 obtained in this way has four flat portions 212 and four formed along the axial direction at the R-shaped corners provided therebetween. And ribs 213. The rib 213 is formed by absorbing the surplus portion of the prepreg laminate 210 into the escape space 208, whereby the flat portion 212 is free from wrinkles and has a high dimensional accuracy. . For this reason, when using as components, such as a machine tool, the carbon fiber reinforced resin member 211 can be correctly arrange | positioned in a predetermined position by incorporating the plane part 212 as a holding surface.

なお、本発明の製造方法で用いる成形型は、上記実施形態に限らず、目的とする炭素繊維強化樹脂部材の形状に応じて、適宜変更することができる。また、逃げ空間の形成方法は、上記実施形態に示されるような、分割型の突き合わせ部の内周角部に設けた面取り部による方法に限らず、外型の内周面に皺が入り込む溝を形成しておくというような方法を採用することもできる。   In addition, the shaping | molding die used with the manufacturing method of this invention is not restricted to the said embodiment, According to the shape of the target carbon fiber reinforced resin member, it can change suitably. Further, the method for forming the relief space is not limited to the method using the chamfered portion provided at the inner peripheral corner of the split-type butting portion as shown in the above embodiment, and the groove in which wrinkles enter the inner peripheral surface of the outer mold. It is also possible to adopt a method such as forming.

図1に示す成形型100を用いて、プリプレグ積層体110を成形し、加熱硬化することにより、炭素繊維強化樹脂部材111を形成した。芯型101としては、外径10.4cmのアルミ円筒部材を用いた。外型106としては、石膏でできた4つの分割型102,103,104,105を用いた。4つの分割型102,103,104,105を突き合わせてできる円筒状の内周の内径は、11.9cmである。   The carbon fiber reinforced resin member 111 was formed by molding the prepreg laminate 110 using the molding die 100 shown in FIG. As the core mold 101, an aluminum cylindrical member having an outer diameter of 10.4 cm was used. As the outer mold 106, four divided molds 102, 103, 104, and 105 made of gypsum were used. The inner diameter of the cylindrical inner periphery formed by abutting the four split molds 102, 103, 104, 105 is 11.9 cm.

炭素繊維を所定方向に引き揃えて配列した基材にエポキシ樹脂を含浸させ、炭素繊維含有率を60質量%とした、厚さ0.15mmのプリプレグシート(商品名「ダイヤリード」、三菱レーヨン株式会社製)を、炭素繊維の方向を少しずつ変えながら、芯型101の外周に48枚積層して、プリプレグ積層体110を形成した。   A 0.15 mm thick prepreg sheet (trade name “Dialead”, Mitsubishi Rayon Co., Ltd.) impregnated with epoxy resin on a substrate in which carbon fibers are aligned in a predetermined direction and impregnated with epoxy resin. 48) were laminated on the outer periphery of the core mold 101 while gradually changing the direction of the carbon fibers to form a prepreg laminate 110.

図2に示すように、このプリプレグ積層体110の外周に、4つの分割型102,103,104,105を配置して、芯型101に向けて押圧するように型締めして、プリプレグ積層体110を芯型101と外型106とで挟圧して、プリプレグ積層体110を円筒状に成形した。なお、芯型101の外周面と外型106の内周面には、予め離型剤を塗布しておいた。   As shown in FIG. 2, four split molds 102, 103, 104, and 105 are arranged on the outer periphery of the prepreg laminate 110, and are clamped so as to be pressed toward the core mold 101, so that the prepreg laminate is obtained. 110 was sandwiched between the core mold 101 and the outer mold 106 to form the prepreg laminate 110 into a cylindrical shape. Note that a release agent was applied in advance to the outer peripheral surface of the core mold 101 and the inner peripheral surface of the outer mold 106.

次いで、全体をオートクレーブに入れ、約130℃で約300分間加熱することにより、エポキシ樹脂を硬化させた。その後、冷却して、芯型101を引き抜き、外型106を取り外して、図3に示した形状の炭素繊維強化樹脂部材111を得た。   Next, the whole was placed in an autoclave and heated at about 130 ° C. for about 300 minutes to cure the epoxy resin. Then, it cooled, the core mold | type 101 was pulled out, the outer mold | type 106 was removed, and the carbon fiber reinforced resin member 111 of the shape shown in FIG. 3 was obtained.

この炭素繊維強化樹脂部材111の写真を図7に示す。図7に示すように、この炭素繊維強化樹脂部材111は、リブ113以外の円筒面112の面には皺の発生がなく、外周面が滑らかな円筒状をなしていた。   A photograph of this carbon fiber reinforced resin member 111 is shown in FIG. As shown in FIG. 7, the carbon fiber reinforced resin member 111 had a cylindrical shape with no wrinkles on the surface of the cylindrical surface 112 other than the ribs 113 and a smooth outer peripheral surface.

一方、図1に示す成形型100において、4つの分割型102,103,104,105の突き合わせ部の内周角部に面取り部107及び逃げ空間108を設けないものを用い、他は、上記と同様にして、円筒状の炭素繊維強化樹脂部材を製造した。   On the other hand, in the molding die 100 shown in FIG. 1, the one in which the chamfered portion 107 and the relief space 108 are not provided at the inner peripheral corner portion of the butt portion of the four split dies 102, 103, 104, 105 is used. Similarly, a cylindrical carbon fiber reinforced resin member was produced.

こうして得られた炭素繊維強化樹脂部材の写真を図8に示す。図8に示すように、この炭素繊維強化樹脂部材は、表面に不定形な皺が発生しており、寸法精度が要求される部材としては、このままでは使用できないものであった。   A photograph of the carbon fiber reinforced resin member thus obtained is shown in FIG. As shown in FIG. 8, the carbon fiber reinforced resin member has irregular wrinkles on the surface, and cannot be used as it is as a member requiring dimensional accuracy.

100 成形型
101 芯型
102,103,104,105 分割型
106 外型
107 面取り部
108 逃げ空間
110 プリプレグ積層体
111 炭素繊維強化樹脂部材
112 円筒面
113 リブ
200 成形型
201 芯型
202,203,204,205 分割型
206 外型
207 面取り部
208 逃げ空間
210 プリプレグ積層体
211 炭素繊維強化樹脂部材
212 平面部
213 リブ
DESCRIPTION OF SYMBOLS 100 Mold 101 Core mold 102,103,104,105 Split mold 106 Outer mold 107 Chamfering part 108 Relief space 110 Prepreg laminated body 111 Carbon fiber reinforced resin member 112 Cylindrical surface 113 Rib 200 Mold 200 201 Core molds 202, 203, 204 , 205 Split mold 206 Outer mold 207 Chamfered portion 208 Relief space 210 Prepreg laminate 211 Carbon fiber reinforced resin member 212 Flat portion 213 Rib

Claims (6)

炭素繊維を含むプリプレグシートを芯型の外周面に所定枚数積層するプリプレグシート積層工程と、
前記積層されたプリプレグシートの外周面に所定の内面形状を有する、複数に分割された外型を押し付けて所定形状に成形する成形工程と、
前記芯型及び前記外型で挟持した状態で前記積層されたプリプレグシートを加熱硬化する加熱硬化工程とを含む炭素繊維強化樹脂部材の製造方法において、
前記複数の外型で構成される内周面の、前記炭素繊維強化樹脂部材の寸法精度が求められる面から外れた位置に、前記成形工程及び前記加熱硬化工程において、前記芯型及び前記外型の間で行き場を失った前記プリプレグシートの余剰部分を吸収する逃げ空間を設けることを特徴とする炭素繊維強化樹脂部材の製造方法。
A prepreg sheet laminating step of laminating a predetermined number of carbon fiber-containing prepreg sheets on the outer peripheral surface of the core mold;
A molding step having a predetermined inner surface shape on the outer peripheral surface of the laminated prepreg sheets, and pressing the outer mold divided into a plurality of shapes into a predetermined shape;
In a method for producing a carbon fiber reinforced resin member comprising a heat curing step of heat curing the laminated prepreg sheet while being sandwiched between the core mold and the outer mold,
In the molding step and the heating and curing step, the core die and the outer die are located at positions where the inner peripheral surface constituted by the plurality of outer die is out of the surface where the dimensional accuracy of the carbon fiber reinforced resin member is required. A process for producing a carbon fiber reinforced resin member, characterized in that a clearance space is provided for absorbing the surplus portion of the prepreg sheet that has lost its destination.
前記複数の外型の突き合わせ部となる内周角部を、R状又はテーパ状に面取りすることにより、前記逃げ空間を形成する、請求項1記載の炭素繊維強化樹脂部材の製造方法。   The method for producing a carbon fiber reinforced resin member according to claim 1, wherein the clearance space is formed by chamfering inner peripheral corner portions serving as butted portions of the plurality of outer molds in an R shape or a taper shape. 前記芯型の熱膨張率は、前記炭素繊維強化樹脂部材の熱膨張率よりも大きいものを用いる、請求項1又は2記載の炭素繊維強化樹脂部材の製造方法。   The method for producing a carbon fiber reinforced resin member according to claim 1 or 2, wherein a coefficient of thermal expansion of the core mold is larger than that of the carbon fiber reinforced resin member. 前記外型の熱膨張率は、前記芯型の熱膨張率よりも小さいものを用いる、請求項1〜3のいずれか1項に記載の炭素繊維強化樹脂部材の製造方法。   The method for producing a carbon fiber reinforced resin member according to any one of claims 1 to 3, wherein a coefficient of thermal expansion of the outer mold is smaller than that of the core mold. 前記芯型は、円筒又は円柱状をなし、前記外型は、内面が周方向に等角度で4分割された円弧状曲面をなす、4つのブロックからなり、前記外型の4つのブロックの突き合わせ部となる内周角部を、R状又はテーパ状に面取りした形状をなす、請求項1〜4のいずれか1項に記載の炭素繊維強化樹脂部材の製造方法。   The core mold has a cylindrical or columnar shape, and the outer mold includes four blocks each having an arcuate curved surface whose inner surface is divided into four at equal angles in the circumferential direction, and the four blocks of the outer mold are matched. The manufacturing method of the carbon fiber reinforced resin member of any one of Claims 1-4 which makes the shape which chamfered the inner peripheral corner | angular part used as a part in R shape or a taper shape. 前記芯型は、角部をR状又はテーパ状に面取りされた角筒又は角柱状をなし、前記外型は、前記角筒又は角柱状の、端面側から見て各辺に相当する面をそれぞれ覆う複数のブロックで構成され、前記外型の各ブロックの突き合わせ部となる内周角部を、R状又はテーパ状に面取りした形状をなす、請求項1〜4のいずれか1項に記載の炭素繊維強化樹脂部材の製造方法。   The core mold has a rectangular tube or a prismatic shape whose corners are chamfered in an R shape or a taper shape, and the outer mold has a surface corresponding to each side of the rectangular tube or the prismatic shape as viewed from the end surface side. 5. The structure according to claim 1, which is configured by a plurality of blocks each covering, and has a shape in which an inner peripheral corner portion serving as a butting portion of each block of the outer mold is chamfered in an R shape or a taper shape. Manufacturing method of carbon fiber reinforced resin member.
JP2017111171A 2017-06-05 2017-06-05 Manufacturing method of carbon fiber reinforced resin member Active JP6902753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111171A JP6902753B2 (en) 2017-06-05 2017-06-05 Manufacturing method of carbon fiber reinforced resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111171A JP6902753B2 (en) 2017-06-05 2017-06-05 Manufacturing method of carbon fiber reinforced resin member

Publications (2)

Publication Number Publication Date
JP2018202753A true JP2018202753A (en) 2018-12-27
JP6902753B2 JP6902753B2 (en) 2021-07-14

Family

ID=64955764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111171A Active JP6902753B2 (en) 2017-06-05 2017-06-05 Manufacturing method of carbon fiber reinforced resin member

Country Status (1)

Country Link
JP (1) JP6902753B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043621A (en) * 2021-02-09 2021-06-29 博戈橡胶塑料(株洲)有限公司 Forming method of special-shaped annular reinforcing part
CN113696499A (en) * 2021-08-26 2021-11-26 航天特种材料及工艺技术研究所 Preparation method of assembled anti-deformation lightweight carbon fiber composite material frame
CN113954272A (en) * 2021-10-29 2022-01-21 开封市新亚实业有限公司 Mold and method for manufacturing special-shaped composite material rotary body by using same
CN114311730A (en) * 2021-12-22 2022-04-12 长春长光宇航复合材料有限公司 Composite material light shield, forming die and preparation method thereof
WO2022186774A1 (en) * 2021-03-03 2022-09-09 Racer Technology Pte Ltd Apparatus and method for forming barbed sutures
CN117698169A (en) * 2024-02-02 2024-03-15 哈尔滨远驰航空装备有限公司 Resin matrix composite aviation suspension girder, forming method and die

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072766U (en) * 1973-11-09 1975-06-26
JPS541380A (en) * 1977-06-07 1979-01-08 Nippon Musical Instruments Mfg Manufacture of fiber reinforced plastic product
JPH01208121A (en) * 1988-02-15 1989-08-22 Hitachi Zosen Corp Manufacture of square pipe made of fiber-reinforced plastic
JPH06254891A (en) * 1993-02-26 1994-09-13 Nitto Boseki Co Ltd Mold and method for molding composite material sheet
JPH10296869A (en) * 1997-04-28 1998-11-10 Mitsubishi Heavy Ind Ltd Manufacture of rectangular pipe made of frp
WO2002002298A1 (en) * 2000-07-04 2002-01-10 Stork Screens B.V. Method of manufacturing a seamless thin-walled tubular body from fiber-reinforced plastic material, thin-walled tubular body thus obtained and device for carrying out said method
JP2009248474A (en) * 2008-04-08 2009-10-29 Kyowa Rubber Kk Method for manufacturing pipe joint, and pipe joint
JP2012135967A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Molding die
JP2015071239A (en) * 2013-10-02 2015-04-16 東邦テナックス株式会社 Manufacturing method of frp molding, and molding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5072766U (en) * 1973-11-09 1975-06-26
JPS541380A (en) * 1977-06-07 1979-01-08 Nippon Musical Instruments Mfg Manufacture of fiber reinforced plastic product
JPH01208121A (en) * 1988-02-15 1989-08-22 Hitachi Zosen Corp Manufacture of square pipe made of fiber-reinforced plastic
JPH06254891A (en) * 1993-02-26 1994-09-13 Nitto Boseki Co Ltd Mold and method for molding composite material sheet
JPH10296869A (en) * 1997-04-28 1998-11-10 Mitsubishi Heavy Ind Ltd Manufacture of rectangular pipe made of frp
WO2002002298A1 (en) * 2000-07-04 2002-01-10 Stork Screens B.V. Method of manufacturing a seamless thin-walled tubular body from fiber-reinforced plastic material, thin-walled tubular body thus obtained and device for carrying out said method
JP2009248474A (en) * 2008-04-08 2009-10-29 Kyowa Rubber Kk Method for manufacturing pipe joint, and pipe joint
JP2012135967A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Molding die
JP2015071239A (en) * 2013-10-02 2015-04-16 東邦テナックス株式会社 Manufacturing method of frp molding, and molding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113043621A (en) * 2021-02-09 2021-06-29 博戈橡胶塑料(株洲)有限公司 Forming method of special-shaped annular reinforcing part
CN113043621B (en) * 2021-02-09 2022-02-22 博戈橡胶塑料(株洲)有限公司 Forming method of special-shaped annular reinforcing part
WO2022186774A1 (en) * 2021-03-03 2022-09-09 Racer Technology Pte Ltd Apparatus and method for forming barbed sutures
CN113696499A (en) * 2021-08-26 2021-11-26 航天特种材料及工艺技术研究所 Preparation method of assembled anti-deformation lightweight carbon fiber composite material frame
CN113696499B (en) * 2021-08-26 2023-09-15 航天特种材料及工艺技术研究所 Preparation method of assembled deformation-preventing light-weight carbon fiber composite material frame
CN113954272A (en) * 2021-10-29 2022-01-21 开封市新亚实业有限公司 Mold and method for manufacturing special-shaped composite material rotary body by using same
CN114311730A (en) * 2021-12-22 2022-04-12 长春长光宇航复合材料有限公司 Composite material light shield, forming die and preparation method thereof
CN117698169A (en) * 2024-02-02 2024-03-15 哈尔滨远驰航空装备有限公司 Resin matrix composite aviation suspension girder, forming method and die
CN117698169B (en) * 2024-02-02 2024-04-30 哈尔滨远驰航空装备有限公司 Resin matrix composite aviation suspension girder, forming method and die

Also Published As

Publication number Publication date
JP6902753B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6902753B2 (en) Manufacturing method of carbon fiber reinforced resin member
RU2481950C2 (en) Flange from composite material with machinable part
CA1286582C (en) Method and apparatus for forming corrugated materials using magnetic memory cores
CN100402246C (en) Robot hand unit and its making method
US20140193608A1 (en) Structural composite panel with metallic foam core
JP6372195B2 (en) Preform manufacturing method and fiber reinforced plastic manufacturing method
CN111886119A (en) Method for producing fiber-reinforced resin
JP6238168B2 (en) Composite structure
JP2018038463A (en) Hollow cylindrical body, cylindrical molding with bent part, and manufacturing method of cylindrical molding with bent part
KR20140050779A (en) Method for forming fiber reinforced plastic composite
JP2006272656A (en) Metal/resin composite pipe and its manufacturing method
JP2010221489A (en) Rtm molding method
KR102354945B1 (en) Method for forming composite multi-joint hollow structure using flexible tube and prepreg
JP4423740B2 (en) Insulated pipe for air bleed duct and method of manufacturing the same
JPH06106632A (en) Method for molding composite material product
KR101584257B1 (en) Manufacturing Method of Wheel Using Uni-Directional Fiber Fabric and Wheel Manufactured by the Same
JPH04331811A (en) Roll-processed screw made of c/c and manufacture thereof
JP6144084B2 (en) Support member
JP2015100930A (en) Preform
JP5837061B2 (en) Mold tool
JP2017114116A (en) Fiber-reinforced thermoplastic sheet for thermoforming
KR102472506B1 (en) Method for manufacturing composite material
WO2024043318A1 (en) Method for manufacturing honeycomb sandwich structure and said structure
KR102027328B1 (en) Hybrid profile having xFRPcable-type prepreg and preparing method for the same
JP2018039130A (en) Method for molding composite material and device for molding composite material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210611

R150 Certificate of patent or registration of utility model

Ref document number: 6902753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150