JP2018200288A - Earthquake response analysis method and earthquake response analysis program - Google Patents

Earthquake response analysis method and earthquake response analysis program Download PDF

Info

Publication number
JP2018200288A
JP2018200288A JP2017106177A JP2017106177A JP2018200288A JP 2018200288 A JP2018200288 A JP 2018200288A JP 2017106177 A JP2017106177 A JP 2017106177A JP 2017106177 A JP2017106177 A JP 2017106177A JP 2018200288 A JP2018200288 A JP 2018200288A
Authority
JP
Japan
Prior art keywords
pile
free ground
earthquake
response analysis
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017106177A
Other languages
Japanese (ja)
Other versions
JP6863824B2 (en
Inventor
優介 土佐内
Yusuke Tosauchi
優介 土佐内
仁 佐々木
Hitoshi Sasaki
仁 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2017106177A priority Critical patent/JP6863824B2/en
Publication of JP2018200288A publication Critical patent/JP2018200288A/en
Application granted granted Critical
Publication of JP6863824B2 publication Critical patent/JP6863824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To streamline a model at the time of earthquake response analysis.SOLUTION: The present invention relates to an earthquake response analysis method which uses a coupled analysis model 10 comprising a structure including a building 12 and a plurality of piles 14A-14I that support the building 12, and free ground nodal points 16 set in each predetermined reference direction relative to each of the piles 14A-14I, and which includes: setting free ground nodal points 16x, 16y at positions that can be considered to be indefinitely distant from each of the piles 14A-14I in the predetermined reference direction; and putting together the free ground nodal point 16 in each reference direction relative to the plurality of piles 14A-14I into one point, in analyzing the response of the building at an earthquake.SELECTED DRAWING: Figure 2

Description

本発明は、地震時における構造物の応答を解析する地震応答解析方法および地震応答解析プログラムに関する。   The present invention relates to an earthquake response analysis method and an earthquake response analysis program for analyzing a response of a structure during an earthquake.

従来、自由地盤、杭基礎および建物を一体としてモデル化した地盤−杭−建物連成系を用いて、地震時における構造物(杭基礎および建物)の応答を解析する地震応答解析が提案されている(例えば、下記非特許文献1および2参照)。
図5は、従来技術における自由地盤節点の設定方法を模式的に示す説明図である。
図5は、上記連成解析モデルのうち地中部分を抜き出したものであり、図5Aは上面視図、図5Bは側面視図である。
一般に、建物は複数の杭54(図5の例では杭54A〜54Iの9本)で支持されている。
各杭54A〜54Iの近傍には、それぞれ自由地盤節点56(56x,56y)が設けられている。自由地盤節点56は、解析の目的に応じて1〜複数の基準方向毎に設けられる。図5Aの例では、連成解析モデルの座標軸に対応して2方向(x方向、y方向)に自由地盤節点56が設けられている。
各杭54A〜54Iと自由地盤節点56x〜56yとは、杭54A〜54I上の節点55と地盤ばね58x,58yで接合している。
また、図5Bに示すように、自由地盤節点56は、杭54の長さ方向にも複数設けられる。図5Bの例では、所定の杭長さDごとに13個の自由地盤節点56dが設けられている。それぞれの自由地盤節点56dは、対応する杭長さ方向上の位置にある杭54上の節点55と地盤ばね58dで接合している。
Conventionally, earthquake response analysis has been proposed to analyze the response of structures (pile foundation and building) during an earthquake using a ground-pile-building coupled system that models free ground, pile foundation and building as a unit. (For example, see Non-Patent Documents 1 and 2 below).
FIG. 5 is an explanatory view schematically showing a method for setting a free ground node in the prior art.
FIG. 5 shows an underground part extracted from the coupled analysis model, FIG. 5A is a top view, and FIG. 5B is a side view.
Generally, a building is supported by a plurality of piles 54 (9 pieces of piles 54A to 54I in the example of FIG. 5).
In the vicinity of each of the piles 54A to 54I, free ground nodes 56 (56x, 56y) are respectively provided. The free ground node 56 is provided for each of a plurality of reference directions according to the purpose of analysis. In the example of FIG. 5A, free ground nodes 56 are provided in two directions (x direction and y direction) corresponding to the coordinate axes of the coupled analysis model.
Each pile 54A-54I and the free ground nodes 56x-56y are joined with the node 55 on the piles 54A-54I by ground springs 58x, 58y.
As shown in FIG. 5B, a plurality of free ground nodes 56 are also provided in the length direction of the pile 54. In the example of FIG. 5B, 13 free ground nodes 56d are provided for each predetermined pile length D. Each free ground node 56d is joined to a node 55 on the pile 54 at a corresponding position in the pile length direction by a ground spring 58d.

豊岡亮洋、他3名、「構造形式の差異に着目した慣性力および地盤変位の影響評価」、鉄道総研報告、公益財団法人鉄道総合技術研究所、2011年9月、Vol.25、P51−56Ryohiro Toyooka and three others, “Evaluation of Inertia Force and Ground Displacement Focusing on Differences in Structural Form”, Railway Research Institute Report, Railway Technical Research Institute, September 2011, Vol. 25, P51-56 木村匠、「杭基礎構造物の動的相互作用を考慮した立体振動性状に関する研究」、千葉大学、2009年1月Takumi Kimura, “Study on Three-dimensional Vibration Properties Considering Dynamic Interaction of Pile Foundation”, Chiba University, January 2009

上述のように、従来技術では、自由地盤節点の数は「杭本数×基準方向数×杭長さ方向の分割数」となる。したがって、杭本数が多い場合や、杭長さ方向の分割数が多くなる場合には、自由地盤節点の数が比例的に増加することとなる。
このような自由地盤節点数の増加に対応するには、プログラム上で多くのメモリを用意する必要があるという課題がある。また、プログラム上でメモリを用意しようとしても、計算機(パーソナルコンピュータ等)のメモリが不足している場合には、解析を行うことができないという課題がある。
本発明は、このような事情に鑑みなされたものであり、その目的は、地震応答解析時におけるモデルを合理化することにある。
As described above, in the prior art, the number of free ground nodes is “the number of piles × the number of reference directions × the number of divisions in the pile length direction”. Therefore, when the number of piles is large or when the number of divisions in the pile length direction is large, the number of free ground nodes is proportionally increased.
In order to cope with such an increase in the number of free ground nodes, there is a problem that it is necessary to prepare a large amount of memory on the program. Further, even if the memory is prepared on the program, there is a problem that the analysis cannot be performed when the memory of the computer (such as a personal computer) is insufficient.
This invention is made | formed in view of such a situation, The objective is to rationalize the model at the time of an earthquake response analysis.

上述の目的を達成するため、請求項1の発明にかかる地震応答解析方法は、建物と前記建物を支持する複数の杭とからなる構造物と、それぞれの前記杭に対して所定の基準方向毎に設定された自由地盤節点と、を含む連成解析モデルを用い、地震時における前記構造物の応答を解析する地震応答解析方法であって、それぞれの前記杭から前記基準方向に無限遠方とみなせる位置に前記自由地盤節点を設定し、複数の前記杭における前記基準方向毎の前記自由地盤節点を一点に集約させる、ことを特徴とする。
請求項2の発明にかかる地震応答解析方法は、前記自由地盤節点を前記杭の長さ方向に複数設定し、杭長さ方向上の各位置における前記基準方向毎の前記自由地盤節点を一点に集約させる、ことを特徴とする。
請求項3の発明にかかる地震応答解析方法は、それぞれの前記自由地盤節点に対して地震時における変位量を入力し、前記自由地盤節点と前記杭との間の地盤ばね要素のばね定数と、それぞれの前記杭が負担する軸力と、前記変位量とに基づいて、地震時にそれぞれの前記杭に発生する応力を算出する、ことを特徴とする。
請求項4の発明にかかる地震応答解析プログラムは、請求項1から3のいずれか1項記載の地震応答解析方法をコンピュータに実行させることを特徴とする。
In order to achieve the above-described object, an earthquake response analysis method according to the invention of claim 1 includes a structure composed of a building and a plurality of piles supporting the building, and a predetermined reference direction for each pile. A seismic response analysis method for analyzing the response of the structure at the time of an earthquake using a coupled analysis model including a free ground node set to, and can be regarded as infinity from each pile in the reference direction The free ground nodes are set at positions, and the free ground nodes for each of the reference directions in the plurality of piles are aggregated into one point.
The earthquake response analysis method according to the invention of claim 2 sets a plurality of the free ground nodes in the length direction of the pile, and sets the free ground nodes for each reference direction at each position in the pile length direction as one point. It is characterized by being aggregated.
The earthquake response analysis method according to the invention of claim 3 inputs an amount of displacement at the time of an earthquake for each of the free ground nodes, and a spring constant of a ground spring element between the free ground node and the pile, The stress generated in each pile during an earthquake is calculated based on the axial force borne by each pile and the amount of displacement.
According to a fourth aspect of the invention, an earthquake response analysis program causes a computer to execute the earthquake response analysis method according to any one of the first to third aspects.

本発明によれば、複数の杭における基準方向毎の自由地盤節点を一点に集約しているので、計算結果に大きな影響を及ぼさずに、モデルの節点数を少なくすることができる。このようなモデルの合理化により、プログラム上のメモリを削減することができ、例えば杭長さ方向の分割数を増やして詳細にモデル化したり、上部構造の柱や梁のモデルを詳細化することが可能となり、地震応答解析の精度を向上させることができる。   According to the present invention, since the free ground nodes for each reference direction in the plurality of piles are integrated into one point, the number of nodes of the model can be reduced without greatly affecting the calculation result. By rationalizing such models, it is possible to reduce memory in the program, for example, increase the number of divisions in the pile length direction to model in detail, or refine the models of superstructure columns and beams. It becomes possible, and the accuracy of the earthquake response analysis can be improved.

連成解析モデルを模式的に示す説明図である。It is explanatory drawing which shows a coupled analysis model typically. 連成解析モデル10における自由地盤節点の設定方法を模式的に示す説明図である。3 is an explanatory diagram schematically showing a method for setting a free ground node in the coupled analysis model 10. FIG. 従来技術と本発明との比較を模式的に示す図である。It is a figure which shows typically the comparison with a prior art and this invention. 地震応答解析プログラムを実行するコンピュータ100の構成を示すブロック図である。It is a block diagram which shows the structure of the computer 100 which performs an earthquake response analysis program. 従来技術における自由地盤節点の設定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the setting method of the free ground node in a prior art.

以下に添付図面を参照して、本発明にかかる地震応答解析方法および地震応答解析プログラムの好適な実施の形態を詳細に説明する。
本実施の形態では、本発明にかかる地震応答解析プログラムをコンピュータで実行する場合について説明する。
図4は、地震応答解析プログラムを実行するコンピュータ100の構成を示すブロック図である。
コンピュータ100は、CPU102と、不図示のインターフェース回路およびバスラインを介して接続されたROM104、RAM106、ハードディスク装置108、ディスク装置110、キーボード112、マウス114、ディスプレイ116、プリンタ118、入出力インターフェース120などを有している。
ROM104は制御プログラムなどを格納し、RAM106はワーキングエリアを提供するものである。
ハードディスク装置108は、本発明にかかる地震応答解析プログラムを格納している。
ディスク装置110はCDやDVDなどの記録媒体に対してデータの記録および/または再生を行うものである。
キーボード112およびマウス114は、操作者による操作入力を受け付けるものである。
ディスプレイ116はデータを表示出力するものであり、プリンタ118はデータを印刷出力するものであり、ディスプレイ116およびプリンタ118によってデータを出力する。
入出力インターフェース120は、他の情報機器等との間でデータの授受を行うものである。
Exemplary embodiments of an earthquake response analysis method and an earthquake response analysis program according to the present invention will be described below in detail with reference to the accompanying drawings.
In the present embodiment, a case where the earthquake response analysis program according to the present invention is executed by a computer will be described.
FIG. 4 is a block diagram illustrating a configuration of the computer 100 that executes the earthquake response analysis program.
The computer 100 includes a CPU 102, a ROM 104, a RAM 106, a hard disk device 108, a disk device 110, a keyboard 112, a mouse 114, a display 116, a printer 118, an input / output interface 120, and the like connected via an interface circuit (not shown) and a bus line. have.
The ROM 104 stores a control program and the like, and the RAM 106 provides a working area.
The hard disk device 108 stores an earthquake response analysis program according to the present invention.
The disk device 110 records and / or reproduces data on a recording medium such as a CD or a DVD.
The keyboard 112 and the mouse 114 receive operation inputs from the operator.
The display 116 displays and outputs data, and the printer 118 prints and outputs data. The display 116 and the printer 118 output data.
The input / output interface 120 exchanges data with other information devices.

つぎに、地震応答解析プログラムの詳細について説明する。
地震応答解析プログラムは、建物と建物を支持する複数の杭とからなる構造物と、それぞれの杭に対して所定の基準方向毎に設定された自由地盤節点と、を含む地盤−杭−建物連成系(連成解析モデル)を用い、地震時における構造物の応答を解析する。
本実施の形態では、連成解析モデルへの入力を「地震時の自由地盤変位(変位量)」とし、解析の主な出力として「杭・柱・梁・壁等の各部材における応力と変形」を得るものとする。
Next, the details of the earthquake response analysis program will be described.
The seismic response analysis program is a ground-pile-building sequence including a structure composed of a building and a plurality of piles supporting the building, and a free ground node set for each pile in a predetermined reference direction. Analyze the response of the structure during an earthquake using a coupled system (coupled analysis model).
In this embodiment, the input to the coupled analysis model is “free ground displacement (displacement) during an earthquake”, and the main output of the analysis is “stress and deformation in each member such as piles, columns, beams, walls, etc.” ".

図1は、実施の形態にかかる連成解析モデル10を模式的に示す説明図である。
図1に示す連成解析モデル10は、建物12、地盤中で建物12を支持する複数の杭14、杭14の遠方に位置する自由地盤160、自由地盤160と杭14とを接続する地盤ばね18を含んでいる。なお、後述するように、自由地盤160は、所定の基準方向毎および杭14の長さ方向に複数設定された自由地盤節点16(図2参照)で表される。
解析の際には、予め地震時における各深度の自由地盤変位を計算しておき、それを対応する深さ(杭長さ方向上の位置)の自由地盤節点に与える。与えられた自由地盤変位は、地盤ばね18を介して杭14に荷重を作用させる。そして、それらの荷重によって例えば杭14に生じる応力が出力となる。
すなわち、例えば杭14に発生する応力を算出する場合には、それぞれの自由地盤節点16に対して地震時における変位量を入力し、自由地盤節点16と杭14との間の地盤ばね18のばね定数と、それぞれの杭14が負担する軸力と、上記変位量とに基づいて、地震時にそれぞれの杭14に発生する応力を算出する。
FIG. 1 is an explanatory diagram schematically illustrating a coupled analysis model 10 according to an embodiment.
The coupled analysis model 10 shown in FIG. 1 includes a building 12, a plurality of piles 14 that support the building 12 in the ground, a free ground 160 located far from the pile 14, and a ground spring that connects the free ground 160 and the pile 14. 18 is included. In addition, as will be described later, the free ground 160 is represented by a plurality of free ground nodes 16 (see FIG. 2) set for each predetermined reference direction and in the length direction of the pile 14.
In the analysis, the free ground displacement at each depth at the time of the earthquake is calculated in advance and given to the free ground node at the corresponding depth (position in the pile length direction). The given free ground displacement causes a load to act on the pile 14 via the ground spring 18. And the stress which arises in the pile 14, for example by those loads becomes an output.
That is, for example, when calculating the stress generated in the pile 14, the displacement amount at the time of the earthquake is input to each free ground node 16, and the spring of the ground spring 18 between the free ground node 16 and the pile 14. Based on the constant, the axial force that each pile 14 bears, and the amount of displacement, the stress generated in each pile 14 during an earthquake is calculated.

図1のように、1つの建物12には複数の杭14があるが、平常時(地震力が作用していない時)にそれぞれの杭14がどれだけの軸力(建物重量)を負担しているかは杭14ごとに異なる。また、建物12に地震力が作用した場合には、地震力の大きさによって杭14が負担する軸力も変動する(地震時の杭軸力=平常時の軸力+地震力による変動軸力)。さらに、杭の水平剛性や耐力は、負担する軸力によって異なる。
このため、これらの条件を反映した解析を行い、地震時における構造物の応答をシミュレーションする。
As shown in FIG. 1, a single building 12 has a plurality of piles 14, but each pile 14 bears how much axial force (building weight) during normal times (when no seismic force is applied). It is different for each pile 14. In addition, when an earthquake force acts on the building 12, the axial force borne by the pile 14 also varies depending on the magnitude of the earthquake force (pile axial force at the time of earthquake = normal axial force + variable axial force due to the earthquake force). . Furthermore, the horizontal rigidity and proof stress of a pile differ with the axial force to bear.
For this reason, analysis reflecting these conditions is performed to simulate the response of the structure during an earthquake.

例えば、図1の例では、紙面左方向から右方向に向かって地盤表面に近いほど大きい自由地盤変位と、紙面左方向から右方向に向かう地震力が生じている。
地震力によって建物12が紙面右方向に転倒しようとする力(矢印A)が生じるが、この力により紙面左側の杭14は上方に持ち上げられるため(矢印B)、杭14が負担する軸力は小さくなる傾向がある。一方、紙面右の杭14は、建物12が転倒しようとする力に対して突っ張るため(矢印C)、杭14が負担する軸力は大きくなる傾向がある。
For example, in the example of FIG. 1, the free ground displacement and the seismic force from the left to the right of the paper are increased as the distance from the left to the right of the paper is closer to the ground surface.
The seismic force generates a force (arrow A) that causes the building 12 to fall in the right direction on the page, but the pile 14 on the left side of the page is lifted upward by this force (arrow B), so the axial force borne by the pile 14 is There is a tendency to become smaller. On the other hand, since the pile 14 on the right side of the page stretches against the force that the building 12 tries to fall (arrow C), the axial force borne by the pile 14 tends to increase.

つぎに、連成解析モデル10の自由地盤節点について説明する。
図2は、連成解析モデル10における自由地盤節点の設定方法を模式的に示す説明図である。
図2は、図1の連成解析モデル10のうち地中部分を抜き出したものであり、図2Aは上面視図、図2Bは側面視図である。
図2には、9本の杭14A〜14Iを図示している。上述のように、従来は1つの杭14に対して、それぞれ基準方向毎に自由地盤節点を設定していた。一方、本実施の形態では、各基準方向(x方向、y方向)の自由地盤節点16(16,16y)の位置を、各杭14A〜14Iから無限遠方としている。これにより、各杭14A〜14Iと各基準方向の自由地盤節点16とを結ぶ地盤ばね18の角度が同一とみなせる。そのため、杭14A〜14Iごとに設ける必要があった自由地盤節点16を、無限遠方の節点1つに集約することができる。
すなわち、連成解析モデル10では、それぞれの杭14A〜14Iから基準方向に無限遠方とみなせる位置に自由地盤節点16(16x,16y)を設定し、複数の杭14A〜14Iにおける基準方向毎の自由地盤節点を一点に集約させている。
なお、従来技術と同様、各杭14A〜14Iと自由地盤節点16x,16yとは、杭14A〜14I上の節点15において地盤ばね18x〜18yを介して接続されている。図2Aでは、図面の視認性が低下するのを防止する観点から、各杭14と各自由地盤節点16との接続線は一部のみ図示している。
Next, the free ground node of the coupled analysis model 10 will be described.
FIG. 2 is an explanatory diagram schematically showing a method for setting free ground nodes in the coupled analysis model 10.
FIG. 2 shows an underground portion extracted from the coupled analysis model 10 of FIG. 1, FIG. 2A is a top view, and FIG. 2B is a side view.
FIG. 2 illustrates nine piles 14A to 14I. As described above, conventionally, a free ground node is set for each reference direction for one pile 14. On the other hand, in this Embodiment, the position of the free ground node 16 (16, 16y) of each reference direction (x direction, y direction) is set to infinity from each pile 14A-14I. Thereby, it can be considered that the angle of the ground spring 18 which connects each pile 14A-14I and the free ground node 16 of each reference direction is the same. Therefore, the free ground nodes 16 that need to be provided for each of the piles 14 </ b> A to 14 </ b> I can be integrated into one node at infinity.
That is, in the coupled analysis model 10, free ground nodes 16 (16x, 16y) are set at positions that can be regarded as infinitely far from the respective piles 14A-14I in the reference direction, and the freedom for each reference direction in the plurality of piles 14A-14I is set. The ground nodes are consolidated into one point.
As in the prior art, each of the piles 14A to 14I and the free ground nodes 16x and 16y are connected to each other at the node 15 on the piles 14A to 14I via ground springs 18x to 18y. In FIG. 2A, only a part of the connection line between each pile 14 and each free ground node 16 is illustrated from the viewpoint of preventing the visibility of the drawing from being lowered.

図2Bに示すように、各杭14の長さ方向における自由地盤節点16については、従来技術と同様に所定の杭長さDごとに自由地盤節点16dが設定されている。図2Bの例では13個の自由地盤節点16dが設定されており、各自由地盤節点16dは、対応する杭長さ方向上の位置にある杭14上の節点15と地盤ばね18dで接合している。よって、杭長さ方向上の各位置における基準方向毎の自由地盤節点16を一点に集約させていることになる。
したがって、連成解析モデル10の自由地盤節点16の数は「方向×杭長さ方向分割数」となる。解析対象となる杭の本数をN本とすると、従来手法と比較して自由地盤節点数を1/N個に削減することができる。
As shown in FIG. 2B, for the free ground node 16 in the length direction of each pile 14, a free ground node 16d is set for each predetermined pile length D as in the prior art. In the example of FIG. 2B, 13 free ground nodes 16d are set, and each free ground node 16d is joined to a node 15 on the pile 14 at a position on the corresponding pile length direction by a ground spring 18d. Yes. Therefore, the free ground nodes 16 for each reference direction at each position in the pile length direction are integrated into one point.
Therefore, the number of free ground nodes 16 of the coupled analysis model 10 is “direction × number of pile length direction divisions”. When the number of piles to be analyzed is N, the number of free ground nodes can be reduced to 1 / N compared to the conventional method.

より詳細に、連成解析モデル10を用いた解析について説明する。
図3は、従来技術と本発明との比較を模式的に示す図である。説明の便宜上、図3では自由地盤節点16を一方向にのみ設定している。
図3Aは、従来技術における自由地盤節点の設定方法である。従来技術では、杭14A〜14Cに対して、それぞれ別個に自由地盤節点16A〜16Cを設定していた。それぞれの杭14A〜14Cと自由地盤節点16A〜16Cとを結ぶ地盤ばね18A〜18Cのばね定数をk、各自由地盤節点16A〜16Cと対応する杭長さ方向上の位置における杭14A〜14Cとの間で生じる相対変位(変位量)をδとすると、変位δが生じた際に各杭14A〜14Cに作用する荷重PA〜PCは、P1=P2=P3=k×δとなる。
The analysis using the coupled analysis model 10 will be described in more detail.
FIG. 3 is a diagram schematically showing a comparison between the prior art and the present invention. For convenience of explanation, in FIG. 3, the free ground node 16 is set only in one direction.
FIG. 3A shows a method for setting a free ground node in the prior art. In the prior art, the free ground nodes 16A to 16C are separately set for the piles 14A to 14C. The spring constants of the ground springs 18A to 18C connecting the respective piles 14A to 14C and the free ground nodes 16A to 16C are k, and the piles 14A to 14C at positions on the pile length direction corresponding to the free ground nodes 16A to 16C; When the relative displacement (displacement amount) generated between the piles 14A to 14C is δ, the loads PA to PC acting on the piles 14A to 14C when the displacement δ occurs are P1 = P2 = P3 = k × δ.

一方、本実施の形態のように、基準方向における自由地盤節点を1つに集約する場合、杭14A〜14Cと自由地盤節点16との距離が十分に大きくない場合には、解析値にずれが生じることになる。
例えば、図3Bでは、杭14Aと自由地盤節点16を結ぶ線および杭14Cと自由地盤節点16を結ぶ線と、自由地盤変位の作用する方向線とに角度が生じており、この分杭14A,14Cにおける自由地盤変位が小さくなる(δA=δC=δ×cosθ)。
すなわち、各杭に作用する荷重P1〜P3は
P1 = k×δ1 = k×δ×cosθ
P2 = k×δ2 = k×δ
P3 = k×δ3 = k×δ×cosθ
となり、従来技術と解析結果が異なってしまう。
On the other hand, when the free ground nodes in the reference direction are aggregated into one as in the present embodiment, if the distance between the piles 14A to 14C and the free ground node 16 is not sufficiently large, the analysis value is shifted. Will occur.
For example, in FIG. 3B, an angle is generated between a line connecting the pile 14A and the free ground node 16, a line connecting the pile 14C and the free ground node 16, and a direction line on which the free ground displacement acts. The free ground displacement at 14C is reduced (δA = δC = δ × cos θ).
That is, the loads P1 to P3 acting on each pile are P1 = k × δ1 = k × δ × cos θ.
P2 = k × δ2 = k × δ
P3 = k × δ3 = k × δ × cos θ
Thus, the analysis results are different from those of the prior art.

そこで、本実施の形態では、自由地盤節点16を杭14の無限遠方とみなせる距離に設定している。これにより、θが限りなく0度に近づき、cosθ≒1.0となる。よって、P1≒P2≒P3となり、自由地盤節点を集約しても従来技術と同等の出力を得ることができる。   Therefore, in the present embodiment, the free ground node 16 is set to a distance that can be regarded as an infinite distance of the pile 14. As a result, θ approaches 0 ° as much as possible, and cos θ≈1.0. Therefore, P1≈P2≈P3, and even if free ground nodes are aggregated, an output equivalent to that of the prior art can be obtained.

以上説明したように、実施の形態にかかる地震応答解析方法および地震応答解析プログラムによれば、複数の杭14A〜14Iにおける基準方向毎の自由地盤節点16x,16yを一点に集約しているので、計算結果に大きな影響を及ぼさずに、モデルの節点数を少なくすることができる。このようなモデルの合理化により、プログラム上のメモリを削減することができ、例えば杭長さ方向の分割数を増やして詳細にモデル化したり、上部構造の柱や梁のモデルを詳細化することが可能となり、地震応答解析の精度を向上させることができる。
なお、本実施の形態では、連成解析モデルに地震時の自由地盤変位を入力し、出力として杭応力を得るものとしたが、本発明の適用はこれに限らず、連成解析モデルを用いた各種パラメータの解析に適用可能である。
As described above, according to the earthquake response analysis method and the earthquake response analysis program according to the embodiment, the free ground nodes 16x and 16y for each reference direction in the plurality of piles 14A to 14I are aggregated into one point. The number of nodes in the model can be reduced without significantly affecting the calculation results. By rationalizing such models, it is possible to reduce memory in the program, for example, increase the number of divisions in the pile length direction to model in detail, or refine the models of superstructure columns and beams. It becomes possible, and the accuracy of the earthquake response analysis can be improved.
In this embodiment, the free ground displacement at the time of earthquake is input to the coupled analysis model and the pile stress is obtained as an output. However, the present invention is not limited to this, and the coupled analysis model is used. It can be applied to the analysis of various parameters.

10 連成解析モデル
12 建物
14(14A−14I,14d) 杭
16(16x,16y,16d) 自由地盤節点
18(18x,18y,18d) 地盤ばね
10 Coupled analysis model 12 Building 14 (14A-14I, 14d) Pile 16 (16x, 16y, 16d) Free ground node 18 (18x, 18y, 18d) Ground spring

Claims (4)

建物と前記建物を支持する複数の杭とからなる構造物と、それぞれの前記杭に対して所定の基準方向毎に設定された自由地盤節点と、を含む連成解析モデルを用い、地震時における前記構造物の応答を解析する地震応答解析方法であって、
それぞれの前記杭から前記基準方向に無限遠方とみなせる位置に前記自由地盤節点を設定し、複数の前記杭における前記基準方向毎の前記自由地盤節点を一点に集約させる、
ことを特徴とする地震応答解析方法。
Using a coupled analysis model including a structure composed of a building and a plurality of piles supporting the building, and a free ground node set for each predetermined reference direction for each pile, An earthquake response analysis method for analyzing the response of the structure,
Set the free ground node at a position that can be regarded as an infinite distance in the reference direction from each of the piles, and aggregate the free ground nodes for each reference direction in the plurality of piles,
An earthquake response analysis method characterized by that.
前記自由地盤節点を前記杭の長さ方向に複数設定し、
杭長さ方向上の各位置における前記基準方向毎の前記自由地盤節点を一点に集約させる、
ことを特徴とする請求項1記載の地震応答解析方法。
A plurality of the free ground nodes are set in the length direction of the pile,
Aggregating the free ground nodes for each reference direction at each position on the pile length direction into one point,
The earthquake response analysis method according to claim 1, wherein:
それぞれの前記自由地盤節点に対して地震時における変位量を入力し、前記自由地盤節点と前記杭との間の地盤ばねのばね定数と、それぞれの前記杭が負担する軸力と、前記変位量とに基づいて、地震時にそれぞれの前記杭に発生する応力を算出する、
ことを特徴とする請求項1または2記載の地震応答解析方法。
The amount of displacement at the time of an earthquake is inputted to each free ground node, the spring constant of the ground spring between the free ground node and the pile, the axial force borne by each pile, and the displacement amount Based on the above, calculate the stress generated in each pile at the time of earthquake,
The earthquake response analysis method according to claim 1 or 2, wherein
請求項1から3のいずれか1項記載の地震応答解析方法をコンピュータに実行させるための地震応答解析プログラム。   An earthquake response analysis program for causing a computer to execute the earthquake response analysis method according to any one of claims 1 to 3.
JP2017106177A 2017-05-30 2017-05-30 Seismic response analysis method and seismic response analysis program Active JP6863824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106177A JP6863824B2 (en) 2017-05-30 2017-05-30 Seismic response analysis method and seismic response analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106177A JP6863824B2 (en) 2017-05-30 2017-05-30 Seismic response analysis method and seismic response analysis program

Publications (2)

Publication Number Publication Date
JP2018200288A true JP2018200288A (en) 2018-12-20
JP6863824B2 JP6863824B2 (en) 2021-04-21

Family

ID=64667149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106177A Active JP6863824B2 (en) 2017-05-30 2017-05-30 Seismic response analysis method and seismic response analysis program

Country Status (1)

Country Link
JP (1) JP6863824B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366320A (en) * 2020-03-20 2020-07-03 盐城摩因宝新材料有限公司 Building pile foundation anti-seismic engineering detection system and detection method thereof
CN111553002A (en) * 2020-03-31 2020-08-18 上海城建市政工程(集团)有限公司 Optimization design method of pile foundation
CN112227432A (en) * 2020-10-27 2021-01-15 长安大学 Bearing capacity test device and test method for pile foundation in soft soil during vibration subsidence

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245691A (en) * 2003-02-13 2004-09-02 Takenaka Komuten Co Ltd Seismic response analysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245691A (en) * 2003-02-13 2004-09-02 Takenaka Komuten Co Ltd Seismic response analysis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
廣瀬榛名、他2名: "杭位置の違いによる群杭の非線形水平地盤抵抗のモデル化", 日本建築学会構造系論文集, vol. 第81巻 第726号, JPN6021007746, August 2016 (2016-08-01), pages 1233 - 1241, ISSN: 0004457850 *
秀川貴彦: "杭−地盤系の非線形性を考慮した杭基礎建物の地震応答性状", 平成22年度「大阪大学工業会賞」受賞研究, JPN6021007744, 2014, pages 14 - 18, ISSN: 0004457849 *
豊岡亮洋、他3名: "構造形式の差異に着目した慣性力および地盤変位の影響評価", 鉄道総研報告, vol. 25, no. 9, JPN6021007741, September 2011 (2011-09-01), pages 51 - 56, ISSN: 0004457848 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366320A (en) * 2020-03-20 2020-07-03 盐城摩因宝新材料有限公司 Building pile foundation anti-seismic engineering detection system and detection method thereof
CN111553002A (en) * 2020-03-31 2020-08-18 上海城建市政工程(集团)有限公司 Optimization design method of pile foundation
CN112227432A (en) * 2020-10-27 2021-01-15 长安大学 Bearing capacity test device and test method for pile foundation in soft soil during vibration subsidence
CN112227432B (en) * 2020-10-27 2021-08-24 长安大学 Bearing capacity test device and test method for pile foundation in soft soil during vibration subsidence

Also Published As

Publication number Publication date
JP6863824B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
Wang et al. Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge
Luo et al. Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: diversity and parameter matching of periodic-impact motions
JP6863824B2 (en) Seismic response analysis method and seismic response analysis program
Guo et al. Point-to-surface pounding of highway bridges with deck rotation subjected to bi-directional earthquake excitations
Witteveen et al. Efficient model order reduction for the dynamics of nonlinear multilayer sheet structures with trial vector derivatives
Naserkhaki et al. SSI and SSSI effects in seismic analysis of twin buildings: discrete model concept
KR100945272B1 (en) 3 dimensional computer modeling method for steel frame structure and computer readable recording medium storing program performing the method
Lu et al. Discrete element method-based collapse simulation, validation and application to frame structures
Manoukas et al. Evaluation of a multimode pushover procedure for asymmetric in plan buildings under biaxial seismic excitation
Meigooni et al. Simulation of seismic collapse of simple structures with energy-based procedures
Zhang et al. Seismic Response of High-Rise Frame–Shear Wall Buildings under the Influence of Dynamic Soil–Structure Interaction
Zhongxue et al. Shaking table tests of two shallow reticulated shells
Jia et al. Nonlinear pounding analysis of multispan and simply supported beam bridges subjected to strong ground motions
JP6225226B2 (en) Building health assessment device, building health assessment method, and building health assessment program
Laghi et al. Strong-back system coupled with framed structure to control the building seismic response
JP5985938B2 (en) Building health assessment device, building health assessment method, and building health assessment program
Chen et al. Theoretical Investigation on Multiple Separation of Bridge under Near‐Fault Vertical Ground Motion
Chen et al. Seismic Performance of an Underground Structure with an Inerter‐Based Isolation System
Muthukkumaran et al. Erratum to: Effect of seabed slope on the pile behaviour of a fixed offshore platform under lateral forces
Chase et al. Linear and nonlinear seismic structural impact response spectral analyses
JP5914112B2 (en) Subsidence analysis method for piled raft foundation
Liu et al. Estimating seismic demands of singly symmetric buildings by spectrum-based pushover analysis
Mathias et al. Mechanical amplification of relative movements in damped outriggers for wind and seismic response mitigation
Mittal et al. Investigation on Influence of Pile Foundation on Seismic Response of Irregular Building Considering Soil-Structure Interaction
Zhang et al. Pounding between adjacent frame structures under earthquake excitation based on transfer matrix method of multibody systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250