JP2018198534A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2018198534A
JP2018198534A JP2018175351A JP2018175351A JP2018198534A JP 2018198534 A JP2018198534 A JP 2018198534A JP 2018175351 A JP2018175351 A JP 2018175351A JP 2018175351 A JP2018175351 A JP 2018175351A JP 2018198534 A JP2018198534 A JP 2018198534A
Authority
JP
Japan
Prior art keywords
rotor core
outer peripheral
center side
magnetic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018175351A
Other languages
Japanese (ja)
Inventor
佳純 北原
Yoshizumi Kitahara
佳純 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018175351A priority Critical patent/JP2018198534A/en
Publication of JP2018198534A publication Critical patent/JP2018198534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

To reduce leakage flux passing through a circumferential bridge.SOLUTION: The rotary electric machine includes: a rotor core having a pair of magnet housing holes arranged in a V-shape; and a pair of permanent magnets accommodated in the magnet housing holes and forming one magnetic pole. The rotor core includes: flux barriers formed on anti-magnetic-pole-center sides of the permanent magnets; and circumferential bridges formed between the flux barriers and the outer circumferential surface of the rotor core. A radial width of an end portion of the anti-magnetic-pole-center side of the circumferential bridge is smaller than that of an end portion of a magnetic-pole-center side. A radial width between the outer peripheral side end face of the permanent magnet and the outer peripheral face of the rotor core becomes larger toward the end face of the magnetic-pole-center side than a radial width of the end portion on the magnetic-pole-center side of the circumferential bridge. A radially outer end face of the flux barrier extends between an arc passing from the end on the magnetic-pole-center side of the circumferential bridge and the end on the side of the magnetic pole and an extension line on the outer peripheral side end faces of the permanent magnets, and a corner portion is formed between the radially outer end face of the flux barrier and the outer peripheral side end faces of the permanent magnets.SELECTED DRAWING: Figure 3

Description

本発明は、例えばハイブリッド車両や電気自動車等の車両に搭載されて電動機や発電機として用いられる回転電機に関する。   The present invention relates to a rotating electrical machine that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle and used as an electric motor or a generator.

従来、車両等に搭載されて使用される回転電機として、ロータの内部に永久磁石を埋め込んだ構造をもつ回転界磁形式の同期モータ(以下、「IPMモータ」という。)が知られている。このIPMモータは、ロータの磁化によるリラクタンストルクと永久磁石の磁化によるトルクの両方を利用することができるので高効率であることから、ハイブリッド車両や電気自動車等に好適に採用されている。   2. Description of the Related Art Conventionally, a rotating field type synchronous motor (hereinafter referred to as an “IPM motor”) having a structure in which a permanent magnet is embedded in a rotor is known as a rotating electric machine that is mounted and used in a vehicle or the like. Since this IPM motor can use both the reluctance torque due to the magnetization of the rotor and the torque due to the magnetization of the permanent magnet, and is highly efficient, it is suitably employed in hybrid vehicles, electric vehicles, and the like.

このようなIPMモータは、ステータと、ステータと径方向に対向配置されるロータとを備えている。そして、ロータとして、回転軸が圧入や焼きばめ等により嵌合される回転軸孔、及び2個で対をなしV字状に配置された複数対の磁石収容孔を有するロータコアと、V字状に配置され対をなす磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の永久磁石と、を備えたものが知られている。この場合、ロータコアのV字状に配置された一対の磁石収容孔の間には、径方向に延びる中央ブリッジが形成されている。   Such an IPM motor includes a stator and a rotor that is arranged to face the stator in the radial direction. As a rotor, a rotor core having a rotation shaft hole into which a rotation shaft is fitted by press-fitting, shrink fitting, or the like, a pair of magnet housing holes arranged in a V shape in pairs, and a V shape And a plurality of pairs of permanent magnets, each of which is housed in a pair of magnet housing holes and forms one magnetic pole, is known. In this case, a central bridge extending in the radial direction is formed between the pair of magnet housing holes arranged in a V shape of the rotor core.

また、特許文献1には、IPMモータのロータにおいて、ロータコアの磁石収容孔に収容された永久磁石の反磁極中心側に形成されたフラックスバリアを有するロータコアが開示されている。   Patent Document 1 discloses a rotor core having a flux barrier formed on the side opposite to the magnetic pole of a permanent magnet accommodated in a magnet accommodation hole of a rotor core in a rotor of an IPM motor.

特開2013−188023号公報JP2013-1888023A

本発明は、周方向ブリッジを通る漏れ磁束を減少させることが可能な回転電機を提供することを解決すべき課題とする。   This invention makes it the problem which should be solved to provide the rotary electric machine which can reduce the leakage magnetic flux which passes along a circumferential bridge.

上記課題を解決するためになされた本発明は、
2個で対をなしV字状に配置された複数対の磁石収容孔(32)を有するロータコア(31)と、V字状に配置され対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の永久磁石(33)と、を有するロータ(30)と、
前記ロータの径方向外側に所定のエアギャップを介して同軸上に配置され円環状に形成されて周方向に複数のスロットが配列されたステータコアと、前記ステータコアの前記スロットに巻装されたステータコイルと、を有するステータ(20)と、
を備えた回転電機において、
前記ロータコアは、前記磁石収容孔に収容された前記永久磁石の反磁極中心側に形成されたフラックスバリア(34)と、前記フラックスバリアと前記ロータコアの外周面(31b)との間に形成された周方向に延びる周方向ブリッジ(35)と、を有し、
前記周方向ブリッジは、反磁極中心側端部の径方向幅(W1)が磁極中心側端部の径方向幅(W2)よりも小さくされ、
前記永久磁石の外周側端面(33b)と前記ロータコアの外周面との間の径方向幅は、前記周方向ブリッジの磁極中心側端部の径方向幅(W2)より、前記永久磁石の磁極中心側端面(33d)に向かうに従って徐々に大きくされ、
前記フラックスバリアの径方向外側端面は、前記周方向ブリッジの磁極中心側端部から、前記ロータコアの回転中心線(O)を中心として前記周方向ブリッジの磁極中心側端部を通る円弧(S1)と、前記永久磁石の外周側端面を径方向外側に延長した線との間に向けて延びていると共に、前記永久磁石の外周側端面との間に角部を形成していることを特徴とする。
The present invention made to solve the above problems
Two rotor cores (31) having a plurality of pairs of magnet receiving holes (32) arranged in a V-shape, and one pair of magnets accommodated in the V-shaped magnet receiving holes in pairs. A rotor (30) having a plurality of pairs of permanent magnets (33) forming magnetic poles;
A stator core that is coaxially disposed outside the rotor in the radial direction via a predetermined air gap and is formed in an annular shape and has a plurality of slots arranged in the circumferential direction, and a stator coil wound around the slots of the stator core A stator (20) having:
In a rotating electrical machine with
The rotor core is formed between a flux barrier (34) formed on the opposite pole center side of the permanent magnet housed in the magnet housing hole, and between the flux barrier and the outer peripheral surface (31b) of the rotor core. A circumferential bridge (35) extending in the circumferential direction;
In the circumferential bridge, the radial width (W1) of the end portion on the counter magnetic pole center side is smaller than the radial width (W2) of the end portion on the magnetic pole center side,
The radial width between the outer peripheral end surface (33b) of the permanent magnet and the outer peripheral surface of the rotor core is greater than the radial width (W2) of the end of the peripheral bridge on the magnetic pole center side. It is gradually increased toward the side end face (33d),
The radially outer end face of the flux barrier is an arc (S1) passing from the end of the magnetic pole center of the circumferential bridge to the end of the center of rotation of the rotor core (O). And an outer peripheral side end surface of the permanent magnet extending toward a radially outward line, and a corner is formed between the permanent magnet and the outer peripheral side end surface of the permanent magnet. To do.

本発明によれば、ロータコアのフラックスバリアと外周面との間に形成された周方向ブリッジは、反磁極中心側端部の径方向幅が磁極中心側端部の径方向幅よりも小さくされている。そのため、回転軸とロータコアを圧入又は焼きばめにより締結する際に、ロータコアの周方向ブリッジに発生する伸び変形を、強度が小さい反磁極中心側端部へ逃がして周方向ブリッジ全体で受けることができるので、磁極中心側端部での応力集中を抑制することができる。これにより、応力集中によるロータコアの変形を緩和することができるので、ロータコアとステータとの間に設定された所定のエアギャップの変化を抑制することができる。   According to the present invention, in the circumferential bridge formed between the flux barrier of the rotor core and the outer peripheral surface, the radial width at the end on the antimagnetic pole center side is made smaller than the radial width at the end on the magnetic pole center side. Yes. Therefore, when the rotating shaft and the rotor core are fastened by press-fitting or shrink-fitting, the expansion deformation generated in the circumferential bridge of the rotor core can be released to the end of the antimagnetic pole center side having a low strength and received by the entire circumferential bridge. As a result, stress concentration at the magnetic pole center side end can be suppressed. As a result, deformation of the rotor core due to stress concentration can be mitigated, so that a change in a predetermined air gap set between the rotor core and the stator can be suppressed.

また、本発明によれば、周方向ブリッジの一部の径方向幅が小さくされていることから、周方向ブリッジを通る漏れ磁束を減少させることができるので、漏れ磁束によるトルク低下を抑制し、性能の向上を図ることができる。   In addition, according to the present invention, since the radial width of a part of the circumferential bridge is reduced, the leakage magnetic flux passing through the circumferential bridge can be reduced, so that the torque reduction due to the leakage magnetic flux is suppressed, The performance can be improved.

なお、この欄及び特許請求の範囲で記載された各部材や部位の後の括弧内の符号は、後述する実施形態に記載された具体的な部材や部位との対応関係を示すものであり、特許請求の範囲に記載された各請求項の構成に何ら影響を及ぼすものではない。   The reference numerals in parentheses after each member or part described in this column and in the claims indicate the correspondence with specific members and parts described in the embodiments described later, It does not affect the configuration of each claim described in the claims.

本発明の実施形態1に係るロータを有する回転電機の軸方向の断面図である。It is sectional drawing of the axial direction of the rotary electric machine which has a rotor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係るロータの1磁極部分を示す部分平面図である。It is a fragmentary top view which shows 1 magnetic pole part of the rotor which concerns on Embodiment 1 of this invention. 図2の一部を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show a part of FIG.

以下、本発明の実施形態について図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

〔実施形態1〕
本実施形態に係る回転電機について図1〜図3を参照して説明する。本実施形態に係るロータ30は、例えば車両用モータとして使用される図1に示す回転電機10に搭載されるものである。この回転電機10は、電機子として働くステータ20と、界磁として働くロータ30と、ステータ20及びロータ30を収容し、締結ボルト(図示せず)によって連結、固定されたフロントハウジング11a及びリアハウジング11b等を含んで構成されている。
Embodiment 1
A rotating electrical machine according to the present embodiment will be described with reference to FIGS. The rotor 30 according to the present embodiment is mounted on the rotating electrical machine 10 shown in FIG. 1 used as a vehicle motor, for example. The rotating electrical machine 10 includes a stator 20 that serves as an armature, a rotor 30 that serves as a field, a stator 20 and the rotor 30, and is connected and fixed by fastening bolts (not shown) and a rear housing 11a and a rear housing. 11b and the like.

ステータ20は、円環状に形成されて周方向に配列された複数のスロット(図示せず)を有するステータコア21と、ステータコア21のスロットに巻装され電力変換用のインバータ(図示せず)に接続された三相のステータコイル25とを有する。このステータ20は、フロントハウジング11a及びリアハウジング11b間で挟持されることにより固定されており、ロータ30の径方向外側に所定の隙間(エアギャップ)を介して同軸上に配置されている。   The stator 20 is formed in an annular shape and has a plurality of slots (not shown) arranged in the circumferential direction, and is connected to an inverter (not shown) for power conversion wound around the slots of the stator core 21. Three-phase stator coil 25. The stator 20 is fixed by being sandwiched between the front housing 11a and the rear housing 11b, and is arranged coaxially on the radially outer side of the rotor 30 via a predetermined gap (air gap).

ロータ30は、フロントハウジング11a及びリアハウジング11bに軸受け12を介して回転自在に支承された回転軸13と一体になって回転するもので、円環状の複数の鋼板を軸方向に積層して形成されたロータコア31を有する。このロータコア31は、中央に回転軸13が圧入により嵌合される回転軸孔31aを有する円環状の電磁鋼板を軸方向に複数積層して厚肉円筒状に形成されている。   The rotor 30 rotates integrally with the rotary shaft 13 rotatably supported by the front housing 11a and the rear housing 11b via the bearing 12, and is formed by laminating a plurality of annular steel plates in the axial direction. The rotor core 31 is provided. The rotor core 31 is formed in a thick cylindrical shape by laminating a plurality of annular electromagnetic steel plates having a rotation shaft hole 31a into which the rotation shaft 13 is fitted in the center in the center in the axial direction.

ロータコア31は、ステータ20の内周面と対向する外周面31b側に、軸方向に貫通する複数(本実施形態では16個)の磁石収容孔32が周方向に所定距離を隔てて設けられている。本実施形態の場合には、2個で対をなし外周側に向かうにつれて互いに離間距離が大きくなるようにV字状に配置された複数対(本実施形態では8対)の磁石収容孔32が周方向に等間隔に設けられている。   In the rotor core 31, a plurality of (16 in the present embodiment) magnet housing holes 32 penetrating in the axial direction are provided on the outer peripheral surface 31 b side facing the inner peripheral surface of the stator 20 at a predetermined distance in the circumferential direction. Yes. In the case of this embodiment, two pairs are formed, and a plurality of pairs (eight pairs in the present embodiment) of magnet housing holes 32 are arranged in a V shape so that the distance from each other increases toward the outer peripheral side. It is provided at equal intervals in the circumferential direction.

各磁石収容孔32には、ロータコア31の回転中心線Oと直角方向の断面形状が矩形(長方形)の永久磁石33がそれぞれ埋め込まれている。本実施形態の場合、V字状に配置された一対の磁石収容孔32,32に収容された一対の永久磁石33,33により一つの磁極が形成されている。この場合、8対の永久磁石33,33によって、周方向に極性が交互に異なる複数の磁極(本実施形態では8極(N極:4、S極:4))が形成されている。   Permanent magnets 33 each having a rectangular (rectangular) cross-sectional shape in a direction perpendicular to the rotation center line O of the rotor core 31 are embedded in each magnet housing hole 32. In the case of the present embodiment, one magnetic pole is formed by a pair of permanent magnets 33 and 33 housed in a pair of magnet housing holes 32 and 32 arranged in a V shape. In this case, a plurality of magnetic poles (in this embodiment, eight poles (N pole: 4, S pole: 4)) having different polarities in the circumferential direction are formed by the eight pairs of permanent magnets 33, 33.

なお、図2に示すように、ロータ30の1磁極分において、一対の磁石収容孔32,32は、ロータコア31の回転中心線O及び磁極中心を通る磁極中心線C1に対して線対称となる状態に形成されている。また、一つの磁極を形成する一対の永久磁石33,33は、磁極中心線C1に対して線対称となる状態(外周側が開くV字状)に配置されている。   As shown in FIG. 2, in one magnetic pole portion of the rotor 30, the pair of magnet housing holes 32 and 32 are axisymmetric with respect to the rotation center line O of the rotor core 31 and the magnetic pole center line C <b> 1 passing through the magnetic pole center. It is formed in a state. Further, the pair of permanent magnets 33 and 33 forming one magnetic pole are arranged in a line-symmetric state with respect to the magnetic pole center line C <b> 1 (V-shape opened on the outer peripheral side).

対をなす磁石収容孔32,32に収容された一対の永久磁石33,33のそれぞれの反磁極中心側には、各永久磁石33の反磁極中心側端面からロータコア31の周方向外側に広がる磁気的空隙部としての第1フラックスバリア34が形成されている。この第1フラックスバリア34は、ロータコア31の軸方向に貫通するように形成されている。各第1フラックスバリア34とロータコア31の外周面31bとの間には、周方向に延びる周方向ブリッジ35がそれぞれ形成されている。   On the counter magnetic pole center side of each of the pair of permanent magnets 33, 33 accommodated in the pair of magnet housing holes 32, 32, the magnetic spreading from the counter magnetic pole center side end surface of each permanent magnet 33 outward in the circumferential direction of the rotor core 31. A first flux barrier 34 is formed as a static gap. The first flux barrier 34 is formed so as to penetrate in the axial direction of the rotor core 31. A circumferential bridge 35 extending in the circumferential direction is formed between each first flux barrier 34 and the outer peripheral surface 31 b of the rotor core 31.

周方向ブリッジ35は、図3に示すように、反磁極中心側端部の径方向幅W1が磁極中心側端部の径方向幅W2よりも小さくされている。この場合、周方向ブリッジ35の磁極中心側端部(径方向幅W2が最大となる部位)は、磁石収容孔32に収容された永久磁石33の反磁極中心側端面33aと外周側端面33bとが交わる角部33cと対応する部位である。この周方向ブリッジ35の、永久磁石33の角部33cと対応する部位は、回転軸とロータコアを圧入又は焼きばめにより締結する際に、応力集中が最も発生し易い部位となる。よって、周方向ブリッジ35の反磁極中心側端部の径方向幅W1は、磁極中心側端部の径方向幅W2を基準にして、径方向幅W2よりも小さくなるように設定される。   As shown in FIG. 3, in the circumferential bridge 35, the radial width W1 of the end portion on the counter magnetic pole center side is made smaller than the radial width W2 of the end portion on the magnetic pole center side. In this case, the end part on the magnetic pole center side of the circumferential bridge 35 (the part where the radial width W2 is maximized) is the end face 33a and the outer end face 33b on the counter magnetic pole center side of the permanent magnet 33 housed in the magnet housing hole 32. Is a portion corresponding to the corner 33c where the crosses. A portion of the circumferential bridge 35 corresponding to the corner portion 33c of the permanent magnet 33 is a portion where stress concentration is most likely to occur when the rotating shaft and the rotor core are fastened by press fitting or shrink fitting. Therefore, the radial width W1 of the end on the counter magnetic pole center side of the circumferential bridge 35 is set to be smaller than the radial width W2 with reference to the radial width W2 of the end on the magnetic pole center side.

なお、図3において、角部33cを通る円弧S1は、ロータコア31の回転中心線O(図2参照)を中心として描かれる円の一部を示している。この円弧S1を含む円は、ロータコア31の外周面31bを描く円と同心円である。   In FIG. 3, an arc S1 passing through the corner 33c indicates a part of a circle drawn around the rotation center line O (see FIG. 2) of the rotor core 31. The circle including the arc S1 is a concentric circle with the circle describing the outer peripheral surface 31b of the rotor core 31.

また、対をなす磁石収容孔32,32のそれぞれの磁極中心側には、各永久磁石33の磁極中心側端面からロータコア31の周方向外側に広がる磁気的空隙部としての第2フラックスバリア36が形成されている。この第2フラックスバリア36は、ロータコア31の軸方向に貫通するように形成されている。対をなす第2フラックスバリア36,36の間には、当該部位に磁束飽和を起こさせ、磁気回路の形成を阻害させる中央ブリッジ37が径方向に延伸するよう形成されている。   In addition, a second flux barrier 36 as a magnetic gap extending from the end surface on the magnetic pole center side of each permanent magnet 33 to the outer side in the circumferential direction of the rotor core 31 is formed on each magnetic pole center side of the pair of magnet housing holes 32, 32. Is formed. The second flux barrier 36 is formed so as to penetrate in the axial direction of the rotor core 31. Between the paired second flux barriers 36, 36, a central bridge 37 is formed so as to extend in the radial direction, causing magnetic flux saturation in the part and inhibiting the formation of the magnetic circuit.

第1フラックスバリア34の内周側端部には、永久磁石33の反磁極中心側端面33aを保持する第1保持部38が設けられている。また、第2フラックスバリア36の内周側端部には、永久磁石33の磁極中心側端面33dを保持する第2保持部39が設けられている。これら第1及び第2保持部38,39により、各磁石収容孔32に収容された各永久磁石33は、周方向両側が保持されている。そして、各磁石収容孔32に収容された各永久磁石33は、磁石収容孔32の内周側壁面及び外周側壁面との間の隙間に充填された非磁性材料よりなる接着材(図示せず)によりロータコア31に強固に固定されている。   A first holding portion 38 that holds a counter magnetic pole center side end surface 33 a of the permanent magnet 33 is provided at the inner peripheral side end portion of the first flux barrier 34. In addition, a second holding portion 39 that holds the end surface 33 d of the permanent magnet 33 on the magnetic pole center side is provided at the inner peripheral side end portion of the second flux barrier 36. The permanent magnets 33 accommodated in the magnet accommodation holes 32 are held on both sides in the circumferential direction by the first and second holding portions 38 and 39. And each permanent magnet 33 accommodated in each magnet accommodation hole 32 is an adhesive (not shown) made of a nonmagnetic material filled in a gap between the inner peripheral side wall surface and the outer peripheral side wall surface of the magnet accommodation hole 32. ) Is firmly fixed to the rotor core 31.

以上のように構成された本実施形態のロータ30によれば、ロータコア31の第1フラックスバリア34と外周面31bとの間に形成された周方向ブリッジ35は、反磁極中心側端部の径方向幅W1が磁極中心側端部の径方向幅W2よりも小さくされている。そのため、回転軸13とロータコア31を圧入又は焼きばめにより締結する際に、ロータコア31の周方向ブリッジ35に発生する伸び変形を、強度が小さい反磁極中心側端部へ逃がして周方向ブリッジ35全体で受けることができるので、磁極中心側端部での応力集中を抑制することができる。これにより、応力集中によるロータコア31の変形を緩和することができるので、ロータコア31とステータ20との間に設定された所定のエアギャップの変化を抑制することができる。   According to the rotor 30 of the present embodiment configured as described above, the circumferential bridge 35 formed between the first flux barrier 34 of the rotor core 31 and the outer peripheral surface 31b has a diameter at the end on the side opposite to the magnetic pole center. The direction width W1 is smaller than the radial width W2 at the end on the magnetic pole center side. Therefore, when the rotary shaft 13 and the rotor core 31 are fastened by press-fitting or shrink-fitting, the expansion deformation generated in the circumferential bridge 35 of the rotor core 31 is released to the end portion on the counter magnetic pole center side having a low strength, and the circumferential bridge 35. Since it can be received as a whole, stress concentration at the end portion on the magnetic pole center side can be suppressed. As a result, deformation of the rotor core 31 due to stress concentration can be mitigated, so that a change in a predetermined air gap set between the rotor core 31 and the stator 20 can be suppressed.

特に、本実施形態では、周方向ブリッジ35の磁極中心側端部の径方向幅W2は、磁石収容孔32に収容された永久磁石33の角部33cと対応する部位、即ち、応力集中が最も発生し易い部位を基準にしているため、ロータコア31に発生する応力集中をより確実に抑制することが可能となる。   In particular, in the present embodiment, the radial width W2 of the end portion on the magnetic pole center side of the circumferential bridge 35 is the portion corresponding to the corner portion 33c of the permanent magnet 33 housed in the magnet housing hole 32, that is, the stress concentration is the largest. Since the portion that is likely to be generated is used as a reference, the stress concentration generated in the rotor core 31 can be more reliably suppressed.

また、本実施形態では、周方向ブリッジ35の一部(反磁極中心側端部)の径方向幅W1が小さくされていることから、周方向ブリッジ35を通る漏れ磁束を減少させることができるので、漏れ磁束によるトルク低下を抑制し、性能の向上を図ることができる。   Further, in the present embodiment, since the radial width W1 of a part of the circumferential bridge 35 (end on the side opposite to the magnetic pole center) is reduced, the leakage magnetic flux passing through the circumferential bridge 35 can be reduced. The torque reduction due to the leakage magnetic flux can be suppressed, and the performance can be improved.

〔他の実施形態〕
なお、本発明は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。
[Other Embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記の実施形態では、本発明に係る回転電機のロータを車両用モータのロータに適用した例を説明したが、本発明は、車両に搭載される回転電機として、発電機、あるいは電動機、さらには両者を選択的に使用し得る回転電機のロータにも利用することができる。   For example, in the above-described embodiment, the example in which the rotor of the rotating electrical machine according to the present invention is applied to the rotor of the vehicle motor has been described. However, the present invention can be used as a rotating electrical machine mounted on a vehicle. Furthermore, it can also be used for a rotor of a rotating electrical machine that can selectively use both.

ところで、上記の特許文献1に開示された回転電機のロータにおいて、ロータコアの回転軸孔に回転軸が圧入又は焼きばめにより嵌合される場合には、ロータコアに応力が発生する。また、ロータの回転時には、ロータコアや永久磁石に遠心力が作用する。これらの応力や遠心力は、ロータコアのフラックスバリアと外周面との間の部位に集中し易い。そのため、応力集中や遠心力によってロータコアが変形し、ロータコアと径方向に対向して配置されるステータとの間に設定された所定のエアギャップが変化するという問題が発生する。そこで、本明細書は、回転軸とロータコアを圧入又は焼きばめにより締結する際に、応力集中によるロータコアの変形を緩和し得るようにした回転電機のロータを提供すべく、更に、以下の形態も開示する。   By the way, in the rotor of the rotating electrical machine disclosed in Patent Document 1 described above, when the rotary shaft is fitted into the rotary shaft hole of the rotor core by press-fitting or shrink fitting, stress is generated in the rotor core. Further, when the rotor rotates, centrifugal force acts on the rotor core and the permanent magnet. These stresses and centrifugal forces are likely to be concentrated at a portion between the flux barrier of the rotor core and the outer peripheral surface. For this reason, the rotor core is deformed by stress concentration or centrifugal force, and there is a problem that a predetermined air gap set between the rotor core and the stator disposed to face the radial direction changes. In view of this, the present specification further provides a rotor of a rotating electrical machine that can alleviate deformation of the rotor core due to stress concentration when the rotary shaft and the rotor core are fastened by press-fitting or shrink fitting. Is also disclosed.

[形態1]
回転軸(13)が圧入又は焼きばめにより嵌合される回転軸孔(31a)、及び2個で対をなしV字状に配置された複数対の磁石収容孔(32)を有するロータコア(31)と、V字状に配置され対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の永久磁石(33)と、を備えた回転電機のロータにおいて、
前記ロータコアは、前記磁石収容孔に収容された前記永久磁石の反磁極中心側に形成されたフラックスバリア(34)と、前記フラックスバリアと前記ロータコアの外周面(31b)との間に形成された周方向に延びる周方向ブリッジ(35)と、を有し、
前記周方向ブリッジは、反磁極中心側端部の径方向幅(W1)が磁極中心側端部の径方向幅(W2)よりも小さくされていることを特徴とする回転電機のロータ。
[形態2]
前記周方向ブリッジの前記磁極中心側端部は、前記磁石収容孔に収容された前記永久磁石の反磁極中心側端面(33a)と外周側端面(33b)とが交わる角部(33c)と対応する部位であることを特徴とする上記形態1に記載の回転電機のロータ。
[Form 1]
A rotor core having a rotation shaft hole (31a) into which the rotation shaft (13) is fitted by press-fitting or shrink fitting, and a plurality of pairs of magnet housing holes (32) arranged in a V shape. 31) and a plurality of pairs of permanent magnets (33) that are housed in the magnet housing holes that are arranged in a V shape and that form a pair, and each form a single magnetic pole.
The rotor core is formed between a flux barrier (34) formed on the opposite pole center side of the permanent magnet housed in the magnet housing hole, and between the flux barrier and the outer peripheral surface (31b) of the rotor core. A circumferential bridge (35) extending in the circumferential direction;
The rotor of a rotating electrical machine, wherein the circumferential bridge has a radial width (W1) at a counter magnetic pole center end portion smaller than a radial width (W2) at a magnetic pole center end portion.
[Form 2]
The end portion on the magnetic pole center side of the circumferential bridge corresponds to a corner portion (33c) at which the antimagnetic pole center side end surface (33a) and the outer peripheral end surface (33b) of the permanent magnet housed in the magnet housing hole intersect. The rotor of the rotating electrical machine according to the first aspect, wherein the rotor is a portion to be operated.

10:回転電機、13:回転軸、30:ロータ、31:ロータコア、31a:回転軸孔、31b:外周面、32:磁石収容孔、33:永久磁石、33a:反磁極中心側端面、33b:外周側端面、33c:角部、34:第1フラックスバリア、35:周方向ブリッジ、W1:周方向ブリッジの反磁極中心側端部の径方向幅、W2:周方向ブリッジの磁極中心側端部の径方向幅。
10: Rotating electrical machine, 13: Rotating shaft, 30: Rotor, 31: Rotor core, 31a: Rotating shaft hole, 31b: Outer peripheral surface, 32: Magnet housing hole, 33: Permanent magnet, 33a: End face on the opposite side of the magnetic pole, 33b: Outer peripheral side end face, 33c: Corner portion, 34: First flux barrier, 35: Circumferential bridge, W1: Radial width of the antimagnetic pole center side end portion of the circumferential bridge, W2: End portion on the magnetic pole center side of the circumferential bridge Radial width of.

Claims (1)

2個で対をなしV字状に配置された複数対の磁石収容孔(32)を有するロータコア(31)と、V字状に配置され対をなす前記磁石収容孔に収容されてそれぞれ一つの磁極を形成する複数対の永久磁石(33)と、を有するロータ(30)と、
前記ロータの径方向外側に所定のエアギャップを介して同軸上に配置され円環状に形成されて周方向に複数のスロットが配列されたステータコアと、前記ステータコアの前記スロットに巻装されたステータコイルと、を有するステータ(20)と、
を備えた回転電機において、
前記ロータコアは、前記磁石収容孔に収容された前記永久磁石の反磁極中心側に形成されたフラックスバリア(34)と、前記フラックスバリアと前記ロータコアの外周面(31b)との間に形成された周方向に延びる周方向ブリッジ(35)と、を有し、
前記周方向ブリッジは、反磁極中心側端部の径方向幅(W1)が磁極中心側端部の径方向幅(W2)よりも小さくされ、
前記永久磁石の外周側端面(33b)と前記ロータコアの外周面との間の径方向幅は、前記周方向ブリッジの磁極中心側端部の径方向幅(W2)より、前記永久磁石の磁極中心側端面(33d)に向かうに従って徐々に大きくされ、
前記フラックスバリアの径方向外側端面は、前記周方向ブリッジの磁極中心側端部から、前記ロータコアの回転中心線(O)を中心として前記周方向ブリッジの磁極中心側端部を通る円弧(S1)と、前記永久磁石の外周側端面を径方向外側に延長した線との間に向けて延びていると共に、前記永久磁石の外周側端面との間に角部を形成していることを特徴とする回転電機。
Two rotor cores (31) having a plurality of pairs of magnet receiving holes (32) arranged in a V-shape, and one pair of magnets accommodated in the V-shaped magnet receiving holes in pairs. A rotor (30) having a plurality of pairs of permanent magnets (33) forming magnetic poles;
A stator core that is coaxially disposed outside the rotor in the radial direction via a predetermined air gap and is formed in an annular shape and has a plurality of slots arranged in the circumferential direction, and a stator coil wound around the slots of the stator core A stator (20) having:
In a rotating electrical machine with
The rotor core is formed between a flux barrier (34) formed on the opposite pole center side of the permanent magnet housed in the magnet housing hole, and between the flux barrier and the outer peripheral surface (31b) of the rotor core. A circumferential bridge (35) extending in the circumferential direction;
In the circumferential bridge, the radial width (W1) of the end portion on the counter magnetic pole center side is smaller than the radial width (W2) of the end portion on the magnetic pole center side,
The radial width between the outer peripheral end surface (33b) of the permanent magnet and the outer peripheral surface of the rotor core is greater than the radial width (W2) of the end of the peripheral bridge on the magnetic pole center side. It is gradually increased toward the side end face (33d),
The radially outer end face of the flux barrier is an arc (S1) passing from the end of the magnetic pole center of the circumferential bridge to the end of the center of rotation of the rotor core (O). And an outer peripheral side end surface of the permanent magnet extending toward a radially outward line, and a corner is formed between the permanent magnet and the outer peripheral side end surface of the permanent magnet. Rotating electric machine.
JP2018175351A 2018-09-19 2018-09-19 Rotary electric machine Pending JP2018198534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175351A JP2018198534A (en) 2018-09-19 2018-09-19 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175351A JP2018198534A (en) 2018-09-19 2018-09-19 Rotary electric machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014088969A Division JP2015208184A (en) 2014-04-23 2014-04-23 Rotor for rotary electric machine

Publications (1)

Publication Number Publication Date
JP2018198534A true JP2018198534A (en) 2018-12-13

Family

ID=64662479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175351A Pending JP2018198534A (en) 2018-09-19 2018-09-19 Rotary electric machine

Country Status (1)

Country Link
JP (1) JP2018198534A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600377A (en) * 2019-10-02 2021-04-02 丰田自动车株式会社 Rotating electrical machine and method for controlling rotating electrical machine
CN113098166A (en) * 2020-01-09 2021-07-09 蜂巢传动***(江苏)有限公司保定研发分公司 Rotor punching sheet and rotor iron core
CN114614583A (en) * 2020-11-25 2022-06-10 日本电产株式会社 Rotor and rotating electrical machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it
JP2010239818A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Rotating electrical machine
JP2012110069A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Rotor core, rotor for rotating electric machine and method of manufacturing rotor core for rotating electric machine
JP2012257426A (en) * 2011-06-10 2012-12-27 Denso Corp Rotor of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005261024A (en) * 2004-03-10 2005-09-22 Hitachi Ltd Permanent magnet rotating electric machine and electric vehicle using it
JP2010239818A (en) * 2009-03-31 2010-10-21 Nissan Motor Co Ltd Rotating electrical machine
JP2012110069A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Rotor core, rotor for rotating electric machine and method of manufacturing rotor core for rotating electric machine
JP2012257426A (en) * 2011-06-10 2012-12-27 Denso Corp Rotor of rotary electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600377A (en) * 2019-10-02 2021-04-02 丰田自动车株式会社 Rotating electrical machine and method for controlling rotating electrical machine
CN112600377B (en) * 2019-10-02 2024-01-16 丰田自动车株式会社 Rotary electric machine and control method for rotary electric machine
CN113098166A (en) * 2020-01-09 2021-07-09 蜂巢传动***(江苏)有限公司保定研发分公司 Rotor punching sheet and rotor iron core
CN113098166B (en) * 2020-01-09 2022-11-04 蜂巢传动***(江苏)有限公司保定研发分公司 Rotor punching sheet and rotor iron core
CN114614583A (en) * 2020-11-25 2022-06-10 日本电产株式会社 Rotor and rotating electrical machine

Similar Documents

Publication Publication Date Title
JP2695332B2 (en) Permanent magnet field type rotor
JP6226196B2 (en) Rotating electrical machine rotor
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
JP5347588B2 (en) Embedded magnet motor
JP3633106B2 (en) Switched reluctance motor
JP2014027825A (en) Double stator type motor
JP2011259688A (en) Rotor of rotary electric machine
JP7293371B2 (en) Rotor of rotary electric machine
EP3208918B1 (en) Double stator-type rotary machine
EP2983273B1 (en) Rotating electrical machine with embedded permanent magnet
JP2011188579A (en) Permanent magnet synchronous machine
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2018198534A (en) Rotary electric machine
JP2015208184A (en) Rotor for rotary electric machine
JP2013021775A (en) Rotary electric machine
JP2000041367A (en) Hybrid excitation type synchronous machine
JP2006333656A (en) Rotor of rotary electric machine and rotary electric machine using same
JP2019041450A (en) Rotary electric machine
WO2019181001A1 (en) Rotary electric machine
JP2018082600A (en) Double-rotor dynamoelectric machine
WO2021106395A1 (en) Rotary electric machine, rotor, and electromagnetic steel plate
US9735634B2 (en) Split pole spoke type PM machine with enclosed magnets
JP5879848B2 (en) Rotor for interior magnet type rotary electric machine
JP2015089149A (en) Multi-gap type rotary electric machine
EP4329153A1 (en) Permanent magnet rotor with reduced torque ripple

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602