JP2018197214A - Manufacturing method of alcohol - Google Patents

Manufacturing method of alcohol Download PDF

Info

Publication number
JP2018197214A
JP2018197214A JP2017102824A JP2017102824A JP2018197214A JP 2018197214 A JP2018197214 A JP 2018197214A JP 2017102824 A JP2017102824 A JP 2017102824A JP 2017102824 A JP2017102824 A JP 2017102824A JP 2018197214 A JP2018197214 A JP 2018197214A
Authority
JP
Japan
Prior art keywords
reaction
reaction tower
phosphoric acid
region
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017102824A
Other languages
Japanese (ja)
Inventor
大野 智之
Tomoyuki Ono
智之 大野
貴之 川崎
Takayuki Kawasaki
貴之 川崎
秀雄 根本
Hideo Nemoto
秀雄 根本
守 緒方
Mamoru Ogata
守 緒方
一男 石毛
Kazuo Ishige
一男 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GOSEI ALCOHOL KK
Original Assignee
NIPPON GOSEI ALCOHOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GOSEI ALCOHOL KK filed Critical NIPPON GOSEI ALCOHOL KK
Priority to JP2017102824A priority Critical patent/JP2018197214A/en
Publication of JP2018197214A publication Critical patent/JP2018197214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a manufacturing method of alcohol capable of achieving a hydration reaction in a reaction tower continuously.SOLUTION: There is provided a manufacturing method for manufacturing alcohol by circulating a reaction substance containing olefin and water from one terminal to another terminal of a heated reaction tower in which a carrier carrying phosphoric acid is accommodated, and contacting the reaction substance with the carrier, in which at least a part of an inner wall of the reaction tower in contact with the carrier carrying phosphoric acid is coated with a fluorine resin or polyolefin.SELECTED DRAWING: None

Description

本発明は、アルコールの製造方法に関する。   The present invention relates to a method for producing alcohol.

従来、合成法によるアルコールの工業的製造方法として、反応塔内に収容されたリン酸触媒の存在下、オレフィンと水(水蒸気)とを反応させる直接水和法が知られている(非特許文献1)。   Conventionally, a direct hydration method in which an olefin and water (steam) are reacted in the presence of a phosphoric acid catalyst accommodated in a reaction tower is known as an industrial production method of alcohol by a synthesis method (non-patent document). 1).

通商産業省基礎産業局アルコール課監修/アルコール協会・バイオインダストリー協会編、「アルコールハンドブック(第9版)」、技報堂出版株式会社、1997年8月Supervised by the Ministry of International Trade and Industry, Basic Industry Bureau, Alcohol Division / Alcohol Association and Bioindustry Association, “Alcohol Handbook (9th Edition)”, Gihodo Publishing Co., Ltd., August 1997

一般に、直接水和法においては高温かつ高圧条件下でオレフィンと水(水蒸気)とを反応させる。そのため、反応塔は外層が高圧条件に耐えうる鋼材から構成され、反応塔内の腐食を極力防止するために、外層の内側は銅材でカバーされることが多い。   In general, in the direct hydration method, an olefin and water (steam) are reacted under high temperature and high pressure conditions. Therefore, the reaction tower is made of a steel material whose outer layer can withstand high pressure conditions, and the inner side of the outer layer is often covered with a copper material in order to prevent corrosion in the reaction tower as much as possible.

しかしながら、反応塔を長期間継続して使用すると反応塔の孔食(pitting corrosion;金属(銅材)表面から内部方向に向かって孔状に進行する局部腐食)が進行し、最悪の場合、反応塔外層を構成する鋼材が破損して反応塔が使用不能になってしまうため、定期的な銅材の交換を余儀なくされていた。そのため、銅材を交換するに際して反応を一定期間停止する必要があり、その結果としてアルコールの生産効率が低下するという問題があった。   However, if the reaction tower is used continuously for a long period of time, pitting corrosion of the reaction tower (local corrosion that progresses in the form of holes from the surface of the metal (copper material) to the inside) proceeds, and in the worst case, the reaction Since the steel material constituting the outer layer of the tower is damaged and the reaction tower becomes unusable, the copper material has to be periodically replaced. Therefore, when replacing the copper material, it is necessary to stop the reaction for a certain period, and as a result, there is a problem that the production efficiency of alcohol is lowered.

本発明の目的は、反応塔において水和反応をより継続的に実施することが可能なアルコールの製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of alcohol which can implement a hydration reaction more continuously in a reaction tower.

本発明は、リン酸を担持した担体が収容され且つ加熱された反応塔の一端から他端方向へ、オレフィン及び水を含む反応基質を流通させ、反応基質を担体に接触させることでアルコールを製造する製造方法であって、リン酸を担持した担体と接する反応塔の内壁の少なくとも一部をフッ素樹脂又はポリオレフィンで被覆する、製造方法を提供する。   In the present invention, a reaction substrate containing olefin and water is circulated from one end to the other end of a reaction tower in which a carrier carrying phosphoric acid is stored and heated, and alcohol is produced by bringing the reaction substrate into contact with the carrier. There is provided a manufacturing method in which at least a part of the inner wall of a reaction tower in contact with a carrier carrying phosphoric acid is coated with a fluororesin or a polyolefin.

本発明者らの知見によれば、反応塔内側において、銅材と、リン酸触媒、すなわちリン酸及び当該リン酸を担持する担体の3成分が接触することで反応塔の孔食が特に起こりやすく、一旦孔食が発生すると孔食の進行が急激に加速する。一方、銅材とリン酸の2成分のみが接触しても、反応塔の孔食はほとんど発生しない。本発明者らはこれらの点に着目し、銅材とリン酸触媒の間に樹脂層を介在させることにより、反応塔の孔食を顕著に防止できることを見出した。本発明の製造方法により、反応塔の孔食が長期間防止され、水和反応をより継続的にかつ安定に実施することが可能となる。   According to the knowledge of the present inventors, pitting corrosion of the reaction tower occurs particularly when the copper component and the three components of the phosphoric acid catalyst, that is, phosphoric acid and the carrier supporting the phosphoric acid, come into contact with each other inside the reaction tower. It is easy, and once pitting occurs, the progress of pitting increases rapidly. On the other hand, even if only two components of the copper material and phosphoric acid are in contact with each other, the pitting corrosion of the reaction tower hardly occurs. The present inventors paid attention to these points and found that the pitting corrosion of the reaction tower can be remarkably prevented by interposing a resin layer between the copper material and the phosphoric acid catalyst. By the production method of the present invention, pitting corrosion of the reaction tower is prevented for a long period of time, and the hydration reaction can be carried out more continuously and stably.

本発明によれば、反応塔において水和反応をより継続的に実施することが可能なアルコールの製造方法が提供される。これにより、アルコールの生産効率を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of alcohol which can implement a hydration reaction more continuously in a reaction tower is provided. Thereby, the production efficiency of alcohol can be improved.

反応基質が流通する方向に沿った反応塔の断面図である。It is sectional drawing of the reaction tower along the direction through which the reaction substrate distribute | circulates. 反応基質が流通する方向と垂直の方向に沿った反応塔の断面図である。It is sectional drawing of the reaction tower along the direction perpendicular | vertical to the direction through which a reaction substrate distribute | circulates.

以下、図面を参照しながら、好適な実施形態を説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。また、図面は理解を容易にするため一部を誇張して描いており、寸法比率は説明のものとは必ずしも一致しない。   Hereinafter, preferred embodiments will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the drawings are exaggerated for easy understanding, and the dimensional ratios do not necessarily match those described.

図1は、実施形態に係る方法でアルコールの製造が行われる反応塔の、反応基質が流通する方向に沿った断面図である。   FIG. 1 is a cross-sectional view of a reaction tower in which alcohol is produced by a method according to an embodiment, along a direction in which a reaction substrate flows.

図1に示す反応塔100は、反応塔本体10と反応塔本体10内部に形成された樹脂層40とを少なくとも備えている。反応塔本体10の一端には導入口12、他端には導出口14が形成されており、導入口12からはオレフィン及び水を含む反応基質が導入され、導出口14からは生成物であるアルコールを含む成分が導出される。反応塔本体10の内部には、リン酸を担持した担体(リン酸担持担体20)が収容されており、リン酸担持担体20と接する内壁30の少なくとも一部は樹脂層40で被覆されている。   A reaction tower 100 shown in FIG. 1 includes at least a reaction tower body 10 and a resin layer 40 formed inside the reaction tower body 10. An inlet 12 is formed at one end of the reaction column main body 10, and an outlet 14 is formed at the other end. A reaction substrate containing olefin and water is introduced from the inlet 12, and a product is introduced from the outlet 14. A component containing alcohol is derived. Inside the reaction tower body 10, a carrier carrying phosphoric acid (phosphoric acid carrying carrier 20) is accommodated, and at least a part of the inner wall 30 in contact with the phosphoric acid carrying carrier 20 is covered with a resin layer 40. .

リン酸担持担体20の反応塔本体10内への収容は、例えば、まず反応塔本体10内に担体を充填し、次いでリン酸(例えば、リン酸水溶液)を反応塔本体10内に投入して担体に含浸させることで実施することができる。リン酸を担持する担体としては、例えば、シリカゲル等の粒子状担体が用いられる。   The phosphoric acid-supported carrier 20 is accommodated in the reaction tower main body 10, for example, by first filling the reaction tower main body 10 with the carrier and then introducing phosphoric acid (for example, phosphoric acid aqueous solution) into the reaction tower main body 10. It can be carried out by impregnating the support. As the carrier for supporting phosphoric acid, for example, a particulate carrier such as silica gel is used.

オレフィン及び水を含む反応基質は、導入口12から導入され、加熱されたリン酸担持担体20と接触することにより、水和反応が生じアルコールが生成する。そして、生成したアルコールを含む成分は導出口14から導出される。なお、水和反応の実施中は、リン酸担持担体20中のリン酸濃度を一定に保つため、導入口12からリン酸が継続的に導入され、リン酸担持担体20中に補充される。本実施形態においては、リン酸担持担体20と接する反応塔本体10の内壁30の少なくとも一部が樹脂層40で被覆されていることから、反応塔本体10の孔食が効果的に防止され、水和反応がより継続的に且つ安定に進行する。   The reaction substrate containing olefin and water is introduced from the introduction port 12 and comes into contact with the heated phosphoric acid-carrying carrier 20, whereby a hydration reaction occurs and alcohol is generated. And the component containing the produced | generated alcohol is derived | led-out from the outlet 14. During the hydration reaction, phosphoric acid is continuously introduced from the inlet 12 and replenished into the phosphoric acid carrying carrier 20 in order to keep the phosphoric acid concentration in the phosphoric acid carrying carrier 20 constant. In this embodiment, since at least a part of the inner wall 30 of the reaction tower main body 10 in contact with the phosphoric acid support 20 is covered with the resin layer 40, pitting corrosion of the reaction tower main body 10 is effectively prevented, The hydration reaction proceeds more continuously and stably.

樹脂層40は、反応塔本体10の内壁30において、リン酸担持担体20と接する部分の少なくとも一部を被覆していればよく、リン酸担持担体20と接する部分全体を被覆していてもよい。また、樹脂層40は、反応塔本体10の内壁30において、リン酸担持担体20と接する部分の少なくとも一部及びリン酸担持担体20と接していない部分を被覆していてもよく、内壁30全体を被覆していてもよい。   The resin layer 40 only needs to cover at least a part of the inner wall 30 of the reaction tower main body 10 in contact with the phosphoric acid carrier 20, and may cover the entire part in contact with the phosphoric acid carrier 20. . In addition, the resin layer 40 may cover at least a part of the inner wall 30 of the reaction tower main body 10 that is in contact with the phosphoric acid carrier 20 and a part that is not in contact with the phosphoric acid carrier 20. May be coated.

樹脂層40を構成する樹脂は、フッ素樹脂又はポリオレフィンであり、好ましくはフッ素樹脂である。   The resin constituting the resin layer 40 is a fluororesin or polyolefin, preferably a fluororesin.

樹脂層40を構成するフッ素樹脂としては、例えば、四フッ化エチレン樹脂(PFTE)、四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン・エチレン共重合樹脂(ETFE)、フッ化ビニリデン樹脂(PVDF)、三フッ化塩化エチレン樹脂(PCTFE)、三フッ化塩化エチレン・エチレン共重合樹脂(ECTFE)等が挙げられる。これらの中でも、四フッ化エチレン樹脂(PFTE)が好ましい。   Examples of the fluororesin constituting the resin layer 40 include tetrafluoroethylene resin (PFTE), tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer resin. (FEP), ethylene tetrafluoride-ethylene copolymer resin (ETFE), vinylidene fluoride resin (PVDF), trifluorochloroethylene resin (PCTFE), trifluoroethylene chloride-ethylene copolymer resin (ECTFE), etc. Can be mentioned. Among these, tetrafluoroethylene resin (PFTE) is preferable.

樹脂層40を構成するポリオレフィンとしては、例えば、ポリエチレン(高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)等が挙げられる。   Examples of the polyolefin constituting the resin layer 40 include polyethylene (high density polyethylene (HDPE), low density polyethylene (LDPE)), polypropylene (PP), and the like.

樹脂層40の被覆は、例えば、反応塔本体10の内層16を構成する銅材の表面に、樹脂フィルムをシートライニングすることで実施することができる。シートライニングとしては、接着剤(例:エポキシ樹脂系接着剤、ゴム系接着剤)を樹脂フィルムと銅材との間に介在させる接着シートライニング、接着剤を使用しないルーズシートライニングのいずれの方法も採用することができる。樹脂フィルムの厚さ(すなわち樹脂層40の厚さ)は、例えば、0.1〜1.5mmであってよい。   The coating of the resin layer 40 can be carried out, for example, by sheet lining a resin film on the surface of the copper material constituting the inner layer 16 of the reaction tower body 10. For sheet lining, either adhesive sheet lining with an adhesive (eg, epoxy resin adhesive, rubber adhesive) interposed between the resin film and the copper material, or loose sheet lining without adhesive is used. Can be adopted. The thickness of the resin film (that is, the thickness of the resin layer 40) may be, for example, 0.1 to 1.5 mm.

本発明の一実施態様として、樹脂層40で被覆される反応塔本体10の内壁30のリン酸担持担体20と接する部分の少なくとも一部は、内壁30の低温領域であってもよい。水和反応実施時における反応塔本体10の内壁30は温度分布を有しており、通常、導入口12付近は他の部分よりも内壁30の温度が低い低温領域となっている。一般に反応速度は10℃上昇すると2倍程度になるといわれており、反応塔の孔食も高温領域で積極的に進行すると考えられる。しかしながら、反応塔の一端から他端方向へ反応基質を流通させる本発明の方法においては、内壁30の低温領域を樹脂層40で被覆することで、反応塔本体10の孔食がより効果的に防止され、水和反応がより一層継続的に且つ安定に進行する。また、反応条件によっては、低温領域は導入口12付近に位置するとは限らないため、事前に温度測定を行い低温部分が樹脂層40で被覆されるようにする。樹脂層40の配置の態様としては、反応基質が導入される反応塔100の導入口12付近、導出口14付近、導入口12と導出口14との間の中間部、導入口12を含む内壁30の少なくとも一部、導出口14を含む内壁30の少なくとも一部、中間部を含む内壁30の少なくとも一部、などが考えられる。   As one embodiment of the present invention, at least a part of the portion of the inner wall 30 of the reaction tower body 10 that is covered with the resin layer 40 that is in contact with the phosphoric acid support 20 may be a low temperature region of the inner wall 30. The inner wall 30 of the reaction tower main body 10 has a temperature distribution when the hydration reaction is carried out, and usually the vicinity of the inlet 12 is a low temperature region where the temperature of the inner wall 30 is lower than other portions. In general, it is said that the reaction rate is about doubled when the reaction rate is increased by 10 ° C., and pitting corrosion of the reaction tower is considered to proceed actively in a high temperature region. However, in the method of the present invention in which the reaction substrate is circulated from one end to the other end of the reaction tower, the pitting corrosion of the reaction tower body 10 is more effectively performed by covering the low temperature region of the inner wall 30 with the resin layer 40. And the hydration reaction proceeds more continuously and stably. In addition, depending on the reaction conditions, the low temperature region is not necessarily located in the vicinity of the inlet 12, so the temperature is measured in advance so that the low temperature portion is covered with the resin layer 40. The arrangement of the resin layer 40 is as follows. The vicinity of the inlet 12 of the reaction tower 100 into which the reaction substrate is introduced, the vicinity of the outlet 14, the intermediate portion between the inlet 12 and the outlet 14, and the inner wall including the inlet 12. 30, at least a part of the inner wall 30 including the outlet 14, and at least a part of the inner wall 30 including the intermediate part.

なお、内壁30の「低温領域」は以下のように決定することができる。反応塔本体10について、反応基質が流通する方向(導入口から導出口へ向けて)に3等分し、3等分されたそれぞれの領域で温度測定ができるようにしておく。すなわち、導入口領域、中間領域、導出口領域、のそれぞれで、最低1箇所の温度測定を行い、樹脂層を形成せずに水和反応を行う。水和反応が定常的に進むようになった状態で、上記3領域の温度を測定し、最も温度が低い領域を低温領域と決定する。このように決定された低温領域に樹脂層を形成するが、例えば、導入口領域が低温領域であると決定された場合、その導入口領域全体を樹脂層で被覆する必要はなく、導入口領域の少なくとも一部で樹脂の被覆を行えばよい。低温領域としては、高温領域より2℃以上温度の低い領域を選択することが好ましく、4℃以上温度の低い領域を選択することがより好ましく、高温領域より5℃以上温度が低い領域を選択することが更に好ましい。例えば、導入口領域、中間領域、導出口領域のそれぞれで3箇所の温度測定を行った場合(この場合9個の温度データが得られる)、最も高い温度が測定された領域とは異なる領域のうち、最も低い温度が測定された箇所を、樹脂層を形成する箇所として選択することができる。   The “low temperature region” of the inner wall 30 can be determined as follows. The reaction tower main body 10 is divided into three equal parts in the direction in which the reaction substrate flows (from the inlet to the outlet), so that the temperature can be measured in each of the three divided areas. That is, at least one temperature measurement is performed in each of the inlet region, the intermediate region, and the outlet region, and the hydration reaction is performed without forming a resin layer. In a state in which the hydration reaction has proceeded steadily, the temperature of the three regions is measured, and the region having the lowest temperature is determined as the low temperature region. The resin layer is formed in the low temperature region thus determined. For example, when it is determined that the inlet region is a low temperature region, it is not necessary to cover the entire inlet region with the resin layer. It is sufficient to cover the resin with at least part of the above. As the low temperature region, it is preferable to select a region having a temperature of 2 ° C. or more lower than that of the high temperature region, more preferable to select a region having a temperature of 4 ° C. or higher, and to select a region having a temperature of 5 ° C. or higher lower than the high temperature region. More preferably. For example, when three temperature measurements are performed in each of the inlet region, the intermediate region, and the outlet region (in this case, nine pieces of temperature data are obtained), a region different from the region where the highest temperature is measured Among these, the place where the lowest temperature is measured can be selected as the place where the resin layer is formed.

また、本発明の一実施態様として、樹脂層40で被覆される反応塔本体10の内壁30のリン酸担持担体20と接する部分の少なくとも一部は、内壁30の低圧領域であってもよい。水和反応実施時における反応塔本体10の内壁30は圧力分布を有しており、通常、導入口12付近は他の部分よりも内壁30の圧力が低い低圧領域となっている。高圧領域の方が内壁にかかる負荷が大きく、反応塔の孔食がより積極的に進むと考えられるが、本発明の方法においては、内壁30の低圧領域を樹脂層40で被覆することで、反応塔本体10の孔食がより効果的に防止され、水和反応がより一層継続的に且つ安定に進行する。   Further, as one embodiment of the present invention, at least a part of the portion of the inner wall 30 of the reaction tower body 10 that is covered with the resin layer 40 that is in contact with the phosphoric acid carrier 20 may be a low pressure region of the inner wall 30. The inner wall 30 of the reaction tower main body 10 has a pressure distribution when the hydration reaction is performed, and usually the vicinity of the inlet 12 is a low pressure region in which the pressure of the inner wall 30 is lower than other portions. It is considered that the load applied to the inner wall is larger in the high pressure region, and the pitting corrosion of the reaction tower proceeds more positively, but in the method of the present invention, the low pressure region of the inner wall 30 is covered with the resin layer 40, Pitting corrosion of the reaction tower main body 10 is more effectively prevented, and the hydration reaction proceeds more continuously and stably.

なお、内壁30の「低圧領域」は、例えば、反応塔本体10について、反応基質が流通する方向(導入口から導出口へ向けて)に導入口領域、中間領域、導出口領域のように3等分した場合、通常はリン酸担持担体20による荷重の小さい導入口領域が低圧領域であると決定される。また、内壁30の「低圧領域」は、好ましくは以下のように決定することもできる。すなわち、上記3等分された導入口領域、中間領域、導出口領域のそれぞれで圧力測定ができるようにした後、樹脂層を形成せずに水和反応を行う。水和反応が定常的に進むようになった状態で、上記3領域の圧力を測定し、最も圧力が低い領域を低圧領域と決定する。低圧領域としては、高圧領域より0.03MPa以上圧力の低い領域を選択することが好ましく、高圧領域より0.05MPa以上圧力の低い領域を選択することがより好ましい。   The “low pressure region” of the inner wall 30 is, for example, 3 in the reaction tower body 10 in the direction in which the reaction substrate flows (from the inlet to the outlet), such as the inlet region, the intermediate region, and the outlet port region. When equally divided, it is usually determined that the inlet region with a small load by the phosphoric acid carrier 20 is the low pressure region. In addition, the “low pressure region” of the inner wall 30 can be preferably determined as follows. That is, after the pressure can be measured in each of the inlet region, the intermediate region, and the outlet region divided into three equal parts, a hydration reaction is performed without forming a resin layer. With the hydration reaction proceeding constantly, the pressure in the three regions is measured, and the region with the lowest pressure is determined as the low pressure region. As the low pressure region, it is preferable to select a region having a pressure of 0.03 MPa or more lower than that of the high pressure region, and it is more preferable to select a region having a pressure of 0.05 MPa or more lower than that of the high pressure region.

図2は、反応基質が流通する方向と垂直の方向に沿った反応塔の断面図である。なお、図2の断面図は、樹脂層の被覆がされている部分におけるものである。図2に示す反応塔100は、内層16及び外層18から構成される反応塔本体10と、内層16の内面(内壁)に形成された樹脂層40と、樹脂層40に接触するように反応塔100の中心部に充填されたリン酸担持担体20とを備えている。   FIG. 2 is a cross-sectional view of the reaction tower along a direction perpendicular to the direction in which the reaction substrate flows. Note that the cross-sectional view of FIG. 2 is a portion where the resin layer is coated. The reaction tower 100 shown in FIG. 2 includes a reaction tower body 10 composed of an inner layer 16 and an outer layer 18, a resin layer 40 formed on the inner surface (inner wall) of the inner layer 16, and a reaction tower so as to be in contact with the resin layer 40. 100 is provided with a phosphoric acid carrier 20 filled in the center of 100.

外層18としては、例えば、高圧条件に耐えうる鋼材(例:高張力鋼)が用いられる。外層18は単層であっても複数層であってもよいが、耐圧性をより高める観点からは、複数層であることが好ましい。内層16としては、例えば、耐食性を有する銅材が用いられる。内層16は単層であっても複数層であってもよい。   As the outer layer 18, for example, a steel material that can withstand high pressure conditions (eg, high-tensile steel) is used. The outer layer 18 may be a single layer or a plurality of layers, but is preferably a plurality of layers from the viewpoint of further improving the pressure resistance. As the inner layer 16, for example, a copper material having corrosion resistance is used. The inner layer 16 may be a single layer or a plurality of layers.

オレフィンと水との反応においては、反応温度は通常100〜400℃(好ましくは、200〜350℃)の範囲内で設定される。また、オレフィンと水との反応においては、反応圧力は通常10MPa以下(好ましくは、3〜10MPa)の範囲内で設定される。   In the reaction of olefin and water, the reaction temperature is usually set within the range of 100 to 400 ° C (preferably 200 to 350 ° C). In the reaction of olefin and water, the reaction pressure is usually set within a range of 10 MPa or less (preferably 3 to 10 MPa).

本実施形態の製造方法においては、反応塔本体10内に収容された、リン酸担持担体20を触媒とし、反応塔本体10内に送入されたオレフィン及び水(水蒸気)を含む反応基質を触媒に接触させて水和反応を行うことにより、対応するアルコールを製造する。反応させるオレフィンとしては、例えば、エチレン、プロピレンが挙げられる。オレフィンとしてエチレンを用いた場合は、エタノールを製造することができ、オレフィンとしてプロピレンを用いた場合は、2−プロパノールを製造することができる。   In the production method of the present embodiment, the reaction substrate containing the olefin and water (steam) fed into the reaction tower body 10 is catalyzed using the phosphoric acid-supported carrier 20 accommodated in the reaction tower body 10 as a catalyst. The corresponding alcohol is produced by carrying out a hydration reaction in contact with. Examples of the olefin to be reacted include ethylene and propylene. When ethylene is used as the olefin, ethanol can be produced, and when propylene is used as the olefin, 2-propanol can be produced.

オレフィン及び水のモル比は、例えば、水/オレフィン=0.1〜0.8の範囲内に設定することができる。   The molar ratio of olefin and water can be set, for example, within a range of water / olefin = 0.1 to 0.8.

以下、実施例に基づいて本発明を詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples. In addition, this invention is not limited to a following example.

〔試験例:反応塔内壁におけるフッ素樹脂による被膜の効果〕
図1に示す構成を有する反応塔、すなわち、銅材(内層)と鋼材(外層)とから構成され、一端に導入口、他端に導出口が形成された反応塔(内径2100cm×高さ16360cm)内壁の導入口付近の一部にフッ素樹脂フィルム(商品名:ヨドフロン No.4400、淀川ヒューテック社製;縦300mm×横300mm×厚さ0.8mm、及び縦300mm×横300mm×厚さ1.5mmの2種類)をシートライニングにより被覆しフッ素樹脂層を形成した。
反応塔内にシリカゲル(商品名:CARiACT Q−10S、富士シリシア化学株式会社製)約19000kgを充填した後、85%リン酸水溶液約42000Lを投入してシリカゲルに含浸させて、リン酸担持担体を調製した。その際、反応塔内壁においてフッ素樹脂層を形成した部分がリン酸担持担体と接していることを確認した。反応塔の導入口からエチレンと水蒸気を反応塔内に供給し、リン酸担持担体に接触させながら導出口の方向に流通させ、反応温度220〜245℃、反応圧力6.3〜6.8MPaの条件で水和反応を約1年間実施して、エタノールを製造した。なお、水和反応の実施中は、反応塔の導入口から85%リン酸水溶液の供給を継続した。その後、反応を停止し、反応塔内壁の表面を観察した。
[Test example: Effect of coating with fluororesin on inner wall of reaction tower]
A reaction tower having the structure shown in FIG. 1, that is, a reaction tower composed of a copper material (inner layer) and a steel material (outer layer), having an inlet at one end and an outlet at the other end (inner diameter 2100 cm × height 16360 cm). ) Fluororesin film (trade name: Yodoflon No. 4400, manufactured by Yodogawa Hutec Co., Ltd .; length 300 mm × width 300 mm × thickness 0.8 mm, length 300 mm × width 300 mm × thickness 1. Two types of 5 mm) were coated with a sheet lining to form a fluororesin layer.
After filling about 19000 kg of silica gel (trade name: CARiACT Q-10S, manufactured by Fuji Silysia Chemical Co., Ltd.) into the reaction tower, about 42000 L of 85% phosphoric acid aqueous solution is charged and impregnated into silica gel, Prepared. At that time, it was confirmed that the portion where the fluororesin layer was formed on the inner wall of the reaction tower was in contact with the phosphoric acid carrier. Ethylene and water vapor are supplied into the reaction tower from the inlet of the reaction tower, and are circulated in the direction of the outlet while being in contact with the phosphoric acid-carrying support. The reaction temperature is 220 to 245 ° C., the reaction pressure is 6.3 to 6.8 MPa The hydration reaction was carried out under conditions for about 1 year to produce ethanol. During the hydration reaction, the 85% phosphoric acid aqueous solution was continuously supplied from the inlet of the reaction tower. Thereafter, the reaction was stopped, and the surface of the inner wall of the reaction tower was observed.

その結果、フッ素樹脂フィルムで被覆していない領域には顕著な孔食が認められたのに対し、フッ素樹脂フィルムで被覆した領域にはいずれも孔食が認められなかった。また、フッ素樹脂フィルムはいずれも良好な状態を維持していた。以上より、反応塔内壁にフッ素樹脂を被覆することで、孔食を効果的に防止することができ、反応塔において水和反応を継続的に実施することが可能であった。   As a result, significant pitting corrosion was observed in the area not covered with the fluororesin film, whereas no pitting corrosion was observed in the area covered with the fluororesin film. Moreover, all the fluororesin films were maintaining the favorable state. From the above, it was possible to effectively prevent pitting corrosion by coating the inner wall of the reaction tower with the fluororesin and to continuously carry out the hydration reaction in the reaction tower.

また、フッ素樹脂層を形成させない場合、反応塔内壁の導入口付近では、導出口付近と比較してより顕著に孔食が発生していることが観察された。なお、上記反応塔において水和反応が定常的に進行している状態における導入口付近及び導出口付近の温度を3時間毎に8回温度を測定し、その平均値を算出したところ、導入口付近の温度の平均値は233.0℃で、導出口付近の温度の平均値は239.4℃であった。以上より、反応塔内壁の低温領域であり且つ低圧領域である導入口付近にフッ素樹脂を被覆することで、孔食をより一層効果的に防止することができる。   Moreover, when the fluororesin layer was not formed, it was observed that pitting corrosion occurred more prominently in the vicinity of the inlet of the inner wall of the reaction tower than in the vicinity of the outlet. The temperature in the vicinity of the inlet and the outlet near the hydration reaction in the above-mentioned reaction tower was measured 8 times every 3 hours, and the average value was calculated. The average value of the temperature in the vicinity was 233.0 ° C., and the average value of the temperature in the vicinity of the outlet was 239.4 ° C. As described above, pitting corrosion can be more effectively prevented by coating the fluororesin in the vicinity of the inlet which is the low temperature region and the low pressure region of the inner wall of the reaction tower.

これに対して、フッ素樹脂層を形成させない場合は、導入口付近に顕著な孔食が生じ、導出口付近にも孔食が観察され、反応塔において水和反応を継続的に実施することが困難であることが判明した。   In contrast, when the fluororesin layer is not formed, significant pitting corrosion occurs near the inlet, and pitting corrosion is also observed near the outlet, and the hydration reaction can be continuously performed in the reaction tower. It turned out to be difficult.

10…反応塔本体、12…導入口、14…導出口、16…内層、18…外層、20…リン酸担持担体、30…内壁、40…樹脂層、100…反応塔。   DESCRIPTION OF SYMBOLS 10 ... Reaction tower main body, 12 ... Inlet port, 14 ... Outlet port, 16 ... Inner layer, 18 ... Outer layer, 20 ... Phosphate carrying | support carrier, 30 ... Inner wall, 40 ... Resin layer, 100 ... Reaction tower.

Claims (1)

リン酸を担持した担体が収容され且つ加熱された反応塔の一端から他端方向へ、オレフィン及び水を含む反応基質を流通させ、前記反応基質を前記担体に接触させることでアルコールを製造する製造方法であって、
前記リン酸を担持した担体と接する前記反応塔の内壁の少なくとも一部をフッ素樹脂又はポリオレフィンで被覆する、製造方法。
Production of alcohol by producing a reaction substrate containing olefin and water from one end to the other end of a reaction tower in which a carrier carrying phosphoric acid is contained and heated, and bringing the reaction substrate into contact with the carrier A method,
A production method in which at least a part of the inner wall of the reaction tower in contact with the carrier carrying phosphoric acid is coated with a fluororesin or a polyolefin.
JP2017102824A 2017-05-24 2017-05-24 Manufacturing method of alcohol Pending JP2018197214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102824A JP2018197214A (en) 2017-05-24 2017-05-24 Manufacturing method of alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102824A JP2018197214A (en) 2017-05-24 2017-05-24 Manufacturing method of alcohol

Publications (1)

Publication Number Publication Date
JP2018197214A true JP2018197214A (en) 2018-12-13

Family

ID=64663422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102824A Pending JP2018197214A (en) 2017-05-24 2017-05-24 Manufacturing method of alcohol

Country Status (1)

Country Link
JP (1) JP2018197214A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119506A (en) * 1986-12-18 1989-05-11 Cdf Chim Azote & Fertilisans Tubular reaction apparatus for producing ammonium phosphate containing ammonium sulfate
JPH07155607A (en) * 1993-12-09 1995-06-20 Nippon Gosei Arco-Le Kk Recovery and reutilization of phosphoric acid
JP2001328209A (en) * 2000-05-19 2001-11-27 Unitika Glass Fiber Co Ltd Chemical-resistant resin sheet for tanks
JP2002283517A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Fluororesin laminated sheet
JP2016047861A (en) * 2016-01-15 2016-04-07 セントラル硝子株式会社 Method for producing fluoroalkane sulfonic acid anhydride
JP2017171588A (en) * 2016-03-22 2017-09-28 三菱ケミカル株式会社 Reactor and continuous manufacturing method of alcohol using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119506A (en) * 1986-12-18 1989-05-11 Cdf Chim Azote & Fertilisans Tubular reaction apparatus for producing ammonium phosphate containing ammonium sulfate
JPH07155607A (en) * 1993-12-09 1995-06-20 Nippon Gosei Arco-Le Kk Recovery and reutilization of phosphoric acid
JP2001328209A (en) * 2000-05-19 2001-11-27 Unitika Glass Fiber Co Ltd Chemical-resistant resin sheet for tanks
JP2002283517A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Fluororesin laminated sheet
JP2016047861A (en) * 2016-01-15 2016-04-07 セントラル硝子株式会社 Method for producing fluoroalkane sulfonic acid anhydride
JP2017171588A (en) * 2016-03-22 2017-09-28 三菱ケミカル株式会社 Reactor and continuous manufacturing method of alcohol using the same

Similar Documents

Publication Publication Date Title
CN101133008B (en) Non-catalytic manufacture of 1,1,3,3,3-pentafluoropropene from 1,1,1,3,3,3-hexafluoropropane
WO2013023964A1 (en) Method of fluorination of a metal halide in an aqueous medium
ES2329867T1 (en) INTEGRATED PROCEDURE TO PRODUCE 2,3,3,3-TETRAFLUOROPROPANE.
JP2018197214A (en) Manufacturing method of alcohol
JP5775541B2 (en) Compound pipe
US20190177186A1 (en) Process for the electrochemical purification of chloride-containing process solutions
US10525446B2 (en) Method for in-situ regeneration of activated carbon loaded with trihalomethanes using alkaline hydrolysis
JP2018095903A (en) Diamond electrode, method for producing diamond electrode, and electrolyzed water generator
KR101367684B1 (en) Packaged hydrogen-generating agent, manufacturing method therefor, and hydrogen generation method
WO2020080470A1 (en) Piping for ultra-pure water and multi-layer tube
JP2019525079A5 (en)
JP2018521946A (en) Method for removing nitriles from hydrogen cyanide
WO2016193738A1 (en) Apparatus and method for production of oxidants
JP2023159385A (en) SYSTEMS AND METHODS FOR REDUCING FORMATION OF IMPURITIES DURING 244bb DEHYDROCHLORINATION TO 1234yf
US20200299049A1 (en) Packaging Material for Prevention of Rust and Method of Manufacturing the Same
JP6634910B2 (en) Reactor and continuous production method of alcohol using the same
JP6422907B2 (en) Semiconductor manufacturing equipment
DK3115669T3 (en) HOSE, NAME GARDEN HOSE
JP2007036189A (en) Substrate holder and substrate processing device
US9481773B2 (en) Method and plant for etching a fluoropolymer substrate
KR101411642B1 (en) Riser-guide apparatus
CN218769404U (en) Atomic layer etching device
JP2005186283A (en) Laminate manufacturing method
KR101651884B1 (en) Susceptor and substrate processing apparatus having the same
RU2684923C2 (en) Device for reducing flucture infection agas and its application method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707