JP2018190754A - Photoelectric conversion element for imaging device - Google Patents

Photoelectric conversion element for imaging device Download PDF

Info

Publication number
JP2018190754A
JP2018190754A JP2017089145A JP2017089145A JP2018190754A JP 2018190754 A JP2018190754 A JP 2018190754A JP 2017089145 A JP2017089145 A JP 2017089145A JP 2017089145 A JP2017089145 A JP 2017089145A JP 2018190754 A JP2018190754 A JP 2018190754A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
group
conversion element
electrode film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089145A
Other languages
Japanese (ja)
Other versions
JP6906357B2 (en
Inventor
一樹 新見
Kazuki NIIMI
一樹 新見
秀典 薬師寺
Hidenori Yakushiji
秀典 薬師寺
裕介 刀祢
Yusuke Tone
裕介 刀祢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2017089145A priority Critical patent/JP6906357B2/en
Publication of JP2018190754A publication Critical patent/JP2018190754A/en
Application granted granted Critical
Publication of JP6906357B2 publication Critical patent/JP6906357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element excellent in hole or electron leakage prevention characteristics, hole or electron transport characteristics, heat resistance against a process temperature, visible light transparency, and the like.SOLUTION: A photoelectric conversion element for an imaging device includes a first electrode film 2, a second electrode film 6, and a photoelectric conversion part 4 arranged between the first electrode film 2 and the second electrode film 6. The photoelectric conversion part 4 includes a photoelectric conversion layer 4 and organic layers other than the photoelectric conversion layer 4. At least one of the organic layers other than the photoelectric conversion layer 4 contains a compound represented by a formula (1) (where each R independently represents a substituent; each n is a number of substituents R and independently represents an integer of 0-6; and when n is 2 or more, adjacent R's may be linked together to form a ring structure) and having a visible light absorption edge of 470 nm or more.SELECTED DRAWING: Figure 1

Description

本発明は撮像素子及び光センサー等に用い得る撮像素子用光電変換素子に関する。   The present invention relates to an image sensor photoelectric conversion element that can be used in an image sensor, an optical sensor, and the like.

近年、有機エレクトロニクスデバイスへの関心が高まっている。その特徴としてはフレキシブルな構造をとり、大面積化が可能である事、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすることが挙げられる。代表的なデバイスとしては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子はフラットパネルディスプレイとして次世代ディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイやTVなどに応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などはフレキシブルで安価なエネルギー源として、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICへと研究開発がなされている。   In recent years, interest in organic electronics devices has increased. Its features include a flexible structure and a large area, and further enabling an inexpensive and high-speed printing method in the electronic device manufacturing process. Typical devices include organic EL elements, organic solar cell elements, organic photoelectric conversion elements, organic transistor elements, and the like. Organic EL elements are expected as main targets for next-generation display applications as flat panel displays, and are applied to mobile phone displays, TVs, etc., and development aimed at further enhancement of functionality is being continued. Research and development have been made on organic solar cell elements and the like as flexible and inexpensive energy sources, and organic transistor elements and the like on flexible displays and inexpensive ICs.

有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため各分野において数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。その中で、ベンゾチエノベンゾチオフェン等を母骨格とした化合物も有機エレクトロニクス材料として開発されており(特許文献1乃至3)、ベンゾチエノベンゾチオフェンのアルキル誘導体を用いた場合は、印刷プロセスで半導体薄膜を形成するのに十分な溶媒溶解度を有するが、アルキル鎖長に対する縮環数が相対的に少ないことにより低温で相転移を起こしやすく、有機エレクトロニクスデバイスの耐熱性が劣ることが問題であった。   In developing an organic electronic device, it is very important to develop a material constituting the device. For this reason, many materials have been studied in each field, but they cannot be said to have sufficient performance, and even now, materials that are useful for various devices are being actively developed. Among them, compounds having benzothienobenzothiophene as a mother skeleton have also been developed as organic electronics materials (Patent Documents 1 to 3). When an alkyl derivative of benzothienobenzothiophene is used, a semiconductor thin film is formed by a printing process. However, it has a problem that the organic electronics device is inferior in heat resistance due to a relatively small number of condensed rings with respect to the alkyl chain length, which tends to cause a phase transition at a low temperature.

また、近年の有機エレクトロニクスの中で、有機光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、もしくはキナゾリン誘導体を光電変換素子に用いた例(特許文献4)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献5)、ジケトピロロピロール誘導体を用いた例(特許文献6)がある。一般的に、撮像素子は、高コントラスト化、省電力化を目的として、暗電流の低減を目指すことによって、性能は向上すると考えられる。そこで、暗時の光電変換部からのリーク電流を減らす為、光電変換部と電極部間に、正孔ブロック層、もしくは電子ブロック層を挿入する手法が用いられる。   In recent organic electronics, organic photoelectric conversion elements are expected to be developed into next-generation imaging elements, and reports have been made by several groups. For example, an example in which a quinacridone derivative or a quinazoline derivative is used as a photoelectric conversion element (Patent Document 4), an example in which a photoelectric conversion element using a quinacridone derivative is applied to an imaging element (Patent Document 5), and a diketopyrrolopyrrole derivative There is an example (Patent Document 6). In general, it is considered that the performance of an imaging device is improved by aiming at reduction of dark current for the purpose of high contrast and power saving. Therefore, in order to reduce the leakage current from the photoelectric conversion unit in the dark, a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit is used.

正孔ブロック層、並びに電子ブロック層は、有機エレクトロニクスデバイスの分野では一般に広く用いられており、それぞれ、デバイスの構成膜中において、電極もしくは導電性を有する膜と、それ以外の膜の界面に配置され、正孔もしくは電子の逆移動を制御する機能を有する膜であり、不必要な正孔もしくは電子の漏れを調整するものであり、デバイスの用途により、耐熱性、透過波長、成膜方法等の特性を考慮し、選択して用いるものである。しかしながら、特に光電変換素子用途の材料の要求性能は高く、これまでの正孔ブロック層、もしくは電子ブロック層では、リーク電流防止特性、プロセス温度に対する耐熱性、可視光透明性などの面で、十分な性能を有しているとは言えず、商業的に活用されるに至っていない。   The hole blocking layer and the electron blocking layer are generally widely used in the field of organic electronics devices, and are arranged at the interface between the electrode or the conductive film and the other films in the component film of the device, respectively. It is a film that has the function of controlling the reverse movement of holes or electrons, and adjusts the leakage of unnecessary holes or electrons. Depending on the application of the device, heat resistance, transmission wavelength, film formation method, etc. These are selected and used in consideration of the characteristics. However, the required performance of materials especially for photoelectric conversion elements is high, and the conventional hole blocking layer or electron blocking layer is sufficient in terms of leakage current prevention characteristics, heat resistance to process temperature, transparency to visible light, etc. It cannot be said that it has a good performance and has not been utilized commercially.

特開2008−258592号公報JP 2008-2558592 A WO2008−047896WO2008-047896 WO2010−098372WO2010-098372 特許第4945146号公報Japanese Patent No. 4945146 特許第5022573号公報Japanese Patent No. 5022573 特開2008−290963号公報JP 2008-290963 A

J.Am.Chem.Soc.,2006,128(39),12604.J. Am. Chem. Soc., 2006, 128 (39), 12604. Org.Lett.,2011,13(13),3430Org. Lett. , 2011, 13 (13), 3430 J.Am.Chem.Soc.,2011,133(22),8732.J. Am. Chem. Soc., 2011, 133 (22), 8732.

本発明は、この様な状況に鑑みてなされたものであり、正孔もしくは電子リーク防止特性、正孔もしくは電子輸送特性、プロセス温度に対する耐熱性、可視光透明性等に優れた光電変換素子を提供することを目的とする。   The present invention has been made in view of such a situation, and provides a photoelectric conversion element excellent in hole or electron leakage prevention characteristics, hole or electron transport characteristics, heat resistance to process temperature, transparency to visible light, and the like. The purpose is to provide.

本発明者は、上記課題を解決すべく、鋭意努力した結果、撮像素子用光電変換素子の光電変換部に特定の構造を有し、かつ特定の可視光吸収端を有する化合物を用いることにより前記の諸課題が解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
(1)(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が(c−1)光電変換層と(c−2)光電変換層以外の有機層を含み、かつ該(c−2)光電変換層以外の有機層の少なくとも一つが、下記式(1)
As a result of diligent efforts to solve the above-mentioned problems, the present inventor uses the compound having a specific structure and a specific visible light absorption edge in the photoelectric conversion part of the photoelectric conversion element for an image sensor. The present inventors have found that these problems can be solved and have completed the present invention.
That is, the present invention is as follows.
(1) (A) First electrode film, (B) Second electrode film, and (C) Photoelectric conversion having a photoelectric conversion part disposed between the first electrode film and the second electrode film It is an element, Comprising: (C) photoelectric conversion part contains organic layers other than (c-1) photoelectric conversion layer and (c-2) photoelectric conversion layer, and (c-2) organics other than a photoelectric conversion layer At least one of the layers has the following formula (1)

Figure 2018190754
Figure 2018190754

(式(1)中、Rはそれぞれ独立に置換基を表す。nは置換基Rの数であり、それぞれ独立に0乃至6の整数を表す。nが2以上の場合、隣接するR同士が連結して環構造を形成してもよい。)で表される可視光吸収端が470nm以上の化合物を含む撮像素子用光電変換素子、
(2)式(1)で表される化合物の可視光吸収端が490nm以上である前項(1)に記載の撮像素子用光電変換素子、
(3)nが1である前項(1)又は(2)に記載の撮像素子用光電変換素子、
(4)Rが置換基を有するフェニル基、無置換のフェニル基、置換基を有するビフェニル基又は無置換のビフェニル基である前項(1)乃至(3)のいずれか一項に記載の撮像素子用光電変換素子、
(5)式(1)で表される可視光吸収端が470nm以上の化合物を含む有機層が、電子ブロック層及び/又は正孔ブロック層である前項(1)乃至(4)のいずれか一項に記載の里増素子用光電変換素子、
(6)(c−1)光電変換層が、n型有機半導体材料を含む前項(1)乃至(5)のいずれか一項に記載の撮像素子用光電変換素子、
(7)(c−2)光電変換層以外の有機層として電子輸送層及び正孔輸送層の少なくとも一方を含む前項(1)乃至(6)のいずれか一項に記載の撮像素子用光電変換素子、
(8)更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する前項(1)乃至(7)のいずれか一項に記載の撮像素子用光電変換素子、
(9)前項(1)及至(8)のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子、及び
(10)前項(1)及至(8)のいずれか一項に記載の撮像素子用光電変換素子または前項(9)に記載の撮像素子を含む光センサー。
(In formula (1), each R independently represents a substituent. N is the number of substituents R, each independently represents an integer of 0 to 6. When n is 2 or more, adjacent Rs are A photo-electric conversion element for an image sensor comprising a compound having a visible light absorption edge represented by 470 nm or more,
(2) The photoelectric conversion element for an imaging element according to the above item (1), wherein the visible light absorption edge of the compound represented by the formula (1) is 490 nm or more,
(3) The photoelectric conversion element for an image sensor according to the above item (1) or (2), wherein n is 1.
(4) The imaging device according to any one of (1) to (3), wherein R is a phenyl group having a substituent, an unsubstituted phenyl group, a biphenyl group having a substituent, or an unsubstituted biphenyl group. Photoelectric conversion element,
(5) Any one of the above items (1) to (4), wherein the organic layer containing a compound having a visible light absorption edge of 470 nm or more represented by the formula (1) is an electron block layer and / or a hole block layer. The photoelectric conversion element for sato increase element according to item,
(6) (c-1) The photoelectric conversion element for an imaging element according to any one of (1) to (5), wherein the photoelectric conversion layer includes an n-type organic semiconductor material,
(7) (c-2) The photoelectric conversion for an image sensor according to any one of (1) to (6), wherein the organic layer other than the photoelectric conversion layer includes at least one of an electron transport layer and a hole transport layer. element,
(8) Any one of (1) to (7), further including (D) a thin film transistor having a hole accumulating portion, and (E) a signal reading portion for reading a signal corresponding to the electric charge accumulated in the thin film transistor. The photoelectric conversion element for an image sensor according to the item,
(9) An imaging device in which a plurality of photoelectric conversion elements for an imaging device according to any one of (1) to (8) are arranged in an array, and (10) any of (1) to (8) An optical sensor including the photoelectric conversion element for an imaging element according to one item or the imaging element according to the preceding item (9).

本発明により、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた撮像素子用光電変換素子を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a photoelectric conversion element for an imaging element that is excellent in required characteristics such as hole or electron leakage prevention and transportability, and further heat resistance and visible light transparency.

図1は、本発明の撮像素子用光電変換素子の実施態様を例示した断面図を示す。FIG. 1 is a cross-sectional view illustrating an embodiment of a photoelectric conversion element for an image sensor according to the present invention. 図2は、各実施例及び比較例における撮像素子用光電変換素子の可視光吸収端の波長と明暗比のプロットである。FIG. 2 is a plot of the wavelength and the light / dark ratio of the visible light absorption edge of the photoelectric conversion element for an image sensor in each example and comparative example.

本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。   The contents of the present invention will be described in detail. The description of the constituent elements described below is based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples.

本発明の撮像素子用光電変換素子(以下、単に「光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。(C)光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いても良い。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層して用いることにより、多色の撮像素子(フルカラーフォトダイオードアレイ)とすることができる。   The photoelectric conversion element for an image sensor according to the present invention (hereinafter, also simply referred to as “photoelectric conversion element”) has two electrodes, that is, an opposing (A) first electrode film and (B) second electrode film. An element in which (C) a photoelectric conversion unit is arranged between the films, and light is incident on the photoelectric conversion unit from above (A) the first electrode film or (B) the second electrode film. . (C) The photoelectric conversion unit generates electrons and holes according to the incident light amount, and a signal according to the charge is read out by a semiconductor, and the incident light amount according to the absorption wavelength of the photoelectric conversion film unit. It is an element which shows. In some cases, a reading transistor is connected to the electrode film on which light is not incident. In the case where a large number of photoelectric conversion elements are arranged in an array, the photoelectric conversion element is an imaging element because it indicates incident position information in addition to the incident light quantity. If the photoelectric conversion element arranged closer to the light source does not shield (transmit) the absorption wavelength of the photoelectric conversion element arranged behind the light source when viewed from the light source side, a plurality of photoelectric conversion elements are stacked. It may be used. By laminating and using a plurality of photoelectric conversion elements having different absorption wavelengths in the visible light region, a multicolor imaging element (full color photodiode array) can be obtained.

本発明の撮像素子用光電変換素子の特徴は、該撮像素子用光電変換素子の有する(C)光電変換部が(c−1)光電変換層と(c−2)光電変換層以外の有機層を含み、かつ該(c−2)光電変換層以外の有機層の少なくとも一つが、上記式(1)で表され、可視光吸収端が470nm以上の化合物を含む電子ブロック層又は正孔ブロック層であることにある。   The characteristic of the photoelectric conversion element for an image sensor of the present invention is that (C) the photoelectric conversion part of the photoelectric conversion element for the image sensor is an organic layer other than (c-1) the photoelectric conversion layer and (c-2) the photoelectric conversion layer. And (c-2) at least one of organic layers other than the photoelectric conversion layer is represented by the above formula (1), and the electron block layer or the hole block layer contains a compound having a visible light absorption edge of 470 nm or more It is to be.

(C)光電変換部は、通常(c−1)光電変換層と、電子ブロック層と正孔ブロック層の何れか少なくとも一方及び必要により用いられる電子輸送層、正孔輸送層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c−2)光電変換層以外の有機層とからなる。本発明の撮像素子用光電変換素子が有する式(1)で表され、かつ可視光吸収端が470nm以上の化合物を含む有機層は、(c−2)光電変換層以外の有機層である電子ブロック層と正孔ブロック層の何れか少なくとも一方として用いられる。   (C) The photoelectric conversion part is usually (c-1) a photoelectric conversion layer, at least one of an electron block layer and a hole block layer, and an electron transport layer, a hole transport layer, and an anti-crystallization layer used as necessary. And an organic layer other than one or plural types of (c-2) photoelectric conversion layers selected from the group consisting of interlayer contact improving layers and the like. The organic layer represented by the formula (1) included in the photoelectric conversion element for an image sensor of the present invention and containing a compound having a visible light absorption end of 470 nm or more is an electron that is an organic layer other than (c-2) the photoelectric conversion layer. It is used as at least one of a block layer and a hole blocking layer.

本発明の撮像素子用光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c−1)光電変換層が正孔輸送性を有する場合や、(c−2)光電変換層以外の有機層(以下、光電変換層以外の有機層を、単に「(c−2))有機層」とも表記する)が正孔輸送性を有する正孔輸送層を有する場合は、該(c−1)光電変換層や該(c−2)有機層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c−1)光電変換層が電子輸送性を有する場合や、(c−2)有機層が電子輸送性を有する電子輸送層を有する場合は、該(c−1)光電変換層や該(c−2)有機層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c−1)光電変換層や(c−2)有機層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。   (A) 1st electrode film and (B) 2nd electrode film which the photoelectric conversion element for image sensors of this invention has are contained in the (C) photoelectric conversion part mentioned later (c-1) photoelectric conversion layer In the case of having a hole transporting property, (c-2) an organic layer other than the photoelectric conversion layer (hereinafter, the organic layer other than the photoelectric conversion layer is simply referred to as “(c-2)) organic layer”) is positive. In the case of having a hole transporting layer having a hole transporting property, it plays a role of collecting and collecting holes from the (c-1) photoelectric conversion layer and the (c-2) organic layer, and (C ) When the (c-1) photoelectric conversion layer contained in the photoelectric conversion part has an electron transporting property or (c-2) the organic layer has an electron transporting layer having an electron transporting property, the (c-1) ) It plays a role of taking out electrons from the photoelectric conversion layer and the (c-2) organic layer and discharging them. Therefore, the material that can be used as the (A) first electrode film and the (B) second electrode film is not particularly limited as long as it has a certain degree of conductivity, but the adjacent (c-1) photoelectric conversion layer. (C-2) It is preferable to select in consideration of adhesion to the organic layer, electron affinity, ionization potential, stability, and the like. Examples of materials that can be used for (A) the first electrode film and (B) the second electrode film include tin oxide (NESA), indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO). Conductive metal oxide; metals such as gold, silver, platinum, chromium, aluminum, iron, cobalt, nickel and tungsten; inorganic conductive materials such as copper iodide and copper sulfide; conductive polymers such as polythiophene, polypyrrole and polyaniline Carbon etc. are mentioned. A plurality of these materials may be used as a mixture as necessary, or a plurality of these materials may be laminated in two or more layers. The conductivity of the material used for (A) the first electrode film and (B) the second electrode film is not particularly limited as long as it does not obstruct the light reception of the photoelectric conversion element more than necessary, but the signal intensity and consumption of the photoelectric conversion element It is preferable that it is as high as possible from the viewpoint of electric power. For example, an ITO film having a sheet resistance value of 300Ω / □ or less functions well as (A) the first electrode film and (B) the second electrode film, but has a conductivity of several Ω / □. Since a commercial product of a substrate provided with an ITO film having the above is also available, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of conductivity, but is usually about 5 to 500 nm, preferably about 10 to 300 nm. Examples of a method for forming a film such as ITO include conventionally known vapor deposition methods, electron beam methods, sputtering methods, chemical reaction methods, and coating methods. If necessary, the ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment, or the like.

(A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c−1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 Among the materials for the transparent electrode film used on at least one of the light incident side of (A) the first electrode film and (B) the second electrode film, ITO, IZO, SnO 2 , ATO ( Antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide), GZO (gallium-doped zinc oxide), TiO 2 , FTO (fluorine-doped tin oxide), and the like. (C-1) The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and 95% or more. It is particularly preferred.

また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。   When a plurality of photoelectric conversion layers having different wavelengths to be detected are stacked, the electrode films used between the respective photoelectric conversion layers (this is other than (A) the first electrode film and (B) the second electrode film) It is necessary to transmit light having a wavelength other than the light detected by each photoelectric conversion layer, and the electrode film is preferably made of a material that transmits 90% or more of incident light. It is more preferable to use a material that transmits at least% of light.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、またはプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。   The electrode film is preferably made plasma-free. By producing these electrode films without plasma, the influence of plasma on the substrate on which the electrode films are provided is reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that no plasma is generated when the electrode film is formed, or the distance from the plasma generation source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate. It means a state where plasma is reduced.

電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。   Examples of an apparatus that does not generate plasma when forming an electrode film include an electron beam vapor deposition apparatus (EB vapor deposition apparatus) and a pulse laser vapor deposition apparatus. Hereinafter, a method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as an EB vapor deposition method, and a method of forming a transparent electrode film using a pulse laser vapor deposition apparatus is referred to as a pulse laser vapor deposition method.

成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。   As an apparatus that can realize a state in which plasma can be reduced during film formation (hereinafter referred to as a plasma-free film formation apparatus), for example, an opposed target sputtering apparatus, an arc plasma deposition apparatus, or the like can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(TransparentConductiveOxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。   When the transparent conductive film is an electrode film (for example, the first conductive film), a DC short circuit or an increase in leakage current may occur. One of the causes is that a fine crack generated in the photoelectric conversion layer is covered with a dense film such as TCO (Transparent Conductive Oxide), and is between the electrode film (second conductive film) opposite to the transparent conductive film. This is thought to be due to increased conduction. For this reason, when a material such as Al that is inferior in film quality is used for the electrode, an increase in leakage current is unlikely to occur. By controlling the film thickness of the electrode film according to the film thickness (crack depth) of the photoelectric conversion layer, an increase in leakage current can be suppressed.

通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。   Usually, when the conductive film is made thinner than a predetermined value, the resistance value increases rapidly. The sheet resistance of the conductive film in the photoelectric conversion element for an image sensor according to the present embodiment is usually 100 to 10,000 Ω / □, and the degree of freedom in film thickness is large. In addition, the thinner the transparent conductive film, the smaller the amount of light that is absorbed and the higher the light transmittance. High light transmittance is very preferable because light absorbed by the photoelectric conversion layer is increased and the photoelectric conversion performance is improved.

本発明の撮像素子用光電変換素子が有する(C)光電変換部は、少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機層である電子ブロック層と正孔ブロック層の少なくともいずれか一方を含む。
(C)光電変換部を構成する(c−1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。
尚、(c−1)光電変換層が有機薄膜層の場合、該有機薄膜層は有機半導体材料(p型半導体材料やn型半導体材料等公知の半導体材料)を含んでいてもよく、該含んでいてもよい有機半導体材料としてはn型有機半導体材料が好ましい。
The photoelectric conversion part (C) included in the photoelectric conversion element for an image pickup device of the present invention includes at least an electron block layer and a hole block which are organic layers other than (c-1) the photoelectric conversion layer and (c-2) the photoelectric conversion layer. Including at least one of the layers.
(C) An organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion part. (C-1) The organic semiconductor film may be a single layer or a plurality of layers. A P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, it is about 2 to 10 layers, and has a structure in which any one of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film (bulk heterostructure) is laminated. A buffer layer may be inserted in
When the photoelectric conversion layer is an organic thin film layer, the organic thin film layer may contain an organic semiconductor material (a known semiconductor material such as a p-type semiconductor material or an n-type semiconductor material). The organic semiconductor material that may be used is preferably an n-type organic semiconductor material.

(c−1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。   (C-1) The organic semiconductor film of the photoelectric conversion layer has a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound depending on the wavelength band to be absorbed. Thiophene compound, phthalocyanine compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, carbazole derivative, naphthalene derivative, anthracene derivative, chrysene derivative, phenanthrene derivative, pentacene derivative, Phenylbutadiene derivatives, styryl derivatives, quinoline derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, fluoranthene derivatives, quinacridin Emissions derivatives, coumarin derivatives, porphyrin derivatives, fullerene derivatives and metal complexes (Ir complexes, Pt complexes, Eu complexes, etc.), or the like can be used.

本発明の撮像素子用光電変換素子は、(c−2)光電変換層以外の有機層として下記式(1)で表される可視光吸収端が470nm以上の化合物を含む電子ブロック層及び/又は正孔ブロック層を含む。   The photoelectric conversion element for an image pickup device of the present invention includes (c-2) an electronic block layer containing a compound having a visible light absorption edge represented by the following formula (1) as an organic layer other than the photoelectric conversion layer and having a wavelength of 470 nm or more and / or Includes a hole blocking layer.

Figure 2018190754
Figure 2018190754

式(1)中、Rはそれぞれ独立に置換基を表す。nは置換基Rの数であり、それぞれ独立に0乃至6の整数を表す。nが2以上の場合、隣接するR同士が連結して環構造を形成してもよい。   In formula (1), R represents a substituent each independently. n is the number of substituents R, and each independently represents an integer of 0 to 6. When n is 2 or more, adjacent Rs may be linked to form a ring structure.

式(1)のRが表す置換基に制限はないが、例えばアルキル基、アルコキシ基、芳香族基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH基)、アシル基、アルコキシカルボニル基、シアノ基、イソシアノ基等が挙げられる。 The substituent represented by R in the formula (1) is not limited. For example, an alkyl group, an alkoxy group, an aromatic group, a halogen atom, a hydroxyl group, a mercapto group, a nitro group, an alkyl-substituted amino group, an aryl-substituted amino group, a non-substituted group. Examples thereof include a substituted amino group (NH 2 group), an acyl group, an alkoxycarbonyl group, a cyano group, and an isocyano group.

式(1)のRが表す置換基としてのアルキル基は、直鎖状、分岐鎖状及び環状の何れにも限定されず、その炭素数も特に限定されないが、通常は炭素数1乃至8の直鎖状若しくは分岐鎖状のアルキル基であるか、または炭素数5又は6の環状のアルキル基である。
式(1)のRが表す置換基としてのアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、tert−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられ、炭素数1乃至4の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1乃至3の直鎖のアルキル基であることがより好ましい。
The alkyl group as a substituent represented by R in the formula (1) is not limited to any of linear, branched and cyclic, and the carbon number is not particularly limited, but usually has 1 to 8 carbon atoms. It is a linear or branched alkyl group, or a cyclic alkyl group having 5 or 6 carbon atoms.
Specific examples of the alkyl group as a substituent represented by R in the formula (1) include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, and a tert-butyl group. , Sec-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, cyclopentyl group, cyclohexyl group and the like, preferably a linear or branched alkyl group having 1 to 4 carbon atoms. More preferably, it is a linear alkyl group having 1 to 3 carbon atoms.

式(1)のRが表す置換基としてのアルコキシ基の具体例としては,メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、n−ブトキシ基、iso−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、iso−ペンチルオキシ基、t−ペンチルオキシ基、sec−ペンチルオキシ基、n−ヘキシルオキシ基、iso−ヘキシルオキシ基、n−ヘプチルオキシ基、sec−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、sec−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコシルオキシ基、ドコシルオキシ基、n−ペンタコシルオキシ基、n−オクタコシルオキシ基、n−トリコンチルオキシ基、5−(n−ペンチル)デシルオキシ基、ヘネイコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、ノナコシルオキシ基、n−トリアコンチルオキシ基、スクアリルオキシ基、ドトリアコンチルオキシ基及びヘキサトリアコンチルオキシ基等の炭素数1乃至36のアルコキシ基が挙げられ、炭素数1乃至24のアルコキシ基であることが好ましく、炭素数1乃至20のアルコキシ基であることがより好ましく、炭素数1乃至12のアルコキシ基であることが更に好ましく、炭素数1乃至6のアルコキシ基であることが特に好ましく、炭素数1乃至4のアルコキシ基であることが最も好ましい。   Specific examples of the alkoxy group as the substituent represented by R in the formula (1) include methoxy group, ethoxy group, propoxy group, iso-propoxy group, n-butoxy group, iso-butoxy group, t-butoxy group, n -Pentyloxy group, iso-pentyloxy group, t-pentyloxy group, sec-pentyloxy group, n-hexyloxy group, iso-hexyloxy group, n-heptyloxy group, sec-heptyloxy group, n-octyl Oxy group, n-nonyloxy group, sec-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyloxy group, n-pentadecyloxy Group, n-hexadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-nonadecyl Xyl group, n-eicosyloxy group, docosyloxy group, n-pentacosyloxy group, n-octacosyloxy group, n-tricontyloxy group, 5- (n-pentyl) decyloxy group, heneicosyloxy Group, tricosyloxy group, tetracosyloxy group, hexacosyloxy group, heptacosyloxy group, nonacosyloxy group, n-triacontyloxy group, squaryloxy group, dotriacontyloxy group and hexatria Examples thereof include alkoxy groups having 1 to 36 carbon atoms such as a contyloxy group, preferably alkoxy groups having 1 to 24 carbon atoms, more preferably alkoxy groups having 1 to 20 carbon atoms, and 1 carbon atom. Is more preferably an alkoxy group having 1 to 12 carbon atoms, particularly preferably an alkoxy group having 1 to 6 carbon atoms, And most preferably from 1 to 4 alkoxy groups.

式(1)のRが表す置換基としての芳香族基の具体例としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基等の芳香族炭化水素基や、ベンゾチエニル基、ナフトチエニル基、アントラチエニル基、ベンゾジチエニル基、ジベンゾチエニル基、ベンゾトリチエニル基、チエノチエニル基、ベンゾフラニル基、ナフトフラニル基、アントラフラニル基、ベンゾジフラニル基、ジベンゾフラニル基、ベンゾトリフラニル基、キノリル基、イソキノリル基、ベンゾピロリル基、インドレニル基、ベンゾイミダゾリル基、カルバゾリル基、キサンテニル基及びチオキサンテニル基等のヘテロ環縮合芳香族基が挙げられ、芳香族炭化水素基であることが好ましい。
式(1)のRが表す置換基としての芳香族基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のRが表す置換基と同じものが挙げられる。
Specific examples of the aromatic group as the substituent represented by R in the formula (1) include aromatic hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group, and naphthyl group, benzothienyl group, naphthothienyl group, anthra Thienyl group, benzodithienyl group, dibenzothienyl group, benzotrithienyl group, thienothienyl group, benzofuranyl group, naphthofuranyl group, anthrafuranyl group, benzodifuranyl group, dibenzofuranyl group, benzotrifuranyl group, quinolyl group, isoquinolyl group And heterocyclic condensed aromatic groups such as benzopyrrolyl group, indolenyl group, benzimidazolyl group, carbazolyl group, xanthenyl group and thioxanthenyl group, and preferably an aromatic hydrocarbon group.
The aromatic group as the substituent represented by R in Formula (1) may have a substituent, and the substituent that may be present is the same as the substituent represented by R in Formula (1). Things.

式(1)のRが表す置換基としてのハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
式(1)のRが表す置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、式(1)のRが表す置換基としてのアルキル基と同じものが挙げられる。
Specific examples of the halogen atom as the substituent represented by R in Formula (1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl-substituted amino group as a substituent represented by R in the formula (1) is not limited to either a monoalkyl-substituted amino group or a dialkyl-substituted amino group. The alkyl group in these alkyl-substituted amino groups is represented by the formula (1 The same thing as the alkyl group as a substituent which R of R) represents is mentioned.

式(1)のRが表す置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、式(1)のRが表す置換基の項に記載した芳香族炭化水素基と同じものが挙げられる。
式(1)のRが表す置換基としてのアシル基としては、式(1)のRが表す置換基の項に記載した芳香族炭化水素基や式(1)のRが表す置換基の項に記載したアルキル基が、カルボニル基(=CO基)と結合した置換基が挙げられる。
式(1)のRが表す置換基としてのアルコキシカルボニル基としては、式(1)のRが表す置換基としてのアルコキシ基がカルボニル基と結合した置換基が挙げられる。
式(1)のRが表す置換基としては、アルキル基、芳香族基、ハロゲン原子又はアルコキシル基であることが好ましく、アルキル基、芳香族基又はハロゲン原子であることがより好ましく、アルキル基又は芳香族基であることが更に好ましく、芳香族基であることが最も好ましい。
The aryl-substituted amino group as a substituent represented by R in the formula (1) is not limited to either a monoaryl-substituted amino group or a diaryl-substituted amino group. The aryl group in these aryl-substituted amino groups is represented by the formula (1 The same thing as the aromatic hydrocarbon group described in the term of the substituent which R represents is.
As the acyl group as the substituent represented by R in the formula (1), the aromatic hydrocarbon group described in the section of the substituent represented by R in the formula (1) or the term of the substituent represented by R in the formula (1) And a substituent in which the alkyl group described in the above is bonded to a carbonyl group (= CO group).
Examples of the alkoxycarbonyl group as a substituent represented by R in Formula (1) include a substituent in which an alkoxy group as a substituent represented by R in Formula (1) is bonded to a carbonyl group.
The substituent represented by R in formula (1) is preferably an alkyl group, an aromatic group, a halogen atom or an alkoxyl group, more preferably an alkyl group, an aromatic group or a halogen atom, an alkyl group or It is more preferably an aromatic group, and most preferably an aromatic group.

式(1)中、nは置換基Rの数であり、それぞれ独立に0乃至6の整数を表し、1又は2であることが好ましく、1であることがより好ましい。
上記式(1)におけるRの置換位置は特に制限されないが、式(1)中のDNTT(ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン)構造における2位と9位又3位と8位であることが好ましく、2位と9位であることがより好ましい。
また、式(1)で表される化合物が対称形であること、例えば2位と9位に同じ置換基Rを有することや、3位と8位に同じ置換基Rを有することが好ましい。即ち、式(1)で表される化合物としては、下記一般式(1−1)又は(1−2)で表される化合物が特に好ましい。
In formula (1), n is the number of substituents R, each independently represents an integer of 0 to 6, preferably 1 or 2, and more preferably 1.
Although the substitution position of R in the above formula (1) is not particularly limited, DNTT in formula (1) (dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene) The 2nd and 9th positions and the 3rd and 8th positions in the structure are preferred, and the 2nd and 9th positions are more preferred.
Moreover, it is preferable that the compound represented by Formula (1) is symmetrical, for example, having the same substituent R at the 2-position and the 9-position, or having the same substituent R at the 3-position and the 8-position. That is, as the compound represented by the formula (1), a compound represented by the following general formula (1-1) or (1-2) is particularly preferable.

Figure 2018190754
Figure 2018190754

式(1−1)及び(1−2)中、Rは式(1)におけるRと同じ意味を表し、好ましいものも式(1)におけるRと同じである。
即ち、式(1−1)又は(1−2)で表される化合物としては、式(1−1)及び(1−2)におけるRが、上記した式(1)におけるRの好ましい乃至最も好ましい態様のものが好ましい。
In formulas (1-1) and (1-2), R represents the same meaning as R in formula (1), and preferred one is also the same as R in formula (1).
That is, as the compound represented by the formula (1-1) or (1-2), R in the formulas (1-1) and (1-2) is the most preferable to the most preferable R in the formula (1). The preferred embodiment is preferred.

また、nが2以上の場合、隣接するR同士が連結して環構造を形成していることも同様に好ましく、形成された環構造が芳香族性を有することがより好ましく、芳香族性を有する炭化水素環であることがさらに好ましい。環構造を形成する場合には連結して形成する環がベンゼン環であることがより好ましい。隣接するR同士が連結して形成した環構造は置換基を有してもよく、該有していてもよい置換基としては、式(1)のRが表す置換基と同じものが挙げられ、好ましいものも同じである。   In addition, when n is 2 or more, it is also preferable that adjacent Rs are linked to form a ring structure, and the formed ring structure is more preferably aromatic. More preferably, it is a hydrocarbon ring. In the case of forming a ring structure, the ring formed by linking is more preferably a benzene ring. The ring structure formed by linking adjacent Rs may have a substituent, and examples of the substituent that may be present include the same substituents represented by R in formula (1). The preferred ones are the same.

式(1)で表される化合物の具体例を以下に示すが、本発明はこれらの具体例に限定されるものではない。   Specific examples of the compound represented by the formula (1) are shown below, but the present invention is not limited to these specific examples.

Figure 2018190754
Figure 2018190754

式(1)で表される化合物は、公知の方法などにより合成することができ、例えば非特許文献1,2に記載の方法で合成することができる。   The compound represented by the formula (1) can be synthesized by a known method, for example, by the methods described in Non-Patent Documents 1 and 2.

式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。   The purification method of the compound represented by Formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography, and vacuum sublimation purification can be employed. These methods can be combined as necessary.

可視光吸収端とは、化合物の分光波形における最も長波長寄りの吸収波長を意味する。可視光吸収端の測定は、式(1)で表される化合物を溶剤等に溶解した溶液、式(1)で表される化合物そのものの粉末及び式(1)で表される化合物を用いて得られた薄膜等、いずれの形態で行っても構わないが、再現性の観点から溶液又は薄膜の形態で行うことが好ましく、化合物の溶解度が著しく低い場合には薄膜の形態で行うことより好ましく、真空蒸着法で得られた薄膜で行うことが更に好ましい。溶液と薄膜で分光波形に差が生じる場合は、可視光吸収端がより長波長である方で測定を行うことが好ましい。   The visible light absorption edge means the absorption wavelength closest to the longest wavelength in the spectral waveform of the compound. The visible light absorption edge is measured using a solution of the compound represented by formula (1) dissolved in a solvent, the powder of the compound itself represented by formula (1), and the compound represented by formula (1). Although it may be performed in any form, such as the obtained thin film, it is preferably performed in the form of a solution or a thin film from the viewpoint of reproducibility, and more preferably performed in the form of a thin film when the solubility of the compound is extremely low. More preferably, it is performed with a thin film obtained by a vacuum deposition method. In the case where a difference occurs in the spectral waveform between the solution and the thin film, it is preferable to perform the measurement with the visible light absorption edge having a longer wavelength.

本発明の撮像素子用光電変換素子に用いられる式(1)で表される化合物の可視光吸収端は通常470nm以上であり、480nm以上であることが好ましく、490nm以上であることがより好ましく、500nm以上であることが更に好ましい。   The visible light absorption edge of the compound represented by the formula (1) used in the photoelectric conversion element for an image sensor of the present invention is usually 470 nm or more, preferably 480 nm or more, more preferably 490 nm or more, More preferably, it is 500 nm or more.

本発明の撮像素子用光電変換素子において、(C)光電変換部を構成する(c−2)光電変換層以外の有機層は、電子ブロック層及び/又は正孔ブロック層として用いられるのみならず、(c−1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、結晶化防止層又は層間接触改良層等として用いることもできる。特に電子輸送層及び/又は正孔輸送層を併用することにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。   In the photoelectric conversion element for an image sensor of the present invention, (C) the organic layer other than the photoelectric conversion layer constituting the photoelectric conversion unit (c-2) is not only used as an electron block layer and / or a hole block layer. (C-1) It can also be used as a layer other than the photoelectric conversion layer, for example, an electron transport layer, a hole transport layer, a crystallization preventing layer, an interlayer contact improving layer, or the like. In particular, it is preferable to use an electron transport layer and / or a hole transport layer in combination because an element that efficiently converts even a weak light energy into an electric signal can be obtained.

電子輸送層は、(c−1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c−1)光電変換層に正孔が移動するのをブロックする役割とを果たす。
正孔輸送層は、発生した正孔を(c−1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c−1)光電変換層に電子が移動するのをブロックする役割とを果たす。
電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への電子の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への正孔の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、上記一般式(1)で表される化合物の他に、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
The electron transport layer (c-1) transports electrons generated in the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and from the electrode transport destination electrode film (c -1) It plays the role of blocking the movement of holes to the photoelectric conversion layer.
The hole transport layer has the role of transporting the generated holes from (c-1) the photoelectric conversion layer to (A) the first electrode film or (B) the second electrode film, and the hole transport destination electrode film. (C-1) plays the role of blocking the movement of electrons to the photoelectric conversion layer.
The electron blocking layer prevents movement of electrons from (A) the first electrode film or (B) second electrode film to (c-1) the photoelectric conversion layer, and (c-1) within the photoelectric conversion layer. It serves to prevent recombination and reduce dark current.
The hole blocking layer prevents movement of holes from (A) the first electrode film or (B) second electrode film to (c-1) the photoelectric conversion layer, and (c-1) in the photoelectric conversion layer. It has a function of preventing recombination at the time and reducing dark current.
The hole blocking layer is formed by laminating or mixing hole blocking substances alone or in combination. The hole blocking substance is not limited as long as it is a compound that can prevent holes from flowing out of the element from the electrode. As a compound that can be used for the hole blocking layer, in addition to the compound represented by the general formula (1), phenanthroline derivatives such as bathophenanthroline and bathocuproin, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives , An oxazole derivative, a quinoline derivative, and the like. Among these, one kind or two or more kinds can be used.

上記一般式(1)で表され、可視光吸収端が470nm以上の化合物を含んでなる電子ブロック層及び又は正孔ブロック層として用いられるが、特に正孔ブロック層として好適に用いられる。リーク電流を防止するという観点からは正孔ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c−1)及び(c−2)を含んでなる(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。
また、正孔ブロック層及び電子ブロック層は、(c−1)光電変換層の光吸収を妨げないために、光電変換層の吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。
Although it is used as an electron blocking layer and / or a hole blocking layer which is represented by the general formula (1) and has a visible light absorption edge containing a compound having a wavelength of 470 nm or more, it is particularly preferably used as a hole blocking layer. From the standpoint of preventing leakage current, the hole blocking layer should be thick, but from the standpoint of obtaining a sufficient amount of current when reading the signal at the time of light incidence, the thickness should be as thin as possible. . In order to make these contradictory characteristics compatible, it is generally preferable that the thickness of the (C) photoelectric conversion portion including (c-1) and (c-2) is about 5 to 500 nm.
In addition, the hole blocking layer and the electron blocking layer are preferably (c-1) high in transmittance of the absorption wavelength of the photoelectric conversion layer and used in a thin film so as not to prevent light absorption of the photoelectric conversion layer. preferable.

薄膜トランジスタは、光電変換部により生じた電荷に基づき、信号読み取り部へ信号を出力する。薄膜トランジスタは、ゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し、活性層は、シリコン半導体、酸化物半導体又は有機半導体により形成されている。   The thin film transistor outputs a signal to the signal reading unit based on the electric charge generated by the photoelectric conversion unit. The thin film transistor includes a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode, and the active layer is formed of a silicon semiconductor, an oxide semiconductor, or an organic semiconductor.

薄膜トランジスタに用いられる活性層を酸化物半導体により形成すれば、アモルファスシリコンの活性層に比べて電荷の移動度がはるかに高く、低電圧で駆動させることができる。また、酸化物半導体を用いれば、通常、シリコンよりも光透過性が高く、可撓性を有する活性層を形成することができる。また、酸化物半導体、特にアモルファス酸化物半導体は、低温(例えば室温)で均一に成膜が可能であるため、プラスチックのような可撓性のある樹脂基板を用いるときに特に有利となる。また、複数の二次受光画素を積層させるため、上段の二次受光画素を形成する際に下段の二次受光画素が影響を受ける。特に光電変換層は熱の影響を受けやすいが、酸化物半導体、特にアモルファス酸化物半導体は低温成膜が可能であるため有利である   When an active layer used for a thin film transistor is formed using an oxide semiconductor, charge mobility is much higher than that of an amorphous silicon active layer, and it can be driven at a low voltage. In addition, when an oxide semiconductor is used, it is possible to form an active layer that is usually more light transmissive than silicon and has flexibility. An oxide semiconductor, particularly an amorphous oxide semiconductor, can be uniformly formed at a low temperature (for example, room temperature), and thus is particularly advantageous when a flexible resin substrate such as a plastic is used. Further, since a plurality of secondary light receiving pixels are stacked, the lower secondary light receiving pixels are affected when the upper secondary light receiving pixels are formed. In particular, the photoelectric conversion layer is easily affected by heat, but an oxide semiconductor, particularly an amorphous oxide semiconductor, is advantageous because it can be formed at a low temperature.

活性層を形成するための酸化物半導体としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga−O系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が更に好ましい。In−Ga−Zn−O系酸化物半導体としては、結晶状態における組成がInGaO (ZnO)m (mは6未満の自然数)で表される酸化物半導体が好ましく、特に、InGaZnO がより好ましい。この組成のアモルファス酸化物半導体の特徴としては、電気伝導度が増加するにつれ、電子移動度が増加する傾向を示す As the oxide semiconductor for forming the active layer, an oxide containing at least one of In, Ga, and Zn (for example, an In—O system) is preferable, and at least two of In, Ga, and Zn are used. Oxides containing (for example, In—Zn—O, In—Ga—O, and Ga—Zn—O) are more preferable, and oxides including In, Ga, and Zn are more preferable. As the In—Ga—Zn—O-based oxide semiconductor, an oxide semiconductor whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number less than 6) is preferable, and InGaZnO 4 is particularly preferable. . A characteristic of amorphous oxide semiconductors with this composition is that the electron mobility tends to increase as the electrical conductivity increases.

信号読み取り部は、光電変換部に生成及び蓄積される電荷または前記電荷に応じた電圧を読み取る。   The signal reading unit reads a charge generated and accumulated in the photoelectric conversion unit or a voltage corresponding to the charge.

図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極膜2の上側、又は電極膜6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(図1における絶縁部1側)または下部(図1における絶縁基板7側)のいずれでもよい。   Although the typical element structure of the photoelectric conversion element for image sensors of this invention is demonstrated in detail in FIG. 1, this invention is not limited to these structures. In the embodiment of FIG. 1, 1 is an insulating part, 2 is one electrode film (first electrode film or second electrode film), 3 is an electron block layer, 4 is a photoelectric conversion layer, and 5 is a hole block. A layer, 6 represents the other electrode film (second electrode film or first electrode film), 7 represents an insulating base material, or a stacked photoelectric conversion element. The readout transistor (not shown in the drawing) only needs to be connected to either the electrode film 2 or 6, for example, if the photoelectric conversion layer 4 is transparent, the side opposite to the light incident side The film may be formed outside the electrode film (on the upper side of the electrode film 2 or on the lower side of the electrode film 6). If the thin film layer (electron block layer, hole block layer, etc.) other than the photoelectric conversion layer constituting the photoelectric conversion element does not extremely shield the absorption wavelength of the photoelectric conversion layer, the direction in which light is incident is the upper side (Fig. 1 or the lower portion (insulating substrate 7 side in FIG. 1).

本発明の撮像素子用光電変換素子における(c−1)光電変換層及び(c−2)光電変換層以外の有機層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は1乃至5000nmの範囲であり、好ましくは3乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。   The method for forming an organic layer other than the (c-1) photoelectric conversion layer and the (c-2) photoelectric conversion layer in the photoelectric conversion element for an image pickup device of the present invention is generally a vacuum heating process such as resistance heating vapor deposition, Beam deposition, sputtering, molecular lamination, solution process casting, spin coating, dip coating, blade coating, wire bar coating, spray coating and other coating methods, inkjet printing, screen printing, offset printing, letterpress printing, etc. Or a method of soft lithography such as a microcontact printing method, or a combination of these methods. The thickness of each layer depends on the resistance value and charge mobility of each substance and cannot be limited, but is usually in the range of 1 to 5000 nm, preferably in the range of 3 to 1000 nm, more preferably in the range of 5 to 500 nm. Range.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。また、合成例1乃至16で得られた化合物、及び実施例において式(1)で表される化合物の代りに用いた化合物を用いて作製した蒸着膜について、紫外可視分光光度計UV−3150(島津製作所社製)を用いて測定した分光波形に基づいて可視光吸収端を確認した。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these examples.
The block layer described in the examples may be either a hole block layer or an electron block layer. The photoelectric conversion element is manufactured using a vapor deposition unit integrated with the glove box, and the photoelectric conversion element is installed in a sealed bottle-type measurement chamber (manufactured by ALS Technology) in a glove box in a nitrogen atmosphere. Then, current voltage application measurement was performed. Current voltage application measurement was performed using a semiconductor parameter analyzer 4200-SCS (Keithley Instruments) unless otherwise specified. Irradiation of incident light was performed using PVL-3300 (manufactured by Asahi Spectroscopic Co., Ltd.) at an irradiation light wavelength of 550 nm and an irradiation light half width of 20 nm unless otherwise specified. In addition, for the deposited films prepared using the compounds obtained in Synthesis Examples 1 to 16 and the compounds used in place of the compounds represented by Formula (1) in Examples, UV-visible spectrophotometer UV-3150 ( The visible light absorption edge was confirmed based on the spectral waveform measured using Shimadzu Corporation. The light / dark ratio in the examples indicates a value obtained by dividing the current value in the case of light irradiation by the current value in a dark place.

合成例1(2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル)−3−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成)
(工程1)2−(4−ブロモ−3−メチルフェニル)ベンゾ[b]チオフェンの合成
DMF(300部)に、一般に入手可能なベンゾ[b]チオフェン−2−イルボロン酸(5.0部)、5−ブロモ−2−ヨードトルエン(8.3部)、リン酸三カリウム(34部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.84部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(300部)を加え、固形分をろ過分取した。得られた固形分をメタノールで洗浄し乾燥することにより、2−(4−ブロモ−2−メチルフェニル)ベンゾ[b]チオフェン(5.8部、収率68%)を得た。
Synthesis Example 1 (Synthesis of 2,7-bis (4- (benzo [b] thiophen-2-yl) -3-methylphenyl) [1] benzothieno [3,2-b] [1] benzothiophene)
(Step 1) Synthesis of 2- (4-bromo-3-methylphenyl) benzo [b] thiophene To DMF (300 parts), generally available benzo [b] thiophen-2-ylboronic acid (5.0 parts) , 5-bromo-2-iodotoluene (8.3 parts), tripotassium phosphate (34 parts) and tetrakis (triphenylphosphine) palladium (0.84 parts) were mixed at 90 ° C. under a nitrogen atmosphere. Stir for hours. After cooling the obtained reaction liquid to room temperature, water (300 parts) was added and solid content was fractionated by filtration. The obtained solid was washed with methanol and dried to obtain 2- (4-bromo-2-methylphenyl) benzo [b] thiophene (5.8 parts, yield 68%).

(工程2)2−(4−(ベンゾ[b]チオフェン−2−イル)−3−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(240部)に、工程1で得られた2−(4−ブロモ−2−メチルフェニル)ベンゾ[b]チオフェン(5.6部)、ビス(ピナコラト)ジボロン(5.6部)、酢酸カリウム(3.5部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で4時間撹拌した。得られた反応液を室温まで冷却した後、シリカゲル20部を加え、5分間撹拌した。その後、固形分をろ別し、溶媒を減圧除去することにより2−(4−(ベンゾ[b]チオフェン−2−イル)−3−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(5.7部、収率89%)を得た。
(Step 2) Synthesis of 2- (4- (benzo [b] thiophen-2-yl) -3-methylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane Toluene (240 2- (4-bromo-2-methylphenyl) benzo [b] thiophene (5.6 parts), bis (pinacolato) diboron (5.6 parts), potassium acetate (3 parts) 0.5 part) and [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (0.5 part) were mixed and stirred at reflux temperature for 4 hours under nitrogen atmosphere. After cooling the obtained reaction liquid to room temperature, 20 parts of silica gel was added and stirred for 5 minutes. Thereafter, the solid content is filtered off and the solvent is removed under reduced pressure to give 2- (4- (benzo [b] thiophen-2-yl) -3-methylphenyl) -4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (5.7 parts, 89% yield) was obtained.

(工程3)2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル) −3−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(170部)に、水(5.0部)、特許第4945757号公報に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(2.6部)、工程2で得られた2−(4−(ベンゾ[b]チオフェン−2−イル)−3−メチルフェニル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(4.6部)、リン酸三カリウム(18部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.35部)を混合し、窒素雰囲気下、90℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(170部)を加え、固形分をろ過分取した。得られた固形分をアセトンで洗浄し乾燥した後、昇華精製を行うことにより、以下の式(101)で表される化合物(1.0部、収率29%)を得た。
(Step 3) Synthesis of 2,7-bis (4- (benzo [b] thiophen-2-yl) -3-methylphenyl) [1] benzothieno [3,2-b] [1] benzothiophene DMF (170 Part)), water (5.0 parts), 2,7-diiodo [1] benzothieno [3,2-b] [1] benzothiophene (2.6 parts) synthesized by the method described in Japanese Patent No. 4945757. ), 2- (4- (benzo [b] thiophen-2-yl) -3-methylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane obtained in step 2 ( 4.6 parts), tripotassium phosphate (18 parts) and tetrakis (triphenylphosphine) palladium (0.35 parts) were mixed and stirred at 90 ° C. for 6 hours in a nitrogen atmosphere. After cooling the obtained reaction liquid to room temperature, water (170 parts) was added and solid content was separated by filtration. The obtained solid content was washed with acetone, dried, and then purified by sublimation to obtain a compound represented by the following formula (101) (1.0 part, yield 29%).

Figure 2018190754
Figure 2018190754

実施例1(光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、公知の方法により合成された2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。このブロック層の可視光吸収端は507nmであった。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として、5Vの電圧を印加したときの明暗比は2.4×10であった。
Example 1 (Preparation of photoelectric conversion element and evaluation thereof)
2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3] synthesized on ITO transparent conductive glass (manufactured by Geomat Co., Ltd., ITO film thickness 150 nm) by a known method. , 2-b] thiophene (compound represented by No. 3) was deposited as a blocking layer to a thickness of 50 nm by resistance heating vacuum deposition. The visible light absorption edge of this block layer was 507 nm. Next, quinacridone was formed into a 100 nm vacuum film as a photoelectric conversion layer on the block layer. Finally, 100 nm of aluminum was vacuum-deposited as an electrode on the photoelectric conversion layer to produce a photoelectric conversion element for an image sensor according to the present invention. Using ITO and aluminum as electrodes, the contrast ratio was 2.4 × 10 4 when a voltage of 5 V was applied.

実施例2(光電変換素子の作製およびその評価)
2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)の代わりに、公知の方法により合成された2,9−ビス([1,1’−ビフェニル]−4−イル)ジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.4で表される化合物)を使用したこと以外は実施例1に準じて評価を行ったところ、ブロック層の可視光吸収端は527nmであり、5Vの電圧を印加したときの明暗比は2.7×10であった。
Example 2 (Preparation of photoelectric conversion element and its evaluation)
Synthesis by a known method instead of 2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (compound represented by No. 3) 2,9-bis ([1,1′-biphenyl] -4-yl) dinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (No. 4 When the evaluation was performed according to Example 1 except that the compound represented by formula (1) was used, the visible light absorption edge of the block layer was 527 nm, and the contrast ratio when a voltage of 5 V was applied was 2.7. × 10 5

比較例1(光電変換素子の作製およびその評価)
2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)の代わりに、公知の方法により合成された2,7−ビス(9H−カルバゾール−9−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(以下の式(103)で表される化合物)を使用したこと以外は実施例1に準じて評価を行ったところ、ブロック層の可視光吸収端は402nmであり、5Vの電圧を印加したときの明暗比は4.7であった。
Comparative Example 1 (Production and Evaluation of Photoelectric Conversion Element)
Synthesis by a known method instead of 2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (compound represented by No. 3) Used 2,7-bis (9H-carbazol-9-yl)-[1] benzothieno [3,2-b] [1] benzothiophene (compound represented by the following formula (103)) When the evaluation was performed according to Example 1, the visible light absorption edge of the block layer was 402 nm, and the contrast ratio when a voltage of 5 V was applied was 4.7.

Figure 2018190754
Figure 2018190754

比較例2(光電変換素子の作製およびその評価)
2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)の代わりに、公知の方法により合成された2,7−ビス(4−(トリフルオロメチル)フェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(以下の式(104)で表される化合物)を使用したこと以外は実施例1に準じて評価を行ったところ、ブロック層の可視光吸収端は409nmであり、5Vの電圧を印加したときの明暗比は7.8×10であった。
Comparative Example 2 (Production and Evaluation of Photoelectric Conversion Element)
Synthesis by a known method instead of 2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (compound represented by No. 3) 2,7-bis (4- (trifluoromethyl) phenyl) [1] benzothieno [3,2-b] [1] benzothiophene (compound represented by the following formula (104)) was used The evaluation was performed according to Example 1 except that the visible light absorption edge of the block layer was 409 nm, and the contrast ratio when a voltage of 5 V was applied was 7.8 × 10 1 .

Figure 2018190754
Figure 2018190754

比較例3(光電変換素子の作製およびその評価)
2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)の代わりに、公知の方法により合成された2,7−ビス(3,5−ビス(トリフルオロメチル)フェニル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(以下の式(105)で表される化合物)を使用したこと以外は実施例1に準じて評価を行ったところ、ブロック層の可視光吸収端は416nmであり、5Vの電圧を印加したときの明暗比は2.0×10であった。
Comparative Example 3 (Production and Evaluation of Photoelectric Conversion Element)
Synthesis by a known method instead of 2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (compound represented by No. 3) 2,7-bis (3,5-bis (trifluoromethyl) phenyl)-[1] benzothieno [3,2-b] [1] benzothiophene (compound represented by the following formula (105)) When the evaluation was performed in accordance with Example 1 except that was used, the visible light absorption edge of the block layer was 416 nm, and the contrast ratio when a voltage of 5 V was applied was 2.0 × 10 2 . .

Figure 2018190754
Figure 2018190754

比較例4(光電変換素子の作製およびその評価)
2,9−ジフェニルジナフト[2,3−b:2’,3’−f]チエノ[3,2−b]チオフェン(No.3で表される化合物)の代わりに、2,7−ビス(4−(ベンゾ[b]チオフェン−2−イル) −3−メチルフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られた式(101)で表される化合物)を使用したこと以外は実施例1に準じて評価を行ったところ、ブロック層の可視光吸収端は439nmであり、5Vの電圧を印加したときの明暗比は9.4×10であった。
Comparative Example 4 (Production and Evaluation of Photoelectric Conversion Element)
In place of 2,9-diphenyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene (compound represented by No. 3), 2,7-bis (4- (Benzo [b] thiophen-2-yl) -3-methylphenyl) [1] benzothieno [3,2-b] [1] benzothiophene (represented by the formula (101) obtained in Synthesis Example 1 When the evaluation was performed according to Example 1 except that the compound was used, the visible light absorption edge of the block layer was 439 nm, and the light / dark ratio when a voltage of 5 V was applied was 9.4 × 10 6. 2 .

上記の実施例の評価において得られた明暗比は撮像素子用光電変換素子として明らかに優れた特性を示す。   The light / dark ratio obtained in the evaluation of the above examples clearly shows excellent characteristics as a photoelectric conversion element for an image sensor.

上記の評価結果より、光電変換部が式(1)で表され、かつ可視光吸収端が470nm以上の化合物を含む有機薄膜層を有する本発明の撮像素子用光電変換素子が、前記の条件を満たす有機薄膜層を有さない比較例の撮像素子用光電変換素子よりも優れた特性を有することは明らかである。   From the above evaluation results, the photoelectric conversion element for an image sensor of the present invention having an organic thin film layer in which the photoelectric conversion part is represented by the formula (1) and the visible light absorption edge includes a compound having a wavelength of 470 nm or more satisfies the above conditions. It is clear that the characteristics are superior to those of the photoelectric conversion element for the imaging element of the comparative example that does not have the organic thin film layer to be filled.

以上の様に、本発明の撮像素子用光電変換素子は、有機光電変換特性に優れた性能を有しており、高解像度と高応答性を有する有機撮像素子はもとより有機EL素子、有機太陽電池素子及び有機トランジスタ素子等の有機エレクトロニクスデバイス、光センサー、赤外センサー、紫外センサー、X線センサーやフォトンカウンター等のデバイスやそれらを利用したカメラ、ビデオカメラ、赤外線カメラ等の分野への応用が期待される。


As described above, the photoelectric conversion element for an image pickup device of the present invention has excellent performance in organic photoelectric conversion characteristics, and includes an organic EL device and an organic solar cell as well as an organic image pickup device having high resolution and high response. Expected to be applied to fields such as organic electronics devices such as devices and organic transistor devices, optical sensors, infrared sensors, ultraviolet sensors, X-ray sensors, photon counters, and cameras, video cameras, infrared cameras, etc. Is done.


Claims (10)

(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が(c−1)光電変換層と(c−2)光電変換層以外の有機層を含み、かつ該(c−2)光電変換層以外の有機層の少なくとも一つが、下記式(1)
Figure 2018190754
(式(1)中、Rはそれぞれ独立に置換基を表す。nは置換基Rの数であり、それぞれ独立に0乃至6の整数を表す。nが2以上の場合、隣接するR同士が連結して環構造を形成してもよい。)で表される可視光吸収端が470nm以上の化合物を含む撮像素子用光電変換素子。
A photoelectric conversion element having (A) a first electrode film, (B) a second electrode film, and (C) a photoelectric conversion unit disposed between the first electrode film and the second electrode film. The (C) photoelectric conversion unit includes (c-1) an organic layer other than the photoelectric conversion layer and (c-2) the photoelectric conversion layer, and (c-2) at least an organic layer other than the photoelectric conversion layer. One is the following formula (1)
Figure 2018190754
(In formula (1), each R independently represents a substituent. N is the number of substituents R, each independently represents an integer of 0 to 6. When n is 2 or more, adjacent Rs are A photoelectric conversion element for an imaging element including a compound having a visible light absorption end represented by 470 nm or more, which may be linked to form a ring structure.
式(1)で表される化合物の可視光吸収端が490nm以上である請求項1に記載の撮像素子用光電変換素子。 The photoelectric conversion element for an imaging element according to claim 1, wherein the visible light absorption edge of the compound represented by the formula (1) is 490 nm or more. nが1である請求項1又は2に記載の撮像素子用光電変換素子。 n is 1, The photoelectric conversion element for image sensors of Claim 1 or 2. Rが置換基を有するフェニル基、無置換のフェニル基、置換基を有するビフェニル基又は無置換のビフェニル基である請求項1乃至3のいずれか一項に記載の撮像素子用光電変換素子。 The photoelectric conversion element for an imaging element according to claim 1, wherein R is a phenyl group having a substituent, an unsubstituted phenyl group, a biphenyl group having a substituent, or an unsubstituted biphenyl group. 式(1)で表される可視光吸収端が470nm以上の化合物を含む有機層が、電子ブロック層及び/又は正孔ブロック層である請求項1乃至4のいずれか一項に記載の里増素子用光電変換素子。 The organic layer containing the compound whose visible light absorption edge represented by Formula (1) is 470 nm or more is an electron block layer and / or a hole block layer, The increase according to any one of Claims 1 thru | or 4 Photoelectric conversion element for element. (c−1)光電変換層が、n型有機半導体材料を含む請求項1乃至5のいずれか一項に記載の撮像素子用光電変換素子。 (C-1) The photoelectric conversion element for an image pickup device according to any one of claims 1 to 5, wherein the photoelectric conversion layer contains an n-type organic semiconductor material. (c−2)光電変換層以外の有機層として電子輸送層及び正孔輸送層の少なくとも一方を含む請求項1乃至6のいずれか一項に記載の撮像素子用光電変換素子。 (C-2) The photoelectric conversion element for an imaging element according to any one of claims 1 to 6, comprising at least one of an electron transport layer and a hole transport layer as an organic layer other than the photoelectric conversion layer. 更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する請求項1乃至7のいずれか一項に記載の撮像素子用光電変換素子。 The image pickup device according to claim 1, further comprising: (D) a thin film transistor having a hole accumulating portion; and (E) a signal reading portion for reading a signal corresponding to the electric charge accumulated in the thin film transistor. Photoelectric conversion element. 請求項1及至8のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子。 An image sensor in which a plurality of photoelectric conversion elements for an image sensor according to any one of claims 1 to 8 are arranged in an array. 請求項1及至8のいずれか一項に記載の撮像素子用光電変換素子または請求項9に記載の撮像素子を含む光センサー。


An optical sensor including the photoelectric conversion element for an imaging element according to any one of claims 1 to 8 or the imaging element according to claim 9.


JP2017089145A 2017-04-28 2017-04-28 Photoelectric conversion element for image sensor Active JP6906357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089145A JP6906357B2 (en) 2017-04-28 2017-04-28 Photoelectric conversion element for image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089145A JP6906357B2 (en) 2017-04-28 2017-04-28 Photoelectric conversion element for image sensor

Publications (2)

Publication Number Publication Date
JP2018190754A true JP2018190754A (en) 2018-11-29
JP6906357B2 JP6906357B2 (en) 2021-07-21

Family

ID=64480147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089145A Active JP6906357B2 (en) 2017-04-28 2017-04-28 Photoelectric conversion element for image sensor

Country Status (1)

Country Link
JP (1) JP6906357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163448A (en) * 2021-11-11 2022-03-11 北京大学深圳研究生院 Host material based on naphtho five-membered heterocycle and benzo five-membered heterocycle, preparation method thereof and organic light-emitting device
CN114269754A (en) * 2019-09-17 2022-04-01 日本化药株式会社 Condensed polycyclic aromatic compound
WO2023127603A1 (en) * 2021-12-27 2023-07-06 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element, imaging device, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115749A1 (en) * 2013-01-22 2014-07-31 日本化薬株式会社 Organic semiconductor material for solution process and organic semiconductor device
WO2017002645A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photoelectric conversion element, and solar battery using same
WO2017001353A1 (en) * 2015-06-29 2017-01-05 Imec Vzw Method for high resolution patterning of organic layers
WO2017061174A1 (en) * 2015-10-09 2017-04-13 ソニー株式会社 Photoelectric conversion element and imaging element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115749A1 (en) * 2013-01-22 2014-07-31 日本化薬株式会社 Organic semiconductor material for solution process and organic semiconductor device
WO2017001353A1 (en) * 2015-06-29 2017-01-05 Imec Vzw Method for high resolution patterning of organic layers
WO2017002645A1 (en) * 2015-06-30 2017-01-05 富士フイルム株式会社 Photoelectric conversion element, and solar battery using same
WO2017061174A1 (en) * 2015-10-09 2017-04-13 ソニー株式会社 Photoelectric conversion element and imaging element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114269754A (en) * 2019-09-17 2022-04-01 日本化药株式会社 Condensed polycyclic aromatic compound
CN114163448A (en) * 2021-11-11 2022-03-11 北京大学深圳研究生院 Host material based on naphtho five-membered heterocycle and benzo five-membered heterocycle, preparation method thereof and organic light-emitting device
WO2023127603A1 (en) * 2021-12-27 2023-07-06 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element, imaging device, and electronic apparatus

Also Published As

Publication number Publication date
JP6906357B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP6739290B2 (en) Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same
JP6986887B2 (en) Photoelectric conversion element for image sensor
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
JP6836591B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2018190755A (en) Photoelectric conversion element for imaging device
JP6906357B2 (en) Photoelectric conversion element for image sensor
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP6890469B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6784639B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6906388B2 (en) Photoelectric conversion element for image sensor
JP2018046267A (en) Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same
JP2021015963A (en) Photoelectric conversion element material and uses thereof
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250