JP2018188845A - Woody earthquake-proof wall - Google Patents

Woody earthquake-proof wall Download PDF

Info

Publication number
JP2018188845A
JP2018188845A JP2017091017A JP2017091017A JP2018188845A JP 2018188845 A JP2018188845 A JP 2018188845A JP 2017091017 A JP2017091017 A JP 2017091017A JP 2017091017 A JP2017091017 A JP 2017091017A JP 2018188845 A JP2018188845 A JP 2018188845A
Authority
JP
Japan
Prior art keywords
wall
wall body
steel plate
rod
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091017A
Other languages
Japanese (ja)
Other versions
JP6869096B2 (en
Inventor
貞広 修
Osamu Sadahiro
修 貞広
木村 誠
Makoto Kimura
誠 木村
田村 淳一
Junichi Tamura
淳一 田村
武 河内
Takeshi Kawachi
武 河内
慎哉 津畑
Shinya Tsuhata
慎哉 津畑
智貴 濱
Tomoki Hama
智貴 濱
祐周 小澤
Hirochika Ozawa
祐周 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2017091017A priority Critical patent/JP6869096B2/en
Publication of JP2018188845A publication Critical patent/JP2018188845A/en
Application granted granted Critical
Publication of JP6869096B2 publication Critical patent/JP6869096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly rigid and highly tenacious woody earthquake-proof wall having high yield strength.SOLUTION: A beam junction 16 is configured by including: a beam side steel plate 18 that is fixed to an upper beam 12 or a lower beam and that projects toward a wall body 10; a wall body inner side steel plate 20 that projects from the upper end or the lower end of the wall body 10 toward the upper beam 12 or the lower beam and that is disposed so as to be inserted into the wall body 10; bolts 24 that join the steel plates 18, 20; and an end surface side steel plate 34 that is disposed on the upper end surface or the lower end surface of the wall body 10 and joined to the wall body inner side steel plate 20. The wall body 10 and the wall body inner side steel plate 20 are integrally fixed by a rod-like steel member 36 that is disposed therethrough, and the wall body 10 and the end surface side steel plate 34 are integrally fixed by a steel member 40 with a rod-like screw which has a screw formed on an outer periphery and which is disposed so as to be inserted from the outside of the end surface side steel plate 34 into the wall body 10.SELECTED DRAWING: Figure 2

Description

本発明は、構造物に設置される木質耐震壁に関するものであり、特に、直交集成板(CLT:Cross Laminated Timber)を壁体に用いた木質耐震壁に関するものである。   The present invention relates to a wooden earthquake-resistant wall installed in a structure, and more particularly to a wooden earthquake-resistant wall using a cross laminated plate (CLT) as a wall body.

従来、CLTと呼ばれる直交集成板が知られている。CLTは、ひき板または小角材(これらをその繊維方向を互いにほぼ平行にして長さ方向に接合接着して調整したものを含む。以下、ラミナということがある。)をその繊維方向を互いにほぼ平行にして幅方向に並べ、または接着したものを、主としてその繊維方向を互いにほぼ直角にして積層接着し3層以上の構造を持たせた木質板材であり、耐震・耐火性能が高いという特長がある。   Conventionally, an orthogonal assembly plate called CLT is known. The CLT includes a board or a small square material (including those prepared by bonding and bonding them in the length direction so that their fiber directions are substantially parallel to each other, hereinafter referred to as lamina). This is a wooden board material that is laminated and bonded in the width direction in parallel or glued mainly with the fiber directions almost perpendicular to each other to give a structure of three or more layers, and has the feature of high earthquake and fire resistance. is there.

このCLTを壁体に用いたCLT耐震壁は、CLTからなる床スラブを介して上下階のCLT耐震壁と金物にて緊結することで、耐震壁としての性能を確保することが告示等で要請されている。   The CLT seismic wall that uses this CLT as a wall body is required by a notification etc. to secure the performance as a seismic wall by tightly connecting the CLT seismic wall on the upper and lower floors with hardware via a floor slab made of CLT. Has been.

一方、従来の木質耐震壁として、例えば特許文献1に記載の構造が知られている。   On the other hand, for example, a structure described in Patent Document 1 is known as a conventional wooden earthquake-resistant wall.

特開2015−218462号公報Japanese Patent Laying-Open No. 2015-218462

しかしながら、木質中高層建物を合理的に計画するに当たっては、上記のようなCLT要素のみによる構造体の構築は耐震性能確保の観点から難しく、木質以外の構造体とのハイブリッド化が現実的であり、かつCLT耐震壁自体にも相応の抵抗力(壁倍率)が求められる。一例として梁を鉄骨もしくはRC(鉄筋コンクリート)構造とし、そこにCLT耐震壁を接合することが考えられる。この場合、CLT耐震壁は上下の梁に直接接合する必要があるが、通常のドリフトピンもしくはLSB(ラグスクリューボルト)等による接合とした場合、初期剛性の不足やCLT接合部の脆性破壊等のためにその性能を十分に発揮できないおそれがある。このため、剛性、靱性、耐力のいずれにも優れた構造が求められていた。   However, when rationally planning wooden medium- and high-rise buildings, it is difficult to construct a structure using only CLT elements as described above from the viewpoint of ensuring seismic performance, and it is realistic to hybridize with structures other than wood. In addition, a corresponding resistance force (wall magnification) is required for the CLT seismic wall itself. As an example, it is conceivable that the beam is a steel frame or RC (steel reinforced concrete) structure, and a CLT earthquake resistant wall is joined thereto. In this case, it is necessary to join the CLT shear wall directly to the upper and lower beams. However, when it is joined with a normal drift pin or LSB (lag screw bolt), etc., there is insufficient initial rigidity, brittle fracture of the CLT joint, etc. Therefore, there is a possibility that the performance cannot be fully exhibited. For this reason, the structure excellent in all of rigidity, toughness, and proof stress was calculated | required.

本発明は、上記に鑑みてなされたものであって、剛性、靱性、耐力に優れた木質耐震壁を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the wooden earthquake-resistant wall excellent in rigidity, toughness, and yield strength.

上記した課題を解決し、目的を達成するために、本発明に係る木質耐震壁は、CLTからなる壁体を備え、この壁体の上端と下端が鉄骨または鉄筋コンクリートからなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、梁接合部は、上梁または下梁に固定され、壁体に向けて突出する梁側の鋼板と、壁体の上端または下端から上梁または下梁に向けて突出するとともに壁体の内部に挿入配置される壁体内部側の鋼板と、これらの鋼板を接合するボルトと、壁体の上端面または下端面に配置され、壁体内部側の鋼板に接合する端面側の鋼板とを含んで構成され、壁体と壁体内部側の鋼板は、これらを貫通して配置される棒状の鋼製部材によって一体的に固定され、壁体と端面側の鋼板は、端面側の鋼板の外側から壁体の内部に挿入配置される外周にねじが形成された棒状のねじ付き鋼製部材によって一体的に固定されることを特徴とする。   In order to solve the above-described problems and achieve the object, the wooden earthquake resistant wall according to the present invention includes a wall body made of CLT, and upper and lower ends of the wall body are made of steel frames or reinforced concrete. Wooden seismic walls joined via beam joints, the beam joints being fixed to the upper or lower beam and projecting towards the wall, and the upper or lower end of the wall It protrudes toward the upper beam or the lower beam and is inserted into the inside of the wall body and is arranged on the inner side of the wall body, the bolt that joins these steel sheets, and the upper or lower end surface of the wall body, The wall body and the steel plate on the inner side of the wall body are integrally fixed by a rod-shaped steel member disposed through the wall body and the steel plate on the inner side of the wall body. The wall and the steel plate on the end face side are Characterized in that it is integrally fixed by the insertion arranged outer peripheral screw formed on the rod-shaped threaded steel member is a part.

また、本発明に係る他の木質耐震壁は、上述した発明において、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材と、壁体と端面側の鋼板を固定する棒状のねじ付き鋼製部材とは、交互に隣接して配置されることを特徴とする。   Further, in the above-described invention, the wooden earthquake-resistant wall according to the present invention includes a rod-shaped steel member that fixes the wall body and the steel plate on the inner side of the wall body, and a rod-shaped screw that fixes the wall body and the steel plate on the end surface side. The attached steel members are alternately arranged adjacent to each other.

また、本発明に係る他の木質耐震壁は、上述した発明において、ねじ付き鋼製部材は、CLTの繊維方向と直交する方向に挿入配置されることを特徴とする。   In addition, in the above-described invention, another wood earthquake resistant wall according to the present invention is characterized in that the threaded steel member is inserted and arranged in a direction orthogonal to the fiber direction of the CLT.

また、本発明に係る他の木質耐震壁は、上述した発明において、梁接合部は、壁体の上下左右の四隅に設置されることを特徴とする。   Another wooden earthquake-resistant wall according to the present invention is characterized in that, in the above-described invention, the beam joints are installed at the four corners of the upper, lower, left, and right sides of the wall body.

また、本発明に係る他の木質耐震壁は、上述した発明において、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材は、降伏が生じる破壊モードで破壊する部材であることを特徴とする。   Further, in the above-described invention, the wooden earthquake-resistant wall according to the present invention is a rod-shaped steel member that fixes the wall body and the steel plate inside the wall body, and is a member that breaks in a failure mode in which yielding occurs. Features.

本発明に係る木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鉄骨または鉄筋コンクリートからなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、梁接合部は、上梁または下梁に固定され、壁体に向けて突出する梁側の鋼板と、壁体の上端または下端から上梁または下梁に向けて突出するとともに壁体の内部に挿入配置される壁体内部側の鋼板と、これらの鋼板を接合するボルトと、壁体の上端面または下端面に配置され、壁体内部側の鋼板に接合する端面側の鋼板とを含んで構成され、壁体と壁体内部側の鋼板は、これらを貫通して配置される棒状の鋼製部材によって一体的に固定され、壁体と端面側の鋼板は、端面側の鋼板の外側から壁体の内部に挿入配置される外周にねじが形成された棒状のねじ付き鋼製部材によって一体的に固定されるので、剛性、靱性、耐力に優れた木質耐震壁を提供することができるという効果を奏する。   According to the wooden earthquake-resistant wall according to the present invention, the wooden earthquake-resistant wall is provided with a wall made of CLT, and the upper and lower ends of the wall are joined to an upper beam and a lower beam made of steel frame or reinforced concrete, respectively, via a beam joint. The wall, where the beam joint is fixed to the upper beam or the lower beam, protrudes toward the wall, and protrudes from the upper or lower end of the wall toward the upper or lower beam A steel plate on the inner side of the wall body that is inserted and arranged inside the wall body, a bolt that joins these steel plates, an upper end surface or a lower end surface of the wall body, and an end surface side that is joined to the steel plate on the inner side of the wall body The wall body and the steel plate on the inner side of the wall body are integrally fixed by a rod-shaped steel member that is arranged to penetrate through the wall body and the steel plate on the end surface side. Screws are formed on the outer periphery of the steel plate inserted from the outside to the inside of the wall. And because they are integrally fixed by a threaded steel rod-shaped member achieves rigidity, toughness, the effect that it is possible to provide an excellent woody shear walls in strength.

また、本発明に係る他の木質耐震壁によれば、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材と、壁体と端面側の鋼板を固定する棒状のねじ付き鋼製部材とは、交互に隣接して配置されるので、棒状の鋼製部材と棒状のねじ付き鋼製部材のそれぞれの拘束効果により壁体の割裂破壊を遅らせて強度、靱性を高めることができるという効果を奏する。   Further, according to another wooden earthquake-resistant wall according to the present invention, a rod-shaped steel member for fixing the wall body and the steel plate on the inner side of the wall body, and a rod-shaped threaded steel member for fixing the wall body and the steel plate on the end surface side. Since the members are arranged adjacent to each other alternately, the restraint effect of the rod-shaped steel member and the rod-shaped threaded steel member can delay the splitting fracture of the wall body and increase the strength and toughness. There is an effect.

また、本発明に係る他の木質耐震壁によれば、ねじ付き鋼製部材は、CLTの繊維方向と直交する方向に挿入配置されるので、繊維方向に挿入配置した場合と比較して最大耐力時の変形を大きくすることができ、棒状の鋼製部材(ドリフトピン)の耐力発揮との同時性を実現することが可能となる。このため、木質耐震壁の耐力をより高めることができるという効果を奏する。   Moreover, according to the other wooden earthquake-resistant wall according to the present invention, the threaded steel member is inserted and arranged in a direction orthogonal to the fiber direction of the CLT, so that the maximum proof stress is compared with the case where it is inserted and arranged in the fiber direction. The deformation at the time can be increased, and it is possible to realize the synchronism with the exertion of the strength of the rod-shaped steel member (drift pin). For this reason, there exists an effect that the proof stress of a wooden earthquake-resistant wall can be raised more.

また、本発明に係る他の木質耐震壁によれば、梁接合部は、壁体の上下左右の四隅に設置されるので、壁体が負担するせん断力、付加曲げモーメント偶力による軸方向力を処理可能な応力伝達機構を実現することができるという効果を奏する。   In addition, according to another wooden earthquake-resistant wall according to the present invention, the beam joints are installed at the four corners of the wall body in the top, bottom, left, and right directions, so that the shear force that the wall body bears and the axial force due to the additional bending moment couple There is an effect that it is possible to realize a stress transmission mechanism capable of processing the above.

また、本発明に係る他の木質耐震壁によれば、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材は、降伏が生じる破壊モードで破壊する部材であるので、靱性的な破壊が可能となり、木質耐震壁の靱性をより高めることができるという効果を奏する。   Further, according to another wooden earthquake-resistant wall according to the present invention, the rod-shaped steel member that fixes the wall body and the steel plate on the inner side of the wall body is a member that breaks in a failure mode in which yielding occurs, so that it is tough. Destruction is possible, and the toughness of the wooden seismic wall can be further enhanced.

図1は、本発明に係る木質耐震壁の実施の形態を示す正面図である。FIG. 1 is a front view showing an embodiment of a wooden earthquake resistant wall according to the present invention. 図2は、図1のA部分の拡大図である。FIG. 2 is an enlarged view of a portion A in FIG. 図3は、図1のB−B線に沿った断面図である。3 is a cross-sectional view taken along line BB in FIG. 図4は、本発明の効果の検証実験に使用した試験体を示す正面図である。FIG. 4 is a front view showing a test body used in a verification experiment of the effect of the present invention. 図5は、実験結果の履歴ループを示す図である。FIG. 5 is a diagram showing a history loop of experimental results. 図6は、接合部付近の最終破壊状態(実施例1の場合)を示す写真図である。FIG. 6 is a photograph showing the final fracture state in the vicinity of the joint (in the case of Example 1). 図7は、壁倍率計算結果を示す図である。FIG. 7 is a diagram illustrating the wall magnification calculation result.

以下に、本発明に係る木質耐震壁の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments of a wooden earthquake resistant wall according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1〜図3に示すように、本発明の実施の形態に係る木質耐震壁100は、CLTからなる壁体10を備え、この壁体10の上端と下端が上梁12と下梁14に梁接合部16を介してそれぞれ接合された矩形の壁である。CLTの繊維方向は鉛直面内の方向としてある。なお、本実施の形態では、壁体10の高さ300cm程度、幅200cm程度、壁厚20cm程度(7層7プライ)を想定しているが、本発明はこれに限るものではない。また、本実施の形態の上梁12および下梁14はH形鋼(鉄骨)で構成されているが、本発明の上梁12および下梁14はこれに限るものではなく、別の形態の鉄骨や鉄筋コンクリートなどで構成されていてもよい。   As shown in FIGS. 1 to 3, a wooden earthquake resistant wall 100 according to an embodiment of the present invention includes a wall body 10 made of CLT, and an upper end and a lower end of the wall body 10 are formed on an upper beam 12 and a lower beam 14. These are rectangular walls that are joined together via beam joints 16. The fiber direction of CLT is the direction in the vertical plane. In the present embodiment, it is assumed that the wall 10 has a height of about 300 cm, a width of about 200 cm, and a wall thickness of about 20 cm (7 layers 7 plies), but the present invention is not limited to this. Moreover, although the upper beam 12 and the lower beam 14 of this Embodiment are comprised by the H-section steel (steel frame), the upper beam 12 and the lower beam 14 of this invention are not restricted to this, Another form You may be comprised with a steel frame, reinforced concrete, etc.

梁接合部16は、壁体10の上下左右の四隅に配置されている。上下左右の梁接合部16は同じ構造であるため、以下においては、壁体10の左上側(図1のA部分)の梁接合部16を例にとり説明する。   The beam joints 16 are disposed at the four corners of the wall body 10 in the up, down, left, and right directions. Since the upper, lower, left and right beam joints 16 have the same structure, the beam joint 16 on the upper left side (portion A in FIG. 1) of the wall 10 will be described as an example.

図2および図3に示すように、梁接合部16は、上梁12に固定され、壁体10に向けて突出するプレート18(梁側の鋼板)と、壁体10の上端から上梁12に向けて突出するとともに壁体10の内部に挿入配置されるプレート20(壁体内部側の鋼板)とを備える。壁体内部側のプレート20は壁厚方向の中央に配置される。プレート18、20は上下に突き合わされており、その前後面にはプレート18、20を跨ぐ形でプレート22が配置される。各プレート18、20、22は貫通孔に通された複数の高力ボルト24によって接合されている。壁体10の外側においてプレート20の左右縁にプレート26が溶接しており、上梁12側のプレート18の左右縁にもプレート28が溶接している。これらプレート26、28同士もプレート30と複数の高力ボルト32によって接合されている。一方、壁体10の上端面にはプレート34(端面側の鋼板)が当接配置されており、このプレート34と壁体内部側のプレート20は溶接されている。   As shown in FIGS. 2 and 3, the beam joint portion 16 is fixed to the upper beam 12 and protrudes toward the wall body 10, and the upper beam 12 from the upper end of the wall body 10. And a plate 20 (a steel plate on the inner side of the wall body) that is inserted and arranged inside the wall body 10. The plate 20 on the inner side of the wall body is disposed at the center in the wall thickness direction. The plates 18 and 20 are abutted up and down, and the plate 22 is disposed on the front and rear surfaces thereof so as to straddle the plates 18 and 20. Each plate 18, 20, 22 is joined by a plurality of high-strength bolts 24 that are passed through the through holes. The plate 26 is welded to the left and right edges of the plate 20 outside the wall body 10, and the plate 28 is also welded to the left and right edges of the plate 18 on the upper beam 12 side. These plates 26 and 28 are also joined to the plate 30 by a plurality of high strength bolts 32. On the other hand, a plate 34 (a steel plate on the end surface side) is disposed in contact with the upper end surface of the wall body 10, and the plate 34 and the plate 20 on the inner side of the wall body are welded.

壁体10と壁体内部側のプレート20には、それぞれ対応する位置に水平方向の貫通孔が格子点状に複数設けられており、各貫通孔には連結用のドリフトピン36(棒状の鋼製部材)が通されている。このドリフトピン36によって壁体10と壁体内部側のプレート20は一体的に固定されている。ドリフトピン36は、それ自体に降伏が生じる降伏モード(例えば降伏モードIII、IV)で破壊する仕様となっている。このため、靱性的な破壊が可能となり、木質耐震壁100の靱性をより高めることができる。なお、ドリフトピン36の代わりにボルトなどの円形鋼棒型の接合具を用いてもよいが、接合具に降伏が生じる降伏モードの接合具を用いることが好ましい。また、割裂に対する補強のためにビス38等をさらに追加してもよい。なお、図の例では、ドリフトピン36が正面視で上下方向に2列、左右方向に3列、それぞれ若干の間隔をあけて配置されているが、本発明はこれに限るものではない。   The wall body 10 and the plate 20 on the inner side of the wall body are provided with a plurality of horizontal through holes at corresponding positions in the form of lattice dots, and each through hole has a drift pin 36 (rod-shaped steel for connection). Manufactured member) is passed. The wall body 10 and the plate 20 inside the wall body are integrally fixed by the drift pin 36. The drift pin 36 is designed to break in a breakdown mode (for example, breakdown modes III and IV) in which breakdown occurs in itself. For this reason, tough destruction is possible and the toughness of the wooden earthquake-resistant wall 100 can be further increased. Note that a circular steel rod type connector such as a bolt may be used in place of the drift pin 36, but it is preferable to use a yield mode connector that yields in the connector. Further, a screw 38 or the like may be further added to reinforce the split. In the example shown in the drawing, the drift pins 36 are arranged in the vertical direction in two rows in the vertical direction and in the horizontal direction in three rows, with a slight gap between them, but the present invention is not limited to this.

また、端面側のプレート34には貫通孔が複数設けられており、各貫通孔から壁体10の内部に向けてLSB40(棒状のねじ付き鋼製部材)が挿入配置されている。このLSB40は外周に雄ねじが加工された鋼棒からなる。LSB40の上端部には図示しない開口が形成されており、この開口に連通する中空孔の内周面に雌ねじが加工されている。LSB40の開口が壁体10の端面側に露出するように、壁体10にねじ込んで固定しておき、端面側のプレート34の貫通孔からLSB40の雌ねじにボルト42を螺合することによって、壁体10と端面側のプレート34は一体的に固定される。このLSB40は、CLTの繊維方向Xと直交する方向(繊維直交層)に挿入することが好ましく、本実施の形態でもそのような配置となっている。これにより、LSB40を繊維方向Xに挿入配置した場合と比較して最大耐力時の変形を大きくすることができ、棒状の鋼製部材(ドリフトピン)の耐力発揮との同時性を実現することが可能となる。このため、木質耐震壁100の耐力をより高めることができる。   A plurality of through holes are provided in the plate 34 on the end face side, and LSB 40 (a rod-shaped steel member with a screw) is inserted and arranged from each through hole toward the inside of the wall body 10. The LSB 40 is composed of a steel rod having a male thread on the outer periphery. An opening (not shown) is formed at the upper end of the LSB 40, and a female screw is machined on the inner peripheral surface of the hollow hole communicating with the opening. The LSB 40 is screwed and fixed to the wall body 10 so that the opening of the LSB 40 is exposed to the end face side of the wall body 10, and the bolt 42 is screwed into the female thread of the LSB 40 from the through hole of the plate 34 on the end face side. The body 10 and the end face side plate 34 are fixed integrally. The LSB 40 is preferably inserted in a direction (fiber orthogonal layer) perpendicular to the fiber direction X of the CLT, and is also arranged in this embodiment. Thereby, compared with the case where the LSB 40 is inserted and arranged in the fiber direction X, the deformation at the maximum proof stress can be increased, and the simultaneity of the proof stress of the rod-shaped steel member (drift pin) can be realized. It becomes possible. For this reason, the proof stress of the wooden earthquake-resistant wall 100 can be raised more.

LSB40は、ドリフトピン36同士の間に配置される。つまり、LSB40とドリフトピン36は交互に隣接して配置される。このようにすることで、LSB40とドリフトピン36のそれぞれの拘束効果により壁体10の割裂破壊を遅らせて強度、靱性を高めることができる。なお、図の例では、LSB40が平面視で前後方向に2列、左右方向に4列、それぞれ若干の間隔をあけて配置されているが、本発明はこれに限るものではない。   The LSB 40 is disposed between the drift pins 36. That is, the LSB 40 and the drift pin 36 are alternately arranged adjacent to each other. By doing in this way, the fracture | rupture fracture of the wall 10 can be delayed by each restraining effect of LSB40 and the drift pin 36, and intensity | strength and toughness can be improved. In the example shown in the drawing, the LSBs 40 are arranged in the front-rear direction and in the left-right direction with four rows in the plan view, with a slight gap between them, but the present invention is not limited to this.

なお、本実施の形態では、壁体10に対する壁体内部側のプレート20の埋込長350mm、幅500mm、厚さ12mm程度を想定し、端面側のプレート34の壁厚方向の長さ210mm、幅550mm、厚さ32mm程度を想定している。また、ドリフトピン36の長さ210mm、径φ32mm程度を想定し、壁体10に対するLSB40の埋込長L=780mm程度、LSB40の径φ24mm程度を想定している。さらに、LSB40の埋込長Lを壁体内部側のプレート20の埋込長の2倍程度として想定し、隣り合うLSB40とドリフトピン36の間隔として50mm程度を想定しているが、本発明はこれらの寸法に限るものではない。上記の各プレート20、34等の寸法および埋込長、LSB40、ドリフトピン36の配置数、配置間隔、位置、埋込長等については、要求される耐力性能に応じて適宜選択可能である。   In the present embodiment, it is assumed that the embedding length 350 mm, the width 500 mm, and the thickness 12 mm of the plate 20 on the inner side of the wall 10 with respect to the wall 10, the length 210 mm in the wall thickness direction of the plate 34 on the end surface side, A width of about 550 mm and a thickness of about 32 mm are assumed. Further, assuming that the drift pin 36 has a length of 210 mm and a diameter of about 32 mm, the LSB 40 is embedded in the wall body 10 with a length L of about 780 mm, and the LSB 40 has a diameter of about 24 mm. Furthermore, the embedded length L of the LSB 40 is assumed to be about twice the embedded length of the plate 20 on the inner side of the wall, and the interval between the adjacent LSB 40 and the drift pin 36 is assumed to be about 50 mm. It is not limited to these dimensions. The dimensions and the embedding length of each of the plates 20 and 34, the number of LSBs 40, the number of arrangement of the drift pins 36, the arrangement interval, the position, the embedding length, and the like can be appropriately selected according to the required strength performance.

このように、本実施の形態では、梁接合部16でLSB40とドリフトピン36を独立して直列的に併用している。このため、本実施の形態によれば、通常用いられるLSBとドリフトピンとの組み合わせでありながら、その相乗効果により剛性、靱性、耐力のいずれにも優れるCLT耐震壁(木質耐震壁)が実現可能となる。例えば上記の実施の形態の仕様では、壁倍率が120倍程度は見込めるので、中高層木質構造の耐震要素として十分に期待できる。   Thus, in the present embodiment, the LSB 40 and the drift pin 36 are independently used in series at the beam joint 16. For this reason, according to the present embodiment, it is possible to realize a CLT earthquake-resistant wall (woody earthquake-resistant wall) that is excellent in all of rigidity, toughness, and proof stress due to its synergistic effect, although it is a combination of a commonly used LSB and drift pin. Become. For example, in the specification of the above embodiment, the wall magnification can be expected to be about 120 times, so that it can be sufficiently expected as a seismic element of a middle-to-high-rise wooden structure.

また、梁接合部16を、壁体10の上下左右の四隅に設置することで、せん断力、および付加曲げモーメント偶力による軸方向力を処理することができる。この応力伝達機構は木質耐震壁100の厚さや幅によらず同じであり、プロポーションによらず常にこのディテールを用いた汎用的な設計、納まりを実現することが可能となる。   Further, by installing the beam joints 16 at the four corners on the top, bottom, left and right of the wall body 10, it is possible to process the axial force due to the shear force and the additional bending moment couple. This stress transmission mechanism is the same regardless of the thickness and width of the wooden earthquake-resistant wall 100, and it is possible to always realize general-purpose design and accommodation using this detail regardless of the proportion.

一般に、木質壁を架構内に耐震要素として組み込む場合、壁体自体に先行してその接合部の破壊が進行する。このため、木質中高層建物の実現に際しては、壁体の性能を最大限に引き出すために梁と壁体の接合部における強度と靱性の両方をいかに確保するかがポイントとなる。その接合要素として一般的なものにLSB、GIR(グルードインロッド)およびドリフトピン等がある。このうちLSB、GIRはその機構上設置時のガタがないため初期剛性が高く耐力も期待できるが、破壊が木材の割裂等で決まるため脆性的になりやすい(GIRの径を細くすることで靱性的な鋼材破断モードとすることもできるが、必然的に確保できる耐力に限界が生じる)。一方、ドリフトピンはそれ自体が降伏する破壊モードとなるように設計すれば靱性的な破壊が可能となるが、ガタ等の影響で初期剛性が低く、また曲げ系の破壊となるため耐力も不足するケースが多い。これらの問題に対して、本実施の形態では、CLT耐震壁(木質耐震壁100)に対してLSB40とドリフトピン36を効果的に配置することで以下のように解決し、剛性、靱性、耐力いずれにも優れる機構を実現している。   In general, when a wooden wall is incorporated as a seismic element in a frame, destruction of the joint proceeds prior to the wall itself. For this reason, in realizing a wooden medium- and high-rise building, in order to maximize the performance of the wall, the key point is how to ensure both strength and toughness at the joint between the beam and the wall. Common joint elements include LSB, GIR (glued-in rod), and drift pins. Of these, LSB and GIR have high initial rigidity and high yield strength because there is no backlash when installed due to the mechanism, but they tend to be brittle because fracture is determined by splitting wood, etc. (toughness can be achieved by reducing the diameter of GIR) Although it is possible to set the steel material breakage mode as usual, there is a limit to the yield strength that can be necessarily secured). On the other hand, if the drift pin is designed to be in a failure mode that yields itself, tough fracture is possible, but the initial stiffness is low due to the effects of looseness, etc., and the bending system breaks, so the yield strength is insufficient. There are many cases to do. In the present embodiment, the LSB 40 and the drift pin 36 are effectively disposed on the CLT earthquake resistant wall (the wooden earthquake resistant wall 100) to solve these problems as follows, and the rigidity, toughness, and proof strength are solved. An excellent mechanism is realized in both cases.

まず、壁体10にラミナが直交するCLTを用いることにより、割裂を生じにくい機構としている。また、軸力をLSB40で、せん断力をドリフトピン36で処理すると考えれば、例えばドリフトピン36をLSB40の位置から独立させて壁体10の中央部に配置することも可能であるが、本実施の形態では両者を交互に隣接して配置しているため、それぞれの拘束効果により壁体10の割裂破壊を遅らせて強度、靱性を高めることが可能となっている。   First, by using a CLT in which the lamina is orthogonal to the wall body 10, a mechanism that hardly causes splitting is provided. If it is considered that the axial force is processed by the LSB 40 and the shearing force is processed by the drift pin 36, for example, the drift pin 36 can be arranged at the center of the wall body 10 independently of the position of the LSB 40. In the embodiment, since both are alternately arranged adjacent to each other, it is possible to increase the strength and toughness by delaying the split fracture of the wall body 10 by the respective restraining effects.

抵抗機構としては、まずガタのないLSB40が初期発生応力に対して抵抗することで高い初期剛性を発揮する。その後、壁体10の負担せん断力の増加に伴ってLSB40の負担応力も増すが、上述したようにLSB40はCLTの繊維直交層に挿入しているため、繊維方向Xに挿入する場合と比較して最大耐力時の変形が大きく(例えば繊維方向2〜3mmに対して繊維直交方向6〜7mm)、変形が進むにつれて初期剛性の低いドリフトピン36もLSB40と同時に徐々に抵抗力を発揮していく。   As the resistance mechanism, first, the LSB 40 without backlash exhibits high initial rigidity by resisting the initial stress. After that, the stress stress of the LSB 40 increases as the shear stress of the wall 10 increases. However, since the LSB 40 is inserted in the CLT fiber orthogonal layer as described above, it is compared with the case where it is inserted in the fiber direction X. Therefore, the deformation at the maximum proof stress is large (for example, 6 to 7 mm in the fiber orthogonal direction with respect to the fiber direction of 2 to 3 mm), and the drift pin 36 having low initial rigidity gradually exerts the resistance simultaneously with the LSB 40 as the deformation proceeds. .

最終的な破壊形式は、梁接合部16付近の木破となるが、上記の通り初期段階ではLSB40が負担していた応力を徐々にドリフトピン36にも移行させるため、大変形に至るまでの各変形領域を通して耐力の落ち込み等のないスムーズな復元力特性の実現が可能となる。   The final form of destruction is wood breakage in the vicinity of the beam joint 16. However, as described above, the stress borne by the LSB 40 is gradually transferred to the drift pin 36 as described above. It is possible to realize a smooth restoring force characteristic without a drop in yield strength through each deformation region.

したがって、本実施の形態によれば、以上に示したCLT、LSB、ドリフトピンの相乗効果により、最終的に変形角1/30付近まで耐力低下を生じない高い靱性を有し、さらに壁倍率100倍を超える高い耐力も併せ持つ機構の実現が可能となる。   Therefore, according to the present embodiment, due to the synergistic effect of CLT, LSB, and drift pin described above, it has high toughness that does not cause a decrease in yield strength until the deformation angle is near 1/30. It is possible to realize a mechanism that also has a high yield strength exceeding double.

(本発明の効果の検証)
次に、本発明の効果を検証するために行った実験と、この実験による検証結果について説明する。
(Verification of the effect of the present invention)
Next, an experiment conducted for verifying the effect of the present invention and a verification result by this experiment will be described.

本実験は、実寸大CLT耐震壁に対する水平加力実験によってその性能確認を行ったものである。図4に、本実験に用いた試験体の形状および寸法を示す。CLT壁厚は210mm(7層7プライ)とし、壁体の上下左右の4箇所に梁接合部を配置した。また、壁体内部に挿入する鋼板の厚さは12mmとした。ドリフトピンはφ32mmのものを1箇所あたり6本配置した。LSBはφ25mmのものを1箇所あたり8本配置した。LSB埋込長Lは、実施例1では600mmとし、実施例2では500mmとした。   In this experiment, the performance was confirmed by a horizontal force test on the full-scale CLT shear wall. FIG. 4 shows the shape and dimensions of the specimen used in this experiment. The CLT wall thickness was 210 mm (7 layers 7 plies), and beam joints were arranged at four locations on the top, bottom, left, and right of the wall. Moreover, the thickness of the steel plate inserted inside the wall was 12 mm. Six drift pins with a diameter of 32 mm were arranged per place. Eight LSBs with a diameter of 25 mm were arranged per location. The LSB embedding length L was 600 mm in Example 1, and 500 mm in Example 2.

実験結果の履歴ループを図5に、梁接合部付近の最終破壊状態(実施例1の場合)を図6に、また壁倍率計算結果を図7に示す。これらの図に示すように、最終破壊形式は木破となっているにも関わらず、変形角1/30付近まで耐力低下を生じず、かつ壁倍率120を超える高性能な機構が実現されていることが分かる。   FIG. 5 shows the history loop of the experimental results, FIG. 6 shows the final fracture state in the vicinity of the beam joint (in the case of Example 1), and FIG. 7 shows the wall magnification calculation results. As shown in these figures, despite the fact that the final failure type is wood destruction, a high-performance mechanism that does not cause a decrease in yield strength to near the deformation angle of 1/30 and exceeds the wall magnification 120 is realized. I understand that.

以上説明したように、本発明に係る木質耐震壁によれば、CLTからなる壁体を備え、この壁体の上端と下端が鉄骨または鉄筋コンクリートからなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、梁接合部は、上梁または下梁に固定され、壁体に向けて突出する梁側の鋼板と、壁体の上端または下端から上梁または下梁に向けて突出するとともに壁体の内部に挿入配置される壁体内部側の鋼板と、これらの鋼板を接合するボルトと、壁体の上端面または下端面に配置され、壁体内部側の鋼板に接合する端面側の鋼板とを含んで構成され、壁体と壁体内部側の鋼板は、これらを貫通して配置される棒状の鋼製部材によって一体的に固定され、壁体と端面側の鋼板は、端面側の鋼板の外側から壁体の内部に挿入配置される外周にねじが形成された棒状のねじ付き鋼製部材によって一体的に固定されるので、剛性、靱性、耐力に優れた木質耐震壁を提供することができる。   As described above, according to the wooden earthquake resistant wall according to the present invention, the wall body made of CLT is provided, and the upper end and the lower end of the wall body are connected to the upper beam and the lower beam made of steel frame or reinforced concrete via the beam joint portion. Each of the wooden seismic walls joined together, the beam joint is fixed to the upper beam or the lower beam and protrudes toward the wall, and the upper beam or the lower beam from the upper or lower end of the wall A steel plate on the inner side of the wall body that protrudes toward the wall and is inserted into the inside of the wall body, a bolt that joins these steel plates, and a steel plate on the inner side of the wall body that is disposed on the upper end surface or the lower end surface of the wall body The wall body and the steel plate on the inner side of the wall body are integrally fixed by a rod-shaped steel member disposed so as to penetrate the wall body and the end surface side. The steel plate is inserted and arranged inside the wall from the outside of the steel plate on the end face side. Since is integrally fixed by a threaded steel member of the screw is formed rod-like outer periphery, it is possible to provide rigidity, toughness, excellent wood shear walls in strength.

また、本発明に係る他の木質耐震壁によれば、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材と、壁体と端面側の鋼板を固定する棒状のねじ付き鋼製部材とは、交互に隣接して配置されるので、棒状の鋼製部材と棒状のねじ付き鋼製部材のそれぞれの拘束効果により壁体の割裂破壊を遅らせて強度、靱性を高めることができる。   Further, according to another wooden earthquake-resistant wall according to the present invention, a rod-shaped steel member for fixing the wall body and the steel plate on the inner side of the wall body, and a rod-shaped threaded steel member for fixing the wall body and the steel plate on the end surface side. Since the members are alternately arranged adjacent to each other, it is possible to increase the strength and toughness by delaying the split fracture of the wall body by the restraining effects of the rod-shaped steel member and the rod-shaped threaded steel member.

また、本発明に係る他の木質耐震壁によれば、ねじ付き鋼製部材は、CLTの繊維方向と直交する方向に挿入配置されるので、繊維方向に挿入配置した場合と比較して最大耐力時の変形を大きくすることができ、棒状の鋼製部材(ドリフトピン)の耐力発揮との同時性を実現することが可能となる。このため、木質耐震壁の耐力をより高めることができる。   Moreover, according to the other wooden earthquake-resistant wall according to the present invention, the threaded steel member is inserted and arranged in a direction orthogonal to the fiber direction of the CLT, so that the maximum proof stress is compared with the case where it is inserted and arranged in the fiber direction. The deformation at the time can be increased, and it is possible to realize the synchronism with the exertion of the strength of the rod-shaped steel member (drift pin). For this reason, the proof stress of a wooden earthquake-resistant wall can be raised more.

また、本発明に係る他の木質耐震壁によれば、梁接合部は、壁体の上下左右の四隅に設置されるので、壁体が負担するせん断力、付加曲げモーメント偶力による軸方向力を処理可能な応力伝達機構を実現することができる。   In addition, according to another wooden earthquake-resistant wall according to the present invention, the beam joints are installed at the four corners of the wall body in the top, bottom, left, and right directions, so that the shear force that the wall body bears and the axial force due to the additional bending moment couple Can be realized.

また、本発明に係る他の木質耐震壁によれば、壁体と壁体内部側の鋼板を固定する棒状の鋼製部材は、降伏が生じる破壊モードで破壊する部材であるので、靱性的な破壊が可能となり、木質耐震壁の靱性をより高めることができる。   Further, according to another wooden earthquake-resistant wall according to the present invention, the rod-shaped steel member that fixes the wall body and the steel plate on the inner side of the wall body is a member that breaks in a failure mode in which yielding occurs, so that it is tough. Breaking is possible, and the toughness of the wooden seismic wall can be further increased.

以上のように、本発明に係る木質耐震壁は、CLTを壁体に用いた木質耐震壁に有用であり、特に、剛性、靱性、耐力に優れた木質耐震壁を提供するのに適している。   As described above, the wooden earthquake-resistant wall according to the present invention is useful for a wooden earthquake-resistant wall using CLT as a wall body, and is particularly suitable for providing a wooden earthquake-resistant wall having excellent rigidity, toughness, and proof stress. .

10 壁体
12 上梁
14 下梁
16 梁接合部
18,20,22,26,28,30,34 プレート(鋼板)
24,32 高力ボルト
36 ドリフトピン(棒状の鋼製部材)
38 ビス
40 LSB(棒状のねじ付き鋼製部材)
42 ボルト
100 木質耐震壁
X 繊維方向
10 Wall body 12 Upper beam 14 Lower beam 16 Beam joint 18, 20, 22, 26, 28, 30, 34 Plate (steel plate)
24, 32 High-strength bolt 36 Drift pin (rod-shaped steel member)
38 screw 40 LSB (rod-shaped steel member with thread)
42 Bolt 100 Wooden earthquake resistant wall X Fiber direction

Claims (5)

CLTからなる壁体を備え、この壁体の上端と下端が鉄骨または鉄筋コンクリートからなる上梁と下梁に梁接合部を介してそれぞれ接合された木質耐震壁であって、
梁接合部は、上梁または下梁に固定され、壁体に向けて突出する梁側の鋼板と、壁体の上端または下端から上梁または下梁に向けて突出するとともに壁体の内部に挿入配置される壁体内部側の鋼板と、これらの鋼板を接合するボルトと、壁体の上端面または下端面に配置され、壁体内部側の鋼板に接合する端面側の鋼板とを含んで構成され、
壁体と壁体内部側の鋼板は、これらを貫通して配置される棒状の鋼製部材によって一体的に固定され、
壁体と端面側の鋼板は、端面側の鋼板の外側から壁体の内部に挿入配置される外周にねじが形成された棒状のねじ付き鋼製部材によって一体的に固定されることを特徴とする木質耐震壁。
A wooden earthquake-resistant wall comprising a wall made of CLT, the upper and lower ends of which are joined to an upper beam and a lower beam made of steel or reinforced concrete, respectively, via a beam joint,
The beam joint is fixed to the upper beam or the lower beam, protrudes toward the wall, and projects from the upper or lower end of the wall toward the upper or lower beam and into the wall. Including a steel plate on the inner side of the wall body to be inserted, a bolt for joining these steel plates, and a steel plate on the end surface side that is disposed on the upper or lower end surface of the wall body and is joined to the steel plate on the inner side of the wall Configured,
The wall and the steel plate on the inner side of the wall are integrally fixed by a rod-shaped steel member disposed through the wall,
The wall body and the steel plate on the end surface side are integrally fixed by a rod-shaped threaded steel member in which a screw is formed on the outer periphery inserted into the wall body from the outside of the steel plate on the end surface side. Wooden earthquake resistant wall.
壁体と壁体内部側の鋼板を固定する棒状の鋼製部材と、壁体と端面側の鋼板を固定する棒状のねじ付き鋼製部材とは、交互に隣接して配置されることを特徴とする請求項1に記載の木質耐震壁。   The rod-shaped steel member for fixing the wall body and the steel plate on the inner side of the wall body and the rod-shaped threaded steel member for fixing the wall member and the steel plate on the end surface side are alternately arranged adjacent to each other. The wooden earthquake-resistant wall according to claim 1. ねじ付き鋼製部材は、CLTの繊維方向と直交する方向に挿入配置されることを特徴とする請求項1または2に記載の木質耐震壁。   3. The wooden earthquake resistant wall according to claim 1, wherein the threaded steel member is inserted and arranged in a direction orthogonal to the fiber direction of the CLT. 梁接合部は、壁体の上下左右の四隅に設置されることを特徴とする請求項1〜3のいずれか一つに記載の木質耐震壁。   The wooden earthquake-resistant wall according to any one of claims 1 to 3, wherein the beam joint portions are installed at four corners on the upper, lower, left, and right sides of the wall body. 壁体と壁体内部側の鋼板を固定する棒状の鋼製部材は、降伏が生じる破壊モードで破壊する部材であることを特徴とする請求項1〜4のいずれか一つに記載の木質耐震壁。
The wooden seismic resistance according to any one of claims 1 to 4, wherein the rod-shaped steel member that fixes the wall body and the steel plate on the inner side of the wall body is a member that breaks in a failure mode in which yielding occurs. wall.
JP2017091017A 2017-05-01 2017-05-01 Wood shear wall Active JP6869096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091017A JP6869096B2 (en) 2017-05-01 2017-05-01 Wood shear wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091017A JP6869096B2 (en) 2017-05-01 2017-05-01 Wood shear wall

Publications (2)

Publication Number Publication Date
JP2018188845A true JP2018188845A (en) 2018-11-29
JP6869096B2 JP6869096B2 (en) 2021-05-12

Family

ID=64479780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091017A Active JP6869096B2 (en) 2017-05-01 2017-05-01 Wood shear wall

Country Status (1)

Country Link
JP (1) JP6869096B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165231A (en) * 2019-03-29 2020-10-08 旭化成ホームズ株式会社 Vibration control wall
JP7281725B1 (en) * 2023-03-25 2023-05-26 倉沢建設株式会社 bearing walls and buildings
JP7499203B2 (en) 2021-03-18 2024-06-13 大成建設株式会社 Method for constructing wooden earthquake-resistant walls and wooden earthquake-resistant walls
JP7499042B2 (en) 2020-03-10 2024-06-13 清水建設株式会社 Strength evaluation method for wooden earthquake-resistant walls

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232711A (en) * 2004-02-17 2005-09-02 Mitsui Home Co Ltd Woody shaft joining structure
JP2009174271A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Connection fitting for wooden pillar and beam
JP2015218462A (en) * 2014-05-15 2015-12-07 株式会社竹中工務店 Wood earthquake proof wall structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232711A (en) * 2004-02-17 2005-09-02 Mitsui Home Co Ltd Woody shaft joining structure
JP2009174271A (en) * 2008-01-28 2009-08-06 Panasonic Electric Works Co Ltd Connection fitting for wooden pillar and beam
JP2015218462A (en) * 2014-05-15 2015-12-07 株式会社竹中工務店 Wood earthquake proof wall structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165231A (en) * 2019-03-29 2020-10-08 旭化成ホームズ株式会社 Vibration control wall
JP7254590B2 (en) 2019-03-29 2023-04-10 旭化成ホームズ株式会社 damping wall
JP7499042B2 (en) 2020-03-10 2024-06-13 清水建設株式会社 Strength evaluation method for wooden earthquake-resistant walls
JP7499203B2 (en) 2021-03-18 2024-06-13 大成建設株式会社 Method for constructing wooden earthquake-resistant walls and wooden earthquake-resistant walls
JP7281725B1 (en) * 2023-03-25 2023-05-26 倉沢建設株式会社 bearing walls and buildings

Also Published As

Publication number Publication date
JP6869096B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP2018188845A (en) Woody earthquake-proof wall
JP6503318B2 (en) Connected structure
JP7079587B2 (en) Wood shear wall
JP6638905B2 (en) Beam-column connection structure and beam-column connection method
JP7059788B2 (en) Wood structure
TWI789366B (en) Joining methods for joining metal materials and plates
JP2020002669A (en) Joint structure of woody shaft member
JP6713779B2 (en) Beam-column joint structure and beam-column joining method
JP2018204397A (en) Wood-steel hybrid structure and method for constructing the same
JP2009155870A (en) Reinforcing structure
JP2019027022A (en) Reinforcing structure of horizontal member
JP2016216899A (en) Earthquake-proof wall structure
JP5492163B2 (en) Reinforced concrete wall column
JP7233153B2 (en) bearing wall
JP6071752B2 (en) Structural member
JP5417489B2 (en) Joint structure of wooden building components
JP7104599B2 (en) Reinforcement structure of the object to be reinforced
JP6121772B2 (en) Hybrid beam
JP6568408B2 (en) Corner hardware for wooden construction
JP2020197039A (en) Connection structure
JP7308339B2 (en) bearing wall
JP2006225877A (en) Reinforcement structure of masonry construction structure
JP6768358B2 (en) Slab structure
KR102394589B1 (en) Truss ball space frame seismic reinforcement device
KR20190067786A (en) Reinforcement of reinforcing steel and wooden building members

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6869096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150