JP2018184647A - Heat treatment apparatus for metal powder compact - Google Patents

Heat treatment apparatus for metal powder compact Download PDF

Info

Publication number
JP2018184647A
JP2018184647A JP2017087726A JP2017087726A JP2018184647A JP 2018184647 A JP2018184647 A JP 2018184647A JP 2017087726 A JP2017087726 A JP 2017087726A JP 2017087726 A JP2017087726 A JP 2017087726A JP 2018184647 A JP2018184647 A JP 2018184647A
Authority
JP
Japan
Prior art keywords
metal powder
heat treatment
heat
temperature
powder molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017087726A
Other languages
Japanese (ja)
Inventor
照幸 阪田
Teruyuki Sakata
照幸 阪田
川井 清
Kiyoshi Kawai
清 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOWA DENNETSU KEIKI KK
Kowa Thermo Technologies and Products Co Ltd
Original Assignee
KOWA DENNETSU KEIKI KK
Kowa Thermo Technologies and Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOWA DENNETSU KEIKI KK, Kowa Thermo Technologies and Products Co Ltd filed Critical KOWA DENNETSU KEIKI KK
Priority to JP2017087726A priority Critical patent/JP2018184647A/en
Publication of JP2018184647A publication Critical patent/JP2018184647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment apparatus for a metal powder compact capable of facilitating temperature control of a heating oven and heat-treating a metal powder compact efficiently.SOLUTION: A heat treatment apparatus 1 for a metal powder compact 4 is for obtaining a given sintered body 6 by heat-treating the metal powder compact 4 containing metal powder 2 and an organic binder 3 in the state arranged in a heating oven 10. The heating oven 10 comprises a heat treatment part 11 that is formed of a high-thermostability conductive material and for housing the metal powder compact 4 and an induction heating coil 12 wound in a circumferential position of the heat treatment part 11. By passing a high-frequency current through the induction heating coil 12 to cause the heat treatment part 11 to generate heat, the metal powder compact 4 is heated to a prescribed temperature for heat treatment.SELECTED DRAWING: Figure 1

Description

本発明は、金属粉末成形体の熱処理装置の技術に関し、より詳細には、金属粉末及び有機バインダを含む金属粉末成形体を加熱炉内に配置した状態で熱処理して所定の焼結体を得る金属粉末成形体の熱処理装置に関する。   The present invention relates to a technique for a heat treatment apparatus for a metal powder molded body, and more specifically, a metal powder molded body including a metal powder and an organic binder is heat-treated in a state where it is placed in a heating furnace to obtain a predetermined sintered body. The present invention relates to a heat treatment apparatus for metal powder compacts.

従来、自動車等に用いられる焼結機械部品等の焼結体は、粉末冶金技術を用いて金属粉末を圧縮した成形体を焼結させて製造されている。焼結体の製造方法としては、金型により圧粉体を圧縮成形する方法が公知であるが、かかる方法では複雑な形状の成形には不向きであったため、かかる問題を解決するために金属粉末射出成形(MIM:Metal Injection Molding)法を用いた製造方法が提案されている。   2. Description of the Related Art Conventionally, sintered bodies such as sintered machine parts used in automobiles and the like are manufactured by sintering a compact obtained by compressing metal powder using powder metallurgy technology. As a method for manufacturing a sintered body, a method of compressing a green compact with a mold is known. However, since this method is not suitable for forming a complicated shape, a metal powder is used to solve such a problem. A manufacturing method using an injection molding (MIM: Metal Injection Molding) method has been proposed.

MIM法を用いた焼結体の製造方法としては、多用な形態が提案されているが主要な工程は共通しており、まず、金属粉末に樹脂やワックス等の有機バインダを混合・混練し、この混練物を射出成形して金属粉末及び有機バインダを含む金属粉末成形体を得る。そして、かかる金属粉末成形体を熱処理装置に配置し、脱バインダ(脱脂処理)の後に焼成(焼成処理)に供することで目的とする焼結体を得る。   As a method for producing a sintered body using the MIM method, various forms have been proposed, but the main steps are common. First, an organic binder such as resin or wax is mixed and kneaded with metal powder, This kneaded product is injection-molded to obtain a metal powder molded body containing a metal powder and an organic binder. And this metal powder molded object is arrange | positioned to the heat processing apparatus, and it uses for baking (baking process) after a binder (degreasing process), and obtains the target sintered compact.

通常、脱脂処理や焼成処理には、工業的にはメッシュベルト等の搬送コンベアに金属粉末成形体を載置した状態で、搬送コンベアが長手方向に敷設された加熱炉内を搬送させながら脱脂及び焼成するコンベア式の大型の熱処理装置が用いられている。この種の大型の熱処理装置では、直火式バーナーを用いた直接加熱により金属粉末成形体を熱処理するため、同一種の大量生産に適している反面、稼動準備や加熱炉内への搬入出に時間を要し、例えば、金属粉末成形体の成形不良に基づくクラック発生品を早期に検出することができなかった。   Usually, in the degreasing process and the baking process, in a state where the metal powder molded body is placed on a conveyor such as a mesh belt, the degreasing process is performed while the conveyor is transported in a heating furnace laid in the longitudinal direction. A conveyor-type large heat treatment apparatus for firing is used. In this type of large-scale heat treatment equipment, metal powder compacts are heat-treated by direct heating using a direct-fired burner, which is suitable for mass production of the same type, but for operation preparation and loading / unloading into the heating furnace. Time is required, and for example, a cracked product based on a molding defect of a metal powder compact cannot be detected at an early stage.

他方、かかる観点から、例えは、特許文献1又は特許文献2に開示されるようなバッチ式の小型の熱処理装置も提案されている。この種の小型の熱処理装置は、載置台に金属粉末成形体を載置した状態で加熱炉内に配置して脱脂及び焼成するように構成されているため、上述した大型の熱処理装置とは異なり、稼動準備や加熱炉内への搬入出が簡易であり、クラック発生品の早期の検出が可能となるので焼結体の検品や熱処理試験の装置としても採用することができる。   On the other hand, from such a viewpoint, for example, a batch-type small heat treatment apparatus as disclosed in Patent Document 1 or Patent Document 2 has also been proposed. This type of small heat treatment apparatus is configured to be degreased and fired by placing it in a heating furnace in a state where the metal powder compact is mounted on a mounting table, and therefore differs from the large heat treatment apparatus described above. In addition, since operation preparation and loading / unloading into a heating furnace are simple and early detection of a cracked product is possible, it can also be used as a device for inspection of a sintered body or heat treatment test.

しかしながら、上述した特許文献1又は特許文献2に開示されるような従来の小型の熱処理装置では、熱源としての電熱ヒータやガス炊きによる間接加熱により金属粉末成形体を熱処理するものであったため、加熱炉内の温度制御に劣り、例えば、熱処理温度を脱脂処理温度(低温)から焼成処理温度(高温)へと短時間で精度よく切り換えることが困難であるという問題があった。また、電熱ヒータやガス炊き等による加熱は、熱損失が大きいため加熱効率に劣り、熱処理のコストが大きいという問題があった。   However, in the conventional small heat treatment apparatus as disclosed in Patent Document 1 or Patent Document 2 described above, the metal powder molded body is heat treated by indirect heating by an electric heater or gas cooking as a heat source. Inferior temperature control in the furnace, for example, there is a problem that it is difficult to accurately switch the heat treatment temperature from the degreasing temperature (low temperature) to the firing temperature (high temperature) in a short time. In addition, heating by an electric heater or gas cooker has a problem that heat loss is large and heat efficiency is inferior and heat treatment cost is high.

特開平10−8107号公報Japanese Patent Laid-Open No. 10-8107 特開平10−306981号公報Japanese Patent Laid-Open No. 10-306981

そこで、本発明では、金属粉末成形体の熱処理装置に関し、前記従来の課題を解決するもので、加熱炉の温度制御を容易にして金属粉末成形体を効率よく熱処理することができる金属粉末成形体の熱処理装置を提供することを目的とする。   Accordingly, the present invention relates to a heat treatment apparatus for a metal powder molded body, which solves the above-described conventional problems, and can easily control the temperature of a heating furnace and efficiently heat treat the metal powder molded body. An object of the present invention is to provide a heat treatment apparatus.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

すなわち、請求項1においては、金属粉末及び有機バインダを含む金属粉末成形体を加熱炉内に配置した状態で熱処理して所定の焼結体を得る金属粉末成形体の熱処理装置において、前記加熱炉は、高耐熱性の導電性材料にて金属粉末成形体を収容可能に形成される熱処理部と、前記熱処理部の外周位置に巻設される誘導加熱コイルと、を具備してなり、前記誘導加熱コイルに高周波電流を流して前記熱処理部を発熱させ、前記金属粉末成形体を所定温度に加熱して熱処理する、ものである。   That is, according to claim 1, in the heat treatment apparatus for a metal powder molded body that obtains a predetermined sintered body by heat-treating a metal powder molded body containing a metal powder and an organic binder in a heating furnace, the heating furnace Comprises a heat treatment part formed of a highly heat-resistant conductive material so that a metal powder compact can be accommodated, and an induction heating coil wound around the outer peripheral position of the heat treatment part. A high-frequency current is passed through the heating coil to cause the heat treatment portion to generate heat, and the metal powder compact is heated to a predetermined temperature for heat treatment.

請求項2においては、前記誘導加熱コイルへの高周波電流の供給を変更して、前記金属粉末成形体の温度を脱脂処理温度から焼成処理温度に切り換えるものである。   In Claim 2, the supply of the high frequency current to the said induction heating coil is changed, and the temperature of the said metal powder molded object is switched from a degreasing process temperature to a baking process temperature.

請求項3においては、前記加熱炉は、前記熱処理部内に雰囲気ガスを供給するガス供給部を具備してなるものである。   According to a third aspect of the present invention, the heating furnace includes a gas supply unit that supplies an atmospheric gas into the heat treatment unit.

請求項4においては、前記加熱炉は、前記金属粉末成形体の温度を検出する温度検出部を具備してなるものである。   According to a fourth aspect of the present invention, the heating furnace includes a temperature detector that detects the temperature of the metal powder compact.

請求項5においては、前記熱処理部は、カーボン系材料より形成されるものである。   In the present invention, the heat treatment part is formed of a carbon-based material.

本発明の効果として、加熱炉の温度制御を容易にして、金属粉末成形体を効率よく熱処理することができる。   As an effect of the present invention, the temperature control of the heating furnace can be facilitated and the metal powder compact can be efficiently heat-treated.

本発明の一実施例に係る熱処理装置の全体的な構成を示した断面図である。It is sectional drawing which showed the whole structure of the heat processing apparatus which concerns on one Example of this invention. 同じく図1の熱処理装置の平面図である。It is a top view of the heat processing apparatus of FIG. 1 similarly. 混練物、金属粉末成形体、脱脂体及び焼結体の構造を模式的に示した断面図である。It is sectional drawing which showed typically the structure of a kneaded material, a metal powder molded object, a degreasing body, and a sintered compact. 熱処理工程におけるワーク温度の経時変化の一例を示した図である。It is the figure which showed an example of the time-dependent change of the workpiece | work temperature in a heat processing process.

次に、発明を実施するための形態を説明する。   Next, modes for carrying out the invention will be described.

まず、本実施例の熱処理装置1の構成について、以下に説明する。
図1乃至図3に示すように、本実施例の熱処理装置1は、主に焼結機械部の製造プロセスにおいて用いられ、金属粉末2及び有機バインダ3を含む金属粉末成形体4(ワーク)を加熱炉10内に配置した状態で熱処理して、所定の焼結体6を得るための装置として構成され、具体的には、加熱炉10は、高耐熱性の導電性材料にて金属粉末成形体4を収容可能に形成される熱処理部11と、熱処理部11の外周位置に巻設される誘導加熱コイル12と、熱処理部11内に不活性ガスを供給するガス供給部13と、金属粉末成形体4の温度を検出する温度検出部14等を具備してなるものである。
First, the structure of the heat processing apparatus 1 of a present Example is demonstrated below.
As shown in FIGS. 1 to 3, the heat treatment apparatus 1 of the present embodiment is mainly used in a manufacturing process of a sintering machine part, and a metal powder molded body 4 (work) including a metal powder 2 and an organic binder 3 is used. It is configured as an apparatus for obtaining a predetermined sintered body 6 by heat treatment in a state where it is placed in the heating furnace 10, and specifically, the heating furnace 10 is formed of metal powder with a highly heat-resistant conductive material. A heat treatment part 11 formed to accommodate the body 4, an induction heating coil 12 wound around the outer periphery of the heat treatment part 11, a gas supply part 13 for supplying an inert gas into the heat treatment part 11, and a metal powder A temperature detection unit 14 for detecting the temperature of the molded body 4 is provided.

金属粉末成形体4は、図示せぬ混練装置等にて金属粉末2及び有機バインダ3が混合・混練されて、有機バインダ3中にて金属粉末2が均一分散された混練物(組成物)とされた後(図3(a)参照)、かかる混練物が成形されて、目的の焼結体6と同形状に成形されている(図3(b)参照)。   The metal powder molded body 4 includes a kneaded product (composition) in which the metal powder 2 and the organic binder 3 are mixed and kneaded by a kneading apparatus or the like (not shown), and the metal powder 2 is uniformly dispersed in the organic binder 3. After that (see FIG. 3 (a)), the kneaded product is formed into the same shape as the target sintered body 6 (see FIG. 3 (b)).

金属粉末2を構成する金属材料としては、例えば、ステンレス鋼、ダイス鋼、高速度工具鋼、低炭素鋼、Fe−Ni合金、Fe−Ni−Co合金等の各種Fe系合金、各種Ni系合金、各種Cr系合金等が挙げられる。   Examples of the metal material constituting the metal powder 2 include various types of Fe alloys such as stainless steel, die steel, high speed tool steel, low carbon steel, Fe—Ni alloy, Fe—Ni—Co alloy, and various Ni alloys. And various Cr-based alloys.

有機バインダ3としては、例えば、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン、ポリメチルメタクリレート、ポリブチルメタクリレート等のアクリル系樹脂、ポリスチレン等のスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリエーテル、ポリビニルアルコール、又はこれらの共重合体等の各種樹脂や、各種ワックス、パラフィン、高級脂肪酸、高級アルコール、高級脂肪酸エステル、高級脂肪酸アミド等が挙げられ、これらのうち1種又は2種以上を混合して用いることができる。   Examples of the organic binder 3 include polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymers, acrylic resins such as polymethyl methacrylate and polybutyl methacrylate, styrene resins such as polystyrene, polyvinyl chloride, and polyvinylidene chloride. Various resins such as polyamide, polyethylene terephthalate, polyester such as polybutylene terephthalate, polyether, polyvinyl alcohol, or copolymers thereof, various waxes, paraffin, higher fatty acid, higher alcohol, higher fatty acid ester, higher fatty acid amide, etc. Among these, one kind or two or more kinds can be mixed and used.

有機バインダ3の含有量は、特に限定されないが、金属粉末成形体4全体の2〜20重量%程度であるのが好ましい。有機バインダ3の含有率をかかる範囲内とすることで、成形性よく金属粉末成形体4を形成することができるとともに、密度を高め、金属粉末成形体4の形状の安定性等を特に優れたものとすることができる。また、金属粉末成形体4の収縮率を小さくすることができ、焼結体6の寸法精度を向上できる。   Although content of the organic binder 3 is not specifically limited, It is preferable that it is about 2 to 20 weight% of the metal powder molded object 4 whole. By making the content of the organic binder 3 within such a range, the metal powder molded body 4 can be formed with good moldability, the density is increased, and the stability of the shape of the metal powder molded body 4 is particularly excellent. Can be. Moreover, the shrinkage rate of the metal powder molded body 4 can be reduced, and the dimensional accuracy of the sintered body 6 can be improved.

金属粉末成形体4には、上述した金属粉末2及び有機バインダ3の他、例えば、可塑剤、酸化防止剤、脱脂促進剤、界面活性剤等の各種添加物を必要に応じて添加することができる。   In addition to the metal powder 2 and the organic binder 3 described above, for example, various additives such as a plasticizer, an antioxidant, a degreasing accelerator, and a surfactant may be added to the metal powder molded body 4 as necessary. it can.

金属粉末成形体4の成形方法としては、特に限定されず、例えば、金属粉末射出成形(MIM)法、圧縮成形(圧粉成形)法、又は押出成形法等が挙げられるが、この中でも、MIM法が好ましい。MIM法は、比較的小型のものや、複雑で微細な形状の成形体をニアネット(最終形状に近い形状)で製造することができ、金属粉末2の特性を十分に生かすことができる。   The molding method of the metal powder molded body 4 is not particularly limited, and examples thereof include a metal powder injection molding (MIM) method, a compression molding (compact molding) method, and an extrusion molding method. The method is preferred. The MIM method can produce a relatively compact or complex and finely shaped molded body with a near net (shape close to the final shape), and can fully utilize the characteristics of the metal powder 2.

金属粉末成形体4は、本実施例の熱処理装置1にて脱脂処理されることで、金属粉末成形体4中の有機バインダ3が分解・除去された脱脂体5とされた後(図3(c)参照)、かかる脱脂体5が焼成処理されて、金属粉末2が粒子界面で拡散して粒成長した結晶組織7となって、目的とする低空孔率で高密度の焼結体6が得られる(図3(d)参照)。   After the metal powder molded body 4 is degreased by the heat treatment apparatus 1 of this embodiment, the organic binder 3 in the metal powder molded body 4 is converted to a degreased body 5 in which the organic binder 3 is decomposed and removed (FIG. 3 ( c)), the degreased body 5 is fired to form a crystal structure 7 in which the metal powder 2 diffuses and grows at the particle interface, and the desired low-porosity and high-density sintered body 6 is obtained. Is obtained (see FIG. 3D).

図1及び図2に示したように、加熱炉10は、熱処理部11に金属粉末成形体4を収容した状態で、誘導加熱コイル12にて高周波電流を流して熱処理部11を発熱させ、金属粉末成形体4を所定温度に加熱して熱処理(脱脂処理及び焼成処理)するものである。この加熱炉10の構成は、金属粉末成形体4を熱処理可能とするものであれば特に限定されないが、本実施例では一例として熱処理部11、誘導加熱コイル12、ガス供給部13、温度検出部14等とで構成されている。   As shown in FIGS. 1 and 2, the heating furnace 10 heats the heat treatment part 11 by flowing a high-frequency current through the induction heating coil 12 in a state where the metal powder molded body 4 is accommodated in the heat treatment part 11. The powder compact 4 is heated to a predetermined temperature and heat treated (degreasing and firing). The configuration of the heating furnace 10 is not particularly limited as long as the metal powder molded body 4 can be heat-treated, but in the present embodiment, as an example, the heat treatment unit 11, the induction heating coil 12, the gas supply unit 13, and the temperature detection unit. 14 etc.

熱処理部11は、ベースプレート15の上面に配設され、外周及び上面が側断熱材16・17及び上断熱材18にて囲繞されている。側断熱材16・17は、ブラケット19・19・・・にてベースプレート15に固定され、これらの断熱材16・17・18にて熱処理部11の発熱から誘導加熱コイル12の過熱が防止されている。   The heat treatment portion 11 is disposed on the upper surface of the base plate 15, and the outer periphery and the upper surface are surrounded by the side heat insulating materials 16 and 17 and the upper heat insulating material 18. The side heat insulating materials 16 and 17 are fixed to the base plate 15 by brackets 19, 19..., And these heat insulating materials 16, 17, and 18 prevent overheating of the induction heating coil 12 from heat generated by the heat treatment section 11. Yes.

熱処理部11は、上部開口の容器状に形成された本体部11aと、本体部11aの開口を閉止する蓋部11b等とで構成されている。本体部11aの底面には、金属粉末成形体4を載置する載置台11cが形成され、金属粉末成形体4が載置台11cに載置された状態で本体部11aに収容される。また、蓋部11bの上面には把手11dが配設され、本体部11aより蓋部11bを取り外して、本体部11a内に金属粉末成形体4を収容可能としている。   The heat treatment part 11 includes a main body part 11a formed in a container shape having an upper opening, a lid part 11b for closing the opening of the main body part 11a, and the like. A mounting table 11c on which the metal powder molded body 4 is mounted is formed on the bottom surface of the main body 11a, and the metal powder molded body 4 is accommodated in the main body 11a while being mounted on the mounting table 11c. A handle 11d is disposed on the upper surface of the lid portion 11b, and the lid portion 11b is removed from the main body portion 11a so that the metal powder molded body 4 can be accommodated in the main body portion 11a.

熱処理部11の各部材(本体部11a・蓋部11b・載置台11c)は高耐熱性の導電性材料より形成され、後述する誘導加熱コイル12により発熱可能とされている。熱処理部11を構成する導電性材料としては、具体的には、ステンレス鋼などの金属系材料やシリコンカーバイドなどの炭化ケイ素系材料を用いることができるが、耐熱性及び化学的安定性の観点から、カーボン単体(黒鉛など)、カーボン複合体(カーボン−セラミックス、ガラス状カーボンなど)等のカーボン系材料が好ましく用いられる。特に、カーボン系材料は、熱伝導がよく、さらに一般的な金属系材料に比べて熱膨張率が小さいため、カーボン系材料を母材として熱処理部11を形成することで、発熱による熱処理部11の熱変化(寸法変化)を小さくし、かつ高温でムラなく発熱させることができる。   Each member (main body part 11a, lid part 11b, mounting table 11c) of the heat treatment part 11 is made of a highly heat-resistant conductive material and can generate heat by an induction heating coil 12 described later. Specifically, a metal material such as stainless steel or a silicon carbide material such as silicon carbide can be used as the conductive material constituting the heat treatment section 11, but from the viewpoint of heat resistance and chemical stability. Carbon-based materials such as carbon alone (such as graphite) and carbon composites (such as carbon-ceramics and glassy carbon) are preferably used. In particular, the carbon-based material has good thermal conductivity and has a smaller coefficient of thermal expansion than a general metal-based material. Therefore, the heat-treated portion 11 due to heat generation is formed by forming the heat-treated portion 11 using the carbon-based material as a base material. It is possible to reduce the heat change (dimension change) and to generate heat uniformly at high temperatures.

誘導加熱コイル12は、熱処理部11の外周位置に本体部11aの外周形状に沿うように螺旋状に巻設されている。誘導加熱コイル12は、内部中空の管材より形成され、かかる内部中空に冷却水が供給されている。また、誘導加熱コイル12は、熱処理部11の外周位置にて側断熱材16・17に挟まれるようにして巻設され、処理部11の外周と誘導加熱コイル12との間に上述した側断熱材16が挟設され、誘導加熱コイル12の外周に同じく側断熱材17が配設される。   The induction heating coil 12 is spirally wound around the outer peripheral position of the heat treatment part 11 so as to follow the outer peripheral shape of the main body part 11a. The induction heating coil 12 is formed of a hollow tube material, and cooling water is supplied to the hollow interior. The induction heating coil 12 is wound so as to be sandwiched between the side heat insulating materials 16 and 17 at the outer peripheral position of the heat treatment unit 11, and the above-described side heat insulation is provided between the outer periphery of the processing unit 11 and the induction heating coil 12. A material 16 is sandwiched, and a side heat insulating material 17 is also disposed on the outer periphery of the induction heating coil 12.

誘導加熱コイル12は、機外に配設される図示せぬ高周波電源に接続され、高周波電源から交流の高周波電流が誘導加熱コイル12に供給されることで、誘導加熱コイル12に交番磁束が発生する。この交番磁束は上述した熱処理部11にうず電流を誘起させ、熱処理部11に発生したうず電流による抵抗発熱と誘導加熱コイル12からの交番磁束によるヒステリシス損に基づいて熱処理部11が発熱する。   The induction heating coil 12 is connected to a high frequency power source (not shown) disposed outside the machine, and an alternating high frequency current is supplied from the high frequency power source to the induction heating coil 12 so that an alternating magnetic flux is generated in the induction heating coil 12. To do. The alternating magnetic flux induces an eddy current in the heat treatment unit 11 described above, and the heat treatment unit 11 generates heat based on resistance heat generation due to the eddy current generated in the heat treatment unit 11 and hysteresis loss due to the alternating magnetic flux from the induction heating coil 12.

誘導加熱コイル12は、誘導加熱により熱処理部11を発熱させるだけでなく、熱処理部11に収容された金属粉末成形体4を好適に熱処理するために、高周波電源からの高周波電流の供給を変更することで金属粉末成形体4の温度を制御可能とされている。本実施例では、熱処理部11にて金属粉末成形体4の脱脂処理と焼成処理を行うため、誘導加熱コイル12により金属粉末成形体4を脱脂処理温度(低温)から焼成処理温度(高温)へと所定の設定温度に切り換えられる。   The induction heating coil 12 not only causes the heat treatment part 11 to generate heat by induction heating, but also changes the supply of high-frequency current from a high-frequency power source in order to suitably heat-treat the metal powder molded body 4 accommodated in the heat treatment part 11. Thus, the temperature of the metal powder molded body 4 can be controlled. In the present embodiment, the metal powder molded body 4 is degreased and fired by the induction heating coil 12 from the degreasing temperature (low temperature) to the firing temperature (high temperature) because the heat treatment unit 11 performs the degreasing process and the firing process. And switched to a predetermined set temperature.

ガス供給部13は、熱処理部11の本体部11aの空間内に雰囲気ガスを供給して、本体部11a内を所定のガス雰囲気とするものであり、具体的には、本体部11aに接続される雰囲気ガスの供給管13a・13aと、本体部11a内のガスを機外に排出する排気ダクト13b等とで構成されている。供給管13a・13aは、一端が図示せぬガス供給装置に接続され、他端が本体部11aの下方位置に配置されている。排気ダクト13bは、内部にガスを吸引排出可能なダクト状に形成されており、開口端部が本体部11aの上方を覆うようにして配置され、蓋部11b(及び断熱材18)に穿設された排気孔11eを介して、供給管13a・13aにて供給された余分な雰囲気ガスや有機バインダ3の気化ガスを本体部11aより排出する。このように本実施例のガス供給部13では、供給管13a・13aにて本体部11aの下方位置から供給した雰囲気ガスを排気ダクト13bにて上方位置より吸引するように構成されるため、雰囲気ガスを還流させ、本体部11a内での有機バインダ3の気化ガスの滞留を防止して、効率的に機外に排出することができる。   The gas supply unit 13 supplies an atmospheric gas into the space of the main body 11a of the heat treatment unit 11 to create a predetermined gas atmosphere in the main body 11a. Specifically, the gas supply unit 13 is connected to the main body 11a. Atmosphere gas supply pipes 13a and 13a, and an exhaust duct 13b for discharging the gas in the main body 11a to the outside of the apparatus. One end of each of the supply pipes 13a and 13a is connected to a gas supply device (not shown), and the other end is disposed at a position below the main body portion 11a. The exhaust duct 13b is formed in a duct shape capable of sucking and discharging gas inside, and is disposed so that the opening end covers the upper part of the main body 11a, and is drilled in the lid 11b (and the heat insulating material 18). Excess atmospheric gas supplied by the supply pipes 13a and 13a and vaporized gas of the organic binder 3 are discharged from the main body 11a through the exhaust hole 11e. As described above, the gas supply unit 13 of the present embodiment is configured to suck the atmospheric gas supplied from the lower position of the main body 11a through the supply pipes 13a and 13a from the upper position through the exhaust duct 13b. The gas can be refluxed to prevent the vaporized gas of the organic binder 3 from staying in the main body 11a, and can be efficiently discharged outside the apparatus.

ガス供給部13にて供給される雰囲気ガスとしては、例えば、二酸化炭素、硫化水素のような酸性ガスや、一酸化炭素のような還元性ガスや、窒素、ヘリウム、アルゴンのような不活性ガス等が挙げられる。   Examples of the atmospheric gas supplied by the gas supply unit 13 include an acidic gas such as carbon dioxide and hydrogen sulfide, a reducing gas such as carbon monoxide, and an inert gas such as nitrogen, helium, and argon. Etc.

ガス供給部13は、熱処理部11への雰囲気ガスの供給量を調整可能に構成されており、例えば、熱処理部11での金属粉末成形体4の脱脂処理・焼成処理の際に、不活性ガス等のガス供給量を調整して、焼結体6を冷却する際のガス供給量を増大させるように制御される。このように焼結体6を冷却する際にガス供給量を増大させることで、焼結体6の冷却効率を向上できる。   The gas supply unit 13 is configured to be able to adjust the supply amount of the atmospheric gas to the heat treatment unit 11. For example, when the metal powder molded body 4 is degreased and fired in the heat treatment unit 11, the inert gas is used. The gas supply amount when the sintered body 6 is cooled is controlled by adjusting the gas supply amount such as. Thus, the cooling efficiency of the sintered body 6 can be improved by increasing the gas supply amount when the sintered body 6 is cooled.

温度検出部14は、熱処理部11の本体部11aの空間内の温度を検出し、熱処理部11による金属粉末成形体4の熱処理温度を測定するものであり、例えば、温度センサ等により構成される。本実施例の熱処理装置1では、温度検出部14により検出される金属粉末成形体4の温度が所定温度となるように高周波電源から出力される電流周波数が制御されて、誘導加熱コイル12の温度制御が行われるように構成されている。   The temperature detection unit 14 detects the temperature in the space of the main body 11a of the heat treatment unit 11 and measures the heat treatment temperature of the metal powder molded body 4 by the heat treatment unit 11, and is constituted by, for example, a temperature sensor or the like. . In the heat treatment apparatus 1 of the present embodiment, the current frequency output from the high frequency power source is controlled so that the temperature of the metal powder molded body 4 detected by the temperature detection unit 14 becomes a predetermined temperature, and the temperature of the induction heating coil 12 is controlled. Control is configured to be performed.

次に、本実施例の熱処理装置1を用いた金属粉末成形体4の熱処理方法について、以下に説明する。
本実施例では、図4に示すように、一例として、誘導加熱コイル12への高周波電流の供給を変更して、ワーク(金属粉末成形体4・脱脂体5・焼結体6)の温度を脱脂処理温度T1から焼成処理温度T2に切り換える場合について説明する。
Next, the heat processing method of the metal powder molded body 4 using the heat processing apparatus 1 of a present Example is demonstrated below.
In this embodiment, as shown in FIG. 4, as an example, the supply of high-frequency current to the induction heating coil 12 is changed, and the temperature of the workpiece (metal powder molded body 4, degreased body 5, sintered body 6) is changed. A case where the degreasing temperature T1 is switched to the firing temperature T2 will be described.

熱処理装置1では、上述したように誘導加熱コイル12に高周波電流を流して熱処理部11を発熱させ、熱処理部11内を加熱してワーク(金属粉末成形体4)を所定温度にて熱処理するものであり、熱処理部11の本体部11aの載置台11cに金属粉末成形体4を載置して熱処理を開始すると(時間S1)、まずは熱処理部11内の温度を徐々に高めて、ワーク温度を温度T1(脱脂処理温度)にて保持(時間S2〜時間S3)する。このように温度T1にまでワーク温度を高めてこれを保持することで、金属粉末成形体4中の有機バインダ3を分解・除去させる。   In the heat treatment apparatus 1, as described above, a high-frequency current is passed through the induction heating coil 12 to cause the heat treatment part 11 to generate heat, and the heat treatment part 11 is heated to heat treat the workpiece (metal powder compact 4) at a predetermined temperature. When the metal powder molded body 4 is placed on the mounting table 11c of the main body 11a of the heat treatment section 11 and the heat treatment is started (time S1), first, the temperature in the heat treatment section 11 is gradually increased to increase the workpiece temperature. Hold at temperature T1 (degreasing temperature) (time S2 to time S3). Thus, the organic binder 3 in the metal powder molded body 4 is decomposed and removed by raising the workpiece temperature to the temperature T1 and holding it.

このときの温度T1(脱脂処理温度)は、特に限定されないが、金属粉末成形体4中の有機バインダ3の分解開始温度等によって異なるものの、通常は300〜700℃程度であるのが好ましい。これにより、有機バインダ3の分解作用が十分に発揮され、金属粉末成形体4の脱脂処理を十分に行うことができる。また、保持時間(時間S2〜時間S3)は、温度T1に応じて適宜設定されるものの、例えば、熱処理装置1によれば1〜10分間程度と短時間に設定することが可能である。   Although the temperature T1 (degreasing temperature) at this time is not particularly limited, it is preferably about 300 to 700 ° C. although it varies depending on the decomposition start temperature of the organic binder 3 in the metal powder molded body 4. Thereby, the decomposition | disassembly effect | action of the organic binder 3 is fully exhibited and the degreasing process of the metal powder molded object 4 can fully be performed. The holding time (time S2 to time S3) is appropriately set according to the temperature T1, but, for example, according to the heat treatment apparatus 1, it can be set to a short time of about 1 to 10 minutes.

次いで、脱脂処理が終了(時間S3)すると、さらに熱処理部11内の温度を徐々に高めて、ワーク温度を温度T2(焼成処理温度)にて保持(時間S4〜時間S5)した後、誘導加熱コイル12による熱処理部11の発熱を終了して、ワーク温度を下げていくことで焼成処理を完了(時間S5〜時間S6)させる。   Next, when the degreasing process is completed (time S3), the temperature in the heat treatment unit 11 is gradually increased, and the work temperature is maintained at the temperature T2 (firing temperature) (time S4 to time S5), and then induction heating is performed. The heat generation of the heat treatment part 11 by the coil 12 is finished, and the firing process is completed (time S5 to time S6) by lowering the workpiece temperature.

このときの温度T2(焼成処理温度)は、上述した温度T1(脱脂処理温度)より高く、熱処理装置1による熱処理の最高温度である。温度T2は、金属粉末2の組成に応じて適宜設定されるが、通常は900〜1350℃程度であるのが好ましい。このような温度で金属粉末成形体4(脱脂体5)を焼成することにより、結晶組織7が必要以上に肥大化するのを防止することができ、機械的特性及び化学的特性に優れた焼結体6を得ることができる。また、保持時間(時間S4〜時間S5)は、温度T2に応じて適宜設定されるものの、例えば、熱処理装置1によれば1〜10分間程度と短時間に設定することが可能である。   The temperature T2 (firing temperature) at this time is higher than the above-described temperature T1 (degreasing temperature) and is the highest temperature of the heat treatment by the heat treatment apparatus 1. Although temperature T2 is suitably set according to the composition of the metal powder 2, it is preferable that it is about 900-1350 degreeC normally. By firing the metal powder molded body 4 (degreasing body 5) at such a temperature, it is possible to prevent the crystal structure 7 from becoming unnecessarily enlarged, and the mechanical and chemical characteristics are excellent. The ligature 6 can be obtained. The holding time (time S4 to time S5) is appropriately set according to the temperature T2, but according to the heat treatment apparatus 1, for example, it can be set to a short time of about 1 to 10 minutes.

上述した熱処理中は、ガス供給部13にて熱処理部11へ雰囲気ガス(主に不活性ガス)が供給されており、特に、ワーク(金属粉末成形体4・脱脂体5)を加熱する間(時間S1〜時間S5)のガス供給量に比べて、これを冷却する間(時間S5〜時間S6)のガス供給量を増大させるように制御するのが好ましい。このように冷却する際にガス供給量を増大させることで冷却効率を向上させ、正常な焼結を可能として、高密度の焼結体6を得ることができる。   During the above heat treatment, atmospheric gas (mainly inert gas) is supplied to the heat treatment section 11 by the gas supply section 13, and in particular, while the workpiece (metal powder compact 4 and degreased body 5) is heated ( It is preferable to control so as to increase the gas supply amount during cooling (time S5 to time S6) as compared to the gas supply amount during time S1 to time S5). In this way, by increasing the gas supply amount when cooling, the cooling efficiency can be improved and normal sintering can be performed, so that a high-density sintered body 6 can be obtained.

以上のように、本実施例の熱処理装置1は、金属粉末2及び有機バインダ3を含む金属粉末成形体4を加熱炉10内に配置した状態で熱処理して所定の焼結体6を得る金属粉末成形体4の熱処理装置1において、加熱炉10は、高耐熱性の導電性材料にて金属粉末成形体4を収容可能に形成される熱処理部11と、熱処理部11の外周位置に巻設される誘導加熱コイル12と、を具備してなり、誘導加熱コイル12に高周波電流を流して熱処理部11を発熱させ、金属粉末成形体4を所定温度に加熱して熱処理するものであるため、加熱炉10の温度制御を容易にして、効率よく熱処理することができるのである。   As described above, the heat treatment apparatus 1 of the present embodiment is a metal that obtains a predetermined sintered body 6 by heat treatment in a state where the metal powder molded body 4 including the metal powder 2 and the organic binder 3 is disposed in the heating furnace 10. In the heat treatment apparatus 1 for the powder molded body 4, the heating furnace 10 is wound around a heat treatment section 11 formed of a highly heat-resistant conductive material so that the metal powder molded body 4 can be accommodated, and an outer peripheral position of the heat treatment section 11. The induction heating coil 12 is heated, a high-frequency current is passed through the induction heating coil 12 to heat the heat treatment part 11, and the metal powder molded body 4 is heated to a predetermined temperature for heat treatment. Thus, the temperature of the heating furnace 10 can be easily controlled and heat treatment can be performed efficiently.

すなわち、本実施例では、熱源として誘導加熱コイル12による間接加熱により金属粉末成形体4を熱処理するものであるため、熱処理部11の単位面積に供給される単位時間当りのエネルギーが大きく高速加熱・高温加熱が可能で、金属粉末成形体4の温度を短時間で精度よく切り換えることができる。また、誘導加熱コイル12の配置と周波数を選定することによりピンポイントで熱処理部11を加熱することができるので、熱処理部11内の温度制御が容易となる。さらに、従来の熱電に電熱ヒータやガス炊き等を用いて加熱する装置構成と比べて熱損失が小さく加熱効率に優れるため、熱処理のコストを低減できる。   That is, in this embodiment, since the metal powder molded body 4 is heat-treated by indirect heating by the induction heating coil 12 as a heat source, the energy per unit time supplied to the unit area of the heat treatment section 11 is large and high-speed heating / High temperature heating is possible, and the temperature of the metal powder molded body 4 can be accurately switched in a short time. Moreover, since the heat treatment part 11 can be heated pinpoint by selecting the arrangement and frequency of the induction heating coil 12, temperature control in the heat treatment part 11 is facilitated. Furthermore, since the heat loss is small and the heating efficiency is excellent as compared with the conventional thermoelectric device that uses an electric heater, gas cooker, or the like, the heat treatment cost can be reduced.

特に、本実施例の熱処理装置1では、誘導加熱コイル12への高周波電流の供給を変更して、金属粉末成形体4の温度を脱脂処理温度から焼成処理温度に切り換えるものであるため、金属粉末成形体4の脱脂から焼成までを短時間で連続して行うことができ、クラック発生品の早期の検出が可能となることから、例えば、焼結体6の検品や熱処理試験の装置としても採用することができる。   In particular, in the heat treatment apparatus 1 of this embodiment, the supply of high-frequency current to the induction heating coil 12 is changed to switch the temperature of the metal powder molded body 4 from the degreasing temperature to the firing temperature, so that the metal powder The process from degreasing to firing of the molded body 4 can be carried out continuously in a short time, and early detection of cracked products is possible. For example, it is also used as a device for inspection of the sintered body 6 and a heat treatment test. can do.

なお、本実施例の熱処理装置1の構成としては、上述した実施例に限定されず、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   In addition, as a structure of the heat processing apparatus 1 of a present Example, it is not limited to the Example mentioned above, A various change is possible unless it deviates from the objective of this invention.

すなわち、上述した実施例の熱処理装置1では、加熱炉10が一つの熱処理部11より構成について説明したが、かかる加熱炉10の構成はこれに限定されず、例えば、複数の熱処理部11を設けることで、複数バッチ式の加熱炉として構成されてもよい。   That is, in the heat treatment apparatus 1 of the above-described embodiment, the heating furnace 10 has been described with respect to the configuration of the single heat treatment unit 11, but the configuration of the heating furnace 10 is not limited thereto, and for example, a plurality of heat treatment units 11 are provided. Thus, it may be configured as a multi-batch heating furnace.

また、上述した実施例の熱処理装置1では、熱処理部11が上部開口の容器状に形成された本体部11aと、本体部11aの開口を閉止する蓋部11b等とで構成される場合について説明したが、かかる熱処理部11の構成はこれに限定されず、例えば、容器状の本体部の側方が開口されて、金属粉末成形体4が側方より搬入出可能となるように構成されてもよい。   In the heat treatment apparatus 1 of the above-described embodiment, the case where the heat treatment part 11 is configured by a main body part 11a formed in a container shape with an upper opening, a lid part 11b for closing the opening of the main body part 11a, and the like will be described. However, the configuration of the heat treatment unit 11 is not limited to this, and for example, the side of the container-shaped main body is opened, and the metal powder molded body 4 can be loaded and unloaded from the side. Also good.

また、上述した実施例の熱処理装置1を用いた金属粉末成形体4の熱処理では、脱脂処理及び焼成処理のいずれか一方のみが行われるようにしてもよく、またその昇温過程は金属粉末成形体4の組成等に応じて1段階又は2段階以上の昇温パターンを組み合わせるようにしてもよい。さらに、熱処理は、少なくとも大気圧超の加圧された雰囲気下で行われてもよい。   In addition, in the heat treatment of the metal powder molded body 4 using the heat treatment apparatus 1 of the above-described embodiment, only one of degreasing treatment and firing treatment may be performed, and the temperature raising process is performed by metal powder molding. Depending on the composition of the body 4, etc., one stage or two or more stages of temperature rising patterns may be combined. Furthermore, the heat treatment may be performed in a pressurized atmosphere at least above atmospheric pressure.

1 熱処理装置
2 金属粉末
3 有機バインダ
4 金属粉末成形体
6 焼結体
10 加熱炉
11 熱処理部
11a 本体部
11b 蓋部
11c 載置台
11d 把手
11e 排気孔
12 誘導加熱コイル
13 ガス供給部
13a 供給管
13b 排気ダクト
14 温度検出部
15 ベースプレート
16 側断熱材
17 側断熱材
18 上断熱材
19 ブラケット
DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 2 Metal powder 3 Organic binder 4 Metal powder molded object 6 Sintered body 10 Heating furnace 11 Heat processing part 11a Main body part 11b Cover part 11c Mounting base 11d Handle 11e Exhaust hole 12 Induction heating coil 13 Gas supply part 13a Supply pipe 13b Exhaust duct 14 Temperature detector 15 Base plate 16 Side heat insulating material 17 Side heat insulating material 18 Upper heat insulating material 19 Bracket

Claims (5)

金属粉末及び有機バインダを含む金属粉末成形体を加熱炉内に配置した状態で熱処理して所定の焼結体を得る金属粉末成形体の熱処理装置において、
前記加熱炉は、
高耐熱性の導電性材料にて金属粉末成形体を収容可能に形成される熱処理部と、
前記熱処理部の外周位置に巻設される誘導加熱コイルと、を具備してなり、
前記誘導加熱コイルに高周波電流を流して前記熱処理部を発熱させ、前記金属粉末成形体を所定温度に加熱して熱処理する、
ことを特徴とする金属粉末成形体の熱処理装置。
In a heat treatment apparatus for a metal powder molded body that obtains a predetermined sintered body by heat-treating a metal powder molded body containing a metal powder and an organic binder in a heating furnace,
The heating furnace is
A heat treatment part formed so as to be able to accommodate a metal powder compact in a highly heat-resistant conductive material;
An induction heating coil wound around the outer peripheral position of the heat treatment part,
A high-frequency current is passed through the induction heating coil to heat the heat treatment part, and the metal powder compact is heated to a predetermined temperature for heat treatment.
An apparatus for heat-treating a metal powder molded body.
前記誘導加熱コイルへの高周波電流の供給を変更して、前記金属粉末成形体の温度を脱脂処理温度から焼成処理温度に切り換える請求項1に記載の金属粉末成形体の熱処理装置。   The heat treatment apparatus for a metal powder molded body according to claim 1, wherein the supply of the high-frequency current to the induction heating coil is changed to switch the temperature of the metal powder molded body from a degreasing temperature to a firing temperature. 前記加熱炉は、前記熱処理部内に雰囲気ガスを供給するガス供給部を具備してなる請求項1又は請求項2に記載の金属粉末成形体の熱処理装置。   The said heat furnace is a heat processing apparatus of the metal powder compact | molding | casting of Claim 1 or 2 which comprises the gas supply part which supplies atmospheric gas in the said heat processing part. 前記加熱炉は、前記金属粉末成形体の温度を検出する温度検出部を具備してなる請求項1乃至請求項3のいずれか一項に記載の金属粉末成形体の熱処理装置。   The said heating furnace is a heat processing apparatus of the metal powder molded object as described in any one of Claim 1 thru | or 3 which comprises the temperature detection part which detects the temperature of the said metal powder molded object. 前記熱処理部は、カーボン系材料より形成される請求項1乃至請求項4のいずれか一項に記載の金属粉末成形体の熱処理装置。   The said heat processing part is a heat processing apparatus of the metal powder molded object as described in any one of Claim 1 thru | or 4 formed from a carbon-type material.
JP2017087726A 2017-04-26 2017-04-26 Heat treatment apparatus for metal powder compact Pending JP2018184647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017087726A JP2018184647A (en) 2017-04-26 2017-04-26 Heat treatment apparatus for metal powder compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017087726A JP2018184647A (en) 2017-04-26 2017-04-26 Heat treatment apparatus for metal powder compact

Publications (1)

Publication Number Publication Date
JP2018184647A true JP2018184647A (en) 2018-11-22

Family

ID=64355980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017087726A Pending JP2018184647A (en) 2017-04-26 2017-04-26 Heat treatment apparatus for metal powder compact

Country Status (1)

Country Link
JP (1) JP2018184647A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501010A (en) * 1973-05-07 1975-01-08
JP2005294557A (en) * 2004-03-31 2005-10-20 Tdk Corp Method of manufacturing rare-earth sintered magnet
JP2006046764A (en) * 2004-08-03 2006-02-16 Ibiden Co Ltd Kiln
JP2016014503A (en) * 2014-07-02 2016-01-28 富士電機株式会社 Heat treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501010A (en) * 1973-05-07 1975-01-08
JP2005294557A (en) * 2004-03-31 2005-10-20 Tdk Corp Method of manufacturing rare-earth sintered magnet
JP2006046764A (en) * 2004-08-03 2006-02-16 Ibiden Co Ltd Kiln
JP2016014503A (en) * 2014-07-02 2016-01-28 富士電機株式会社 Heat treatment device

Similar Documents

Publication Publication Date Title
JP5023093B2 (en) High frequency induction heating apparatus for ceramic material and non-pressure sintering method using the same
US10948235B2 (en) Sintering furnace for components made of sintered material, in particular, dental components
KR20130042005A (en) Graphitization furnace and method for producing graphite
CN103295759A (en) Method for manufacturing permanent magnet
GB2516991A (en) Metal component forming
JP6403421B2 (en) Sintering apparatus and sintering method
KR20120108017A (en) Degreasing method
CN105441881A (en) Making method of chromium target and making method of combination of chromium target
KR20170129819A (en) Glass forming apparatus and method
Liu et al. A new heating route of spark plasma sintering and its effect on alumina ceramic densification
JP5195754B2 (en) Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
TW201733933A (en) Glass forming device and method
CN106783132B (en) A kind of high silicon steel core and preparation method thereof to insulate between particle
JP2018184647A (en) Heat treatment apparatus for metal powder compact
CN103805826B (en) NdFeB iron-based composite diphase material sintering process
US20190262903A1 (en) Apparatus and methods for microwave densification
Vasylkiv et al. Densification kinetics of nanocrystalline zirconia powder using microwave and spark plasma sintering—a comparative study
CN202942867U (en) Device for rapidly preparing powder assisted by current
JP3226912U (en) Industrial furnace
CN205537096U (en) Vacuum hotpressing aluminium oxide fritting furnace
JP2006046865A (en) Kiln, and method for firing ceramic
JP4482923B2 (en) Continuous electric heating furnace
Gubarevich et al. Boron carbide with improved mechanical properties fabricated via rapid pressureless densification with electromagnetic induction assistance
JP2015214463A (en) Graphitization furnace
JP2023095992A (en) industrial furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210706