JP2018184623A - Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device - Google Patents

Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device Download PDF

Info

Publication number
JP2018184623A
JP2018184623A JP2017085518A JP2017085518A JP2018184623A JP 2018184623 A JP2018184623 A JP 2018184623A JP 2017085518 A JP2017085518 A JP 2017085518A JP 2017085518 A JP2017085518 A JP 2017085518A JP 2018184623 A JP2018184623 A JP 2018184623A
Authority
JP
Japan
Prior art keywords
inherent strain
strain
conditions
modeling
inherent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017085518A
Other languages
Japanese (ja)
Inventor
智史 只野
Satoshi Tadano
智史 只野
中谷 祐二郎
Yujiro Nakatani
祐二郎 中谷
日野 武久
Takehisa Hino
武久 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017085518A priority Critical patent/JP2018184623A/en
Publication of JP2018184623A publication Critical patent/JP2018184623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inherent strain calculation device for a laminated molding capable of calculating inherent strain at a low calculation load, an inherent strain calculation method therefor, an inherent strain calculation program therefor, an analysis device therefor, an analysis method therefor, and a lamination molding device.SOLUTION: Provided is an inherent strain calculation device 10 for a laminated molding comprising: a condition receiving part 16 receiving the material physical property value of a molding 11 molded by lamination molding, molding conditions and the conditions regarding the size of the molding 11; and an inherent strain calculation part 17 calculating inherent strain from the linear equation of inherent strain introduced based on the conditions and restriction conditions obtained by quantifying the restriction conditions around a molten pond generated upon molding.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、金属粉末から造形する三次元積層造形物の固有ひずみ算出技術に関する。   Embodiments of the present invention relate to an inherent strain calculation technique for a three-dimensional layered object that is formed from a metal powder.

近年、金属粉末の敷き詰めと、電子ビーム又はレーザ光(以下、併せて単に「ビーム」という)によるこの金属粉末の溶融と、を繰り返して構造物を造形する積層造形技術が研究開発されている。
積層造形では、3DCADモデルから製品を直接製造できるため、従来よりも構造物の形状をニアネットで製造することができるとともに、造形形状の選択幅が広い。
In recent years, a layered modeling technique for modeling a structure by repeatedly laying a metal powder and melting the metal powder by an electron beam or laser light (hereinafter also simply referred to as “beam”) has been researched and developed.
In additive manufacturing, a product can be manufactured directly from a 3D CAD model, so that the shape of a structure can be manufactured with a near net and the selection range of a modeling shape is wider than before.

その一方、ビームを複雑に往復させる造形プロセスの性質上、造形中の熱ひずみに起因した三次元積層造形物(以下、単に「造形物」という)の変形や残留応力を考慮する必要がある。   On the other hand, due to the nature of the modeling process in which the beam is reciprocated in a complicated manner, it is necessary to consider the deformation and residual stress of a three-dimensional layered object (hereinafter simply referred to as “model object”) caused by thermal strain during modeling.

変形が大きい場合、金属粉末供給レーキ等の造形物との干渉による動作の停止や、造形物とともに造形されて後に切り離されるサポートの折損等も発生しうる。
よって、プロセス安定性や造形物品質の向上には、多数の実験を伴う入念な検討の下にサポートの形状や造形条件等を選定する必要がある。
When the deformation is large, the operation may be stopped due to interference with a molded object such as a metal powder supply rake, or the support may be broken after being modeled together with the modeled object.
Therefore, in order to improve the process stability and the quality of the modeled object, it is necessary to select the shape of the support, the modeling conditions, etc., after careful examination with many experiments.

ところで、金属の溶融過程で生じる変形及び残留応力は、一般に、有限要素法(Finite Element Method:FEM)を用いた熱弾塑性解析法又は弾性解析などを利用したコンピュータシミュレーションによって解析される。   By the way, deformation and residual stress generated in the melting process of a metal are generally analyzed by a computer simulation using a thermal elastic-plastic analysis method using a finite element method (FEM) or an elastic analysis.

有限要素法の手法を用いた固有ひずみ法では、まず構造物の全体モデルを分割してなる各ソリッド要素について解析して固有ひずみを算出して、この固有ひずみを用いて全体モデルについて解析をする。   In the inherent strain method using the finite element method, first, analyze the solid element obtained by dividing the entire model of the structure, calculate the inherent strain, and then analyze the entire model using this inherent strain. .

熱源の移動に伴う変形挙動など、より詳細なシミュレーション結果を得るには、使用する物理量の非線形挙動を逐次考慮した熱弾塑性解析が望ましい。
一方で、代表時間のシミュレーション結果を得る場合には、解析負荷の低減のために固有ひずみ法を用いた弾性解析が用いられる。
In order to obtain more detailed simulation results such as the deformation behavior accompanying the movement of the heat source, it is desirable to perform a thermo-elasto-plastic analysis that sequentially considers the nonlinear behavior of the physical quantity used.
On the other hand, in order to obtain a simulation result of the representative time, elastic analysis using the inherent strain method is used to reduce the analysis load.

特開2009−250829号公報JP 2009-250829 A

積層造形は、熱源が高速に移動し数十ミクロンの層が繰り返し積層されるプロセスである。そのため、構造物全体の変形及び残留応力を熱弾塑性解析で求めるのは多大な計算量が必要になり実際的ではないため、固有ひずみ法による解法が現実的となる。   The additive manufacturing is a process in which a heat source moves at high speed and layers of several tens of microns are repeatedly stacked. For this reason, it is not practical to obtain the deformation and residual stress of the entire structure by thermal elastic-plastic analysis, which is impractical, so that the solution by the inherent strain method is realistic.

しかしながら、従来の技術では、固有ひずみを算出するには非線形の熱弾塑性解析や数多くの実験が必要となり、結局は固有ひずみ法を実用的に行えないという課題があった。   However, the conventional technique requires nonlinear thermoelastic-plastic analysis and many experiments in order to calculate the inherent strain, and there is a problem that the inherent strain method cannot be practically used.

本発明はこのような事情を考慮してなされたもので、固有ひずみを低い計算負荷で算出可能な積層造形物の固有ひずみ算出装置、その固有ひずみ算出方法、その固有ひずみ算出プログラム、その解析装置、その解析方法、及び積層造形装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an inherent strain calculation device for a layered object capable of calculating an inherent strain with a low calculation load, an inherent strain calculation method thereof, an inherent strain calculation program thereof, and an analysis device thereof An object of the present invention is to provide an analysis method and an additive manufacturing apparatus.

本実施形態に係る積層造形物の固有ひずみ算出装置は、積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付ける条件受付部と、前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出する固有ひずみ算出部と、を備えるものである。   The apparatus for calculating the inherent strain of a layered object according to the present embodiment includes a condition receiving unit that receives a material property condition, a modeling condition, and a condition related to a structure size for a structure modeled by layered modeling, the condition, and modeling. An inherent strain calculation unit that calculates the inherent strain from a linear form of the inherent strain derived based on the constraint condition that quantifies the constraint state around the molten pool that is sometimes generated.

本実施形態に係る積層造形物の固有ひずみ算出方法は、積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、を含むものである。   The method for calculating the inherent strain of a layered object according to the present embodiment is a step of receiving material property conditions, a modeling condition, and a condition regarding a structure size for a structure modeled by layered modeling, the condition, and generated at the time of modeling Calculating the inherent strain from a linear form of the inherent strain derived based on the constraint condition in which the constraint state around the molten pool is quantified.

本実施形態に係る積層造形物の固有ひずみ算出プログラムは、コンピュータに、積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップ、前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップ、を実行させるものである。   The intrinsic strain calculation program of the layered object according to the present embodiment receives, in the computer, a material property condition, a modeling condition, and a condition related to the structure size about the structure modeled by the layered modeling, the condition, and the modeling. The step of calculating the inherent strain from the linear form of the inherent strain derived based on the constraint condition quantifying the constraint state around the molten pool that is sometimes generated is executed.

本実施形態に係る積層造形物の解析方法は、積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、前記固有ひずみに基づいて前記構造物の全体モデルについて解析をして前記条件に対応した前記構造物の各所の変形又は残留応力を導出するステップと、を含むものである。   The method for analyzing a layered object according to the present embodiment is generated at the time of receiving a material property condition, a modeling condition, and a condition regarding a structure size for a structure modeled by layered modeling, the condition, and modeling. Calculating the inherent strain from a linear form of the inherent strain derived based on the constraint condition quantifying the constraint state around the weld pool, and analyzing the entire model of the structure based on the inherent strain Deriving deformations or residual stresses at various points of the structure corresponding to the conditions.

本実施形態に係る積層造形物の解析方法は、積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、三次元積層造形物の各所の最大許容変形量及び最大許容応力の少なくとも一方の入力を取得するステップと、前記構造物の全体モデルから逆解析して最大許容固有ひずみを導出するステップと、前記固有ひずみが前記最大許容固有ひずみ以下になるように前記条件を修正するステップと、を含むものである。   The method for analyzing a layered object according to the present embodiment is generated at the time of receiving a material property condition, a modeling condition, and a condition regarding a structure size for a structure modeled by layered modeling, the condition, and modeling. Calculating the inherent strain from the linear form of the inherent strain derived based on the constraint condition quantifying the constraint state around the weld pool, and at least the maximum allowable deformation amount and the maximum allowable stress at various locations of the three-dimensional layered object. Obtaining one input, deriving the maximum allowable inherent strain by performing inverse analysis from the overall model of the structure, and correcting the condition so that the intrinsic strain is equal to or less than the maximum allowable intrinsic strain. And.

本発明により、固有ひずみを低い計算負荷で算出可能な積層造形物の固有ひずみ算出装置、その固有ひずみ算出方法、その固有ひずみ算出プログラム、その解析装置、その解析方法、及び積層造形装置が提供される。   According to the present invention, there are provided an inherent strain calculation device of a layered object that can calculate an inherent strain with a low calculation load, an inherent strain calculation method thereof, an inherent strain calculation program thereof, an analysis device thereof, an analysis method thereof, and an additive manufacturing device. The

(A)一般的な積層造形工程を説明する模式図であって積層造形処理中の状態を示す図、(B)同・積層造形処理終了時の状態を示す図。(A) It is a schematic diagram explaining a general additive manufacturing process, and is a figure which shows the state in the additive manufacturing process, (B) The figure which shows the state at the time of the same additive manufacturing process completion | finish. 実施形態に係る積層造形物の固有ひずみ算出装置の概略構成図。The schematic block diagram of the intrinsic | native distortion | strain calculation apparatus of the laminate-molded article which concerns on embodiment. サポートを用いた積層造形工程を説明する模式図であって積層造形処理中の状態を示す図、(B)同・積層造形処理終了時の状態を示す図、(C)最終積層造形物からサポートを切り離した状態を示す図。It is a schematic diagram explaining the additive manufacturing process using the support and is a diagram showing a state during the additive manufacturing process, (B) a diagram showing a state at the end of the additive manufacturing process, and (C) a support from the final additive manufacturing object The figure which shows the state which disconnected. 第1実施形態に係る積層造形物の解析装置及びこの解析装置が適用される積層造形装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the laminated modeling apparatus to which the analytical apparatus of the laminated modeling thing which concerns on 1st Embodiment, and this analysis apparatus are applied. (A)全体モデルの一例を示す図、(B)同・残留応力の分布を示す図、(C)同・変形を示す図。(A) The figure which shows an example of an entire model, (B) The figure which shows distribution of the same and residual stress, (C) The figure which shows the same and deformation | transformation. 第1実施形態に係る積層造形物の解析方法を示すフローチャート。The flowchart which shows the analysis method of the laminate-molded article which concerns on 1st Embodiment. 第2実施形態に係る解析装置の概略構成図。The schematic block diagram of the analyzer which concerns on 2nd Embodiment. 第2実施形態に係る積層造形物の解析方法を示すフローチャート。The flowchart which shows the analysis method of the laminate-molded article which concerns on 2nd Embodiment.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1(A),(B)は、一般的な積層造形工程を説明する模式図である。
図1(A)は積層造形処理中の状態、図1(B)は積層造形処理終了時の状態、を示している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1A and 1B are schematic diagrams for explaining a general additive manufacturing process.
FIG. 1A shows a state during the additive manufacturing process, and FIG. 1B shows a state at the end of the additive manufacturing process.

図1(A)に示されるように、造形物11の素材となる金属粉末12が、金属粉末供給レーキ13で平坦にされながら基盤19上に供給される。
この平坦に敷き詰められた金属粉末12のビーム15の照射箇所が、溶融後即時に硬化して造形物11の水平断面が造形される。
このような敷き詰めと溶融を繰り返して図1(B)に示されるような最終製品である造形物11を得る。
As shown in FIG. 1A, the metal powder 12 that is the material of the molded article 11 is supplied onto the base 19 while being flattened by the metal powder supply rake 13.
The irradiation spot of the beam 15 of the metal powder 12 spread flatly is immediately cured after melting, and the horizontal cross section of the shaped article 11 is formed.
Such laying and melting are repeated to obtain a shaped article 11 as a final product as shown in FIG.

上述したように、固有ひずみ法を用いた力学シミュレーションで造形時の入熱による造形物11の変形δ及び残留応力σを解析するには、まず固有ひずみを算出する必要がある。
実施形態に係る算出装置10は、入力された各種の条件に基づいて固有ひずみを算出するものである。
As described above, in order to analyze the deformation δ and the residual stress σ of the molded article 11 due to heat input during modeling by dynamic simulation using the intrinsic strain method, it is necessary to calculate the intrinsic strain first.
The calculation device 10 according to the embodiment calculates the inherent strain based on various input conditions.

図2は、実施形態に係る造形物11の固有ひずみ算出装置10(以下、単に「算出装置10」という)の概略構成図である。
実施形態に係る算出装置10は、図2に示されるように、条件受付部16及び固有ひずみ算出部17、を備える。
FIG. 2 is a schematic configuration diagram of the inherent strain calculation device 10 (hereinafter simply referred to as “calculation device 10”) of the molded article 11 according to the embodiment.
As illustrated in FIG. 2, the calculation device 10 according to the embodiment includes a condition reception unit 16 and an inherent strain calculation unit 17.

条件受付部16(16a〜16c)は、入力部24から、造形される造形物11の力学シミュレーションを規定する条件を受け付ける。
受け付ける条件は、材料物性条件、造形条件、及び構造物サイズに大別される。
これらの条件は、それぞれ材料物性条件受付部16a、造形条件受付部16b、及び構造物サイズ受付部16cで受け付けられる。
The condition receiving unit 16 (16a to 16c) receives a condition for defining a dynamic simulation of the modeled object 11 to be modeled from the input unit 24.
Accepting conditions are roughly classified into material physical property conditions, modeling conditions, and structure sizes.
These conditions are received by the material property condition receiving unit 16a, the modeling condition receiving unit 16b, and the structure size receiving unit 16c, respectively.

造形条件は、例えば、熱源の出力、熱源の種類、ビームプロファイル、走査速度、走査シーケンス、ラインオフセット又は予熱条件などをパラメータとする条件である。
材料物性条件は、材料の機械的物性値及び熱物性値などをパラメータとする条件である。
The modeling conditions are conditions using, for example, the output of the heat source, the type of the heat source, the beam profile, the scanning speed, the scanning sequence, the line offset, or the preheating condition as parameters.
The material physical property condition is a condition in which the mechanical physical property value and the thermal physical property value of the material are used as parameters.

機械的物性値は、ヤング率、耐力、線膨張係数又は加工硬化指数などである。熱物性値は、熱伝導率又は比熱などである。
これらの物性値には、室温から金属の溶融温度までの温度依存性、又は相変態に伴うヒステリシスなど既知の数値を用いることができる。
The mechanical property value is Young's modulus, yield strength, linear expansion coefficient, work hardening index, or the like. The thermophysical property value is thermal conductivity or specific heat.
As these physical property values, known numerical values such as temperature dependence from room temperature to the melting temperature of the metal, or hysteresis accompanying phase transformation can be used.

固有ひずみ算出部17は、これらの条件、及び固有ひずみε*の線形式から固有ひずみε*を算出する。
この線形式は、造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる。以下、線形式について詳述する。
The intrinsic strain calculation unit 17 calculates the intrinsic strain ε * from these conditions and the linear form of the intrinsic strain ε * .
This linear format is derived on the basis of constraint conditions that quantify the constraint state around the molten pool generated during modeling. Hereinafter, the line format will be described in detail.

周囲の拘束が強い場合、塑性ひずみΔεplstの変化量は、金属粉末12の溶融温度から降伏ひずみ最小温度Taまでに生じる熱ひずみ量Δεthm,Taとこの温度Taにおける降伏ひずみεyld,Taにて表現できることがわかった。 When the surrounding constraint is strong, the amount of change in the plastic strain Δε plst is the amount of thermal strain Δε thm, Ta generated from the melting temperature of the metal powder 12 to the minimum yield strain temperature Ta and the yield strain ε yld, Ta at this temperature Ta. I understood that I can express.

この性質に着目して、次式(1)を導くことができる。
Δεplst = − Δεthm,Ta − εyld,Ta − C1 (1)
ただし、温度Taは降伏ひずみが最小となる温度であり、C1は予熱温度、ビームシーケンス、及び構造サイズにより決定される定数(0から最大0.004となる定数)、をそれぞれ示す。
Focusing on this property, the following equation (1) can be derived.
Δε plst = − Δε thm, Ta − ε yld, Ta − C 1 (1)
Here, the temperature Ta is a temperature at which the yield strain is minimized, and C 1 is a constant determined by the preheating temperature, the beam sequence, and the structure size (a constant from 0 to a maximum of 0.004).

また、造形時ビーム15によって溶融された溶融池周辺には、剛性が弱いパウダー領域と、凝固して剛性を有する固体領域と、が併存する。
このような併存環境下では、熱源走査方向は固体領域からせん断的な拘束を受ける一方で、熱源走査直交方向はパウダー領域に隣接しており拘束が弱く自由収縮の状態になる。
In addition, around the molten pool melted by the modeling beam 15, a powder region having low rigidity and a solid region having solidity and solidified coexist.
In such a coexisting environment, the heat source scanning direction is subjected to a shearing constraint from the solid region, while the heat source scanning orthogonal direction is adjacent to the powder region and is in a free contraction state because the constraint is weak.

そのため、塑性ひずみΔεplstの発生量は各方向で異なる。
つまり、熱ひずみΔεthm,cool、相変態ひずみΔεtrn、及び塑性ひずみΔεplstの和で表される冷却時の固有ひずみε*の成分(ε* v,cool,ε* p,cool)に差異を生じさせる。
Therefore, the amount of plastic strain Δε plst is different in each direction.
In other words, there is a difference in the components (ε * v, cool , ε * p, cool ) of the inherent strain ε * during cooling expressed by the sum of thermal strain Δε thm, cool , phase transformation strain Δε trn , and plastic strain Δε plst Give rise to

すなわち、熱源の走査直交方向の冷却時に発生する固有ひずみε* v,coolへの寄与はゼロ、熱源の走査方向の冷却時に発生する固有ひずみε*における成分は完全拘束状態下での塑性ひずみΔεplstに一致することから次式(2),(3)が導かれる。
ε* v,cool =Δεthm,cool + Δεtrn (2)
ε* p,cool =Δεthm,cool + Δεtrn + Δεplst (3)
That is, the contribution to the inherent strain ε * v, cool generated when the heat source is cooled in the direction orthogonal to the scanning direction is zero, and the component of the inherent strain ε * generated when the heat source is cooled in the scanning direction is the plastic strain Δε under a completely constrained state. The following equations (2) and (3) are derived from the fact that they agree with plst .
ε * v, cool = Δε thm, cool + Δε trn (2)
ε * p, cool = Δε thm, cool + Δε trn + Δε plst (3)

ここで、Δεthm,coolは溶融温度を基準とする熱ひずみ量、Δεtrnは冷却時に発生する相変態ひずみである。 Here, Δε thm, cool is the amount of thermal strain based on the melting temperature, and Δε trn is the phase transformation strain generated during cooling.

また、一般に、温度Taの時の降伏応力σyld,Taと、温度Taの時の降伏ひずみεyld,Taとの間に次式(4)が成立する。
εyld,Ta = − ( σyld,Ta + H ) / ETa (4)
In general, the following equation (4) is established between the yield stress σ yld, Ta at the temperature Ta and the yield strain ε yld, Ta at the temperature Ta.
ε yld, Ta = − (σ yld, Ta + H) / E Ta (4)

ただし、Δεthm,Taは溶融温度を基準とし温度Taまでに生じる熱ひずみ量、Δεplstは塑性ひずみの変化量、εyld,Taは温度Taにおける降伏ひずみ量、σyld,Taは温度Taの時の降伏応力、Hは加工硬化量、ETaは温度Taの時のヤング率、C2,C3は昇温時に発生する固有ひずみ定数、をそれぞれ示す。 Where Δε thm, Ta is the amount of thermal strain generated up to temperature Ta with reference to the melting temperature, Δε plst is the amount of change in plastic strain, ε yld, Ta is the yield strain at temperature Ta, and σ yld, Ta is the temperature Ta Yield stress, H is work hardening, E Ta is Young's modulus at temperature Ta, and C 2 and C 3 are intrinsic strain constants generated at elevated temperature.

また、構造物全体でビーム走査方向がレイヤー毎に変更される場合、構造物全体の固有ひずみε*は、熱源の走査直交方向の固有ひずみε* v、熱源走査方向の固有ひずみε* p、及び定数α,βを用いて次式(5)と表される。
また、一般に、各種の固有ひずみの各成分(ε* v,ε* p)と、冷却時の固有ひずみε*の成分(ε* v,cool,ε* p,cool)と、の間には次式(6),(7)が成立する。
ε*=αε* v+βε* p (5)
ε* v = ε* v,cool + C2 (6)
ε* p = ε* p,cool + C3 (7)
In addition, when the beam scanning direction is changed for each layer in the entire structure, the inherent strain ε * of the entire structure is equal to the inherent strain ε * v in the scan source orthogonal direction, the inherent strain ε * p in the heat source scan direction, And the constants α and β are expressed as the following equation (5).
In general, between each component of various intrinsic strains (ε * v , ε * p ) and components of intrinsic strain ε * during cooling (ε * v, cool , ε * p, cool ) The following expressions (6) and (7) are established.
ε * = αε * v + βε * p (5)
ε * v = ε * v, cool + C 2 (6)
ε * p = ε * p, cool + C 3 (7)

なお、定数α,βは構造物内のビーム走査方向の比率であり、入熱条件又は材料特性等によって変化する。
加えて、造形中に予熱や後熱プロセスがある場合、塑性ひずみΔεplstの緩和の影響を反映させてもよい。
The constants α and β are ratios in the beam scanning direction in the structure, and change depending on heat input conditions, material characteristics, and the like.
In addition, when there is a preheating or postheating process during modeling, the influence of relaxation of the plastic strain Δε plst may be reflected.

なお、例えば外的拘束が強くなった場合は、熱源直交方向の冷却時の固有ひずみはε* vと等価な式(8)で表現することもできる。
ε* v=Δεthm,cool + Δεtrn + Δεplst (8)
For example, when the external constraint becomes stronger, the inherent strain at the time of cooling in the direction orthogonal to the heat source can also be expressed by Expression (8) equivalent to ε * v .
ε * v = Δε thm, cool + Δε trn + Δε plst (8)

固有ひずみε*は、式(3)に式(1)を代入して式(2)〜(4),(6),(7)を式(5)に代入することで、次式(9)のように上記各物理量の線形結合で表すことができる。 The intrinsic strain ε * is obtained by substituting the equation (1) into the equation (3) and substituting the equations (2) to (4), (6), and (7) into the equation (5). ) And can be represented by a linear combination of the above physical quantities.

ε*=α{Δεthm,cool+Δεtrn+C2}
+β{Δεthm,Ta+(σyld,Ta +H)/ETa−C1+Δεthm,cool+Δεtrn+C3} (9)
なお、本理論式は一例であり、これに限られたものではない。例えば、必要に応じて各項に係数がつくこともある。
ε * = α {Δε thm, cool + Δε trn + C 2 }
+ β {Δε thm, Ta + (σ yld, Ta + H) / E Ta −C 1 + Δε thm, cool + Δε trn + C 3 } (9)
In addition, this theoretical formula is an example, and is not limited to this. For example, a coefficient may be added to each term as necessary.

以上より、熱弾塑性解析法等、通常極めて複雑になる解析による固有ひずみの導出をせずに、式(9)から精度の高い固有ひずみε*を算出することができる。 As described above, the inherent strain ε * with high accuracy can be calculated from the equation (9) without deriving the inherent strain by an analysis that is usually extremely complicated, such as a thermoelastic-plastic analysis method.

(第1実施形態)
図3(A)〜(C)は、サポート18を用いた積層造形工程を説明する模式図である。
図3(A)は積層造形処理中の状態、図3(B)は積層造形処理終了時の状態、図3(C)は最終造形物11からサポート18を切り離した状態、を示している。
(First embodiment)
FIGS. 3A to 3C are schematic views for explaining a layered manufacturing process using the support 18.
3A shows a state during the additive manufacturing process, FIG. 3B shows a state at the end of the additive manufacturing process, and FIG. 3C shows a state where the support 18 is separated from the final object 11.

図3(A),(B)に示されるように、最終造形物11の形状が複雑になると、設計形状維持の観点から、最終造形物11に加えて、サポート18も併せて造形する場合がある。   As shown in FIGS. 3A and 3B, when the shape of the final model 11 becomes complicated, the support 18 may be modeled together with the final model 11 from the viewpoint of maintaining the design shape. is there.

サポート18によって、最終造形物11の積層過程における自重による撓み、入熱過程で発生する応力等による形状の反り返り、又は熱の滞留等が防止される。
積層造形処理の終了後には、図3(C)に示されるように、サポート18は、ワイヤカッター等で最終造形物11から切り離される。
The support 18 prevents bending due to its own weight in the stacking process of the final shaped article 11, warping of the shape due to stress generated in the heat input process, or heat retention.
After completion of the layered modeling process, as shown in FIG. 3C, the support 18 is separated from the final modeled article 11 with a wire cutter or the like.

なお、図3(A)〜(C)では、理解を容易にするため最終造形物11とサポート18とをドットで識別しているが、これらは同一の材料で構成されることが多い。
サポート18の形状には多様なものがあるが、例えば図3(B)に示されるように、棒状に成形される。
In FIGS. 3A to 3C, the final model 11 and the support 18 are identified by dots for easy understanding, but they are often made of the same material.
Although there are various shapes of the support 18, for example, as shown in FIG.

第1実施形態に係る解析装置100は、算出装置10で算出される固有ひずみε*を用いて、このサポート18の形状又は本数の決定するものである。 The analysis apparatus 100 according to the first embodiment determines the shape or number of the support 18 using the inherent strain ε * calculated by the calculation apparatus 10.

また、図4は、第1実施形態に係る解析装置100及びこの解析装置100が適用される積層造形装置200の概略構成図である。
図4に示されるように、解析装置100は、最大値取得部21(最大許容変形量取得部21a,最大許容応力値取得部21b)、全体モデル解析部22、第1判定部34、サポートデータ修正部23、及び上述した算出装置10、を備える。
FIG. 4 is a schematic configuration diagram of the analysis apparatus 100 according to the first embodiment and the additive manufacturing apparatus 200 to which the analysis apparatus 100 is applied.
As shown in FIG. 4, the analysis apparatus 100 includes a maximum value acquisition unit 21 (maximum allowable deformation amount acquisition unit 21 a and maximum allowable stress value acquisition unit 21 b), an overall model analysis unit 22, a first determination unit 34, support data. The correction part 23 and the calculation apparatus 10 mentioned above are provided.

最大値取得部21(21a,21b)は、XYZ三成分の行列で表現される、造形物11の最大許容変形δmax又は最大許容応力σmaxを取得する。
最大許容応力σmaxは、例えば、サポート18が折損する限界応力である。
The maximum value acquisition unit 21 (21a, 21b) acquires the maximum allowable deformation δ max or the maximum allowable stress σ max of the molded article 11 expressed by an XYZ three-component matrix.
The maximum allowable stress σ max is, for example, a critical stress at which the support 18 breaks.

これらの行列成分は、解析者の入力によって受け付けられた造形物11と金属粉末供給レーキ13等の機器との距離、及び余肉寸法に基づいて計算されてもよい。
このとき、最大値取得部21(21a,21b)は、図4に例示されるように、余肉寸法受付部27及び距離受付部28を介して外部の入力部24と接続される。
These matrix components may be calculated based on the distance between the modeled object 11 and the metal powder supply rake 13 or the like received by the analyst's input and the surplus dimensions.
At this time, the maximum value acquisition unit 21 (21a, 21b) is connected to the external input unit 24 via the surplus dimension receiving unit 27 and the distance receiving unit 28 as illustrated in FIG.

一方、固有ひずみ算出部17で算出された固有ひずみε*は、例えば熱ひずみとして全体モデル解析部22に入力される。
全体モデル解析部22は、造形物11の全体モデル31の各要素32に固有ひずみε*を適用し解析をして造形物11の各所の変形δ又は残留応力σを導出する。
On the other hand, the inherent strain ε * calculated by the inherent strain calculation unit 17 is input to the overall model analysis unit 22 as, for example, thermal strain.
The overall model analysis unit 22 applies an inherent strain ε * to each element 32 of the overall model 31 of the modeled object 11 and performs analysis to derive deformation δ or residual stress σ at various points of the modeled object 11.

固有ひずみ法による解析では、層の出現が繰り返し行われる実際の挙動を再現するため、要素32の出現と固有ひずみε*の適用を繰り返す。
全体モデル解析部22で用いられる全体モデル31は、例えば最終構造物データ及びサポートデータとして全体モデルデータ保持部35に保持又は作成される。
In the analysis by the inherent strain method, the appearance of the element 32 and the application of the inherent strain ε * are repeated in order to reproduce the actual behavior in which the appearance of the layer is repeatedly performed.
The overall model 31 used in the overall model analysis unit 22 is held or created in the overall model data holding unit 35 as final structure data and support data, for example.

ここで、図5(A)は、全体モデル31の一例を示す図である。全体モデル31は、解析される構造物の全体を表現したモデルであって、ソリッド要素又はシェル要素などの要素32で構成される。
より厳密な解析をする場合は、適用される固有ひずみε*を、例えば式(9)で定数α,βを変更して、要素32毎に異ならせることが望ましい。
Here, FIG. 5A is a diagram illustrating an example of the overall model 31. The overall model 31 is a model that represents the entire structure to be analyzed, and is composed of elements 32 such as solid elements or shell elements.
When performing a stricter analysis, it is desirable to change the applied inherent strain ε * for each element 32 by changing the constants α and β in, for example, Equation (9).

例えば1層毎に熱源走査方向を変更しながら造形する場合、各要素32に適用する固有ひずみε*を変更する。
なお、現実に積層される1層とデータ上の1要素32とを1対1で対応させる必要はない。つまり、複数層を合わせた高さを、一つの要素32の高さにして、モデルを簡略化してもよい。
For example, when modeling while changing the heat source scanning direction for each layer, the inherent strain ε * applied to each element 32 is changed.
It is not necessary to have a one-to-one correspondence between one layer actually stacked and one element 32 on the data. That is, the model may be simplified by setting the height of the plurality of layers to the height of one element 32.

また、図5(B)は、全体モデル解析部22による全体モデル31における残留応力σの分布を示す図、図5(C)は、全体モデル解析部22による全体モデル31における変形δを示す図である。
全体モデル解析部22による解析によって、図5(B),(C)に示されるように、材料物性条件などの各種の条件に依存した残留応力σ及び造形物11の変形δをシミュレートすることができる。
5B shows a distribution of residual stress σ in the overall model 31 by the overall model analysis unit 22, and FIG. 5C shows a deformation δ in the overall model 31 by the overall model analysis unit 22. It is.
As shown in FIGS. 5B and 5C, the residual stress σ and the deformation δ of the shaped article 11 depending on various conditions such as material physical properties are simulated by the analysis by the overall model analysis unit 22. Can do.

第1判定部34は、残留応力σ及び変形δのいずれかが最大許容変形δmax又は最大許容応力σmaxを超えている場合に修正判定をする。
判定結果は、適宜表示部26に表示される。
The first determination unit 34 performs correction determination when any of the residual stress σ and the deformation δ exceeds the maximum allowable deformation δ max or the maximum allowable stress σ max .
The determination result is displayed on the display unit 26 as appropriate.

サポートデータ修正部23は、修正判定がなされた場合に残留応力σ及び変形δが低減するように造形物11を支持するサポート18の三次元データを修正する。
固有ひずみε*の算出、修正判定及び修正を繰り返してサポート18の形状、トポロジー又は寸法を最適化する。
修正は、当該変形δの変位量と逆符号の変位量を造形物11の全体モデル31のデータに加える方法を用いることもできる。
The support data correction unit 23 corrects the three-dimensional data of the support 18 that supports the model 11 so that the residual stress σ and the deformation δ are reduced when the correction determination is made.
The calculation, correction determination and correction of the inherent strain ε * are repeated to optimize the shape, topology or dimensions of the support 18.
The correction may be performed by adding a displacement amount opposite to the displacement amount of the deformation δ to the data of the entire model 31 of the molded article 11.

このように算出装置10で算出された固有ひずみε*を用いて、固有ひずみ法を使用することで、解析負荷を小さくすることができ、サポート18の形状又は本数の改善を短時間で行うことができる。 By using the inherent strain method using the inherent strain ε * calculated by the calculation device 10 in this way, the analysis load can be reduced, and the shape or number of the supports 18 can be improved in a short time. Can do.

なお、例えば造形指令部36、アクチュエータ37、及び表示部26などを備える造形部40に、解析装置100を組み込んで解析機能付き積層造形装置200としてもよい。
このように一体形成する場合、例えば造形指令部36は第1判定部34に接続されて、改善されたサポート18の情報を取得する。
そして、造形指令部36の制御によって、適正形状にされたサポート18とともに最終造形物11をアクチュエータ37で造形する。
For example, the analysis apparatus 100 may be incorporated into the modeling unit 40 including the modeling command unit 36, the actuator 37, the display unit 26, and the like to form the additive manufacturing apparatus 200 with an analysis function.
When integrally forming in this way, for example, the modeling command unit 36 is connected to the first determination unit 34 and acquires information on the improved support 18.
Then, the final shaped object 11 is shaped by the actuator 37 together with the support 18 having an appropriate shape under the control of the shaping command unit 36.

次に、第1実施形態に係る積層造形物の解析方法を図6のフローチャートを用いて説明する(適宜図4を参照)。   Next, the method for analyzing a layered object according to the first embodiment will be described with reference to the flowchart of FIG. 6 (see FIG. 4 as appropriate).

まず、条件受付部16が、造形条件、材料物性条件、造形物サイズ等の条件を受け付ける(S11)。
そして、固有ひずみ算出部17が、例えば式(9)の線形式を用いて固有ひずみεを算出する(S12)。
全体モデル解析部22が、全体モデル31の残留応力σ及び変形δを算出する(S13)。
First, the condition receiving unit 16 receives conditions such as modeling conditions, material property conditions, and model size (S11).
Then, the intrinsic strain calculation unit 17 calculates the intrinsic strain ε using, for example, the linear form of the equation (9) (S12).
The overall model analysis unit 22 calculates the residual stress σ and deformation δ of the overall model 31 (S13).

次に、最大許容変形量取得部21aが最大許容変形δmaxを、最大許容応力値取得部21bが最大許容応力σmaxを取得する(S14)。
そして、第1判定部34が変形δと許容される最大許容変形δmaxとの大小関係を比較する(S15)。
変形δが最大許容変形δmaxより大きい場合には、サポートデータ修正部23がサポートの形状を修正する(S15で結果がNO:S16を経てS11へ戻る)。
Next, the maximum allowable deformation amount acquisition unit 21a acquires the maximum allowable deformation δ max and the maximum allowable stress value acquisition unit 21b acquires the maximum allowable stress σ max (S14).
Then, the first determination unit 34 compares the magnitude relationship between the deformation δ and the maximum allowable deformation δ max (S15).
When the deformation δ is larger than the maximum allowable deformation δ max , the support data correction unit 23 corrects the shape of the support (the result is NO in S15, returns to S11 via S16).

このように、固有ひずみε*の算出、残留応力σ及び変形δの導出、及びサポートデータにおける構造の修正を繰り返す(S11〜S16)。
そして、変形δが許容される最大許容変形δmaxより小さくなったとき、第1判定部34は残留応力σと最大許容応力σmaxとの大小関係を判定する(S15で結果がYES:S17へ進む)。
残留応力σが最大許容応力σmaxより大きい場合、サポートデータ修正部23がサポートの形状を修正する(S17で結果がNO:S16を経てS11へ戻る)。
In this way, the calculation of the inherent strain ε * , the derivation of the residual stress σ and the deformation δ, and the modification of the structure in the support data are repeated (S11 to S16).
When the deformation δ becomes smaller than the allowable maximum allowable deformation δ max , the first determination unit 34 determines the magnitude relationship between the residual stress σ and the maximum allowable stress σ max (the result is YES in S15: S17). move on).
When the residual stress σ is larger than the maximum allowable stress σ max , the support data correction unit 23 corrects the shape of the support (the result is NO in S17, and returns to S11 via S16).

このように、固有ひずみε*の算出、残留応力σ及び変形δの導出、及びサポートデータにおける構造の修正を繰り返す(S11〜S17)。
残留応力σが最大許容応力σmaxより小さくなった場合(S17:YES)、このときのサポート18の形状が最適形状となって決定される(S18:END)。
In this way, the calculation of the inherent strain ε * , the derivation of the residual stress σ and the deformation δ, and the correction of the structure in the support data are repeated (S11 to S17).
When the residual stress σ is smaller than the maximum allowable stress σ max (S17: YES), the shape of the support 18 at this time is determined as the optimum shape (S18: END).

なお、このシミュレーション経過又はサポート18の最終形状は、適宜表示部26に表示される。
また、第1判定部34における2つの判定ステップS15,S17は、順序不同である。
The simulation process or the final shape of the support 18 is appropriately displayed on the display unit 26.
Further, the two determination steps S15 and S17 in the first determination unit 34 are out of order.

なお、以上の動作は、プログラムに沿ってコンピュータで実行してもよい。
例えば、解析装置100は、CPU等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、或いはHDD(Hard Disk Drive)等の記憶装置、を具備するコンピュータとして構成することができる。
The above operations may be executed by a computer in accordance with a program.
For example, the analysis apparatus 100 can be configured as a computer including a processor such as a CPU, a storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), or an HDD (Hard Disk Drive).

この場合、図4に示す各部のうち、算出装置10、全体モデル解析部22、サポートデータ修正部23、及び第1判定部34の機能は、記憶装置に記憶された所定のプログラムをプロセッサが実行することによって実現することができる。
また、このようなソフトウェア処理に換えて、ASIC(Application Specific Integration Circuit)やFPGA(Field-programmable Gate Array)等のハードウェアで実現することもできる。
In this case, among the units shown in FIG. 4, the functions of the calculation device 10, the overall model analysis unit 22, the support data correction unit 23, and the first determination unit 34 are such that the processor executes a predetermined program stored in the storage device. Can be realized.
Further, in place of such software processing, it can be realized by hardware such as ASIC (Application Specific Integration Circuit) or FPGA (Field-programmable Gate Array).

さらに、これらは、ソフトウェア処理とハードウェアによる処理を組み合わせて実現することもできる。
また、図4に示す構成のうち、全体モデルデータ保持部35は、ROM又はRAM等の記憶装置によって実現される。
Further, these can be realized by combining software processing and hardware processing.
In the configuration shown in FIG. 4, the overall model data holding unit 35 is realized by a storage device such as a ROM or a RAM.

以上のように、第1実施形態に係る解析装置100によれば、線形式(9)で算出された固有ひずみε*で解析することで、シミュレーションを用いてサポート18の形状を適正化することができる。 As described above, according to the analysis apparatus 100 according to the first embodiment, the shape of the support 18 is optimized using simulation by analyzing with the inherent strain ε * calculated in the line format (9). Can do.

(第2実施形態)
図7は、第2実施形態に係る解析装置100の概略構成図である。
(Second Embodiment)
FIG. 7 is a schematic configuration diagram of an analysis apparatus 100 according to the second embodiment.

第2実施形態に係る解析装置100は、図7に示されるように、最大値取得部21、全体モデル逆解析部45、造形条件修正部39、第2判定部41及び上述した固有ひずみ算出装置10を備える。   As shown in FIG. 7, the analysis device 100 according to the second embodiment includes a maximum value acquisition unit 21, an overall model inverse analysis unit 45, a modeling condition correction unit 39, a second determination unit 41, and the above-described intrinsic strain calculation device. 10 is provided.

最大値取得部21は、第1実施形態と同様に、造形物11の各所の最大許容変形δmax及び最大許容応力σmaxを取得する。 The maximum value acquisition unit 21 acquires the maximum allowable deformation δ max and the maximum allowable stress σ max at various locations of the molded article 11 as in the first embodiment.

全体モデル逆解析部45は、構造物の全体モデルについて逆解析して、取得した最大許容変形δmax及び最大許容応力σmaxを発生させる最大許容固有ひずみε*を導出する。 The overall model inverse analysis unit 45 performs inverse analysis on the overall model of the structure, and derives the maximum allowable intrinsic strain ε * that generates the acquired maximum allowable deformation δ max and maximum allowable stress σ max .

一方、算出装置10は、第1実施形態と同様に、条件受付部16が受け付けた材料物性条件、造形条件、及び造形物サイズ等に基づいて、固有ひずみε*を算出する。
なお、算出装置10に入力される条件は、例えば条件作成部42で作成される変更可能なデータである。
On the other hand, the calculation device 10 calculates the inherent strain ε * based on the material property condition, the modeling condition, the model size, and the like received by the condition receiving unit 16 as in the first embodiment.
The condition input to the calculation device 10 is changeable data created by the condition creation unit 42, for example.

第2判定部41は、算出装置10で算出された固有ひずみε*と、最大許容固有ひずみε*とを比較して、固有ひずみε*が最大許容固有ひずみε*より大きい場合に、修正判定をする。 Second determining section 41, the inherent strain epsilon * calculated by the calculation device 10 compares the maximum allowed specific strain epsilon *, if the inherent strain epsilon * is greater than the maximum allowed specific strain epsilon *, corrected determination do.

造形条件修正部39は、この修正判定の結果を受信して、固有ひずみが最大許容固有ひずみ以下になるように条件作成部42に保持された条件を修正する。
修正される条件は、例えば、予熱条件、溶融ビームシーケンス、及びビーム条件などの造形条件である。
The modeling condition correcting unit 39 receives the result of the correction determination, and corrects the condition held in the condition creating unit 42 so that the inherent strain is equal to or less than the maximum allowable intrinsic strain.
The conditions to be corrected are modeling conditions such as preheating conditions, molten beam sequences, and beam conditions.

このように第2実施形態によれば、線形式(9)で算出された固有ひずみε*で解析することで、入力される条件の適正範囲をシミュレーションで導出することができる。 As described above, according to the second embodiment, by analyzing with the inherent strain ε * calculated in the line format (9), an appropriate range of the input condition can be derived by simulation.

なお、最大許容応力σmax及び最大許容変形δmaxから逆解析によって最大許容固有ひずみε*を導出して、入力条件の適正範囲を導出すること以外は、第2実施形態は第1実施形態と構成的にも動作的にも同様となるので、重複する説明を省略する。 The second embodiment is different from the first embodiment except that the maximum allowable inherent strain ε * is derived from the maximum allowable stress σ max and the maximum allowable deformation δ max by inverse analysis to derive an appropriate range of input conditions. Since the configuration and operation are the same, redundant description is omitted.

次に、第2実施形態に係る積層造形物の解析方法の動作手順を、図8のフローチャートを用いて説明する(適宜図7を参照)。
まず、最大値取得部21(21a,21b)が、最大許容変形δmax及び最大許容応力σmaxを取得する(S21)。
Next, the operation procedure of the method for analyzing a layered object according to the second embodiment will be described with reference to the flowchart of FIG. 8 (refer to FIG. 7 as appropriate).
First, the maximum value acquisition unit 21 (21a, 21b) acquires the maximum allowable deformation δ max and the maximum allowable stress σ max (S21).

そして、全体モデル逆解析部45が、全体モデル31について逆解析をして、これら最大許容変形δmax及び最大許容応力σmaxを発生させる最大許容固有ひずみε*を導出する(S22)。
一方、条件作成部42が、材料物性条件、造形条件、及び造形物サイズ等の条件を作成する(S23)。
そして、入力されたこの条件に基づいて、算出装置10が固有ひずみε*を線形式から算出する(S24)。
Then, the overall model inverse analysis unit 45 performs an inverse analysis on the overall model 31 to derive the maximum allowable intrinsic strain ε * that generates the maximum allowable deformation δ max and the maximum allowable stress σ max (S22).
On the other hand, the condition creating unit 42 creates conditions such as material physical property conditions, modeling conditions, and modeling object sizes (S23).
Based on this input condition, the calculation device 10 calculates the inherent strain ε * from the linear format (S24).

次に、第2判定部41が、最大許容固有ひずみε*と固有ひずみε*との大小関係を比較する(S25)。
固有ひずみε*が、最大許容固有ひずみε*より大きい場合(S25:NO)、造形条件修正部39が条件作成部42の条件を修正する(S26を経てS24へ戻る)。
Next, the second determination unit 41 compares the magnitude relationship between the maximum allowable intrinsic strain ε * and the intrinsic strain ε * (S25).
When the inherent strain ε * is larger than the maximum allowable inherent strain ε * (S25: NO), the modeling condition correcting unit 39 corrects the conditions of the condition creating unit 42 (returns to S24 via S26).

このように、条件の修正と、固有ひずみε*と最大許容固有ひずみε*との比較を繰り返す(S24〜S26)
固有ひずみε*が最大許容固有ひずみε*より小さくなると(S25:YES:S21へ)、このときの条件作成部42にある条件が適正条件として決定される(S27:END)。
As described above, the correction of the conditions and the comparison between the intrinsic strain ε * and the maximum allowable intrinsic strain ε * are repeated (S24 to S26).
When the inherent strain ε * becomes smaller than the maximum allowable intrinsic strain ε * (S25: YES: go to S21), the conditions in the condition creating unit 42 at this time are determined as appropriate conditions (S27: END).

以上のように、第2実施形態に係る解析装置100によれば、線形式(9)で算出された固有ひずみε*で解析することで、積層造形処理で必要な条件の適正範囲をシミュレーションで導出することができる。 As described above, according to the analysis apparatus 100 according to the second embodiment, by analyzing with the inherent strain ε * calculated in the line format (9), an appropriate range of conditions necessary for the additive manufacturing process can be simulated. Can be derived.

以上述べた少なくとも一つの実施形態の積層造形物の固有ひずみ算出装置によれば、溶融池周辺の環境状態を立式化することにより、低い計算負荷で固有ひずみが算出可能となる。
また、積層造形物の固有ひずみ算出方法、その固有ひずみ算出プログラム、その解析装置、その解析方法、及び積層造形装置によっても、同様の効果を発揮することができる。
According to the apparatus for calculating the inherent strain of the layered object according to at least one embodiment described above, the inherent strain can be calculated with a low calculation load by formulating the environmental state around the molten pool.
Moreover, the same effect can be exhibited also by the inherent strain calculation method of the layered object, its inherent strain calculation program, its analysis device, its analysis method, and the layered object modeling device.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。
これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention.
These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention.
These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…固有ひずみ算出装置(算出装置)、11…最終造形物(造形物)、12…金属粉末、13…金属粉末供給レーキ、15…ビーム、16…条件受付部、16a(16)…材料物性条件受付部、16b(16)…造形条件受付部、16c(16)…構造物サイズ受付部、17…算出部、18…サポート、19…基盤、21(21a,21b)…最大値取得部(最大許容変形量取得部,最大許容応力値取得部)、22…全体モデル解析部、23…サポートデータ修正部、24…入力部、26…表示部、27…余肉寸法受付部、28…距離受付部、31…全体モデル、32…要素、34…第1判定部、35…全体モデルデータ保持部、36…造形指令部、37…アクチュエータ、39…造形条件修正部、40…造形部、41…第2判定部、42…条件作成部、45…全体モデル逆解析部、100…解析装置、200…積層造形装置(解析機能付き積層造形装置)、Ta…最小温度、Δεthm…量、Δεyld…変化量、α…定数、δ…変形、δmax…最大許容変形、σ…残留応力、σmax…最大許容応力、σyld…降伏応力。 DESCRIPTION OF SYMBOLS 10 ... Intrinsic strain calculation apparatus (calculation apparatus), 11 ... Final shaped object (modeled object), 12 ... Metal powder, 13 ... Metal powder supply rake, 15 ... Beam, 16 ... Condition reception part, 16a (16) ... Material physical property Condition receiving unit, 16b (16) ... modeling condition receiving unit, 16c (16) ... structure size receiving unit, 17 ... calculating unit, 18 ... support, 19 ... base, 21 (21a, 21b) ... maximum value acquiring unit ( (Maximum allowable deformation amount acquisition unit, maximum allowable stress value acquisition unit), 22 ... overall model analysis unit, 23 ... support data correction unit, 24 ... input unit, 26 ... display unit, 27 ... surplus dimension receiving unit, 28 ... distance Receiving unit, 31 ... general model, 32 ... element, 34 ... first determination unit, 35 ... general model data holding unit, 36 ... modeling command unit, 37 ... actuator, 39 ... modeling condition correcting unit, 40 ... modeling unit, 41 ... 2nd determination part, 42 Condition creation unit, 45 ... global model inversion unit, 100 ... analysis device, 200 ... layered manufacturing device (analysis function laminate molding apparatus), Ta ... minimum temperature, [Delta] [epsilon] thm ... quantity, [Delta] [epsilon] YLD ... variation, alpha ... Constant Δ, deformation, δ max, maximum allowable deformation, σ, residual stress, σ max, maximum allowable stress, σ yld, yield stress.

Claims (14)

積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付ける条件受付部と、
前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出する固有ひずみ算出部と、を備えることを特徴とする積層造形物の固有ひずみ算出装置。
A condition receiving unit for receiving material physical property conditions, modeling conditions, and conditions related to the structure size for a structure modeled by additive manufacturing;
An inherent strain calculation unit that calculates the inherent strain from a linear form of the inherent strain that is derived based on the conditions and the constraint conditions that quantify the constraint state around the molten pool that is generated during modeling, A device for calculating the inherent strain of a layered object to be manufactured.
前記線形式は、塑性ひずみの変化量が前記構造物を組成する金属の溶融温度から降伏ひずみ最小温度までに生じる熱ひずみ量、及び最小降伏ひずみ量の線形結合で表される関係式に基づいて導出される請求項1に記載の積層造形物の固有ひずみ算出装置。 The linear form is based on the relational expression expressed by the linear combination of the amount of change in plastic strain from the melting temperature of the metal constituting the structure to the minimum temperature of yield strain and the minimum amount of yield strain. The intrinsic strain calculation apparatus for a layered object according to claim 1 derived. 前記造形条件は、予熱条件、溶融ビームシーケンス、ビーム条件の少なくとも一つである請求項1又は請求項2に記載の積層造形物の固有ひずみ算出装置。 The intrinsic strain calculation apparatus for a layered object according to claim 1 or 2, wherein the modeling condition is at least one of a preheating condition, a melt beam sequence, and a beam condition. 請求項1から請求項3の少なくとも1項に記載の固有ひずみ算出装置と、
前記固有ひずみに基づいて前記構造物の全体モデルについて解析をして前記条件に対応した前記構造物の各所の変形又は残留応力を導出する全体モデル解析部と、を備える積層造形物の解析装置。
The inherent strain calculation apparatus according to at least one of claims 1 to 3,
An apparatus for analyzing a layered object comprising: an overall model analysis unit that analyzes an overall model of the structure based on the inherent strain and derives deformation or residual stress at various locations of the structure corresponding to the condition.
三次元積層造形物の最大許容変形量及び最大許容応力の少なくとも一方の入力を取得する最大値取得部と、
前記残留応力及び前記変形の少なくとも一方が前記最大許容変形量又は前記最大許容応力を超えている場合に修正判定をする判定部と、を備える請求項4に記載の積層造形物の解析装置。
A maximum value acquisition unit for acquiring at least one of the maximum allowable deformation amount and the maximum allowable stress of the three-dimensional layered object,
The analysis apparatus for a layered object according to claim 4, further comprising: a determination unit that performs correction determination when at least one of the residual stress and the deformation exceeds the maximum allowable deformation amount or the maximum allowable stress.
前記修正判定がなされた場合に前記残留応力及び前記変形が低減するように前記構造物を支持するサポートの三次元データの修正をするサポートデータ修正部を備える請求項5に記載の積層造形物の解析装置。 The layered object according to claim 5, further comprising: a support data correction unit that corrects three-dimensional data of a support that supports the structure so that the residual stress and the deformation are reduced when the correction determination is made. Analysis device. 前記固有ひずみの算出、前記修正判定及び前記修正を繰り返してサポートを最適形状、最適トポロジー及び最適寸法の少なくともいずれかに導く請求項6に記載の積層造形物の解析装置。 7. The layered object analysis apparatus according to claim 6, wherein the calculation of the inherent strain, the correction determination, and the correction are repeated to guide the support to at least one of an optimal shape, an optimal topology, and an optimal dimension. 前記修正は、当該変形の変位量と逆符号の変位量を前記構造物の全体モデルデータに加えることによる請求項6又は請求項7に記載の積層造形物の解析装置。 The analysis apparatus according to claim 6 or 7, wherein the correction is performed by adding a displacement amount opposite to a displacement amount of the deformation to the entire model data of the structure. 請求項1から請求項3のいずれか1項に記載の固有ひずみ算出装置と、
三次元積層造形物の各所の最大許容変形量及び最大許容応力の少なくとも一方の入力を取得する最大値取得部と、
前記構造物の全体モデルから逆解析して最大許容固有ひずみを導出する全体モデル逆解析部と、
前記固有ひずみが前記最大許容固有ひずみ以下になるように前記条件を修正する造形条件修正部と、を備える積層造形物の解析装置。
The inherent strain calculation apparatus according to any one of claims 1 to 3,
A maximum value acquisition unit for acquiring at least one of a maximum allowable deformation amount and a maximum allowable stress of each part of the three-dimensional layered object; and
An overall model inverse analysis unit for deriving a maximum allowable natural strain by performing an inverse analysis from the overall model of the structure;
An apparatus for analyzing a layered object, comprising: a modeling condition correcting unit that corrects the condition so that the inherent strain is equal to or less than the maximum allowable inherent strain.
請求項4から請求項9のいずれか1項に記載の積層造形物の解析装置を備える積層造形装置。 An additive manufacturing apparatus comprising the additive analysis apparatus according to any one of claims 4 to 9. 積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、
前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、を含むことを特徴とする積層造形物の固有ひずみ算出方法。
Receiving material property conditions, modeling conditions, and conditions regarding the structure size for a structure modeled by additive manufacturing; and
And the step of calculating the inherent strain from a linear form of the inherent strain derived based on a constraint condition obtained by quantifying a constraint state around the molten pool generated at the time of modeling and the molten pool. A method for calculating the inherent strain of an object.
コンピュータに、
積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップ、
前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップ、を実行させることを特徴とする積層造形物の固有ひずみ算出プログラム。
On the computer,
Receiving material property conditions, modeling conditions, and conditions regarding the structure size for a structure modeled by additive manufacturing;
The step of calculating the inherent strain from a linear form of the inherent strain derived based on the conditions and the constraint condition quantifying the constraint state around the molten pool generated at the time of modeling is performed. An inherent strain calculation program for objects.
積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、
前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、
前記固有ひずみに基づいて前記構造物の全体モデルについて解析をして前記条件に対応した前記構造物の各所の変形又は残留応力を導出するステップと、を含むことを特徴とする積層造形物の解析方法。
Receiving material property conditions, modeling conditions, and conditions regarding the structure size for a structure modeled by additive manufacturing; and
Calculating the intrinsic strain from a linear form of the inherent strain derived based on the conditions and the constraint conditions quantifying the constraint state around the molten pool generated at the time of modeling; and
Analyzing the entire model of the structure based on the inherent strain and deriving deformations or residual stresses at various locations of the structure corresponding to the conditions, Method.
積層造形によって造形される構造物についての材料物性条件、造形条件、及び構造物サイズに関する条件を受け付けるステップと、
前記条件、及び造形時に生成される溶融池周辺の拘束状態を定量化した拘束条件に基づいて導かれる固有ひずみの線形式から前記固有ひずみを算出するステップと、
三次元積層造形物の各所の最大許容変形量及び最大許容応力の少なくとも一方の入力を取得するステップと、
前記構造物の全体モデルから逆解析して最大許容固有ひずみを導出するステップと、
前記固有ひずみが前記最大許容固有ひずみ以下になるように前記条件を修正するステップと、を含むことを特徴とする積層造形物の解析方法。
Receiving material property conditions, modeling conditions, and conditions regarding the structure size for a structure modeled by additive manufacturing; and
Calculating the intrinsic strain from a linear form of the inherent strain derived based on the conditions and the constraint conditions quantifying the constraint state around the molten pool generated at the time of modeling; and
Obtaining at least one input of a maximum allowable deformation amount and a maximum allowable stress of each part of the three-dimensional layered object; and
Back-analyzing from the overall model of the structure to derive the maximum allowable intrinsic strain;
Correcting the condition so that the intrinsic strain is equal to or less than the maximum allowable intrinsic strain.
JP2017085518A 2017-04-24 2017-04-24 Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device Pending JP2018184623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085518A JP2018184623A (en) 2017-04-24 2017-04-24 Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085518A JP2018184623A (en) 2017-04-24 2017-04-24 Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device

Publications (1)

Publication Number Publication Date
JP2018184623A true JP2018184623A (en) 2018-11-22

Family

ID=64357140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085518A Pending JP2018184623A (en) 2017-04-24 2017-04-24 Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device

Country Status (1)

Country Link
JP (1) JP2018184623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109909502A (en) * 2019-03-18 2019-06-21 中国科学院合肥物质科学研究院 The on-line monitoring method of laser gain material manufacturing process based on multi-source heterogeneous data
JP2022032283A (en) * 2020-08-11 2022-02-25 三菱電機株式会社 Additional manufacturing device and additional manufacturing method
WO2022163329A1 (en) 2021-01-29 2022-08-04 株式会社神戸製鋼所 Method for predicting deformation of additively manufactured object
CN115455776A (en) * 2022-09-16 2022-12-09 北京航空航天大学 Physical-based intrinsic strain method for additive manufacturing residual stress and deformation prediction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109909502A (en) * 2019-03-18 2019-06-21 中国科学院合肥物质科学研究院 The on-line monitoring method of laser gain material manufacturing process based on multi-source heterogeneous data
JP2022032283A (en) * 2020-08-11 2022-02-25 三菱電機株式会社 Additional manufacturing device and additional manufacturing method
JP7382912B2 (en) 2020-08-11 2023-11-17 三菱電機株式会社 Additive manufacturing equipment and additive manufacturing method
WO2022163329A1 (en) 2021-01-29 2022-08-04 株式会社神戸製鋼所 Method for predicting deformation of additively manufactured object
CN115455776A (en) * 2022-09-16 2022-12-09 北京航空航天大学 Physical-based intrinsic strain method for additive manufacturing residual stress and deformation prediction
CN115455776B (en) * 2022-09-16 2023-09-22 北京航空航天大学 Physical-based inherent strain method for additive manufacturing residual stress and deformation prediction

Similar Documents

Publication Publication Date Title
JP2018184623A (en) Inherent strain calculation device for laminated molding, inherent strain calculation method therefor, inherent strain calculation program therefor, analysis device therefor, analysis method therefor, and lamination molding device
JP6659407B2 (en) Analysis apparatus, analysis method and analysis program
CN111093865B (en) Method and apparatus for analyzing layered structure, method and apparatus for manufacturing layered structure
JP6655345B2 (en) Three-dimensional article additive manufacturing support method, computer software, recording medium, and additive manufacturing system
JP6454699B2 (en) System and method for creating a compensated digital representation for use in additive manufacturing processes
US11046007B2 (en) Apparatus and method for calibrating optimum size of 3D printing
US9789651B2 (en) Method for structure preserving topology optimization of lattice structures for additive manufacturing
JP2021511986A (en) Generation of adapted control instructions for 3D printing processes
JP2019049890A (en) Press system and control method thereof
JP2017179517A (en) Residual stress reduction system for laminated molding, residual stress reduction method for the same, and residual stress reduction program for the same
CN112108774B (en) Three-dimensional laser bitmap marking method and device and computer readable storage medium
JP2017211977A (en) Data creation device, three-dimensional lamination system, design method, and program
Hao et al. Constrained model predictive control of an incremental sheet forming process
CN110807276A (en) Method and system for analyzing structural strength of casting by introducing residual stress
WO2018180358A1 (en) Analysis mesh generation method, program, storage medium, and analysis mesh generation device
Azaouzi et al. An heuristic optimization algorithm for the blank shape design of high precision metallic parts obtained by a particular stamping process
JP6061982B2 (en) Method for structural analysis of anisotropic resin molding
JP2018150592A (en) Lamination molding apparatus
Wesley Machado Cunico et al. Design of an FDM positioning system and application of an error‐cost multiobjective optimization approach
KR102091815B1 (en) Intelligent super precision plastic mold design apparatus
Nagallapati et al. Active and passive thermal management in wire arc additive manufacturing
JP2002052560A (en) System for supporting determination of injection-molded article production parameter
JP5889077B2 (en) Molded product shrinkage deformation prediction apparatus, molded product shrinkage deformation prediction method, and molded product shrinkage deformation prediction program
JP2016203571A (en) Engineering support device of composite molded article, manufacturing method of composite molded article, computer software, recording medium
JP2020144425A (en) Analysis device, analysis method, and analysis program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128