JP2018184059A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2018184059A
JP2018184059A JP2017086155A JP2017086155A JP2018184059A JP 2018184059 A JP2018184059 A JP 2018184059A JP 2017086155 A JP2017086155 A JP 2017086155A JP 2017086155 A JP2017086155 A JP 2017086155A JP 2018184059 A JP2018184059 A JP 2018184059A
Authority
JP
Japan
Prior art keywords
motor
engine
rotational speed
inverter
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017086155A
Other languages
Japanese (ja)
Other versions
JP6812895B2 (en
Inventor
由華 井下
Yuka Inoshita
由華 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017086155A priority Critical patent/JP6812895B2/en
Priority to US15/954,861 priority patent/US10730506B2/en
Priority to CN201810379574.2A priority patent/CN108725426B/en
Publication of JP2018184059A publication Critical patent/JP2018184059A/en
Application granted granted Critical
Publication of JP6812895B2 publication Critical patent/JP6812895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • H02P5/753Differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing
    • Y10S903/91Orbital, e.g. planetary gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the rotation speed of a first motor further quickly to a given value if the rotation speed of the first motor is equal to or less than the given value in a case where an accelerator operation amount becomes or exceed a given amount during a given travel in which the vehicle travels with first and second inverters shut down and the engine operated.SOLUTION: If a rotation speed of a first motor is equal to or less than a given value in a case where an accelerator operation amount becomes or exceeds a given value during a given travel in which a vehicle travels with first and second inverters shut down and an engine operated, a second inverter is three-phase turned on. This makes it possible to increase the rotation speed of the first motor higher than the given value further quickly.SELECTED DRAWING: Figure 3

Description

本発明は、ハイブリッド車両に関する。   The present invention relates to a hybrid vehicle.

従来、この種のハイブリッド車両としては、エンジンと、第1モータと、エンジンと第1モータと駆動輪に連結された出力部材とがキャリヤとサンギヤとリングギヤとに接続されたプラネタリギヤと、出力部材に接続された第2モータと、第1モータを駆動する第1インバータと、第2モータを駆動する第2インバータと、第1,第2インバータに電力ラインを介して接続された蓄電装置(バッテリ)と、を備えるものが提案されている(例えば、特許文献1参照)。このハイブリッド車両では、第1,第2インバータをシャットダウンした状態でエンジンを運転しながら走行する際には、第1,第2インバータの直流側電圧と出力部材の回転数とアクセル操作量とに基づいて、第1モータの回転に伴って発生する逆起電圧が第1インバータの直流側電圧よりも高くなるようにエンジンを制御する。こうした制御により、第1モータの逆起電圧に起因する制動トルクを調節し、この制動トルクの反力トルク(出力部材に発生させる駆動トルク)を調節している。   Conventionally, this type of hybrid vehicle includes an engine, a first motor, a planetary gear in which an engine, a first motor, and an output member coupled to a drive wheel are connected to a carrier, a sun gear, and a ring gear, and an output member. A connected second motor, a first inverter that drives the first motor, a second inverter that drives the second motor, and a power storage device (battery) connected to the first and second inverters via a power line Have been proposed (see, for example, Patent Document 1). In this hybrid vehicle, when traveling while operating the engine with the first and second inverters shut down, based on the DC voltage of the first and second inverters, the rotation speed of the output member, and the accelerator operation amount. Thus, the engine is controlled so that the counter electromotive voltage generated with the rotation of the first motor is higher than the DC side voltage of the first inverter. By such control, the braking torque resulting from the counter electromotive voltage of the first motor is adjusted, and the reaction torque of the braking torque (driving torque generated in the output member) is adjusted.

特開2013−203116号公報JP 2013-203116 A

上述のハイブリッド車両では、第1,第2インバータをシャットダウンした状態でエンジンを運転しながら走行する際に、アクセル操作量が十分に小さくなったとき(例えば、アクセルオフされたとき)には、第1モータの回転数が所定回転数(第1モータの逆起電圧が第1インバータの直流側電圧以下になる回転数)以下となるようにエンジンの回転数を低下させて、反力トルク(駆動トルク)の出力部材への出力を停止させる。そして、アクセル操作量が大きくなると(例えば、アクセルオンされると)、第1モータの回転数が所定回転数以上となるようにエンジンの回転数を上昇させて、反力トルク(駆動トルク)を出力部材に出力させる。しかしながら、エンジンは制御応答性が低いことから、第1モータの回転数を迅速に所定回転数以上とすることができず、反力トルク(駆動トルク)を出力部材に迅速に出力させることができない。   In the above-described hybrid vehicle, when the vehicle is running while the engine is running with the first and second inverters shut down, when the accelerator operation amount becomes sufficiently small (for example, when the accelerator is off), Reducing the engine speed so that the rotational speed of one motor is equal to or lower than a predetermined rotational speed (the rotational speed at which the back electromotive voltage of the first motor is equal to or lower than the DC side voltage of the first inverter) Torque) to the output member is stopped. When the accelerator operation amount increases (for example, when the accelerator is turned on), the engine speed is increased so that the rotation speed of the first motor becomes equal to or higher than the predetermined rotation speed, and the reaction torque (drive torque) is increased. Output to the output member. However, since the engine has low control responsiveness, the rotation speed of the first motor cannot be quickly increased to a predetermined rotation speed or more, and the reaction force torque (drive torque) cannot be quickly output to the output member. .

本発明のハイブリッド車両は、第1,第2インバータのシャットダウンをしている状態でエンジンを運転しながら走行する所定走行時にアクセル操作量が所定操作量以上になった場合において、第1モータの回転数が第1モータの逆起電圧を第1インバータの直流側電圧以下とする所定回転数以下であるときに、第1モータの回転数をより迅速に所定回転数より高くすることを主目的とする。   The hybrid vehicle according to the present invention rotates the first motor when the accelerator operation amount exceeds a predetermined operation amount during a predetermined travel while driving the engine while the first and second inverters are shut down. The main purpose is to make the rotation speed of the first motor higher than the predetermined rotation speed more quickly when the number is equal to or less than the predetermined rotation speed where the back electromotive voltage of the first motor is equal to or less than the DC side voltage of the first inverter. To do.

本発明のハイブリッド車両は、上述の主目的を達成するために以下の手段を採った。   The hybrid vehicle of the present invention employs the following means in order to achieve the main object described above.

本発明のハイブリッド車両は、
エンジンと、
回転に伴って逆起電圧を発生する第1モータと、
前記第1モータと前記エンジンと車軸に連結された駆動軸との3軸に3つの回転要素が共線図において前記第1モータ,前記エンジン,前記駆動軸の順番に並ぶように接続されたプラネタリギヤと、
前記駆動軸に動力を入出力可能な第2モータと、
前記第1モータを駆動する第1インバータと、
前記第2モータを駆動する第2インバータと、
前記第1,第2インバータに電力ラインを介して接続された蓄電装置と、
前記エンジンと前記第1,第2インバータとを制御する制御装置と、
を備えるハイブリッド車両であって、
前記制御装置は、前記第1,第2インバータをシャットダウンしている状態で前記エンジンを運転しながら走行する所定走行時に、アクセル操作量が所定操作量以上である場合において、前記第1モータの回転数が所定回転数以下であるときには、前記第2インバータを三相オンする、
ことを要旨とする。
The hybrid vehicle of the present invention
Engine,
A first motor that generates a back electromotive force with rotation;
A planetary gear in which three rotating elements are connected to three axes of the first motor, the engine, and a drive shaft connected to an axle so that the first motor, the engine, and the drive shaft are arranged in order in the collinear diagram. When,
A second motor capable of inputting and outputting power to the drive shaft;
A first inverter for driving the first motor;
A second inverter for driving the second motor;
A power storage device connected to the first and second inverters via a power line;
A control device for controlling the engine and the first and second inverters;
A hybrid vehicle comprising:
When the accelerator operation amount is greater than or equal to a predetermined operation amount during a predetermined travel while driving the engine while the first and second inverters are shut down, the control device rotates the first motor. When the number is equal to or less than the predetermined number of revolutions, the second inverter is turned on three-phase.
This is the gist.

この本発明のハイブリッド車両では、第1,第2インバータをシャットダウンしている状態でエンジンを運転しながら走行する所定走行時に、アクセル操作量が所定操作量以上である場合において、第1モータの回転数が所定回転数以下であるときには、第2インバータを三相オンする。ここで、「所定操作量」は、運転者が駆動力を要求しているか否かを判定するための閾値である。「所定回転数」は、第1モータで逆起電圧に基づく回生トルクが発生するか否かを判定するための閾値である。「三相オン」は、第2インバータの上アームトランジスタおよび下アームトランジスタの何れか一方の全てをオンとすることである。第2インバータを三相オンすると、第2モータの回転数を低下させる方向のトルク(引きずりトルク)が生じる。このトルクがプラネタリギヤを介して第1モータの回転数を上昇させる方向のトルクとして第1モータの回転軸に出力されるから、第1モータの回転数をより迅速に所定回転数より高くすることができる。   In the hybrid vehicle according to the present invention, when the accelerator operation amount is equal to or greater than the predetermined operation amount during the predetermined travel while driving the engine while the first and second inverters are shut down, the first motor rotates. When the number is equal to or lower than the predetermined rotation speed, the second inverter is turned on three-phase. Here, the “predetermined operation amount” is a threshold value for determining whether or not the driver is requesting a driving force. The “predetermined number of revolutions” is a threshold value for determining whether or not regenerative torque based on the back electromotive force is generated in the first motor. “Three-phase on” is to turn on any one of the upper arm transistor and the lower arm transistor of the second inverter. When the second inverter is turned on three-phase, torque in the direction of reducing the rotation speed of the second motor (trailing torque) is generated. Since this torque is output to the rotating shaft of the first motor as a torque in the direction of increasing the rotational speed of the first motor via the planetary gear, the rotational speed of the first motor can be made higher than the predetermined rotational speed more quickly. it can.

こうした本発明のハイブリッド車両において、前記制御装置は、前記所定走行時に前記アクセル操作量が前記所定操作量以上で前記第1モータの回転数が前記所定回転数以下であることにより前記第2インバータを三相オンした場合において、前記第1モータの回転数が前記所定回転数を超えたときには、前記第2インバータをシャットダウンして前記所定走行により走行してもよい。第1モータの回転数が所定回転数以上であるときには、第1モータで逆起電圧に基づく回生トルクを発生させることができる。このため、第1モータの回転数が所定回転数以上となったときに、第2インバータをシャットダウンして所定走行で走行することにより、第1モータの回生トルクに基づく駆動軸の駆動トルクにより走行することができる。   In such a hybrid vehicle of the present invention, the control device causes the second inverter to operate when the accelerator operation amount is not less than the predetermined operation amount and the rotation speed of the first motor is not more than the predetermined rotation number during the predetermined travel. In the case where the three-phase is turned on, when the rotational speed of the first motor exceeds the predetermined rotational speed, the second inverter may be shut down to travel by the predetermined traveling. When the rotation speed of the first motor is equal to or higher than the predetermined rotation speed, the first motor can generate regenerative torque based on the counter electromotive voltage. For this reason, when the rotational speed of the first motor becomes equal to or higher than the predetermined rotational speed, the second inverter is shut down and travels in a predetermined travel, so that the travel is performed by the drive torque of the drive shaft based on the regenerative torque of the first motor. can do.

本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 as an embodiment of the present invention. モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the electric drive system containing motor MG1, MG2. 実施例のHVECU70により実行されるインバータレス走行時制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine at the time of inverterless driving | running | working performed by HVECU70 of an Example. 高電圧側電力ライン54aの電圧VHが所定電圧VHsetであるときのモータMG1の回転数Nm1とモータMG1の回生トルクTcefとの関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the rotation speed Nm1 of the motor MG1 when the voltage VH of the high voltage side electric power line 54a is the predetermined voltage VHset, and the regenerative torque Tcef of the motor MG1. インバータレス走行でいる状態でアクセル開度Accが閾値Aref以上であり且つモータMG1の回転数Nm1が閾値Nrefより高いときのプラネタリギヤ30の共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the collinear diagram of the planetary gear 30 when the accelerator opening Acc is more than the threshold value Aref and the rotation speed Nm1 of the motor MG1 is higher than the threshold value Nref in the state where the inverter is traveling. インバータレス走行でアクセル開度Accが閾値Aref未満であるときのプラネタリギヤ30の共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the collinear diagram of the planetary gear 30 when accelerator opening Acc is less than threshold value Aref by inverterless driving | running | working. インバータ42を三相オンしたときのプラネタリギヤ30の共線図の一例を示す説明図である。It is explanatory drawing which shows an example of the alignment chart of the planetary gear 30 when the inverter 42 is three-phase-on.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図であり、図2は、モータMG1,MG2を含む電機駆動系の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、プラネタリギヤ30と、モータMG1,MG2と、インバータ41,42と、昇降圧コンバータ55と、蓄電装置としてのバッテリ50と、システムメインリレー56と、ハイブリッド用電子制御ユニット(以下、「HVECU」という)70と、を備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 as an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an outline of the configuration of an electric drive system including motors MG1 and MG2. As illustrated, the hybrid vehicle 20 of the embodiment includes an engine 22, a planetary gear 30, motors MG1 and MG2, inverters 41 and 42, a step-up / down converter 55, a battery 50 as a power storage device, and a system main relay. 56 and a hybrid electronic control unit (hereinafter referred to as “HVECU”) 70.

エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。このエンジン22は、エンジン用電子制御ユニット(以下、「エンジンECU」という)24によって運転制御されている。   The engine 22 is configured as an internal combustion engine that outputs power using gasoline or light oil as a fuel. The operation of the engine 22 is controlled by an engine electronic control unit (hereinafter referred to as “engine ECU”) 24.

エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22を運転制御するのに必要な各種センサからの信号、例えば、エンジン22のクランクシャフト26の回転位置を検出するクランクポジションセンサ23からのクランク角θcrなどが入力ポートから入力されている。エンジンECU24からは、エンジン22を運転制御するための各種制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信ポートを介して接続されている。エンジンECU24は、クランクポジションセンサ23からのクランク角θcrに基づいてエンジン22の回転数Neを演算している。   Although not shown, the engine ECU 24 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . The engine ECU 24 receives signals from various sensors necessary for controlling the operation of the engine 22, for example, a crank angle θcr from the crank position sensor 23 that detects the rotational position of the crankshaft 26 of the engine 22 from an input port. Has been. Various control signals for controlling the operation of the engine 22 are output from the engine ECU 24 via an output port. The engine ECU 24 is connected to the HVECU 70 via a communication port. The engine ECU 24 calculates the rotational speed Ne of the engine 22 based on the crank angle θcr from the crank position sensor 23.

プラネタリギヤ30は、シングルピニオン式の遊星歯車機構として構成されている。プラネタリギヤ30のサンギヤには、モータMG1の回転子が接続されている。プラネタリギヤ30のリングギヤには、駆動輪39a,39bにデファレンシャルギヤ38を介して連結された駆動軸36が接続されている。プラネタリギヤ30のキャリヤには、ダンパ28を介してエンジン22のクランクシャフト26が接続されている。   The planetary gear 30 is configured as a single pinion type planetary gear mechanism. The sun gear of planetary gear 30 is connected to the rotor of motor MG1. The ring gear of the planetary gear 30 is connected to a drive shaft 36 that is coupled to the drive wheels 39a and 39b via a differential gear 38. A crankshaft 26 of the engine 22 is connected to the carrier of the planetary gear 30 via a damper 28.

モータMG1は、永久磁石が埋め込まれた回転子と三相コイルが巻回された固定子とを有する同期発電電動機として構成されており、上述したように、回転子がプラネタリギヤ30のサンギヤに接続されている。モータMG2は、モータMG1と同様に同期発電電動機として構成されており、回転子が駆動軸36に接続されている。   The motor MG1 is configured as a synchronous generator motor having a rotor in which a permanent magnet is embedded and a stator in which a three-phase coil is wound. As described above, the rotor is connected to the sun gear of the planetary gear 30. ing. The motor MG2 is configured as a synchronous generator motor similar to the motor MG1, and the rotor is connected to the drive shaft 36.

インバータ41,42は、モータMG1,MG2の駆動に用いられる。図2に示すように、インバータ41は、高電圧側電力ライン54aに接続されており、6つのトランジスタT11〜T16と、6つのトランジスタT11〜T16のそれぞれに並列に接続された6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ、高電圧側電力ライン54aの正極側ラインと負極側ラインとに対してソース側とシンク側になるように2個ずつペアで配置されている。また、トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータMG1の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41に電圧が作用しているときに、モータ用電子制御ユニット(以下、「モータECU」という)40によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG1が回転駆動される。インバータ42は、インバータ41と同様に、高電圧側電力ライン54aに接続されており、6つのトランジスタT21〜T26と6つのダイオードD21〜D26とを有する。そして、インバータ42に電圧が作用しているときに、モータECU40によって、対となるトランジスタT21〜T26のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータMG2が回転駆動される。   Inverters 41 and 42 are used to drive motors MG1 and MG2. As shown in FIG. 2, the inverter 41 is connected to the high voltage side power line 54a, and includes six transistors T11 to T16 and six diodes D11 to D16 connected in parallel to the six transistors T11 to T16, respectively. D16. Two transistors T11 to T16 are arranged in pairs so as to be on the source side and the sink side with respect to the positive electrode side line and the negative electrode side line of the high voltage side power line 54a, respectively. Each of the connection points between the transistors T11 to T16 that are paired with each other is connected to each of the three-phase coils (U-phase, V-phase, W-phase) of the motor MG1. Therefore, when the voltage is acting on the inverter 41, the on-time ratio of the paired transistors T11 to T16 is adjusted by the motor electronic control unit (hereinafter referred to as “motor ECU”) 40. A rotating magnetic field is formed in the three-phase coil, and the motor MG1 is driven to rotate. Similarly to the inverter 41, the inverter 42 is connected to the high voltage side power line 54a and includes six transistors T21 to T26 and six diodes D21 to D26. When the voltage is applied to the inverter 42, the motor ECU 40 adjusts the ratio of the on-time of the paired transistors T21 to T26, whereby a rotating magnetic field is formed in the three-phase coil, and the motor MG2 is Driven by rotation.

昇降圧コンバータ55は、高電圧側電力ライン54aと低電圧側電力ライン54bとに接続されており、2つのトランジスタT31,T32と、2つのトランジスタT31,T32のそれぞれに並列に接続された2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高電圧側電力ライン54aの正極側ラインに接続されている。トランジスタT32は、トランジスタT31と、高電圧側電力ライン54aおよび低電圧側電力ライン54bの負極側ラインと、に接続されている。リアクトルLは、トランジスタT31,T32同士の接続点と、低電圧側電力ライン54bの正極側ラインと、に接続されている。昇降圧コンバータ55は、モータECU40によってトランジスタT31,T32のオン時間の割合が調節されることにより、低電圧側電力ライン54bの電力を昇圧して高電圧側電力ライン54aに供給したり、高電圧側電力ライン54aの電力を降圧して低電圧側電力ライン54bに供給したりする。高電圧側電力ライン54aの正極側ラインと負極側ラインとには、平滑用のコンデンサ57が取り付けられており、低電圧側電力ライン54bの正極側ラインと負極側ラインとには、平滑用のコンデンサ58が取り付けられている。   The buck-boost converter 55 is connected to the high voltage side power line 54a and the low voltage side power line 54b, and two transistors T31 and T32 and two transistors T31 and T32 connected in parallel to each other. Diodes D31 and D32 and a reactor L are included. The transistor T31 is connected to the positive side line of the high voltage side power line 54a. The transistor T32 is connected to the transistor T31 and the negative side line of the high voltage side power line 54a and the low voltage side power line 54b. The reactor L is connected to a connection point between the transistors T31 and T32 and a positive electrode side line of the low voltage side power line 54b. The buck-boost converter 55 boosts the power of the low voltage side power line 54b and supplies it to the high voltage side power line 54a by adjusting the ratio of the on-time of the transistors T31 and T32 by the motor ECU 40. The power of the side power line 54a is stepped down and supplied to the low voltage side power line 54b. A smoothing capacitor 57 is attached to the positive electrode side line and the negative electrode side line of the high voltage side power line 54a, and a smoothing capacitor 57 is attached to the positive electrode side line and the negative electrode side line of the low voltage side power line 54b. A capacitor 58 is attached.

モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。図1に示すように、モータECU40には、モータMG1,MG2や昇降圧コンバータ55を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。モータECU40に入力される信号としては、例えば、モータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの回転位置θm1,θm2や、モータMG1,MG2の各相に流れる電流を検出する電流センサ45u,45v,46u,46vからの相電流Iu1,Iv1,Iu2,Iv2を挙げることができる。また、コンデンサ57の端子間に取り付けられた電圧センサ57aからのコンデンサ57(高電圧側電力ライン54a)の電圧(高電圧側電圧)VHや、コンデンサ58の端子間に取り付けられた電圧センサ58aからのコンデンサ58(低電圧側電力ライン54b)の電圧(低電圧側電圧)VLも挙げることができる。モータECU40からは、モータMG1,MG2や昇降圧コンバータ55を駆動制御するための各種制御信号が出力ポートを介して出力されている。モータECU40から出力される信号としては、例えば、インバータ41,42のトランジスタT11〜T16,T21〜T26へのスイッチング制御信号や昇降圧コンバータ55のトランジスタT31,T32へのスイッチング制御信号を挙げることができる。モータECU40は、HVECU70と通信ポートを介して接続されている。モータECU40は、回転位置検出センサ43,44からのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の角速度ωm1,ωm2や回転数Nm1,Nm2を演算している。   Although not shown, the motor ECU 40 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . As shown in FIG. 1, signals from various sensors necessary for driving and controlling the motors MG <b> 1 and MG <b> 2 and the step-up / down converter 55 are input to the motor ECU 40 through the input port. Signals input to the motor ECU 40 flow, for example, to the rotational positions θm1 and θm2 from the rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and to the phases of the motors MG1 and MG2. Examples include phase currents Iu1, Iv1, Iu2, and Iv2 from current sensors 45u, 45v, 46u, and 46v that detect currents. Further, the voltage (high voltage side voltage) VH of the capacitor 57 (high voltage side power line 54a) from the voltage sensor 57a attached between the terminals of the capacitor 57 and the voltage sensor 58a attached between the terminals of the capacitor 58. The voltage (low voltage side voltage) VL of the capacitor 58 (low voltage side power line 54b) can also be mentioned. Various control signals for driving and controlling the motors MG1, MG2 and the step-up / down converter 55 are output from the motor ECU 40 via the output port. Examples of signals output from the motor ECU 40 include switching control signals to the transistors T11 to T16 and T21 to T26 of the inverters 41 and 42 and switching control signals to the transistors T31 and T32 of the step-up / down converter 55. . The motor ECU 40 is connected to the HVECU 70 via a communication port. The motor ECU 40 calculates the angular velocities ωm1, ωm2 and the rotational speeds Nm1, Nm2 of the motors MG1, MG2 based on the rotational positions θm1, θm2 of the rotors of the motors MG1, MG2 from the rotational position detection sensors 43, 44.

バッテリ50は、例えば定格電圧が250Vや280V,300Vなどのリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン54bに接続されている。このバッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。   The battery 50 is configured as a lithium ion secondary battery or a nickel hydride secondary battery having a rated voltage of 250 V, 280 V, 300 V, etc., for example, and is connected to the low voltage side power line 54 b. The battery 50 is managed by a battery electronic control unit (hereinafter referred to as “battery ECU”) 52.

バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な各種センサからの信号が入力ポートを介して入力されている。バッテリECU52に入力される信号としては、例えば、バッテリ50の端子間に取り付けられた電圧センサ51aからのバッテリ50の電圧Vbや、バッテリ50の出力端子に取り付けられた電流センサ51bからのバッテリ50の電流Ib,バッテリ50に取り付けられた温度センサ51cからのバッテリ50の温度Tbを挙げることができる。バッテリECU52は、HVECU70と通信ポートを介して接続されている。バッテリECU52は、電流センサ51bからのバッテリ50の電流Ibの積算値に基づいて蓄電割合SOCを演算している。蓄電割合SOCは、バッテリ50の全容量に対するバッテリ50から放電可能な電力の容量の割合である。   Although not shown, the battery ECU 52 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. . Signals from various sensors necessary for managing the battery 50 are input to the battery ECU 52 via the input port. As a signal input to the battery ECU 52, for example, the voltage Vb of the battery 50 from the voltage sensor 51 a attached between the terminals of the battery 50 or the battery 50 from the current sensor 51 b attached to the output terminal of the battery 50 is used. The current Ib and the temperature Tb of the battery 50 from the temperature sensor 51c attached to the battery 50 can be mentioned. The battery ECU 52 is connected to the HVECU 70 via a communication port. Battery ECU 52 calculates storage rate SOC based on the integrated value of current Ib of battery 50 from current sensor 51b. The storage ratio SOC is a ratio of the capacity of power that can be discharged from the battery 50 to the total capacity of the battery 50.

システムメインリレー56は、低電圧側電力ライン54bにおけるコンデンサ58よりもバッテリ50側に設けられている。このシステムメインリレー56は、HVECU70によってオンオフ制御されることにより、バッテリ50と昇降圧コンバータ55側との接続および接続の解除を行なう。   The system main relay 56 is provided closer to the battery 50 than the capacitor 58 in the low voltage side power line 54b. This system main relay 56 is on / off controlled by the HVECU 70 to connect and disconnect the battery 50 and the step-up / down converter 55 side.

HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、各種センサからの信号が入力ポートを介して入力されている。HVECU70に入力される信号としては、例えば、イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。また、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vも挙げることができる。なお、シフトポジションSPとしては、駐車ポジション(Pポジション)や後進ポジション(Rポジション),ニュートラルポジション(Nポジション),前進ポジション(Dポジション)などがある。HVECU70は、上述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されている。   Although not shown, the HVECU 70 is configured as a microprocessor centered on a CPU, and includes a ROM for storing a processing program, a RAM for temporarily storing data, an input / output port, and a communication port in addition to the CPU. Signals from various sensors are input to the HVECU 70 via input ports. Examples of the signal input to the HVECU 70 include an ignition signal from the ignition switch 80 and a shift position SP from the shift position sensor 82 that detects the operation position of the shift lever 81. Further, the accelerator opening Acc from the accelerator pedal position sensor 84 that detects the depression amount of the accelerator pedal 83, the brake pedal position BP from the brake pedal position sensor 86 that detects the depression amount of the brake pedal 85, and the vehicle speed sensor 88 The vehicle speed V can also be mentioned. The shift position SP includes a parking position (P position), a reverse position (R position), a neutral position (N position), a forward position (D position), and the like. As described above, the HVECU 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port.

こうして構成された実施例のハイブリッド自動車20では、エンジン22を運転しながら走行するハイブリッド走行(HV走行)モードや、エンジン22を運転せずに走行する電動走行(EV走行)モードなどで走行する。   In the hybrid vehicle 20 of the embodiment configured in this way, the vehicle travels in a hybrid travel (HV travel) mode in which the engine 22 is operated and the electric travel (EV travel) mode in which the engine 22 is not operated.

HV走行モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて駆動軸36に要求される要求トルクTd*を設定し、設定した要求トルクTd*に駆動軸36の回転数Nd(モータMG2の回転数Nm2)を乗じて駆動軸36に要求される要求パワーPd*を計算する。続いて、要求パワーPd*からバッテリ50の蓄電割合SOCに基づく充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じてエンジン22に要求される要求パワーPe*を設定する。次に、要求パワーPe*がエンジン22から出力されると共に要求トルクTd*が駆動軸36に出力されるように、エンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定する。続いて、モータMG1,MG2のトルク指令Tm1*,Tm2*や回転数Nm1,Nm2に基づいて高電圧側電力ライン54aの目標電圧VH*を設定する。そして、エンジン22の目標回転数Ne*や目標トルクTe*をエンジンECU24に送信すると共に、モータMG1,MG2のトルク指令Tm1*,Tm2*や高電圧側電力ライン54aの目標電圧VH*をモータECU40に送信する。エンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とに基づいて運転されるように、エンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行なう。モータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようにインバータ41,42のトランジスタT11〜T16,T21〜T26のスイッチング制御を行なうと共に、高電圧側電力ライン54aの電圧VHが目標電圧VH*となるように昇降圧コンバータ55のトランジスタT31,T32のスイッチング制御を行なう。   In the HV travel mode, the HVECU 70 sets the required torque Td * required for the drive shaft 36 based on the accelerator opening Acc and the vehicle speed V, and sets the rotational speed Nd (motor) of the drive shaft 36 to the set required torque Td *. The required power Pd * required for the drive shaft 36 is calculated by multiplying by the rotation speed Nm2) of MG2. Subsequently, the required power Pe * required for the engine 22 is set by subtracting the charge / discharge required power Pb * (a positive value when discharging from the battery 50) based on the storage ratio SOC of the battery 50 from the required power Pd *. . Next, the target rotational speed Ne *, the target torque Te *, and the torques of the motors MG1, MG2 of the engine 22 are output so that the required power Pe * is output from the engine 22 and the required torque Td * is output to the drive shaft 36. Commands Tm1 * and Tm2 * are set. Subsequently, the target voltage VH * of the high voltage side power line 54a is set based on the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 and the rotational speeds Nm1 and Nm2. Then, the target rotational speed Ne * and the target torque Te * of the engine 22 are transmitted to the engine ECU 24, and the torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 and the target voltage VH * of the high voltage side power line 54a are transmitted to the motor ECU 40. Send to. The engine ECU 24 performs intake air amount control, fuel injection control, ignition control, and the like of the engine 22 so that the engine 22 is operated based on the target rotational speed Ne * and the target torque Te *. The motor ECU 40 performs switching control of the transistors T11 to T16 and T21 to T26 of the inverters 41 and 42 so that the motors MG1 and MG2 are driven by the torque commands Tm1 * and Tm2 *, and the voltage of the high voltage side power line 54a. Switching control of the transistors T31 and T32 of the buck-boost converter 55 is performed so that VH becomes the target voltage VH *.

EV走行モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて要求トルクTd*を設定し、モータMG1のトルク指令Tm1*に値0を設定すると共に要求トルクTd*が駆動軸36に出力されるようにモータMG2のトルク指令Tm2*を設定し、モータMG1,MG2のトルク指令Tm1*,Tm2*や回転数Nm1,Nm2に基づいて高電圧側電力ライン54aの目標電圧VH*を設定する。そして、モータMG1,MG2のトルク指令Tm1*,Tm2*や高電圧側電力ライン54aの目標電圧VH*をモータECU40に送信する。モータECU40によるインバータ41,42や昇降圧コンバータ55の制御については上述した。   In the EV travel mode, the HVECU 70 sets the required torque Td * based on the accelerator opening Acc and the vehicle speed V, sets a value 0 to the torque command Tm1 * of the motor MG1, and the required torque Td * is applied to the drive shaft 36. The torque command Tm2 * of the motor MG2 is set so as to be output, and the target voltage VH * of the high voltage side power line 54a is set based on the torque commands Tm1 *, Tm2 * of the motors MG1, MG2 and the rotational speeds Nm1, Nm2. To do. Then, torque commands Tm1 *, Tm2 * of the motors MG1, MG2 and the target voltage VH * of the high voltage side power line 54a are transmitted to the motor ECU 40. Control of inverters 41 and 42 and step-up / down converter 55 by motor ECU 40 has been described above.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、インバータ41,42をシャットダウンしている状態(トランジスタT11〜T16,T21〜T26の全てをオフとしている状態)でエンジン22を運転しながら走行するインバータレス走行(退避走行)時の動作について説明する。ここで、インバータレス走行は、HV走行モードでの走行中に、インバータ41,42の異常や、インバータ41,42の制御に用いるセンサ(回転位置検出センサ43,44など)の異常が生じたときに行なわれる。図3は、実施例のHVECU70により実行されるインバータレス走行時制御ルーチンの一例を示すフローチャートである。このルーチンは、インバータレス走行時に繰り返し実行される。なお、インバータレス走行時には、昇降圧コンバータ55については、高電圧側電力ライン54aの目標電圧VH*に所定電圧VHset(例えば、330Vや350V,370Vなど)を設定して、高電圧側電力ライン54aの電圧VHが目標電圧VH*となるようにトランジスタT31,T32のスイッチング制御を行なう。   Next, the operation of the hybrid vehicle 20 of the embodiment thus configured, in particular, the engine 22 is operated in a state where the inverters 41 and 42 are shut down (a state where all of the transistors T11 to T16 and T21 to T26 are turned off). The operation at the time of inverterless traveling (evacuation traveling) while traveling will be described. Here, in the inverter-less travel, when travel in the HV travel mode occurs, an abnormality of the inverters 41 and 42 or an abnormality of a sensor (such as the rotational position detection sensors 43 and 44) used for controlling the inverters 41 and 42 occurs. To be done. FIG. 3 is a flowchart illustrating an example of an inverterless travel time control routine executed by the HVECU 70 of the embodiment. This routine is repeatedly executed during inverterless travel. During the inverterless travel, for the buck-boost converter 55, a predetermined voltage VHset (for example, 330V, 350V, 370V, etc.) is set to the target voltage VH * of the high voltage side power line 54a, and the high voltage side power line 54a. Switching control of the transistors T31 and T32 is performed so that the voltage VH of the transistor becomes the target voltage VH *.

本ルーチンが実行されると、HVECU70は、アクセル開度AccやモータMG1,MG2の回転数Nm1を入力する(ステップS100)。ここで、アクセル開度Accは、アクセルペダルポジションセンサ84により検出された値を入力している。モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置θm1,θm2に基づいて演算された値をモータECU40から通信により入力したり、車速センサ88により検出された車速Vなどに基づいて演算された値を入力している。   When this routine is executed, the HVECU 70 inputs the accelerator opening Acc and the rotational speed Nm1 of the motors MG1, MG2 (step S100). Here, a value detected by the accelerator pedal position sensor 84 is input as the accelerator opening Acc. As the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2, values calculated based on the rotational positions θm1 and θm2 of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44 are input from the motor ECU 40 by communication. Or a value calculated based on the vehicle speed V detected by the vehicle speed sensor 88 is input.

こうしてデータを入力すると、入力したアクセル開度Accと閾値Arefとを比較する(ステップS110)と共に、モータMG1の回転数Nm1と閾値Nrefとを比較する(ステップS120)。ここで、閾値Arefは、運転者が駆動軸36への駆動トルクの出力を要求しているか否か(運転者による駆動力要求があるか否か)を判定するのに用いられる閾値であり、例えば、1%,3%,5%などを用いることができる。閾値Nrefは、モータMG1の回転に伴う逆起電圧Vcefに基づく回生トルクTcefが生じるか否かを判定するのに用いられる閾値である。ここで、閾値Nrefについて説明する。   When the data is input in this manner, the input accelerator opening Acc and the threshold value Aref are compared (step S110), and the rotation speed Nm1 of the motor MG1 is compared with the threshold value Nref (step S120). Here, the threshold value Aref is a threshold value used to determine whether or not the driver is requesting output of driving torque to the drive shaft 36 (whether or not there is a driving force request from the driver). For example, 1%, 3%, 5%, etc. can be used. The threshold value Nref is a threshold value used to determine whether or not the regenerative torque Tcef based on the counter electromotive voltage Vcef accompanying the rotation of the motor MG1 occurs. Here, the threshold value Nref will be described.

図4は、高電圧側電力ライン54aの電圧VHが所定電圧VHsetのときのモータMG1の回転数Nm1とモータMG1の回転に伴う逆起電圧Vcefに基づく回生トルクTcefとの関係を説明するための説明図である。図中、モータMG1に回生トルクTcefが生じない領域には、ハッチングを施している。モータMG1の逆起電圧Vcefが高電圧側電力ライン54aの電圧VHよりも高いときには、モータMG1の逆起電圧Vcefと高電圧側電力ライン54aの電圧VHとの電圧差(Vcef−VH)に基づく回生トルクTcefがモータMG1で発生する。回生トルクTcefは、詳細には、エンジン22の運転に伴ってモータMG1が連れ回され、モータMG1の逆起電圧Vcefに基づく電力がインバータ41のダイオードD11〜D16により整流されて高電圧側電力ライン54a,昇降圧コンバータ55,低電圧側電力ライン54bを介してバッテリ50に供給されるのに伴って発生する。モータMG1の逆起電圧Vcefが高電圧側電力ライン54aの電圧VH以下のときには、モータMG1に回生トルクTcefが発生しない。ここで、モータMG1の逆起電圧Vcefは、モータMG1の角速度ωm1と逆起電圧定数Keとの積に相当する。このことを踏まえ、実施例では、閾値Nrefを、モータMG1の逆起電圧Vcefが高電圧側電力ライン54aの電圧VHと等しくなる回転数、例えば、1500rpmや1750rpm,2000rpmなどを用いている。なお、高電圧側電力ライン54aの電圧VHが所定電圧VHsetで一定ではなく変化する場合には、電圧VHの変化に応じて閾値Nrefを変化させてもよい。   FIG. 4 illustrates the relationship between the rotational speed Nm1 of the motor MG1 and the regenerative torque Tcef based on the counter electromotive voltage Vcef accompanying the rotation of the motor MG1 when the voltage VH of the high voltage side power line 54a is the predetermined voltage VHset. It is explanatory drawing. In the drawing, hatching is applied to a region where the regenerative torque Tcef is not generated in the motor MG1. When the back electromotive voltage Vcef of the motor MG1 is higher than the voltage VH of the high voltage side power line 54a, it is based on the voltage difference (Vcef−VH) between the back electromotive voltage Vcef of the motor MG1 and the voltage VH of the high voltage side power line 54a. Regenerative torque Tcef is generated by motor MG1. Specifically, the regenerative torque Tcef is driven by the motor MG1 as the engine 22 is operated, and the electric power based on the back electromotive voltage Vcef of the motor MG1 is rectified by the diodes D11 to D16 of the inverter 41 and is supplied to the high voltage side power line. This occurs when the battery 50 is supplied to the battery 50 through the step-up / down converter 55 and the low-voltage power line 54b. When the counter electromotive voltage Vcef of the motor MG1 is equal to or lower than the voltage VH of the high voltage side power line 54a, the regenerative torque Tcef is not generated in the motor MG1. Here, the counter electromotive voltage Vcef of the motor MG1 corresponds to the product of the angular velocity ωm1 of the motor MG1 and the counter electromotive voltage constant Ke. In view of this, in the embodiment, the threshold Nref is a rotation speed at which the counter electromotive voltage Vcef of the motor MG1 becomes equal to the voltage VH of the high voltage side power line 54a, for example, 1500 rpm, 1750 rpm, 2000 rpm, or the like. When the voltage VH of the high voltage side power line 54a is not constant and changes with the predetermined voltage VHset, the threshold value Nref may be changed according to the change of the voltage VH.

ステップS110でアクセル開度Accが閾値Aref以上であり、且つ、モータMG1の回転数Nm1が閾値Nrefより高いときには、運転者からの駆動力要求があり、且つ、モータMG1で回生トルクTcefを発生させることができると判断して、モータMG1の目標回転数Nm1*に所定回転数Nm1setを設定する(ステップS130)。所定回転数Nm1setは、例えば、4000rpmや5000rpm,6000rpmなどを用いている。   In step S110, when the accelerator opening Acc is equal to or greater than the threshold value Aref and the rotational speed Nm1 of the motor MG1 is higher than the threshold value Nref, there is a driving force request from the driver and the motor MG1 generates the regenerative torque Tcef. Therefore, the predetermined rotational speed Nm1set is set as the target rotational speed Nm1 * of the motor MG1 (step S130). For example, 4000 rpm, 5000 rpm, 6000 rpm, or the like is used as the predetermined rotation speed Nm1set.

図5は、インバータレス走行でモータMG1の回転数Nm1が閾値Nrefより高いときのプラネタリギヤ30の共線図の一例を示す説明図である。図中、左のS軸はモータMG1の回転数Nm1であるプラネタリギヤ30のサンギヤの回転数を示し、C軸はエンジン22の回転数Neであるプラネタリギヤ30のキャリヤの回転数を示し、R軸はモータMG2の回転数Nm2(および駆動軸36の回転数Nd)であるプラネタリギヤ30のリングギヤの回転数を示す。また、図中、「ρ」は、プラネタリギヤ30のギヤ比(サンギヤの歯数/リングギヤの歯数)を示す。モータMG1の回転数Nm1が閾値Nrefより高いときには、モータMG1の逆起電圧Vcefが高電圧側電力ライン54aの電圧VHよりも高く、図示するように、モータMG1の逆起電圧Vcefと高電圧側電力ライン54aの電圧VHとの電圧差(Vcef−VH)に基づく回生トルクTcefがモータMG1で生じ、回生トルクTcefに基づく駆動トルク(反力トルク)Trf(=−Tcef/ρ)が駆動軸36に出力される。   FIG. 5 is an explanatory diagram showing an example of a collinear diagram of the planetary gear 30 when the rotational speed Nm1 of the motor MG1 is higher than the threshold value Nref in inverterless traveling. In the figure, the left S-axis indicates the rotational speed of the sun gear of the planetary gear 30 that is the rotational speed Nm1 of the motor MG1, the C-axis indicates the rotational speed of the carrier of the planetary gear 30 that is the rotational speed Ne of the engine 22, and the R-axis is The rotational speed of the ring gear of planetary gear 30 that is the rotational speed Nm2 of motor MG2 (and the rotational speed Nd of drive shaft 36) is shown. In the figure, “ρ” indicates the gear ratio of the planetary gear 30 (the number of teeth of the sun gear / the number of teeth of the ring gear). When the rotational speed Nm1 of the motor MG1 is higher than the threshold value Nref, the counter electromotive voltage Vcef of the motor MG1 is higher than the voltage VH of the high voltage side power line 54a, and as shown in the figure, the counter electromotive voltage Vcef of the motor MG1 and the high voltage side A regenerative torque Tcef based on the voltage difference (Vcef−VH) from the voltage VH of the power line 54a is generated in the motor MG1, and a drive torque (reaction torque) Trf (= −Tcef / ρ) based on the regenerative torque Tcef is the drive shaft 36. Is output.

こうしてモータMG1の目標回転数Nm1*を設定すると、モータMG1の目標回転数Nm1*とモータMG2の回転数Nm2(駆動軸36の回転数Nd)とプラネタリギヤ30のギヤ比ρとを用いて式(1)によりエンジン22の目標回転数Ne*を設定して(ステップS140)、目標回転数Ne*をエンジンECU24に送信すると共にシャットダウン指令をモータECU40に送信して(ステップS150)、本ルーチンを終了する。ここで、式(1)は、図5を用いれば容易に導くことができる。エンジンECU24は、エンジン22の目標回転数Ne*を受信すると、エンジン22の回転数Neが目標回転数Ne*となるようにエンジン22の吸入空気量制御や燃料噴射制御,点火制御を行なう。モータECU40は、シャットダウン指令を受信すると、インバータ41,42をシャットダウンする。こうした制御により、アクセル開度Accが閾値Aref以上であり、且つ、モータMG1の回転数Nm1が閾値Nrefより高いときには、モータMG1の回生トルクTcef1に基づく駆動軸36の駆動トルクを用いて走行することができる。   When the target rotational speed Nm1 * of the motor MG1 is set in this way, an equation (using the target rotational speed Nm1 * of the motor MG1, the rotational speed Nm2 of the motor MG2 (the rotational speed Nd of the drive shaft 36), and the gear ratio ρ of the planetary gear 30) 1) sets the target rotational speed Ne * of the engine 22 (step S140), transmits the target rotational speed Ne * to the engine ECU 24 and transmits a shutdown command to the motor ECU 40 (step S150), and ends this routine. To do. Here, Expression (1) can be easily derived by using FIG. When the engine ECU 24 receives the target rotational speed Ne * of the engine 22, the engine ECU 24 performs intake air amount control, fuel injection control, and ignition control of the engine 22 so that the rotational speed Ne of the engine 22 becomes the target rotational speed Ne *. When the motor ECU 40 receives the shutdown command, the motor ECU 40 shuts down the inverters 41 and 42. By such control, when the accelerator opening Acc is equal to or greater than the threshold value Aref and the rotational speed Nm1 of the motor MG1 is higher than the threshold value Nref, the vehicle travels using the drive torque of the drive shaft 36 based on the regenerative torque Tcef1 of the motor MG1. Can do.

Ne*=(Nm1*・ρ+Nm2)/(1+ρ) (1)   Ne * = (Nm1 * ・ ρ + Nm2) / (1 + ρ) (1)

ステップS110でアクセル開度Accが閾値Aref未満であるときには、運転者からの駆動力要求がないと判断して、エンジン22の目標回転数Ne*に許容下限回転数Neminを設定し(ステップS160)、目標回転数Ne*をエンジンECU24に送信すると共にシャットダウン指令をモータECU40に送信して(ステップS170)、本ルーチンを終了する。本ルーチンを終了する。エンジンECU24は、エンジン22の目標回転数Ne*を受信すると、エンジン22の回転数Neが目標回転数Ne*となるようにエンジン22を制御する。モータECU40は、シャットダウン指令を受信すると、インバータ41,42をシャットダウンする。ここで、エンジン22の許容下限回転数Neminは、エンジン22を自立運転可能な回転数範囲の下限であり、例えば、900rpmや1000rpm,1100rpmなどを用いている。このようにしてエンジン22を許容下限回転数Neminで回転させることにより、モータMG1の回転数Nm1をアクセルオンのときの回転数(所定回転数Neset)よりも充分に低くすることができる。図6は、インバータレス走行でアクセル開度Accが閾値Aref未満であるときのプラネタリギヤ30の共線図の一例を示す説明図である。アクセル開度Accが閾値Aref未満であるときには、図示するように、モータMG1で回生トルクTcef1が発生しないから、駆動軸36に駆動トルクTrfが出力されなくなる。   When the accelerator opening Acc is less than the threshold value Aref in step S110, it is determined that there is no request for driving force from the driver, and the allowable lower limit rotational speed Nemin is set as the target rotational speed Ne * of the engine 22 (step S160). Then, the target rotational speed Ne * is transmitted to the engine ECU 24 and a shutdown command is transmitted to the motor ECU 40 (step S170), and this routine is terminated. This routine ends. When the engine ECU 24 receives the target rotational speed Ne * of the engine 22, the engine ECU 24 controls the engine 22 so that the rotational speed Ne of the engine 22 becomes the target rotational speed Ne *. When the motor ECU 40 receives the shutdown command, the motor ECU 40 shuts down the inverters 41 and 42. Here, the allowable lower limit rotational speed Nemin of the engine 22 is a lower limit of a rotational speed range in which the engine 22 can be operated independently, and for example, 900 rpm, 1000 rpm, 1100 rpm, or the like is used. By rotating the engine 22 at the allowable lower limit rotational speed Nemin in this way, the rotational speed Nm1 of the motor MG1 can be made sufficiently lower than the rotational speed when the accelerator is on (predetermined rotational speed Neset). FIG. 6 is an explanatory diagram showing an example of a collinear diagram of the planetary gear 30 when the accelerator opening Acc is less than the threshold value Aref in the inverterless traveling. When the accelerator opening Acc is less than the threshold value Aref, as shown in the figure, the regenerative torque Tcef1 is not generated in the motor MG1, so that the drive torque Trf is not output to the drive shaft 36.

ステップS110でアクセル開度Accが閾値Aref以上であり、且つ、モータMG1の回転数Nm1が閾値Nref以下であるときには、運転者からの駆動力要求があるものの、モータMG1で回生トルクTcefを発生させることができないと判断して、前回本ルーチンを実行したときに設定されている目標回転数Ne*(前回Ne*)をエンジン22の目標回転数Ne*に設定して(ステップS180)、エンジン22の目標回転数Ne*をエンジンECU24に送信すると共にインバータ41のシャットダウン指令とインバータ42の三相オン指令とをモータECU40に送信して(ステップS190)、本ルーチンを終了する。エンジンECU24は、エンジン22の目標回転数Ne*を受信すると、エンジン22の回転数Neが目標回転数Ne*となるようにエンジン22を制御する。モータECU40は、インバータ41のシャットダウン指令を受信すると、インバータ41をシャットダウンの継続する。モータECU40は、三相オン指令を受信すると、インバータ42の上アームトランジスタ(T21〜T23)および下アームトランジスタ(T24〜T26)の何れか一方の全てをオンとする。   In step S110, when the accelerator opening Acc is equal to or greater than the threshold value Aref and the rotational speed Nm1 of the motor MG1 is equal to or less than the threshold value Nref, the motor MG1 generates the regenerative torque Tcef although there is a driving force request from the driver. Therefore, the target rotational speed Ne * (previous Ne *) set when the routine was executed last time is set as the target rotational speed Ne * of the engine 22 (step S180). The target rotational speed Ne * is transmitted to the engine ECU 24, and the shutdown command for the inverter 41 and the three-phase on command for the inverter 42 are transmitted to the motor ECU 40 (step S190), and this routine is terminated. When the engine ECU 24 receives the target rotational speed Ne * of the engine 22, the engine ECU 24 controls the engine 22 so that the rotational speed Ne of the engine 22 becomes the target rotational speed Ne *. When the motor ECU 40 receives the shutdown command for the inverter 41, the motor ECU 40 continues to shut down the inverter 41. When the motor ECU 40 receives the three-phase ON command, the motor ECU 40 turns on any one of the upper arm transistors (T21 to T23) and the lower arm transistors (T24 to T26) of the inverter 42.

図7は、インバータ42を三相オンしたときのプラネタリギヤ30の共線図の一例を示す説明図である。図中、実線は、インバータ42を三相オンする直前のプラネタリギヤ30の共線図の一例を示している。破線は、インバータ42を三相オンしたときのプラネタリギヤ30の共線図の一例を示している。図示するように、インバータ42を三相オンすると、モータMG2の回転数Nm2を低下させる方向のトルク(引きずりトルク)Tdrg2がプラネタリギヤ30を介してモータMG1の回転数を上昇させるトルクTdrg1(=−ρ・Tdrg2)としてモータMG1の回転軸に出力される。これにより、モータMG1の回転数Nm1を上昇させることができる。また、一般に、モータMG2は、エンジン22より制御応答性が良い。そのため、エンジン22の回転数Neを上昇させてモータMG1の回転数Nm1を上昇させるより、インバータ42を三相オンとしてモータMG1の回転数Nm1を上昇させるほうが、より迅速に回転数Nm1を上昇させることができる。   FIG. 7 is an explanatory diagram showing an example of a collinear diagram of the planetary gear 30 when the inverter 42 is three-phase-on. In the drawing, the solid line shows an example of a collinear diagram of the planetary gear 30 immediately before the inverter 42 is three-phase-on. The broken line shows an example of a collinear diagram of the planetary gear 30 when the inverter 42 is three-phase-on. As shown in the figure, when the inverter 42 is turned on three-phase, the torque Tdrg2 in the direction to decrease the rotational speed Nm2 of the motor MG2 (drag torque) Tdrg2 increases the rotational speed of the motor MG1 via the planetary gear 30 (= −ρ -It outputs to the rotating shaft of motor MG1 as Tdrg2). Thereby, the rotation speed Nm1 of the motor MG1 can be increased. In general, the motor MG2 has better control response than the engine 22. Therefore, rather than increasing the rotation speed Ne of the engine 22 and increasing the rotation speed Nm1 of the motor MG1, it is more rapid to increase the rotation speed Nm1 of the motor MG1 by turning the inverter 42 three-phase on. be able to.

なお、こうしてモータMG1の回転数Nm1が上昇して閾値Nrefより高くなったときには、ステップS130の処理へ進み、モータMG1の目標回転数Nm1*とエンジン22の目標回転数Ne*を設定し(ステップS130,S140)、エンジン22の目標回転数Ne*をエンジンECU24に送信すると共にシャットダウン指令をモータECU40に送信して(ステップS150)、本ルーチンを終了する。エンジンECU24は、エンジン22の目標回転数Ne*を受信すると、エンジン22の回転数Neが目標回転数Ne*となるようにエンジン22を制御する。モータECU40は、シャットダウン指令を受信すると、インバータ41,42をシャットダウンする。これにより、モータMG1の回生トルクTcef1に基づく駆動軸36の駆動トルクを用いてインバータレス走行することができる。   When the rotational speed Nm1 of the motor MG1 increases and becomes higher than the threshold value Nref in this way, the process proceeds to step S130, and the target rotational speed Nm1 * of the motor MG1 and the target rotational speed Ne * of the engine 22 are set (step S130). S130, S140), the target rotational speed Ne * of the engine 22 is transmitted to the engine ECU 24, and a shutdown command is transmitted to the motor ECU 40 (step S150), and this routine is terminated. When the engine ECU 24 receives the target rotational speed Ne * of the engine 22, the engine ECU 24 controls the engine 22 so that the rotational speed Ne of the engine 22 becomes the target rotational speed Ne *. When the motor ECU 40 receives the shutdown command, the motor ECU 40 shuts down the inverters 41 and 42. Thus, inverterless traveling can be performed using the drive torque of the drive shaft 36 based on the regenerative torque Tcef1 of the motor MG1.

以上説明した実施例のハイブリッド自動車20によれば、インバータレス走行中にアクセル開度Accが閾値Aref以上になった場合において、モータMG1の回転数Nm1が閾値Nref以下であるときには、インバータ42を三相オンすることにより、モータMG1の回転数Nm1をより迅速に閾値Nrefより高くすることができる。また、その後に、モータMG1の回転数Nm1が閾値Nref以上となったときには、インバータ42をシャットダウンするから、インバータレス走行により走行することができる。   According to the hybrid vehicle 20 of the embodiment described above, when the accelerator opening Acc is equal to or greater than the threshold value Aref during inverterless travel, when the rotational speed Nm1 of the motor MG1 is equal to or less than the threshold value Nref, the inverter 42 is By turning on the phase, the rotational speed Nm1 of the motor MG1 can be made higher than the threshold value Nref more quickly. After that, when the rotation speed Nm1 of the motor MG1 becomes equal to or higher than the threshold value Nref, the inverter 42 is shut down, so that the vehicle can travel by inverterless travel.

実施例のハイブリッド自動車20では、ステップS180,S190で前回Ne*をエンジン22の目標回転数Ne*に設定してエンジン22の回転数Neを保持しながらインバータ42を三相オンしているが、エンジン22の回転数Neを上昇させながらインバータ42を三相オンしてもよい。   In the hybrid vehicle 20 of the embodiment, the previous phase Ne * is set to the target rotational speed Ne * of the engine 22 in steps S180 and S190, and the inverter 42 is three-phase-on while maintaining the rotational speed Ne of the engine 22. The inverter 42 may be turned on three-phase while increasing the rotational speed Ne of the engine 22.

実施例のハイブリッド自動車20では、昇降圧コンバータ55を備えるものとしたが、この昇降圧コンバータ55を備えないものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the step-up / down converter 55 is provided. However, the step-up / down converter 55 may not be provided.

実施例のハイブリッド自動車20では、蓄電装置として、バッテリ50を用いるものとしたが、キャパシタなどの蓄電可能な装置であれば如何なる装置を用いるものとしてもよい。    In the hybrid vehicle 20 of the embodiment, the battery 50 is used as the power storage device. However, any device may be used as long as it can store power, such as a capacitor.

実施例のハイブリッド自動車20では、エンジンECU24とモータECU40とバッテリECU52とHVECU70とを備えるものとしたが、これらのうちの少なくとも2つを単一の電子制御ユニットとして構成するものとしてもよい。    Although the hybrid vehicle 20 of the embodiment includes the engine ECU 24, the motor ECU 40, the battery ECU 52, and the HVECU 70, at least two of them may be configured as a single electronic control unit.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「エンジン」に相当し、モータMG1が「第1モータ」に相当し、プラネタリギヤ30が「プラネタリギヤ」に相当し、モータMG2が「第2モータ」に相当し、インバータ41が「第1インバータ」に相当し、インバータ42が「第2インバータ」に相当し、バッテリ50が「蓄電装置」に相当し、HVECU70とエンジンECU24とモータECU40とが「制御装置」に相当する。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, the engine 22 corresponds to the “engine”, the motor MG1 corresponds to the “first motor”, the planetary gear 30 corresponds to the “planetary gear”, the motor MG2 corresponds to the “second motor”, and the inverter 41 Corresponds to the “first inverter”, the inverter 42 corresponds to the “second inverter”, the battery 50 corresponds to the “power storage device”, and the HVECU 70, the engine ECU 24, and the motor ECU 40 correspond to the “control device”.

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. Therefore, the elements of the invention described in the column of means for solving the problems are not limited. In other words, the interpretation of the invention described in the column of means for solving the problem should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problem. It is only a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、ハイブリッド車両の製造産業などに利用可能である。   The present invention is applicable to the hybrid vehicle manufacturing industry and the like.

20 ハイブリッド自動車、22 エンジン、23 クランクポジションセンサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 プラネタリギヤ、36 駆動軸、38 デファレンシャルギヤ、39a,39b 駆動輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45u,45v,46u,46v 電流センサ、50 バッテリ、51a,57a,58a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54a 高電圧側電力ライン、54b 低電圧側電力ライン、55 昇降圧コンバータ、56 システムメインリレー、57,58 コンデンサ、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、D11〜D16,D21〜D26,D31,D32 ダイオード、L リアクトル、MG1,MG2 モータ、T11〜T16,T21〜T26,T31,T32 トランジスタ。 20 Hybrid Vehicle, 22 Engine, 23 Crank Position Sensor, 24 Engine Electronic Control Unit (Engine ECU), 26 Crankshaft, 28 Damper, 30 Planetary Gear, 36 Drive Shaft, 38 Differential Gear, 39a, 39b Drive Wheel, 40 For Motor Electronic control unit (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 45u, 45v, 46u, 46v current sensor, 50 battery, 51a, 57a, 58a voltage sensor, 51b current sensor, 51c temperature sensor, 52 battery electronic control unit (battery ECU), 54a high voltage power line, 54b low voltage power line, 55 buck-boost converter, 56 system main relay, 57, 58 capacitor, 70 Electronic control unit for hybrid (HVECU), 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 brake pedal position sensor, 88 vehicle speed sensor, D11 to D16, D21-D26, D31, D32 Diode, L reactor, MG1, MG2 motor, T11-T16, T21-T26, T31, T32 transistors.

Claims (2)

エンジンと、
回転に伴って逆起電圧を発生する第1モータと、
前記第1モータと前記エンジンと車軸に連結された駆動軸との3軸に3つの回転要素が共線図において前記第1モータ,前記エンジン,前記駆動軸の順番に並ぶように接続されたプラネタリギヤと、
前記駆動軸に動力を入出力可能な第2モータと、
前記第1モータを駆動する第1インバータと、
前記第2モータを駆動する第2インバータと、
前記第1,第2インバータに電力ラインを介して接続された蓄電装置と、
前記エンジンと前記第1,第2インバータとを制御する制御装置と、
を備えるハイブリッド車両であって、
前記制御装置は、前記第1,第2インバータをシャットダウンしている状態で前記エンジンを運転しながら走行する所定走行時に、アクセル操作量が所定操作量以上である場合において、前記第1モータの回転数が所定回転数以下であるときには、前記第2インバータを三相オンする、
ハイブリッド車両。
Engine,
A first motor that generates a back electromotive force with rotation;
A planetary gear in which three rotating elements are connected to three axes of the first motor, the engine, and a drive shaft connected to an axle so that the first motor, the engine, and the drive shaft are arranged in order in the collinear diagram. When,
A second motor capable of inputting and outputting power to the drive shaft;
A first inverter for driving the first motor;
A second inverter for driving the second motor;
A power storage device connected to the first and second inverters via a power line;
A control device for controlling the engine and the first and second inverters;
A hybrid vehicle comprising:
When the accelerator operation amount is greater than or equal to a predetermined operation amount during a predetermined travel while driving the engine while the first and second inverters are shut down, the control device rotates the first motor. When the number is equal to or less than the predetermined number of revolutions, the second inverter is turned on three-phase.
Hybrid vehicle.
請求項1記載のハイブリッド車両であって、
前記制御装置は、前記所定走行時に前記アクセル操作量が前記所定操作量以上で前記第1モータの回転数が前記所定回転数以下であることにより前記第2インバータを三相オンした場合において、前記第1モータの回転数が前記所定回転数以上となったときには、前記第2インバータをシャットダウンして前記所定走行により走行する、
ハイブリッド車両。
The hybrid vehicle according to claim 1,
In the case where the accelerator operation amount is equal to or greater than the predetermined operation amount and the rotation speed of the first motor is equal to or less than the predetermined rotation speed during the predetermined travel, When the rotational speed of the first motor is equal to or higher than the predetermined rotational speed, the second inverter is shut down and travels by the predetermined travel.
Hybrid vehicle.
JP2017086155A 2017-04-25 2017-04-25 Hybrid vehicle Active JP6812895B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017086155A JP6812895B2 (en) 2017-04-25 2017-04-25 Hybrid vehicle
US15/954,861 US10730506B2 (en) 2017-04-25 2018-04-17 Hybrid vehicle and control method therefor
CN201810379574.2A CN108725426B (en) 2017-04-25 2018-04-25 Hybrid vehicle and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017086155A JP6812895B2 (en) 2017-04-25 2017-04-25 Hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2018184059A true JP2018184059A (en) 2018-11-22
JP6812895B2 JP6812895B2 (en) 2021-01-13

Family

ID=63939221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017086155A Active JP6812895B2 (en) 2017-04-25 2017-04-25 Hybrid vehicle

Country Status (3)

Country Link
US (1) US10730506B2 (en)
JP (1) JP6812895B2 (en)
CN (1) CN108725426B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818835B1 (en) * 2019-10-02 2021-01-20 株式会社ケーヒン Power controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136064A (en) * 2010-12-24 2012-07-19 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2013203116A (en) * 2012-03-27 2013-10-07 Toyota Motor Corp Hybrid vehicle and method for controlling the same
JP2017043299A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Hybrid vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9012365D0 (en) * 1990-06-02 1990-07-25 Jaguar Cars Motor vehicles
JP4075863B2 (en) * 2004-06-07 2008-04-16 株式会社デンソー Electric torque using vehicle
JP4784478B2 (en) * 2006-04-20 2011-10-05 株式会社デンソー Control device for multiphase rotating electrical machine
JP5724975B2 (en) * 2012-09-18 2015-05-27 トヨタ自動車株式会社 Control device for vehicle
KR101526391B1 (en) * 2013-11-27 2015-06-08 현대자동차 주식회사 Motor controlling systen and motor controlling method
KR101793855B1 (en) * 2014-01-31 2017-11-03 혼다 기켄 고교 가부시키가이샤 Power plant
JP6183339B2 (en) * 2014-12-02 2017-08-23 トヨタ自動車株式会社 Hybrid car
JP6252574B2 (en) * 2015-09-25 2017-12-27 トヨタ自動車株式会社 Hybrid vehicle
JP6760194B2 (en) * 2017-04-25 2020-09-23 トヨタ自動車株式会社 Hybrid vehicle
JP6772947B2 (en) * 2017-04-27 2020-10-21 トヨタ自動車株式会社 Hybrid car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136064A (en) * 2010-12-24 2012-07-19 Toyota Motor Corp Hybrid vehicle and control method thereof
JP2013203116A (en) * 2012-03-27 2013-10-07 Toyota Motor Corp Hybrid vehicle and method for controlling the same
JP2017043299A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Hybrid vehicle

Also Published As

Publication number Publication date
CN108725426B (en) 2021-04-13
US20190315335A1 (en) 2019-10-17
JP6812895B2 (en) 2021-01-13
US10730506B2 (en) 2020-08-04
CN108725426A (en) 2018-11-02

Similar Documents

Publication Publication Date Title
JP6392653B2 (en) Hybrid car
JP6341238B2 (en) Automobile
JP4123269B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
CN108515844B (en) Hybrid electric vehicle and control method for hybrid electric vehicle
JP2021084537A (en) Hybrid vehicle
JP6888512B2 (en) Hybrid car
JP6760194B2 (en) Hybrid vehicle
JP6631571B2 (en) Hybrid car
JP6652081B2 (en) Hybrid car
JP6772947B2 (en) Hybrid car
US10814862B2 (en) Hybrid vehicle
CN108569273B (en) Hybrid vehicle and control method thereof
JP6489100B2 (en) Hybrid car
JP6451725B2 (en) Hybrid car
JP6812895B2 (en) Hybrid vehicle
JP6888511B2 (en) Hybrid car
JP2008007018A (en) Motive power output device, vehicle equipped with the same, and control method of motive power output device
JP6607217B2 (en) Hybrid car
JP2018167614A (en) Hybrid vehicular control apparatus
JP6769366B2 (en) Hybrid vehicle control device
JP2015199411A (en) Hybrid electric vehicle
JP2007126007A (en) Motive power output unit, vehicle mounting the same, and control method of motive power output unit
JP2016100965A (en) Electric vehicle
JP6885303B2 (en) Hybrid car
JP6874638B2 (en) Hybrid car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151