JP2018179165A - Connecting rod bearing and bearing device - Google Patents

Connecting rod bearing and bearing device Download PDF

Info

Publication number
JP2018179165A
JP2018179165A JP2017080516A JP2017080516A JP2018179165A JP 2018179165 A JP2018179165 A JP 2018179165A JP 2017080516 A JP2017080516 A JP 2017080516A JP 2017080516 A JP2017080516 A JP 2017080516A JP 2018179165 A JP2018179165 A JP 2018179165A
Authority
JP
Japan
Prior art keywords
bearing
connecting rod
cylindrical recess
circumferential
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017080516A
Other languages
Japanese (ja)
Other versions
JP6796538B2 (en
Inventor
加藤 健太
Kenta Kato
健太 加藤
雅浩 平山
Masahiro Hirayama
雅浩 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2017080516A priority Critical patent/JP6796538B2/en
Publication of JP2018179165A publication Critical patent/JP2018179165A/en
Application granted granted Critical
Publication of JP6796538B2 publication Critical patent/JP6796538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connecting rod bearing and bearing device of an internal combustion engine, where cavitation erosion does not occur on a slide layer even in a case where a cavity occurs in lubricant.SOLUTION: A connecting rod bearing has a first half-split bearing and a second half-split bearing. The second half-split bearing has an oil groove over the entire length in a circumferential direction. The first half-split bearing has a first partial groove and a second partial groove. The oil groove and the first and second partial grooves communicate with each other. A cylindrical recess part communicating with a circumferential center part side end part of the second partial groove is formed. An axial line of the cylindrical recess part extends toward an axial line of the first half-split bearing. An inner diameter of the cylindrical recess part is 100%-150% of a width in the axial direction of the second partial groove. A depth of the second partial groove at a position of communicating with the cylindrical recess part is more than a thickness of a slide layer of the first half-split bearing. The cylindrical recess part is formed so as to have a depth deeper than the depth of the second partial groove at the position of communicating with the cylindrical recess part, and so as not to penetrate to a bearing outer peripheral surface of the first half-split bearing.SELECTED DRAWING: Figure 2

Description

本発明は、内燃機関のコンロッド軸受に関し、より詳細には、クランク軸を支持する主軸受の内周面に供給された潤滑油が、クランク軸の内部潤滑油路を経て、コンロッドと連結されるクランク軸のクランクピンを回転自在に支持するコンロッド軸受の内周面に供給されるように構成されたコンロッド軸受、及びこのコンロッド軸受を用いた軸受装置に関する。   The present invention relates to a connecting rod bearing of an internal combustion engine, and more specifically, lubricating oil supplied to the inner peripheral surface of a main bearing supporting a crankshaft is connected to a connecting rod through an internal lubricating oil passage of the crankshaft. The present invention relates to a connecting rod bearing configured to be supplied to the inner peripheral surface of a connecting rod bearing that rotatably supports a crank pin of a crankshaft, and a bearing device using the connecting rod bearing.

内燃機関はピストンの往復運動をクランクシャフトの回転運動に変換するためにピストンとクランクシャフトとを連結するコンロッドを有する。コンロッドは、コンロッド本体部とコンロッドキャップ部とから成り(コンロッド本体部が更に分割される場合も有る)、またコンロッド本体部の一方の先端にピストンピンを支持する小端部を有し、小端部はブシュ保持穴を有する。コンロッド本体部の他方の先端はボルトによりコンロッドキャップ部と組み合されてクランクピンを支持する大端部を形成し、大端部は、コンロッド本体部とコンロッドキャップ部の端面同士を突き合わせたときにコンロッド本体部の半円筒形状の第1軸受保持穴と、コンロッドキャップ部の半円筒形状の第2軸受保持穴とによって形成されるコンロッド軸受を保持するための円筒形状の軸受保持穴を有する。   The internal combustion engine has a connecting rod connecting the piston and the crankshaft to convert the reciprocating motion of the piston into rotational motion of the crankshaft. The connecting rod consists of a connecting rod main body and a connecting rod cap (the connecting rod main body may be further divided), and has a small end supporting the piston pin at one end of the connecting rod main body, the small end The part has a bushing retaining hole. The other end of the connecting rod main body is combined with the connecting rod cap by a bolt to form a large end supporting the crankpin, and the large end is when the end faces of the connecting rod main body and the connecting rod cap are butted It has a cylindrical bearing holding hole for holding a connecting rod bearing formed by a semi-cylindrical first bearing holding hole of the connecting rod main body and a semi-cylindrical second bearing holding hole of the connecting rod cap.

コンロッドの小端部のブシュ保持穴には円筒状のブシュ軸受が挿入されてピストンピンを支持し、一方、大端部の軸受保持穴にはコンロッド本体部の第1軸受保持穴及びコンロッドキャップ部の第2軸受保持穴の形状に係合するようにそれぞれ形成された一対の半割軸受が挿入され、一対の半割軸受はコンロッド本体部側とコンロッドキャップ部側とが組み合せられることで円筒形状となりクランクピンを支持する(以下、組み合わされた一対の半割軸受をコンロッド軸受と記述)。   A cylindrical bushing bearing is inserted in the bush holding hole of the small end of the connecting rod to support the piston pin, while the bearing holding hole of the large end is the first bearing holding hole of the connecting rod body and the connecting rod cap A pair of half bearings respectively formed so as to engage with the shape of the second bearing holding hole are inserted, and the pair of half bearings are cylindrically shaped by combining the connecting rod main body side and the connecting rod cap side. And the crank pin is supported (hereinafter, the combined pair of half bearings is described as a connecting rod bearing).

従来、船舶や発電機等に用いられる中高速内燃機関のコンロッドにおいては、特許文献1に挙げられるような油路構造が適用されている。すなわち、コンロッド大端部において、第1軸受保持穴は、クランクピンの回転方向の前方側の周方向端面から、周方向中央部側に向かって延びる第1供給溝と、クランクピンの回転方向の後方側の周方向端面から、周方向中央部側に向かって延びる第2供給溝とを備え、第2軸受保持穴は、周方向の全長に亘って延びる第3供給溝を備え、また第3供給溝と、第1供給溝及び第2供給溝とは、それぞれの周方向端面同士の突き合わせ箇所で連通される。   Conventionally, an oil passage structure as described in Patent Document 1 is applied to a connecting rod of a medium to high speed internal combustion engine used for a ship, a generator or the like. That is, at the large end of the connecting rod, the first bearing holding hole extends from the circumferential end face on the front side in the rotational direction of the crankpin toward the circumferential central portion, and the first bearing holding hole extends in the rotational direction of the crankpin. A second supply groove extending from the circumferential end surface on the rear side toward the circumferential central portion, and the second bearing holding hole includes a third supply groove extending over the entire length in the circumferential direction; The supply groove and the first supply groove and the second supply groove communicate with each other at a point where the circumferential end faces meet.

更に、コンロッドは、コンロッドの小端部へ潤滑油を供給するために、小端部と、第1供給溝、第2供給溝及び第3供給溝の何れかとを連絡する連通路を備えている。   Furthermore, the connecting rod is provided with a communication passage communicating the small end with any one of the first supply groove, the second supply groove and the third supply groove in order to supply the lubricating oil to the small end of the connecting rod. .

クランクピンは、円筒胴部と、円筒胴部を貫通して延びる潤滑油路と、円筒胴部の外周面に形成された潤滑油路の少なくとも1つの出口開口とを有し、出口開口は、円筒胴部の外周面とコンロッド軸受の摺動面の隙間に連通され、したがって潤滑油は潤滑油路、及び出口開口を介してコンロッド軸受に圧送される。   The crank pin has a cylindrical body, a lubricating oil passage extending through the cylindrical body, and at least one outlet opening of the lubricating oil passage formed on the outer peripheral surface of the cylindrical body, the outlet opening being It is communicated with the gap between the outer peripheral surface of the cylindrical body and the sliding surface of the connecting rod bearing, so that the lubricating oil is pumped to the connecting rod bearing via the lubricating oil passage and the outlet opening.

一対の半割軸受からなるコンロッド軸受のうち、コンロッド本体部側に保持される半割軸受(以下、第1の半割軸受と記述)は、クランクピンの回転方向の前方側の周方向端面から、周方向中央部側へ向かって延びる第1部分溝と、クランクピンの回転方向の後方側の周方向端面から周方向中央部側へ向かって延びる第2部分溝とを有するとともに、第1部分溝及び第2部分溝の内面から第1の半割軸受の軸受外周面に貫通する少なくとも1つの油穴を有し、コンロッドキャップ部側に保持される半割軸受(以下、第2の半割軸受と記述)は、第2の半割軸受の周方向の全長に亘って延びる油溝を有するとともに、油溝の内面から第2の半割軸受の軸受外周面に貫通する少なくとも1つの油穴を有する。   Among the connecting rod bearings consisting of a pair of half bearings, the half bearings (hereinafter referred to as the first half bearings) held on the connecting rod main body side are from the circumferential end face on the front side of the crankpin in the rotational direction. A first partial groove extending toward the circumferential central portion, and a second partial groove extending from the circumferential end surface on the rear side in the rotational direction of the crankpin toward the central portion in the circumferential direction; A half bearing (hereinafter referred to as a second half) having at least one oil hole penetrating from the inner surface of the groove and the second partial groove to the bearing outer peripheral surface of the first half bearing and held on the connecting rod cap portion side Bearing) has an oil groove extending along the entire circumferential length of the second half bearing, and at least one oil hole penetrating from the inner surface of the oil groove to the outer peripheral surface of the bearing of the second half bearing Have.

コンロッド軸受に圧送された潤滑油の一部は、第1の半割軸受に形成された、第1部分溝及び第2部分溝、第2の半割軸受に形成された油溝、並びに一対の半割軸受に形成された油穴を通じて、コンロッドの第1軸受保持穴に形成された第1供給溝及び第2供給溝、並びに第2軸受保持穴に形成された第3供給溝に供給され、更にコンロッドに形成された連通路を通じて、コンロッド小端部に供給される。   A part of the lubricating oil pumped to the connecting rod bearing is formed of a first partial groove and a second partial groove formed in the first half bearing, an oil groove formed in the second half bearing, and a pair of oil grooves formed in the second half bearing. The first and second supply grooves formed in the first bearing holding hole of the connecting rod and the third supply groove formed in the second bearing holding hole are supplied through oil holes formed in the half bearing. Furthermore, it is supplied to the connecting rod small end through a communication passage formed in the connecting rod.

なお、コンロッド軸受は、裏金層と摺動層とから成り、摺動層は、半割軸受の摺動面を構成する。摺動層はホワイト合金(錫合金)、アルミニウム合金、銅合金等の軸受合金からなる。更に摺動層の表面には、電気めっき、真空蒸着、吹き付け等の手段を以って、鉛系、錫系、アルミニウム合金、合成樹脂等の表面層(オーバレイ層)が皮膜されることもある。   The connecting rod bearing is composed of a back metal layer and a sliding layer, and the sliding layer constitutes the sliding surface of the half bearing. The sliding layer is made of a bearing alloy such as white alloy (tin alloy), aluminum alloy, copper alloy or the like. Furthermore, a surface layer (overlay layer) of lead-based, tin-based, aluminum alloy, synthetic resin, etc. may be coated on the surface of the sliding layer by means such as electroplating, vacuum deposition, spraying or the like. .

前述のコンロッド軸受の構造的な課題として、第1の半割軸受における第2部分溝の周方向中央部側端部でキャビテーションエロージョンが発生することが挙げられる。ここで、図8A、図8B、図9、及び図10を用いて、従来技術のコンロッド軸受の構成における、キャビテーションエロージョン発生の仕組みについて説明する。従来技術における第1の半割軸受110の構成では、図8A及び図8Bに示す如く、第1の半割軸受110の摺動面(内周面)113側には、クランクピン50の回転方向Rの前方側の周方向端面114から、周方向中央部側へ向かって延びる第1部分溝115と、クランクピン50の回転方向Rの後方側の周方向端面116から周方向中央部側へ向かって延びる第2部分溝117が形成され、第1部分溝115と第2部分溝117はそれぞれ軸受摺動面113で緩やかに切上り、それにより、第1部分溝115の周方向中央部側端部115aと第2部分溝117の周方向中央部側端部117aとの間には摺動面113が形成される。   As a structural problem of the above-mentioned connecting rod bearing, cavitation erosion occurs at the circumferential center side end of the second partial groove in the first half bearing. Here, the mechanism of cavitation erosion generation in the configuration of the connecting rod bearing according to the prior art will be described with reference to FIGS. 8A, 8B, 9, and 10. FIG. In the configuration of the first half bearing 110 in the prior art, as shown in FIGS. 8A and 8B, the rotation direction of the crankpin 50 is on the sliding surface (inner circumferential surface) 113 side of the first half bearing 110. From the circumferential end surface 114 on the front side of R to the first partial groove 115 extending toward the circumferential center, and from the circumferential end surface 116 on the rear side in the rotational direction R of the crankpin 50, toward the circumferential center The first partial groove 115 and the second partial groove 117 are gently rounded up at the bearing sliding surface 113, whereby the circumferentially central end of the first partial groove 115 is formed. A sliding surface 113 is formed between the portion 115 a and the circumferential central end portion 117 a of the second partial groove 117.

前述のように、クランクピン50の出口開口52は、クランクピンの円筒胴部の外周面54とコンロッド軸受の摺動面113との隙間に連通されるが、図9に示される如く、クランクピン50の出口開口52が第2部分溝117と完全に連通している間は、第2部分溝117との間に形成される隙間Sが大きいため、潤滑油は第2部分溝117に大きな負荷無く流れ、クランクピン50の潤滑油路51の出口開口52付近の潤滑油圧力は高くない状態にある。   As described above, the outlet opening 52 of the crankpin 50 is in communication with the gap between the outer peripheral surface 54 of the cylindrical body of the crankpin and the sliding surface 113 of the connecting rod bearing, but as shown in FIG. Since the gap S formed between the second partial groove 117 and the second partial groove 117 is large while the 50 outlet openings 52 are in full communication with the second partial groove 117, the lubricating oil is heavily loaded on the second partial groove 117. Without flowing, the lubricating oil pressure near the outlet opening 52 of the lubricating oil passage 51 of the crank pin 50 is not high.

一方、図10に示される如く、クランクピン50の出口開口52と第2部分溝117の連通が終了する直前においては、クランクピン50の出口開口52の大部分がコンロッド軸受の摺動面113上に位置し、クランクピンの外周面54と摺動面113との間の隙間Sが小さくなるので、この部分の潤滑油圧力は極めて高くなる。この際、出口開口52の摺動面113上に位置しない部分の付近は第2部分溝117と連通しているため隙間Sが大きく、潤滑油圧力は低いため、前述の摺動面113上に位置する部分との圧力差により、潤滑油路51内の潤滑油は、摺動面113上に位置しない出口開口52の部分から急激に流出する。この急激に流出した潤滑油は、第2部分溝117の周方向中央側端部117a付近に向かって、クランクピン50の回転方向Rと逆向きの急速な流れ(逆流)を作り、この際、潤滑油路51から流出した潤滑油は急激な圧力低下が生じ、圧力が蒸気圧以下になることで、潤滑油内にキャビティ(気泡)Cが生じる。キャビティCは蒸気圧以上となった際に崩壊し、潤滑油の圧力流(マイクロジェット)が生じるが、これが第1の半割軸受110の第2部分溝117の円周方向中央部側の周方向端部117a付近で発生することで、同部付近の摺動層181が浸食される(キャビテーションエロージョン)。特にコンロッド軸受の摺動層181は比較的軟質であるため、よく浸食される。浸食された摺動層181の表面状態は一般的に荒れた様相を呈し、その荒れた表面は潤滑油膜の形成に悪影響を与え、軸受の焼付き等の二次的な損傷に繋がる他、浸食により脱落した摺動層181は、異物として潤滑油内に混入され、コンロッド軸受の摺動面や他部品に損傷を与えることもある。   On the other hand, as shown in FIG. 10, most of the outlet opening 52 of the crankpin 50 is on the sliding surface 113 of the connecting rod bearing immediately before the communication between the outlet opening 52 of the crankpin 50 and the second partial groove 117 ends. Since the clearance S between the outer peripheral surface 54 of the crank pin and the sliding surface 113 is reduced, the lubricating oil pressure in this portion becomes extremely high. At this time, the vicinity of the portion not positioned on the sliding surface 113 of the outlet opening 52 communicates with the second partial groove 117, so the gap S is large and the lubricating oil pressure is low. Due to the pressure difference with the located portion, the lubricating oil in the lubricating oil passage 51 rapidly flows out from the portion of the outlet opening 52 which is not located on the sliding surface 113. The rapidly drained lubricating oil forms a rapid flow (reverse flow) in the direction opposite to the rotational direction R of the crank pin 50 toward the vicinity of the circumferential center end 117a of the second partial groove 117, in which case The lubricating oil flowing out of the lubricating oil passage 51 has a rapid pressure drop, and when the pressure becomes lower than the vapor pressure, a cavity (air bubble) C is generated in the lubricating oil. The cavity C collapses when the pressure exceeds the vapor pressure, and a pressure flow (micro jet) of lubricating oil is generated. This is the circumferential center side of the second partial groove 117 of the first half bearing 110 The sliding layer 181 in the vicinity of the direction end portion 117 a is eroded by being generated in the vicinity of the direction end portion 117 a (cavitation erosion). In particular, the sliding layer 181 of the connecting rod bearing is corroded because it is relatively soft. The surface condition of the eroded sliding layer 181 generally has a rough appearance, and the rough surface adversely affects the formation of a lubricating oil film, leading to secondary damage such as bearing seizure, and erosion. As a result, the sliding layer 181 dropped off may be mixed in the lubricating oil as foreign matter, which may damage the sliding surface of the connecting rod bearing and other parts.

このキャビテーションエロージョンの課題に対応するために、油溝の切上り付近に所定ピッチで形成された二次溝を設けること(特許文献2)や、延長溝(細溝)を設けること(特許文献3)が提案されている。   In order to cope with the problem of the cavitation erosion, providing a secondary groove formed at a predetermined pitch near the upturn of the oil groove (Patent Document 2) or providing an extended groove (thin groove) (Patent Document 3) ) Has been proposed.

特許第4431205号明細書Patent No. 4431205 specification 特開2007−225079号公報Unexamined-Japanese-Patent No. 2007-225079 特開2001−50252号公報Unexamined-Japanese-Patent No. 2001-50252 特開昭53−85245号公報Japanese Patent Application Laid-Open No. 53-85245

しかしながら、これら先行技術では油溝切上り部付近のキャビテーションエロージョンの抑制に一定の効果が期待できるものの、キャビティが発生した場合、摺動層への損傷なしにキャビティを崩壊させる構造を有していないため、摺動層の浸食を避けられないという問題があった。   However, although these prior arts can be expected to have a certain effect in suppressing cavitation erosion near the oil groove cut-up portion, they do not have a structure for collapsing the cavity without damaging the sliding layer when the cavity is generated. Therefore, there is a problem that erosion of the sliding layer can not be avoided.

したがって本発明の目的は、潤滑油内にキャビティが生じた場合でも摺動層にキャビテーションエロージョンが生じないコンロッド軸受及び軸受装置を提供することである。   Therefore, an object of the present invention is to provide a connecting rod bearing and a bearing device in which cavitation erosion does not occur in a sliding layer even when a cavity is generated in lubricating oil.

上記課題を解決するために、本発明の一つの観点によれば、内燃機関のクランク軸のクランクピンであって、円筒胴部と、円筒胴部内を通して延びる潤滑油路と、円筒胴部の外周面上に形成された潤滑油路の少なくとも1つの出口開口とを有しているクランクピンを回転自在に支持するためのコンロッド軸受であって、
コンロッド軸受は、第1の半割軸受及び第2の半割軸受を有し、第1の半割軸受及び第2の半割軸受は、それぞれの周方向端面を互いに突き合わせることによって円筒形状に組み合わされ、
第1の半割軸受及び第2の半割軸受はそれぞれ、裏金層及び摺動層を有し、摺動層は、半割軸受の摺動面を構成し、
第2の半割軸受は、摺動面(内周面)側に、第2の半割軸受の周方向の全長に亘って延びる油溝を有するとともに、油溝の内面から第2の半割軸受の軸受外周面まで貫通する少なくとも1つの油穴を有し、
第1の半割軸受は、摺動面(内周面)側に、クランクピンの回転方向の前方側の第1の半割軸受の周方向端面から、第1の半割軸受の周方向中央部側へ向かって延びる第1部分溝と、クランクピンの回転方向の後方側の第1の半割軸受の周方向端面から周方向中央部側へ向かって延びる第2部分溝とを有し、
第2の半割軸受の油溝と、第1の半割軸受の第1部分溝及び第2部分溝とは、第1の半割軸受及び第2の半割軸受のそれぞれの周方向端面を互いにつき合わせることによって互いに連通される
コンロッド軸受において、
第1の半割軸受は、第2部分溝の周方向中央部側の周方向端部で第2部分溝に連通するように形成された円筒形凹部を有し、
第1の半割軸受の第1部分溝の周方向中央部側の周方向端部と、円筒形凹部の周方向中央部側の周方向端部との間の摺動面を規定する円周角度(θ1)が80°〜160°であり、
円筒形凹部の軸心線が、第1の半割軸受の軸心線に向かって延び、
円筒形凹部の内径(ID1)は、摺動面上において、円筒形凹部に連通する位置での第2部分溝の軸線方向の長さ(W1)の100%〜150%であり、
円筒形凹部に連通する位置での第2部分溝の深さ(D1)は、摺動層の厚さ(T1)以上であり、
円筒形凹部の最大深さ(D2)は、円筒形凹部に連通する位置での第2部分溝の深さ(D1)以上であり、且つ第1の半割軸受の軸受外周面まで貫通しないようになされている
ことを特徴とするコンロッド軸受が提供される。
In order to solve the above problems, according to one aspect of the present invention, a crankpin of a crankshaft of an internal combustion engine, which includes a cylindrical body, a lubricating oil passage extending through the cylindrical body, and an outer periphery of the cylindrical body. A connecting rod bearing for rotatably supporting a crankpin having at least one outlet opening of a lubricating oil passage formed on a surface, comprising:
The connecting rod bearing has a first half bearing and a second half bearing, and the first half bearing and the second half bearing have a cylindrical shape by abutting their circumferential end faces to each other. Combined,
The first half bearing and the second half bearing each have a back metal layer and a sliding layer, and the sliding layer constitutes the sliding surface of the half bearing,
The second half bearing has an oil groove extending along the entire circumferential length of the second half bearing on the sliding surface (inner circumferential surface) side, and the second half from the inner surface of the oil groove At least one oil hole penetrating to the bearing outer peripheral surface of the bearing;
The first half bearing is provided on the sliding surface (inner circumferential surface) side with the circumferential center of the first half bearing from the circumferential end surface of the first half bearing on the front side in the rotational direction of the crankpin A first partial groove extending toward the portion side, and a second partial groove extending toward the circumferential direction central portion side from the circumferential end surface of the first half bearing on the rear side in the rotational direction of the crankpin;
The oil groove of the second half bearing and the first partial groove and the second partial groove of the first half bearing correspond to the circumferential end faces of the first half bearing and the second half bearing, respectively. In connecting rod bearings that are in communication with one another by abutting one another,
The first half bearing has a cylindrical recess formed to communicate with the second partial groove at a circumferential end on the circumferential central side of the second partial groove,
A circumference defining a sliding surface between the circumferential end of the first partial groove of the first half bearing on the circumferential central side and the circumferential end of the cylindrical recess on the circumferential central side The angle (θ1) is 80 ° to 160 °,
The axis of the cylindrical recess extends towards the axis of the first half bearing,
The inner diameter (ID1) of the cylindrical recess is 100% to 150% of the axial length (W1) of the second partial groove at a position communicating with the cylindrical recess on the sliding surface,
The depth (D1) of the second partial groove at the position communicating with the cylindrical recess is not less than the thickness (T1) of the sliding layer,
The maximum depth (D2) of the cylindrical recess is equal to or greater than the depth (D1) of the second partial groove at the position communicating with the cylindrical recess and does not penetrate to the bearing outer peripheral surface of the first half bearing There is provided a connecting rod bearing characterized in that

また円筒形凹部は、円筒形凹部の軸心線を含み且つコンロッド軸受に垂直な断面において、この軸心線の垂直線に対する円筒形凹部の側面の角度(θ2)が85°〜95°になるよう形成されることができる。   In addition, the cylindrical recess includes the axial line of the cylindrical recess and in a section perpendicular to the connecting rod bearing, the angle (θ2) of the side surface of the cylindrical recess to the vertical line of the axial line is 85 ° to 95 ° Can be formed.

コンロッド、コンロッド軸受、及びクランクピンを含む本発明の軸受装置を示す断面図である。1 is a cross-sectional view showing a bearing device of the present invention including a connecting rod, a connecting rod bearing, and a crank pin. 本発明の実施例に係るコンロッド軸受の断面図である。It is a sectional view of a connecting rod bearing concerning an example of the present invention. 図2に示される第1の半割軸受を内周面側から見た底面図である。It is the bottom view which looked at the 1st half bearing shown in Drawing 2 from the inner skin side. 図2に示される第2の半割軸受を内周面側から見た底面図である。It is the bottom view which looked at the 2nd half bearing shown in Drawing 2 from the inner skin side. 本発明の実施例に係る第1の半割軸受構成の作用を示した断面図である。It is sectional drawing which showed the effect | action of the 1st half bearing structure which concerns on the Example of this invention. 本発明の実施例に係る第1の半割軸受構成の作用を示した断面図である。It is sectional drawing which showed the effect | action of the 1st half bearing structure which concerns on the Example of this invention. 本発明の実施例に係る第1の半割軸受構成の作用を示した断面図である。It is sectional drawing which showed the effect | action of the 1st half bearing structure which concerns on the Example of this invention. 本発明の実施例に係る第1の半割軸受構成を詳細に示す拡大断面図である。It is an expanded sectional view showing the 1st half bearing composition concerning the example of the present invention in detail. 従来技術の第1の半割軸受の断面図である。It is sectional drawing of the 1st half bearing of a prior art. 図8Aに示される第1の半割軸受を内周面側から見た底面図である。It is the bottom view which looked at the 1st half bearing shown in Drawing 8A from the inner skin side. 従来技術の第1の半割軸受構成の作用を示した断面図である。FIG. 6 is a cross-sectional view showing the operation of the first half bearing configuration of the prior art. 従来技術の第1の半割軸受構成の作用を示した断面図である。FIG. 6 is a cross-sectional view showing the operation of the first half bearing configuration of the prior art.

以下、本発明の実施例を図1〜7を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、クランクピン50、コンロッド70、及びコンロッド70の大端部71に内装されるコンロッド軸受1からなる軸受装置2の構造を示す断面図である。   FIG. 1 is a cross-sectional view showing the structure of a bearing device 2 composed of a crank pin 50, a connecting rod 70, and a connecting rod bearing 1 installed at the large end 71 of the connecting rod 70. As shown in FIG.

クランクピン50は、円筒胴部55と、円筒胴部55内を通して延びる潤滑油路51と、円筒胴部55の外周面54に形成された、潤滑油路51の少なくとも1つの出口開口52とを有する。   The crank pin 50 includes a cylindrical body 55, a lubricating oil passage 51 extending through the cylindrical body 55, and at least one outlet opening 52 of the lubricating oil passage 51 formed on the outer peripheral surface 54 of the cylindrical body 55. Have.

コンロッド70は、コンロッド本体部72の端面に形成された半円筒形状の第1軸受保持穴73と、コンロッドキャップ部74の端面に形成された半円筒形状の第2軸受保持穴75とが突き合わせられることで形成される円筒形状の、コンロッド軸受1を保持する軸受保持穴77を有し、
第1軸受保持穴73は、クランクピン50の回転方向の前方側の端面72aから、周方向中央部側に向かって延びる第1供給溝78aと、クランクピン50の回転方向の後方側の端面72bから、周方向中央部側に向かって延びる第2供給溝78bとを備え、
第2軸受保持穴75は、周方向の全長に亘って延びる第3供給溝78cを備え、
第3供給溝78cと、第1供給溝78a及び第2供給溝78bとはコンロッド本体部72とコンロッドキャップ部74の端面同士を突き合わせることによって連通される。
In the connecting rod 70, a semi-cylindrical first bearing holding hole 73 formed on the end face of the connecting rod main body 72 and a semi-cylindrical second bearing holding hole 75 formed on the end face of the connecting rod cap 74 are butted. A cylindrical bearing holding hole 77 for holding the connecting rod bearing 1,
The first bearing holding hole 73 extends from the end face 72a on the front side in the rotational direction of the crankpin 50 to the first supply groove 78a toward the circumferential central portion side, and the end face 72b on the rear side in the rotational direction of the crankpin 50 And a second supply groove 78b extending toward the circumferential center side,
The second bearing holding hole 75 includes a third supply groove 78c extending along the entire circumferential length,
The third supply groove 78c and the first supply groove 78a and the second supply groove 78b are communicated by bringing the end surfaces of the connecting rod main body 72 and the connecting rod cap 74 into abutment with each other.

コンロッド本体部72はまた、ピストンピン(図示せず)を回転自在に支持するコンロッド小端部を備えるとともに、コンロッド小端部と第1供給溝78a、第2供給溝78b及び第3供給溝78cの何れかとを連絡する連通路79を備える。   The connecting rod body 72 also has a connecting rod small end rotatably supporting a piston pin (not shown), and the connecting rod small end and the first supply groove 78a, the second supply groove 78b and the third supply groove 78c. And a communication passage 79 communicating with one of the two.

コンロッド70の内周面には、分割されたコンロッド本体部72及びコンロッドキャップ部74のそれぞれの第1軸受保持穴73及び第2軸受保持穴75の形状に係合するように形成された一対の半割軸受であって、コンロッド本体部72及びコンロッドキャップ部74の端面同士を突き合わせることによって円筒形状に組み合わされる一対の半割軸受(コンロッド軸受1)が挿入される。   On the inner peripheral surface of the connecting rod 70, a pair of members formed to engage the shapes of the first bearing holding hole 73 and the second bearing holding hole 75 of the divided connecting rod main body portion 72 and the connecting rod cap portion 74, respectively. It is a half bearing, and a pair of half bearings (connect rod bearing 1) combined in a cylindrical shape are inserted by abutting end faces of the connecting rod main body portion 72 and the connecting rod cap portion 74.

図2及び図4に示される通り、第2の半割軸受20は、摺動面23側に第2の半割軸受20の周方向の全長に亘って延びる一定深さの油溝25を有すると共に、油溝25内に軸受外周面21まで貫通するように形成される少なくとも1つの油穴29を有する。   As shown in FIGS. 2 and 4, the second half bearing 20 has an oil groove 25 of a certain depth extending on the sliding surface 23 side along the entire circumferential length of the second half bearing 20. And at least one oil hole 29 formed in the oil groove 25 so as to penetrate to the bearing outer peripheral surface 21.

図3は、図2における第1の半割軸受10の内面側の構成を示し、また図4は、図2における第2の半割軸受20の内面側の構成を示す。   3 shows the configuration of the inner surface side of the first half bearing 10 in FIG. 2, and FIG. 4 shows the configuration of the inner surface side of the second half bearing 20 in FIG.

図2及び図3に示される通り、第1の半割軸受10は、摺動面13側に、クランクピン50の回転方向Rの前方側の周方向端面14から周方向中央部側へ向かって延びる第1部分溝15と、クランクピン50の回転方向Rの後方側の周方向端面16から周方向中央部側へ向かって延びる第2部分溝17とを有し、また第1の半割軸受10は更に、第2部分溝17の周方向中央部側の周方向端部17aで第2部分溝17に連通するように形成された円筒形凹部18を有する。したがって第1の半割軸受10の第1部分溝15の周方向中央部側の周方向端部15aと、円筒形凹部18の周方向中央部側の周方向端部18aとの間には摺動面13が延びると共に、第1部分溝15内と第2部分溝17内にはそれぞれ、軸受外周面11まで貫通するように2つの油穴19が形成される。   As shown in FIGS. 2 and 3, the first half bearing 10 moves from the circumferential end surface 14 on the front side in the rotational direction R of the crank pin 50 toward the circumferential center on the sliding surface 13 side. A first partial groove 15 having a first partial groove 15 extending, and a second partial groove 17 extending from the circumferential end face 16 on the rear side in the rotational direction R of the crank pin 50 toward the circumferential central portion; 10 further has a cylindrical recess 18 formed to communicate with the second partial groove 17 at a circumferential end 17a on the circumferential central side of the second partial groove 17. Therefore, it is slid between the circumferential end 15a of the first partial groove 15 of the first half bearing 10 in the circumferential direction and the circumferential end 18a of the cylindrical recess 18 in the circumferential direction. The dynamic surface 13 extends, and two oil holes 19 are formed in the first partial groove 15 and the second partial groove 17 so as to penetrate to the bearing outer peripheral surface 11 respectively.

摺動面13からの半径方向距離として測定される第1部分溝15と第2部分溝17の溝深さは、第1の半割軸受10の周方向端面14、16側から周方向中央部側に向かって次第に小さくなっている。   The groove depths of the first partial groove 15 and the second partial groove 17 measured as the radial distance from the sliding surface 13 are the center portions in the circumferential direction from the circumferential end surfaces 14 and 16 of the first half bearing 10 It is getting smaller gradually towards the side.

更に、図2に示される通り、第1の半割軸受10と第2の半割軸受20は、それぞれの周方向端面14、16、24、26同士を突き合わせることによって円筒形状になり、このとき第2の半割軸受20の油溝25と、第1の半割軸受10の第1部分溝15及び第2部分溝17とは、それぞれの周方向端面14、16、24、26同士の突き合わせ箇所で連通される。   Furthermore, as shown in FIG. 2, the first half bearing 10 and the second half bearing 20 are formed into a cylindrical shape by abutting their respective circumferential end faces 14, 16, 24, 26. When the oil groove 25 of the second half bearing 20, and the first partial groove 15 and the second partial groove 17 of the first half bearing 10, the respective circumferential end faces 14, 16, 24, 26 It is communicated at the butt point.

本構造により、コンロッド軸受1に圧送された潤滑油の一部は、第1の半割軸受10に形成された第1部分溝15及び第2部分溝17、第2の半割軸受20に形成された油溝25、並びに一対の半割軸受に形成された油穴19、29を通じて、コンロッド70の第1軸受保持穴73に形成された第1供給溝78a及び第2供給溝78b、並びに第2軸受保持穴75に形成された第3供給溝78cに供給され、更にコンロッド70に形成された連通路79を通じて、コンロッドの小端部に供給される。   According to this structure, a part of the lubricating oil pumped to the connecting rod bearing 1 is formed in the first partial groove 15 and the second partial groove 17 formed in the first half bearing 10 and the second half bearing 20 The first supply groove 78a and the second supply groove 78b formed in the first bearing holding hole 73 of the connecting rod 70 through the oil groove 25 formed as well as the oil holes 19 and 29 formed in the pair of half bearings It is supplied to the third supply groove 78c formed in the second bearing holding hole 75, and further supplied to the small end of the connecting rod through the communication passage 79 formed in the connecting rod 70.

図2〜4及び図7を用いて、本発明の実施例におけるコンロッド軸受1の更に詳細な構造を説明する。図2は、第1の半割軸受10と第2の半割軸受20から形成されるコンロッド軸受1を示す。   A more detailed structure of the connecting rod bearing 1 according to the embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a connecting rod bearing 1 formed from a first half bearing 10 and a second half bearing 20.

コンロッド軸受1は以下の寸法を有している。
外径:φ200mm
肉厚:5mm
全幅:100mm
The connecting rod bearing 1 has the following dimensions.
Outer diameter: φ 200 mm
Thickness: 5 mm
Overall width: 100 mm

また、第1の半割軸受10は以下の寸法を有している。
クランクピン50の回転方向Rの前方側の周方向端面14における、第1部分溝15の摺動面13からの深さ(半径方向の距離):2mm
クランクピン50の回転方向Rの後方側の周方向端面16における、第2部分溝17の摺動面13からの深さ(半径方向の距離):2mm
第1部分溝15及び第2部分溝17の摺動面13における軸線方向の長さ(W1):12mm
円筒形凹部18の内径(ID1):15mm
摺動層81の厚さ(T1):0.5mm
第2部分溝17と円筒形凹部18との連通部17aでの第2部分溝の深さ(D1):0.6mm
円筒形凹部18の深さ(D2):3mm
第1の半割軸受10の第1部分溝15の周方向中央部側の周方向端部15aと、円筒形凹部18の周方向中央部側の周方向端部18aとの間の摺動面の円周角度(θ1):80°
円筒形凹部18の軸心線18axに垂直な面18pと、円筒形凹部18の側面の間の角度(θ2):90°
The first half bearing 10 has the following dimensions.
Depth (radial distance) of the first partial groove 15 from the sliding surface 13 at the circumferential end face 14 on the front side in the rotational direction R of the crank pin 50: 2 mm
Depth (radial distance) of the second partial groove 17 from the sliding surface 13 at the circumferential end face 16 on the rear side in the rotational direction R of the crank pin 50: 2 mm
Axial length (W1) of sliding surface 13 of first partial groove 15 and second partial groove 17: 12 mm
Inner diameter of cylindrical recess 18 (ID1): 15 mm
Thickness of sliding layer 81 (T1): 0.5 mm
Depth (D1) of second partial groove at communicating portion 17a between second partial groove 17 and cylindrical recess 18: 0.6 mm
Depth (D2) of cylindrical recess 18: 3 mm
The sliding surface between the circumferential end 15a of the first partial groove 15 of the first half bearing 10 in the circumferential direction and the circumferential end 18a of the cylindrical recess 18 in the circumferential direction Circumferential angle (θ1): 80 °
The angle (θ 2) between the surface 18 p perpendicular to the axial center line 18 ax of the cylindrical recess 18 and the side of the cylindrical recess 18: 90 °

なお、ここに示す寸法は一例であり、本発明においてはこれら寸法に限定されない。また、クランクピン50の回転方向の前方側の周方向端面14から周方向中央部側の周方向端部15aまでの第1部分溝15の長さを規定する円周角度(θ3)は10°〜50°であってもよい。   In addition, the dimension shown here is an example, and it is not limited to these dimensions in this invention. Further, a circumferential angle (θ3) defining the length of the first partial groove 15 from the circumferential end face 14 on the front side in the rotational direction of the crankpin 50 to the circumferential end 15a on the circumferential center side is 10 ° It may be 50 °.

第1の半割軸受10と第2の半割軸受20は、裏金層82及び摺動層81を有し、摺動層81は、半割軸受10、20の摺動面13、23を構成する。摺動層81は、ホワイト合金(錫合金)、アルミニウム合金、銅合金等から成る合金層である。裏金層82は、炭素の含有量が0.05〜0.35質量%の亜共析鋼等の鉄合金とすることができる。   The first half bearing 10 and the second half bearing 20 have the back metal layer 82 and the sliding layer 81, and the sliding layer 81 constitutes the sliding surfaces 13 and 23 of the half bearings 10 and 20. Do. The sliding layer 81 is an alloy layer made of white alloy (tin alloy), aluminum alloy, copper alloy or the like. The back metal layer 82 can be made of an iron alloy such as hypoeutectoid steel having a carbon content of 0.05 to 0.35% by mass.

図2及び図3に示される通り、第1の半割軸受10には、第2部分溝17の周方向中央部側の周方向端部17aに隣接して円筒形凹部18が形成される。前述の円筒形凹部18の軸心線18axは、第1の半割軸受10の中心(軸心線)に向かって延びるように形成される。 As shown in FIGS. 2 and 3, in the first half bearing 10, a cylindrical recess 18 is formed adjacent to the circumferential end 17 a on the circumferential center side of the second partial groove 17. The axial center line 18 ax of the cylindrical recess 18 is formed to extend toward the center (axial center line) of the first half bearing 10.

第1の半割軸受10の第1部分溝15の周方向中央部側の周方向端部15aと、円筒形凹部18の周方向中央部側の周方向端部18aとの間の摺動面の円周角度(θ1)は、燃焼室から生じた荷重を支持するために80°〜160°で形成されることが望ましい。   The sliding surface between the circumferential end 15a of the first partial groove 15 of the first half bearing 10 in the circumferential direction and the circumferential end 18a of the cylindrical recess 18 in the circumferential direction Preferably, the circumferential angle (θ 1) is formed between 80 ° and 160 ° to support the load generated from the combustion chamber.

次に、前述の第1の半割軸受10の円筒形凹部18の詳細な構成と作用を図5〜7を参照して説明する。図5は、クランクピン50の出口開口52が第2部分溝17と完全に連通している状態を示す。この状態においては、出口開口52と第2部分溝17の間の隙間Sが大きいため、潤滑油は第2部分溝17に大きな負荷無く流れ、クランクピン50の潤滑油路51の出口開口52付近の潤滑油圧力は高くない状態にある(潤滑油の流れ方向F参照)。   Next, the detailed configuration and operation of the cylindrical recess 18 of the first half bearing 10 described above will be described with reference to FIGS. FIG. 5 shows that the outlet opening 52 of the crank pin 50 is in full communication with the second partial groove 17. In this state, since the gap S between the outlet opening 52 and the second partial groove 17 is large, the lubricating oil flows to the second partial groove 17 without a large load, and the vicinity of the outlet opening 52 of the lubricating oil passage 51 of the crank pin 50 The lubricating oil pressure is not high (see flow direction F of lubricating oil).

図6Aはクランクピン50の出口開口52と円筒形凹部18とが連通を開始する瞬間の状態を示す。円筒形凹部18は、第2部分溝17との連通部17aにおける第2部分溝17の深さ以上の深さとなるように形成されるため、円筒形凹部18に連通しているクランクピン50の出口開口部52の部分は、第2部分溝17に連通している出口開口部52の部分より潤滑油の圧力が低くなる。この圧力差によって、瞬間的に潤滑油路51から円筒形凹部18内への潤滑油の流入が発生する。この際、円筒形凹部18の軸心線18axは、遠心力の作用方向と略同方向を向くため、潤滑油路51から流出した潤滑油は、円筒形凹部18の底面側へ向かって流れる。潤滑油には、円筒形凹部18の底面付近で圧力低下が生じ、潤滑油内にキャビティC(気泡)の発生と崩壊が起こるが、本発明では、潤滑油内のキャビティCの発生と崩壊は、摺動面13から離間した円筒形凹部18の底面付近で起こるため、第2部分溝17の周方向端部17a付近の底面や第2部分溝17の周方向端部17aに隣接する摺動層81の表面にキャビテーションエロージョンが起きにくい。   FIG. 6A shows the state at the moment when the outlet opening 52 of the crank pin 50 and the cylindrical recess 18 start communication. The cylindrical recess 18 is formed to have a depth equal to or greater than the depth of the second partial groove 17 in the communication portion 17 a with the second partial groove 17, and hence the crank pin 50 in communication with the cylindrical concave portion 18. The portion of the outlet opening 52 has a lower pressure of lubricating oil than the portion of the outlet opening 52 communicating with the second partial groove 17. This pressure difference instantaneously causes the inflow of the lubricating oil from the lubricating oil passage 51 into the cylindrical recess 18. At this time, since the axial center line 18 ax of the cylindrical recess 18 is substantially in the same direction as the direction of action of the centrifugal force, the lubricating oil flowing out of the lubricating oil passage 51 flows toward the bottom of the cylindrical recess 18. In the lubricating oil, a pressure drop occurs near the bottom of the cylindrical recess 18, and generation and collapse of the cavity C (air bubbles) occur in the lubricating oil, but in the present invention, generation and collapse of the cavity C in the lubricating oil are Since sliding occurs near the bottom surface of the cylindrical recess 18 separated from the sliding surface 13, the sliding adjacent to the bottom surface near the circumferential end 17 a of the second partial groove 17 and the circumferential end 17 a of the second partial groove 17 Cavitation erosion does not easily occur on the surface of the layer 81.

図6Bは、クランクピン50の出口開口52と円筒形凹部18が連通を終了する直前の状態を示す。この状態では、クランクピン50の出口開口52の大部分は第1の半割軸受10の摺動面13で覆われており、出口開口52と摺動面13との間の隙間Sは小さいので、覆われた部分付近の潤滑油圧力は極めて高くなる。一方、出口開口52の円筒形凹部18と連通している部分での隙間Sは大きく、同部の潤滑油圧力は低くなるので、潤滑油路51内の潤滑油は、摺動面13で覆われた部分との圧力差により、出口開口52の円筒形凹部18と連通している部分から急激に排出される。このとき、円筒形凹部18の軸心線18axが遠心力の作用方向と略同方向を向いているため、潤滑油路51から流出した潤滑油は、円筒形凹部18の底面側へ向かって流れる。潤滑油の圧力は円筒形凹部18の底面付近で低下し、それにより潤滑油内にキャビティ(気泡)Cの発生と崩壊が起こる。本実施例では、このキャビティの発生と崩壊が摺動面13から離間した円筒形凹部18の底面付近で起こるため、円筒形凹部18に隣接する摺動面13の摺動層81にキャビテーションエロ―ジョンが起きにくい。
更に、円筒形凹部18は、第1の半割軸受10の第2部分溝17と円筒形凹部18との連通部17aでの第2部分溝17の深さ(D1)以上の深さを有するように形成されるため、連通部17aの位置には円筒形凹部18の側面18s(段差)が形成される。更に、円筒形凹部18の軸心線18axは、第1の半割軸受10の中心(軸心線)に向かって延び、それにより、円筒形凹部18の軸心線18axに垂直な面18pに対する円筒形凹部18の周方向前方側の側面18sの角度(θ2)は、垂直に近く形成される。したがって、潤滑油内に発生したキャビティC(気泡)は、崩壊する前に円筒形凹部18から第2部分溝17や摺動面13に排出されることがなく、より摺動層81のキャビテーションエロージョンが抑制される。
FIG. 6B shows a state immediately before the outlet opening 52 of the crank pin 50 and the cylindrical recess 18 end communication. In this state, most of the outlet opening 52 of the crank pin 50 is covered with the sliding surface 13 of the first half bearing 10, and the gap S between the outlet opening 52 and the sliding surface 13 is small. The lubricating oil pressure near the covered part becomes extremely high. On the other hand, since the gap S at the portion of the outlet opening 52 communicating with the cylindrical recess 18 is large and the pressure of the lubricating oil at the same portion is low, the lubricating oil in the lubricating oil passage 51 is covered by the sliding surface 13 Due to the pressure difference with the broken portion, the outlet opening 52 is rapidly discharged from the portion in communication with the cylindrical recess 18. At this time, since the axial center line 18 ax of the cylindrical recess 18 faces substantially the same direction as the direction of action of the centrifugal force, the lubricating oil flowing out of the lubricating oil passage 51 flows toward the bottom of the cylindrical recess 18. . The pressure of the lubricating oil decreases near the bottom of the cylindrical recess 18, which causes the formation and collapse of a cavity C in the lubricating oil. In this embodiment, since the generation and collapse of the cavity occur near the bottom surface of the cylindrical recess 18 separated from the sliding surface 13, cavitation errors are generated in the sliding layer 81 of the sliding surface 13 adjacent to the cylindrical recess 18. It is hard for John to get up.
Furthermore, the cylindrical recess 18 has a depth equal to or greater than the depth (D1) of the second partial groove 17 at the communication portion 17 a between the second partial groove 17 of the first half bearing 10 and the cylindrical recess 18. Since it is formed as described above, the side surface 18s (step) of the cylindrical recess 18 is formed at the position of the communication portion 17a. Further, the axial line 18ax of the cylindrical recess 18 extends toward the center (axial line) of the first half bearing 10, whereby the surface 18p perpendicular to the axial line 18ax of the cylindrical recess 18 is provided. The angle (θ2) of the side surface 18s on the circumferential direction front side of the cylindrical recess 18 is formed close to vertical. Therefore, the cavity C (air bubbles) generated in the lubricating oil is not discharged from the cylindrical recess 18 to the second partial groove 17 or the sliding surface 13 before it collapses, and cavitation erosion of the sliding layer 81 is further reduced. Is suppressed.

仮に円筒形凹部18内で全てのキャビティCが崩壊されず、一部が円筒形凹部18から第2部分溝17へ(逆流により)排出されたとしても、第2部分溝17と円筒形凹部18との連通部17aでの第2部分溝17の深さ(D1)が摺動層81の厚さ(T1)以上であることから、第2部分溝17の円筒形凹部18との連通部17aにおいてキャビティCが崩壊したとしても、摺動層81は浸食されにくい。すなわち、D1>T1とすることで、連通部17a付近の第1部分溝15の内面の大部分から摺動層81(軸受合金)が除去されるため、摺動層81のキャビテーションエロージョンは発生しない。   Even if all the cavities C are not collapsed in the cylindrical recess 18 and a part is discharged from the cylindrical recess 18 to the second partial groove 17 (by reverse flow), the second partial groove 17 and the cylindrical concave 18 Since the depth (D1) of the second partial groove 17 at the communication portion 17a with it is equal to or greater than the thickness (T1) of the sliding layer 81, the communication portion 17a of the second partial groove 17 with the cylindrical recess 18 is The sliding layer 81 is less likely to be eroded even if the cavity C collapses at. That is, by setting D1> T1, the sliding layer 81 (bearing alloy) is removed from most of the inner surface of the first partial groove 15 in the vicinity of the communicating portion 17a, so cavitation erosion of the sliding layer 81 does not occur. .

なお、円筒形凹部18の軸心線18axは、第1の半割軸受10の摺動面13上での円筒形凹部18の開口中心と、第1の半割軸受10の軸心線とを結ぶ半径方向の線に対して最大で5°傾斜していてもよい。また、円筒形凹部18は、本実施例とは異なり、側面18sが円錐台形状であってもよい。これらの場合、円筒形凹部18の側面18sは、円筒形凹部18の軸心線18axに垂直な面18pに対して85°〜95°の角度(θ2)に形成されることが好ましい。   The axial center line 18 ax of the cylindrical recess 18 corresponds to the opening center of the cylindrical recess 18 on the sliding surface 13 of the first half bearing 10 and the axis center line of the first half bearing 10. It may be inclined at a maximum of 5 ° with respect to the connecting radial line. Further, the cylindrical recess 18 may have a side surface 18s of a truncated cone shape unlike the present embodiment. In these cases, the side surface 18s of the cylindrical recess 18 is preferably formed at an angle (θ2) of 85 ° to 95 ° with respect to the surface 18p perpendicular to the axial center line 18ax of the cylindrical recess 18.

なお、円筒形凹部18の内径(ID1)が過小であると、クランクピン50の出口開口52と円筒形凹部18が連通した際にも出口開口52の大部分が摺動面13で塞がれるので、円筒形凹部18への選択的な潤滑油の流入が形成されにくく、潤滑油は第2部分溝17へ逆流し易くなる。また反対に、円筒形凹部18の内径(ID1)が過大であると、摺動面積の減少から第1の半割軸受10の負荷能力低下を招く虞がある。したがって、円筒形凹部18の内径(ID1)は、円筒形凹部18と連通する位置における第2部分溝17の摺動面13上での軸線方向の長さ(W1)の100%〜150%に相当する寸法であることが望ましく、特に本実施例の場合125%である。   If the inner diameter (ID1) of the cylindrical recess 18 is too small, most of the outlet opening 52 is blocked by the sliding surface 13 even when the outlet opening 52 of the crank pin 50 and the cylindrical recess 18 communicate with each other. Therefore, it is difficult to form the selective lubricating oil inflow into the cylindrical recess 18, and the lubricating oil tends to flow back to the second partial groove 17. On the other hand, if the inner diameter (ID1) of the cylindrical recess 18 is excessive, the load capacity of the first half bearing 10 may be reduced due to the reduction of the sliding area. Therefore, the inner diameter (ID1) of the cylindrical recess 18 is 100% to 150% of the axial length (W1) of the second partial groove 17 on the sliding surface 13 at the position communicating with the cylindrical recess 18 Corresponding dimensions are desired, in particular 125% in this example.

また、円筒形凹部18の深さは、第1の半割軸受10の第2部分溝17と円筒形凹部18との連通部17aでの第2部分溝17の深さ(D1)以上に形成されることを示したが、以下の理由から、円筒形凹部18は第1の半割軸受10の外周面11まで貫通されてはならない。   Further, the depth of the cylindrical recess 18 is formed to be equal to or greater than the depth (D1) of the second partial groove 17 at the communicating portion 17 a between the second partial groove 17 of the first half bearing 10 and the cylindrical recess 18. However, the cylindrical recess 18 should not extend to the outer circumferential surface 11 of the first half bearing 10 for the following reasons.

すなわち、もし特許文献4に示されるように第1の半割軸受10の第2部分溝17の周方向中央部側の端部17aに連通するように軸受外周面11まで貫通する円筒形凹部穴(貫通穴)が形成されると、クランクピン50の出口開口52と円筒形凹部の貫通穴とが連通を開始する瞬間、クランクピン50の潤滑油路51内の加圧された潤滑油は、遠心力の影響で円筒形凹部の貫通穴を通り、コンロッド70の内周面に形成された第2供給溝78bに大量に流出するため、クランクピン50の回転前方側の、円筒形凹部の貫通穴に隣接する摺動面13への潤滑油供給が不足し易く、燃焼室からの荷重を主に受ける同部において焼付等の損傷が発生し易い。   That is, as shown in Patent Document 4, a cylindrical recessed hole penetrating up to the bearing outer peripheral surface 11 so as to communicate with the end portion 17a on the circumferential direction central portion side of the second partial groove 17 of the first half bearing 10. When the (through hole) is formed, the pressurized lubricating oil in the lubricating oil passage 51 of the crank pin 50 is instantaneously initiated when communication between the outlet opening 52 of the crank pin 50 and the through hole of the cylindrical recess starts. Through the through hole of the cylindrical recess under the influence of the centrifugal force, it flows out to the second supply groove 78b formed on the inner circumferential surface of the connecting rod 70 in large quantities, so that the cylindrical recess penetrates the rotation front side of the crank pin 50 Lubricant oil supply to the sliding surface 13 adjacent to the hole is apt to be insufficient, and damage such as seizure is likely to occur at the same portion mainly receiving the load from the combustion chamber.

以上、図面を参照して、本発明の実施例を記述したが、具体的な構成は実施例に限定されず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to the embodiments, and design changes without departing from the scope of the present invention are included in the present invention.

なお、コンロッド軸受1に形成される油溝(及び部分溝)の断面形状は特に限定されず、矩形、台形や円弧形状でも良い。また、円筒形凹部18の底面は、実施例に示した平面形状に限定されず、例えば、円筒形状凹部をドリルで加工する場合、円錐形状であってもよい。   The cross-sectional shape of the oil groove (and the partial groove) formed in the connecting rod bearing 1 is not particularly limited, and may be rectangular, trapezoidal or arc-shaped. Further, the bottom surface of the cylindrical recess 18 is not limited to the planar shape shown in the embodiment. For example, when processing the cylindrical recess with a drill, it may have a conical shape.

また、実施例では、第1の半割軸受10が少なくとも1つの油穴19を有する構成を示したが、第1の半割軸受10は油穴を有しない構成としてもよい。本発明において、第1の半割軸受10の油穴19の有無は発明の効果に何ら影響を与えるものではなく、油穴を有しない構成の場合でも、実施例に示した作用によって、油穴を有する場合と同等の効果が得られる。   Further, although the first half bearing 10 has a configuration having at least one oil hole 19 in the embodiment, the first half bearing 10 may be configured to have no oil hole. In the present invention, the presence or absence of the oil hole 19 of the first half bearing 10 does not affect the effect of the invention at all, and even in the case of the configuration without oil hole, the oil hole can be obtained by the operation shown in the embodiment. The same effect as in the case of having.

また、コンロッド軸受1の誤組付時でも本発明の効果が得られるよう、前述の円筒形凹部18は、第1の半割軸受10のクランクピンの回転方向前方側の第1部分溝15の油溝切上り部15aにも設けてもよい。   Further, the cylindrical recess 18 is formed of the first partial groove 15 on the front side in the rotational direction of the crank pin of the first half bearing 10 so that the effect of the present invention can be obtained even when the connecting rod bearing 1 is misassembled. You may provide also in the oil groove cutting up part 15a.

更に、円筒形凹部18の摺動面13上での開口の角縁部は加工時にバリが発生することがあるが、この場合、開口の角縁部に面取を形成してもよい。   Furthermore, although the corner edges of the opening on the sliding surface 13 of the cylindrical recess 18 may have burrs during processing, in this case, chamfers may be formed on the corner edges of the opening.

また、第1の半割軸受10及び第2の半割軸受20の内周面側において、摺動層の表面、第1部分溝、第2部分溝及び油溝の内面、並びに円筒形凹部の内面には、鉛系、錫系、錫含有アルミニウム合金、合成樹脂等の薄い表面層(オーバレイ層)をさらに形成してもよい。   Also, on the inner peripheral surface side of the first half bearing 10 and the second half bearing 20, the surface of the sliding layer, the inner surface of the first partial groove, the second partial groove and the oil groove, and the cylindrical recess On the inner surface, a thin surface layer (overlay layer) of lead-based, tin-based, tin-containing aluminum alloy, synthetic resin or the like may be further formed.

1 コンロッド軸受
2 軸受装置
10 第1の半割軸受
11 軸受外周面
13 摺動面
14 回転方向前方側の周方向端面
15 第1部分溝
15a 周方向中央部側の周方向端部、切上り部
16 回転方向後方側の周方向端面
17 第2部分溝
17a 周方向中央部側の周方向端部、連通部
18 円筒形凹部
18a 周方向中央部側の周方向端部
18s 円筒形凹部の側面
19 油穴
20 第2の半割軸受
23 摺動面
24 回転方向後方側の周方向端面
25 油溝
26 回転方向前方側の周方向端面
29 油穴
50 クランクピン
51 潤滑油路
52 出口開口
54 外周面
55 円筒胴部
70 コンロッド
71 大端部
72 コンロッド本体部
72a 回転方向前方側の端面
72b 回転方向後方側の端面
73 第1軸受保持穴
74 コンロッドキャップ部
75 第2軸受保持穴
77 軸受保持穴
78a 第1供給溝
78b 第2供給溝
78c 第3供給溝
79 連通路
81 摺動層
82 裏金層
DESCRIPTION OF SYMBOLS 1 connecting rod bearing 2 bearing device 10 first half bearing 11 bearing outer peripheral surface 13 sliding surface 14 circumferential direction end surface on the front side in the rotational direction 15 first partial groove 15 a circumferential end on the circumferential center side, cut-up portion 16 circumferential direction end face on the rear side in the rotational direction 17 second partial groove 17a circumferential end on the circumferential center side, communication part 18 cylindrical recess 18a circumferential end on the circumferential center side 18s side face of the cylindrical recess 19 Oil hole 20 second half bearing 23 sliding surface 24 circumferential end face on the rear side in the rotational direction 25 oil groove 26 circumferential end face on the front side in the rotational direction 29 oil hole 50 crankpin 51 lubricating oil path 52 outlet opening 54 outer peripheral face 55 cylindrical body portion 70 connecting rod 71 large end portion 72 connecting rod main body portion 72a end surface on the front side in the rotational direction 72b end surface on the rear side in the rotating direction 73 first bearing holding hole 74 connecting rod cap portion 75 Second bearing holding hole 77 Bearing holding hole 78a first supply groove 78b second supply groove 78c third supply groove 79 communication passage 81 sliding layer 82 back metal layer

Claims (3)

内燃機関のクランク軸のクランクピンであって、円筒胴部と、前記円筒胴部内を通して延びる潤滑油路と、前記円筒胴部の外周面上に形成された前記潤滑油路の少なくとも1つの出口開口とを有しているクランクピンを回転自在に支持するためのコンロッド軸受であって、
前記コンロッド軸受は第1の半割軸受及び第2の半割軸受を有し、前記第1の半割軸受及び前記第2の半割軸受は、それぞれの周方向端面を互いに突き合わせることによって円筒形状に組み合わされ、
前記第1の半割軸受及び第2の半割軸受はそれぞれ、裏金層及び摺動層を有し、前記摺動層は前記半割軸受の摺動面を構成し、
前記第2の半割軸受は、前記摺動面側に、前記第2の半割軸受の周方向の全長に亘って延びる油溝を有するとともに、前記油溝の内面から前記第2の半割軸受の軸受外周面まで貫通する少なくとも1つの油穴を有し、
前記第1の半割軸受は、前記摺動面側に、前記クランクピンの回転方向の前方側の前記第1の半割軸受の周方向端面から前記第1の半割軸受の周方向中央部側へ向かって延びる第1部分溝と、前記クランクピンの回転方向の後方側の前記第1の半割軸受の周方向端面から前記周方向中央部側へ向かって延びる第2部分溝とを有し、
前記第2の半割軸受の前記油溝と、前記第1の半割軸受の前記第1部分溝及び前記第2部分溝とは、前記第1の半割軸受及び第2の半割軸受のそれぞれの周方向端面を互いに突き合わせることによって互いに連通される
コンロッド軸受において、
前記第1の半割軸受は、前記第2部分溝の前記周方向中央部側の周方向端部で前記第2部分溝に連通するように形成された円筒形凹部を有し、
前記第1の半割軸受の前記第1部分溝の前記周方向中央部側の周方向端部と、前記円筒形凹部の前記周方向中央部側の周方向端部との間の前記摺動面は、80°〜160°の円周角度(θ1)に亘って延び、
前記円筒形凹部の軸心線が、前記第1の半割軸受の軸心線に向かって延び、
前記円筒形凹部の内径(ID1)は、前記摺動面上において、前記円筒形凹部に連通する位置での前記第2部分溝の軸線方向の長さ(W1)の100%〜150%であり、
前記円筒形凹部に連通する位置での前記第2部分溝の深さ(D1)は、前記摺動層の厚さ(T1)以上であり、
前記円筒形凹部の最大深さ(D2)は、前記円筒形凹部に連通する位置での前記第2部分溝の深さ(D1)以上であり、且つ前記第1の半割軸受の軸受外周面まで貫通しないようになされている
ことを特徴とするコンロッド軸受。
A crankpin of a crankshaft of an internal combustion engine, comprising: a cylindrical body; a lubricating oil passage extending through the cylindrical body; and at least one outlet opening of the lubricating oil passage formed on an outer peripheral surface of the cylindrical body. A connecting rod bearing for rotatably supporting a crank pin having
The connecting rod bearing has a first half bearing and a second half bearing, and the first half bearing and the second half bearing are cylindrical by abutting their circumferential end faces to each other. Combined in shape,
The first half bearing and the second half bearing each have a back metal layer and a sliding layer, and the sliding layer constitutes a sliding surface of the half bearing,
The second half bearing has an oil groove extending on the sliding surface side along the entire circumferential length of the second half bearing, and the second half from the inner surface of the oil groove At least one oil hole penetrating to the bearing outer peripheral surface of the bearing;
The first half bearing has a circumferential center portion of the first half bearing from the circumferential end surface of the first half bearing on the front side in the rotational direction of the crank pin on the sliding surface side A first partial groove extending toward the side, and a second partial groove extending toward the circumferential central portion from a circumferential end surface of the first half bearing on the rear side in the rotational direction of the crankpin And
The oil groove of the second half bearing, and the first partial groove and the second partial groove of the first half bearing are the first half bearing and the second half bearing, respectively. In a connecting rod bearing communicated with each other by abutting respective circumferential end faces with each other,
The first half bearing has a cylindrical recess formed to communicate with the second partial groove at a circumferential end on the circumferential central portion side of the second partial groove,
The sliding between the circumferential end of the first partial groove of the first half bearing on the circumferential central portion side and the circumferential end of the cylindrical recess on the circumferential central portion side The plane extends over a circumferential angle (θ 1) of 80 ° to 160 °,
The axis of the cylindrical recess extends towards the axis of the first half bearing;
The inner diameter (ID1) of the cylindrical recess is 100% to 150% of the axial length (W1) of the second partial groove at the position communicating with the cylindrical recess on the sliding surface. ,
The depth (D1) of the second partial groove at the position communicating with the cylindrical recess is equal to or greater than the thickness (T1) of the sliding layer,
The maximum depth (D2) of the cylindrical recess is equal to or greater than the depth (D1) of the second partial groove at a position communicating with the cylindrical recess, and the bearing outer peripheral surface of the first half bearing A connecting rod bearing characterized in that it is made not to penetrate up to.
前記円筒形凹部の前記軸心線を含み且つ前記コンロッド軸受の軸心線に垂直な断面において、前記軸心線に垂直な面に対する前記円筒形凹部の側面の角度(θ2)が85°〜95°であることを特徴とする請求項1に記載のコンロッド軸受。   In a cross section including the axial line of the cylindrical recess and perpendicular to the axial line of the connecting rod bearing, an angle (θ2) of the side surface of the cylindrical recess to a plane perpendicular to the axial line is 85 ° to 95 The connecting rod bearing according to claim 1, characterized in that it is in degrees. 内燃機関のクランク軸のクランクピンを回転自在に支持するための軸受装置であって、
請求項1又は2に記載のコンロッド軸受と、
前記クランクピンと、
コンロッド本体部及びコンロッドキャップ部を有するコンロッドであって、前記コンロッド本体部及び前記コンロッドキャップ部のそれぞれの端面同士を突き合わせたときに前記コンロッド本体部の半円筒形状の第1軸受保持穴及び前記コンロッドキャップ部の半円筒形状の第2軸受保持穴が組み合わされ、それにより、前記コンロッド軸受を保持する円筒形状の軸受保持穴を有する大端部が形成されるコンロッドと
を有する軸受装置において、
前記第1軸受保持穴は、前記クランクピンの回転方向の前方側のコンロッド本体部の端面から周方向中央部側に向かって延びる第1供給溝と、前記クランクピンの回転方向の後方側のコンロッド本体部の端面から前記周方向中央部側に向かって延びる第2供給溝とを有し、
前記第2軸受保持穴は、周方向の全長に亘って延びる第3供給溝を有し、
前記第3供給溝と、前記第1供給溝及び前記第2供給溝とは、前記コンロッド本体部及び前記コンロッドキャップ部のそれぞれの前記端面を互いに突き合わせることによって互いに連通されている
ことを特徴とする軸受装置。
A bearing device for rotatably supporting a crank pin of a crankshaft of an internal combustion engine, comprising:
A connecting rod bearing according to claim 1 or 2;
Said crank pin,
A connecting rod having a connecting rod main body and a connecting rod cap, wherein when the respective end faces of the connecting rod main body and the connecting rod cap are butted, the first cylindrical bearing holding hole of the connecting rod main body and the connecting rod In the bearing device, the second cylindrical bearing holding hole of the cap portion is combined, thereby forming a large end portion having a cylindrical bearing holding hole for holding the connecting rod bearing,
The first bearing holding hole is a first supply groove extending from the end face of the connecting rod main body on the front side in the rotational direction of the crank pin toward the circumferential center side, and the connecting rod on the rear side in the rotational direction of the crank pin And a second supply groove extending from the end face of the main body toward the circumferential center.
The second bearing holding hole has a third supply groove extending along the entire circumferential length,
The third supply groove, the first supply groove, and the second supply groove are in communication with each other by bringing the end faces of the connecting rod main body and the connecting rod cap into contact with each other. Bearing equipment.
JP2017080516A 2017-04-14 2017-04-14 Connecting rod bearings and bearing equipment Active JP6796538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017080516A JP6796538B2 (en) 2017-04-14 2017-04-14 Connecting rod bearings and bearing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017080516A JP6796538B2 (en) 2017-04-14 2017-04-14 Connecting rod bearings and bearing equipment

Publications (2)

Publication Number Publication Date
JP2018179165A true JP2018179165A (en) 2018-11-15
JP6796538B2 JP6796538B2 (en) 2020-12-09

Family

ID=64282751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080516A Active JP6796538B2 (en) 2017-04-14 2017-04-14 Connecting rod bearings and bearing equipment

Country Status (1)

Country Link
JP (1) JP6796538B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347438U (en) * 1976-09-27 1978-04-21
JPS5385245A (en) * 1977-01-04 1978-07-27 Sulzer Ag Radial bearing* particularly for internal combustion engine
US4567815A (en) * 1984-12-04 1986-02-04 Vilter Manufacturing Corporation Connecting rod and bearing assembly therefor
JPS6367604U (en) * 1986-10-23 1988-05-07
JPH11270548A (en) * 1998-01-15 1999-10-05 Man B & W Diesel Gmbh Connecting rod for reciprocating internal combustion engine
JP2007225079A (en) * 2006-02-27 2007-09-06 Daido Metal Co Ltd Sliding bearing for diagonal split type connecting rod

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347438U (en) * 1976-09-27 1978-04-21
JPS5385245A (en) * 1977-01-04 1978-07-27 Sulzer Ag Radial bearing* particularly for internal combustion engine
US4567815A (en) * 1984-12-04 1986-02-04 Vilter Manufacturing Corporation Connecting rod and bearing assembly therefor
JPS6367604U (en) * 1986-10-23 1988-05-07
JPH11270548A (en) * 1998-01-15 1999-10-05 Man B & W Diesel Gmbh Connecting rod for reciprocating internal combustion engine
JP2007225079A (en) * 2006-02-27 2007-09-06 Daido Metal Co Ltd Sliding bearing for diagonal split type connecting rod

Also Published As

Publication number Publication date
JP6796538B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP2018179164A (en) Connecting rod bearing and bearing device
JP6005669B2 (en) Plain bearing shell
US9188159B2 (en) Half thrust bearing and bearing device
EP2534387B1 (en) Bearing bush
EP3282153A1 (en) Hydrodynamic seal seat cooling features
JP5524249B2 (en) Main bearing for crankshaft of internal combustion engine
JP2005069283A (en) Crank bearing
US8714825B2 (en) Plain bearing and bearing device
JP2007225079A (en) Sliding bearing for diagonal split type connecting rod
JP2005069284A (en) Crank bearing
US10641317B2 (en) Half thrust bearing
JP2005256917A (en) Sliding bearing
JP2010116961A (en) Sliding bearing and sliding beating device for internal combustion engine
JP6120417B2 (en) Main bearing for crankshaft of internal combustion engine
GB2542498A (en) Thrust bearing and bearing device for crankshaft of internal combustion engine
US10006490B2 (en) Half thrust bearing and bearing device using the same
JP2001323928A (en) Thrust bearing
EP3534021B1 (en) Half thrust bearing
JP2018179165A (en) Connecting rod bearing and bearing device
JP2019078376A (en) Connecting rod bearing for crank shaft of internal combustion engine
JP5020009B2 (en) Plain bearing
WO2023247816A1 (en) Bearing shell, main bearing for a piston engine and piston engine
JP2019218973A (en) Main bearing for crank shaft of internal combustion engine, and bearing device
JP2017040341A (en) Connecting rod bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250