JP2018178945A - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
JP2018178945A
JP2018178945A JP2017083102A JP2017083102A JP2018178945A JP 2018178945 A JP2018178945 A JP 2018178945A JP 2017083102 A JP2017083102 A JP 2017083102A JP 2017083102 A JP2017083102 A JP 2017083102A JP 2018178945 A JP2018178945 A JP 2018178945A
Authority
JP
Japan
Prior art keywords
passage member
seal
axial force
suction passage
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083102A
Other languages
Japanese (ja)
Other versions
JP6836177B2 (en
Inventor
直也 ▲高▼橋
直也 ▲高▼橋
Naoya Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017083102A priority Critical patent/JP6836177B2/en
Priority to DE102018107053.5A priority patent/DE102018107053A1/en
Publication of JP2018178945A publication Critical patent/JP2018178945A/en
Application granted granted Critical
Publication of JP6836177B2 publication Critical patent/JP6836177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8053Fuel injection apparatus manufacture, repair or assembly involving mechanical deformation of the apparatus or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel pump that achieves improvement in sealability by raising contact pressure of a seal surface, while preventing axial force from increasing.SOLUTION: A pressurization passage member 10 that a fuel pump comprises has an annular seal surface 10f formed to surround a pressurization chamber 10p. A suction passage member 30 that the fuel pump comprises has a seal projection 14 formed, the seal projection having a shape which is annular surrounding a periphery of the pressurization chamber 10p and also projects toward the seal surface 10f, and being pressed against the seal surface 10f with axial force to come into contact. At the pressurization passage member 10, an abutting projection 15 is formed which is positioned radially outside the seal projection 14 and abuts on the suction passage member 30. An axial force reception part 30g as a part receiving the axial force, of the suction passage member 30 is positioned between the seal projection 14 and abutting projection 15 in the radial direction.SELECTED DRAWING: Figure 2

Description

本発明は、吸入弁を備える燃料ポンプに関する。   The present invention relates to a fuel pump provided with a suction valve.

特許文献1には、加圧室の燃料を加圧するプランジャと、加圧室へ燃料を吸入させる吸入通路を形成する吸入通路部材と、吸入通路部材に形成された弁座に離着座して吸入通路を開閉する吸入弁と、を備える燃料ポンプが開示されている。吸入通路部材は、加圧室を形成する加圧部材に取り付けられ、吸入弁が離着座する弁座を有する。   In Patent Document 1, a plunger for pressurizing the fuel in the pressure chamber, a suction passage member for forming a suction passage for sucking the fuel into the pressure chamber, and a valve seat formed on the suction passage member are separately seated and suctioned. A fuel pump is disclosed that includes a suction valve that opens and closes a passage. The suction passage member is attached to a pressure member forming a pressure chamber, and has a valve seat on which the suction valve is released and seated.

また、吸入通路部材に軸力を付与させることで、吸入通路部材と加圧部材との互いに対向する面(対向面)の全体を密着させ、これらの対向面をシール面として機能させる構造となっている。これにより、吸入通路部材と加圧部材との境界面から高圧燃料が漏れ出ることを防止している。   Further, by applying an axial force to the suction passage member, the entire opposing surfaces (opposing surfaces) of the suction passage member and the pressing member are brought into close contact, and these opposing surfaces function as a sealing surface. ing. This prevents high pressure fuel from leaking out from the interface between the suction passage member and the pressure member.

特開2010−7521号公報JP, 2010-7521, A

さて、近年では燃料の高圧化が進む傾向にあり、シール面に要求される面圧が高くなってきている。しかし、軸力を増大させて面圧を高くしようとすると、例えばネジ締結で軸力を増大させる場合にはネジ部分が破断する等の部材損傷を招くため、軸力増大には限界がある。   By the way, in recent years, fuel pressure tends to increase, and the surface pressure required for the seal surface is increasing. However, if the axial force is increased to increase the surface pressure, for example, in the case of increasing the axial force by screw fastening, the member damage such as breakage of the screw portion may occur, and the axial force increase is limited.

本発明は、上記問題を鑑みてなされたもので、その目的は、シール面の面圧を高くしてシール性を向上させることを、軸力増大を抑制しつつ実現させた燃料ポンプを提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a fuel pump which achieves an increase in the surface pressure of the seal surface to improve the seal performance while suppressing an increase in axial force. It is.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. Note that the claims and the reference numerals in the parentheses described in this section indicate the correspondence with specific means described in the embodiments to be described later, and do not limit the technical scope of the invention. .

開示される発明の1つは、
加圧室(10p)の燃料を加圧するプランジャ(11)と、
加圧室、または加圧室と連通する連通路を形成する加圧通路部材(10、101、102、103)と、
加圧通路部材に取り付けられ、加圧室へ燃料を吸入させる吸入通路(30b)を形成する吸入通路部材(30)と、
吸入通路部材に形成された弁座(30s)に離着座して吸入通路を開閉する吸入弁(20)と、
吸入通路部材に軸力を付与し、軸力により吸入通路部材を加圧通路部材に押し付けて密着させる軸力付与部材(40)と、
を備える燃料ポンプであって、
吸入通路部材および加圧通路部材の一方に形成され、加圧室または吸入通路の周りを取り囲む環状のシール面(10f、30f、304f、305f)と、
吸入通路部材および加圧通路部材の他方に形成され、加圧室または吸入通路の周りを取り囲む環状かつシール面に向けて突出する形状であり、軸力によりシール面に押し付けられて密着するシール突起(14、31)と、
シール突起の径方向の外側に位置し、吸入通路部材に形成されて加圧通路部材に当接、或いは、加圧通路部材に形成されて吸入通路部材に当接する当接突起(15、32)と、
を備え、
吸入通路部材のうち軸力を受ける部分である軸力受部(30g)は、径方向においてシール突起と当接突起の間に位置する燃料ポンプである。
One of the disclosed inventions is
A plunger (11) for pressurizing the fuel in the pressurizing chamber (10p);
A pressure chamber or a pressure passage member (10, 101, 102, 103) forming a communication passage communicating with the pressure chamber;
A suction passage member (30) attached to the pressure passage member and forming a suction passage (30b) for drawing fuel into the pressure chamber;
A suction valve (20) which is seated on a valve seat (30s) formed in the suction passage member to open and close the suction passage;
An axial force application member (40) which applies an axial force to the suction passage member and presses the suction passage member against the pressure passage member by the axial force so as to be in close contact therewith;
A fuel pump comprising
An annular sealing surface (10f, 30f, 304f, 305f) formed in one of the suction passage member and the pressure passage member and surrounding the pressure chamber or the suction passage;
A seal projection which is formed on the other of the suction passage member and the pressure passage member, has an annular shape surrounding the pressure chamber or the suction passage and protrudes toward the seal surface, and is pressed against the seal surface by an axial force (14, 31),
Abutment projections (15, 32) which are located radially outward of the seal projection and formed in the suction passage member to abut against the pressure passage member or formed in the pressure passage member to abut the suction passage member When,
Equipped with
An axial force receiving portion (30g), which is a portion that receives an axial force in the suction passage member, is a fuel pump positioned between the seal projection and the contact projection in the radial direction.

上記発明によれば、吸入通路部材および加圧通路部材の一方にはシール面が形成され、他方には、シール面に向けて突出する形状のシール突起が形成される。そのため、従来の如く突起が形成されていない、対向面の全体を密着させてシール面とした場合に比べて、シール面積が小さくなるので、軸力増大を抑制しつつも面圧を高くできる。   According to the above invention, a seal surface is formed on one of the suction passage member and the pressure passage member, and a seal protrusion having a shape projecting toward the seal surface is formed on the other. Therefore, as compared with the case where the entire opposing surface is not in contact with the entire surface as in the conventional case and the seal surface is made smaller, the seal area is smaller, so the surface pressure can be increased while suppressing the increase in axial force.

さて、上述のようにシール突起でシールする構造を採用した場合、本発明に反して当接突起が備えられていないと、以下の問題が生じるとの知見を本発明者は得ている。すなわち、吸入通路部材のうち軸力が付与される部分(軸力付与部)の径方向位置が、シール突起の径方向位置からずれていると、吸入通路部材に曲げ変形が生じ、その結果、シール性の低下や吸入通路部材の損傷が懸念されるようになる。つまり、軸力付与部とシール突起の径方向位置を一致させるといった制約が生じる。   Now, in the case of adopting the structure of sealing with the seal projection as described above, the inventor has obtained the knowledge that the following problems occur if the abutment projection is not provided contrary to the present invention. That is, if the radial position of the portion (axial force application portion) to which the axial force is applied in the suction passage member is deviated from the radial position of the seal projection, bending deformation occurs in the suction passage member, and as a result, As a result, the sealing performance may be reduced and the suction passage member may be damaged. That is, the restriction | limiting that the radial direction position of an axial force provision part and a seal | sticker protrusion match is produced.

この知見に鑑みた上記発明では、シール突起の径方向外側に位置する当接突起を形成し、径方向においてシール突起と当接突起の間に軸力付与部を位置させる。そのため、軸力付与部の径方向位置をシール突起の径方向位置に一致させることを不要にしつつ、吸入通路部材に生じる曲げ変形を抑制でき、シール性低下や吸入通路部材損傷の懸念を軽減できる。   In the above-described invention in view of this finding, the contact protrusion located radially outside the seal protrusion is formed, and the axial force application portion is located between the seal protrusion and the contact protrusion in the radial direction. Therefore, while making it unnecessary to match the radial position of the axial force application portion with the radial position of the seal projection, it is possible to suppress bending deformation occurring in the suction passage member and reduce concerns about seal deterioration and suction passage member damage. .

本発明の第1実施形態に係る燃料ポンプを示す断面図。FIG. 1 is a cross-sectional view showing a fuel pump according to a first embodiment of the present invention. 図1に示す燃料ポンプから電磁アクチュエータを取外した状態の断面図。Sectional drawing of the state which removed the electromagnetic actuator from the fuel pump shown in FIG. 図2に示す吸入通路部材の取り付け状態を模式的に示す断面図。Sectional drawing which shows typically the attachment state of the suction passage member shown in FIG. 図3に示す加圧通路部材を吸入通路部材の側から見た上面図。FIG. 4 is a top view of the pressure passage member shown in FIG. 3 as viewed from the side of a suction passage member. 第1実施形態の比較例を示す断面図。Sectional drawing which shows the comparative example of 1st Embodiment. 本発明の第2実施形態に係る燃料ポンプを模式的に示す断面図。Sectional drawing which shows typically the fuel pump which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態において、加圧通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a pressurization passage member in 3rd Embodiment of this invention. 本発明の第4実施形態において、加圧通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a pressurization passage member in 4th Embodiment of this invention. 本発明の第5実施形態において、吸入通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a suction passage member in 5th Embodiment of this invention. 本発明の第6実施形態において、吸入通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a suction passage member in 6th Embodiment of this invention. 本発明の第7実施形態において、吸入通路部材および加圧通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a suction passage member and a pressurization passage member in 7th Embodiment of this invention. 本発明の第8実施形態において、吸入通路部材および加圧通路部材の単体状態を示す断面図。Sectional drawing which shows the single-piece | unit state of a suction passage member and a pressurization passage member in 8th Embodiment of this invention.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, parts corresponding to the items described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other parts of the configuration can be applied with reference to the other embodiments described above.

(第1実施形態)
図1に示す燃料ポンプ1は、車両に搭載されたものであり、図示しないフィードポンプにより燃料タンクから供給される低圧の燃料を加圧して、コモンレールへ圧送する。コモンレールへ圧送された高圧燃料は、内燃機関の各気筒に設けられた燃料噴射弁へ分配され、燃料噴射弁から燃焼室へ噴射されて燃焼する。
First Embodiment
A fuel pump 1 shown in FIG. 1 is mounted on a vehicle, and pressurizes low-pressure fuel supplied from a fuel tank by a feed pump (not shown) and feeds it to a common rail. The high-pressure fuel pumped to the common rail is distributed to fuel injection valves provided in each cylinder of the internal combustion engine, injected from the fuel injection valves into the combustion chamber, and burned.

燃料ポンプ1は、内燃機関のクランクシャフトに連結された駆動軸2の回転トルクを駆動源として作動する。燃料ポンプ1は、加圧通路部材10と、プランジャ11と、吸入弁20と、吸入通路部材30と、軸力付与部材40と、電磁アクチュエータ50と、を備える。   The fuel pump 1 operates using a rotational torque of a drive shaft 2 connected to a crankshaft of an internal combustion engine as a drive source. The fuel pump 1 includes a pressure passage member 10, a plunger 11, a suction valve 20, a suction passage member 30, an axial force application member 40, and an electromagnetic actuator 50.

加圧通路部材10の一部は、プランジャ11が摺動する摺動面10aを有するシリンダとして機能し、シリンダ内には加圧室10pが形成されている。プランジャ11は、駆動軸2に取り付けられたカム3によりシリンダ内を往復作動して、加圧室10p内の燃料を加圧する。加圧通路部材10には、低圧通路10bおよび高圧通路10cが形成されている。フィードポンプから供給される低圧燃料は、低圧通路10bを通じて加圧室10pへ吸入される。加圧室10pで加圧された高圧燃料は、高圧通路10cを通じてコモンレールへ圧送される。   A portion of the pressure passage member 10 functions as a cylinder having a sliding surface 10 a on which the plunger 11 slides, and a pressure chamber 10 p is formed in the cylinder. The plunger 11 reciprocates the inside of the cylinder by the cam 3 attached to the drive shaft 2 to pressurize the fuel in the pressurizing chamber 10 p. In the pressure passage member 10, a low pressure passage 10b and a high pressure passage 10c are formed. Low pressure fuel supplied from the feed pump is drawn into the pressurizing chamber 10p through the low pressure passage 10b. The high pressure fuel pressurized in the pressurizing chamber 10p is pressure-fed to the common rail through the high pressure passage 10c.

高圧通路10cには逆止弁12が取り付けられている。逆止弁12は、コモンレール側から加圧室10pへ高圧燃料が逆流することを防止する。逆止弁12は、加圧室10pの燃料圧力が所定の設定圧以上になると開弁する。したがって、加圧室10p内の燃料は設定圧になるまでプランジャ11により加圧される。なお、低圧通路10bおよび高圧通路10cは、プランジャ11の往復作動方向、つまりシリンダの軸線C(図2参照)の方向に対して垂直に延びる形状である。   A check valve 12 is attached to the high pressure passage 10c. The check valve 12 prevents the high pressure fuel from flowing backward from the common rail side to the pressurizing chamber 10p. The check valve 12 opens when the fuel pressure in the pressurizing chamber 10 p is equal to or higher than a predetermined set pressure. Therefore, the fuel in the pressurizing chamber 10p is pressurized by the plunger 11 until the set pressure is reached. The low pressure passage 10b and the high pressure passage 10c extend in a direction perpendicular to the direction in which the plunger 11 reciprocates, that is, the direction of the axis C of the cylinder (see FIG. 2).

図1および図2に示すように、加圧通路部材10には、吸入通路部材30が収容配置される収容穴10d、および軸力付与部材40がネジ締結されるネジ穴10eが形成されている。加圧通路部材10および軸力付与部材40は、軸線C方向に延びる円柱形状であり、収容穴10dおよびネジ穴10eは軸線Cと同軸上に位置する。   As shown in FIGS. 1 and 2, the pressure passage member 10 is formed with a housing hole 10d in which the suction passage member 30 is housed and disposed, and a screw hole 10e in which the axial force application member 40 is screwed. . The pressurizing passage member 10 and the axial force applying member 40 have a cylindrical shape extending in the direction of the axis C, and the accommodation hole 10 d and the screw hole 10 e are located coaxially with the axis C.

吸入通路部材30の下端面であるシール面30fは加圧通路部材10に当接し、吸入通路部材30の上端面(軸力受部30g)は軸力付与部材40に当接する。つまり、吸入通路部材30は、軸線C方向において加圧通路部材10と軸力付与部材40との間に挟み付けられている。吸入通路部材30には、貫通穴30aおよび吸入通路30bが形成されている。   The seal surface 30f, which is the lower end surface of the suction passage member 30, abuts on the pressure passage member 10, and the upper end surface (axial force receiving portion 30g) of the suction passage member 30 abuts on the axial force applying member 40. That is, the suction passage member 30 is sandwiched between the pressurizing passage member 10 and the axial force applying member 40 in the direction of the axis C. The suction passage member 30 is formed with a through hole 30 a and a suction passage 30 b.

貫通穴30aは、軸線C方向に貫通する形状であり、軸線Cと同軸上に位置する。貫通穴30aには、吸入弁20が軸線C方向に往復動可能な状態で配置されている。吸入通路30bは、低圧通路10bと加圧室10pとを連通させる形状であり、かつ、貫通穴30aとも連通する。   The through hole 30 a has a shape penetrating in the direction of the axis C, and is located coaxially with the axis C. The suction valve 20 is disposed in the through hole 30 a so as to be capable of reciprocating in the direction of the axis C. The suction passage 30b has a shape that allows the low pressure passage 10b to communicate with the pressure chamber 10p, and also communicates with the through hole 30a.

吸入弁20は、吸入通路部材30の端面に形成された弁座30sに離着座するシート面20sを有する。吸入弁20が加圧室10pの側へ移動すると、シート面20sが弁座30sから離座して吸入通路30bが開弁され、吸入通路30bと加圧室10pとが連通する。吸入弁20が反加圧室側へ移動すると、シート面20sが弁座30sに着座して吸入通路30bが閉弁され、吸入通路30bと加圧室10pとの連通が遮断される。   The suction valve 20 has a seat surface 20 s that is seated on the valve seat 30 s formed on the end surface of the suction passage member 30. When the suction valve 20 moves toward the pressurizing chamber 10p, the seat surface 20s is separated from the valve seat 30s, the suction passage 30b is opened, and the suction passage 30b communicates with the pressurizing chamber 10p. When the suction valve 20 moves to the side opposite to the pressure chamber, the seat surface 20s is seated on the valve seat 30s, the suction passage 30b is closed, and the communication between the suction passage 30b and the pressure chamber 10p is interrupted.

吸入弁20にはストッパ21が取り付けられている。ストッパ21は、吸入通路部材30に当接することで吸入弁20の開弁側への移動を規制する。詳細には、ストッパ21は、吸入弁20が挿入される貫通穴を有した円筒形状である。ストッパ21のうち加圧室10pの反対側(反加圧室側)の端面は、吸入弁20に形成された係合部20bに係合し、加圧室側の端面は吸入通路部材30に当接する。したがって、ストッパ21が吸入通路部材30に当接した状態では、係合部20bへのストッパ21の係合により、吸入弁20の加圧室側(開弁側)への移動が規制される。また、ストッパ21は、弾性部材22から付与される弾性力により係合部20bへ押し付けられている。   A stopper 21 is attached to the suction valve 20. The stopper 21 restricts the movement of the suction valve 20 to the open side by contacting the suction passage member 30. Specifically, the stopper 21 has a cylindrical shape with a through hole into which the suction valve 20 is inserted. The end face of the stopper 21 opposite to the pressure chamber 10 p (opposite to the pressure chamber side) engages with the engaging portion 20 b formed in the suction valve 20, and the end face on the pressure chamber side with the suction passage member 30. Abut. Therefore, in the state where the stopper 21 is in contact with the suction passage member 30, the movement of the suction valve 20 to the pressure chamber side (valve opening side) is restricted by the engagement of the stopper 21 with the engaging portion 20b. The stopper 21 is pressed against the engaging portion 20 b by the elastic force applied from the elastic member 22.

軸力付与部材40は、軸線C方向に延びる円柱形状であり、円柱の中心にはロッド54が挿入される挿入穴40aが形成されている。軸力付与部材40の外周面にはネジ部40nが形成されており、ネジ部40nは、軸力付与部材40の内周面に形成されたネジ穴10eに締結される。さらに軸力付与部材40は、軸線C方向に延びる第1円筒部42および第2円筒部43を有する。第1円筒部42の径方向内側にはストッパ21が位置し、第2円筒部43の径方向内側には吸入通路部材30が位置する。   The axial force application member 40 has a cylindrical shape extending in the direction of the axis C, and an insertion hole 40 a into which the rod 54 is inserted is formed at the center of the cylindrical shape. A screw portion 40 n is formed on the outer peripheral surface of the axial force application member 40, and the screw portion 40 n is fastened to a screw hole 10 e formed on the inner peripheral surface of the axial force application member 40. Furthermore, the axial force application member 40 has a first cylindrical portion 42 and a second cylindrical portion 43 extending in the direction of the axis C. A stopper 21 is positioned radially inward of the first cylindrical portion 42, and a suction passage member 30 is positioned radially inward of the second cylindrical portion 43.

第1円筒部42の加圧室側の端面には、軸線C方向において加圧室側へ突出する突出部41と、突出部41の径方向外側に位置する第2円筒部43とが形成されている。突出部41は、吸入弁20およびストッパ21の周りに環状に延びる形状であり、図2に示す断面視において、軸線C方向のうち加圧室側へ近づくほど断面積が小さくなるテーパ形状である。ネジ部40nをネジ穴10eに締結することで、突出部41の加圧室側の端面である押当面41aが、吸入通路部材30へ軸線C方向に押し当てられる。これにより、ネジ締結による軸力F(図3参照)が吸入通路部材30へ付与され、この軸力Fにより、吸入通路部材30は加圧通路部材10に押し付けられて密着する。この密着構造については後に詳述する。   At the end face of the first cylindrical portion 42 on the pressure chamber side, a protrusion 41 protruding toward the pressure chamber in the direction of the axis C and a second cylindrical portion 43 located radially outward of the protrusion 41 are formed. ing. The projecting portion 41 has a shape extending annularly around the suction valve 20 and the stopper 21 and has a tapered shape in which the cross-sectional area decreases in the direction of the axis C in the cross-sectional view shown in FIG. . By fastening the screw portion 40 n to the screw hole 10 e, the pressing surface 41 a, which is the end surface of the projecting portion 41 on the pressure chamber side, is pressed against the suction passage member 30 in the axis C direction. As a result, an axial force F (see FIG. 3) due to screw fastening is applied to the suction passage member 30, and the suction passage member 30 is pressed against the pressure passage member 10 by the axial force F to be in close contact. The close contact structure will be described in detail later.

図1に示す電磁アクチュエータ50は、電磁コイル51、固定コア52、可動コア53、ロッド54、および弾性部材55を有する。電磁コイル51は、軸線C周りに環状に巻き回されている。固定コア52は、電磁コイル51の径方向内側に配置されている。可動コア53は、軸線C方向において固定コア52の加圧室側に配置されている。   An electromagnetic actuator 50 shown in FIG. 1 includes an electromagnetic coil 51, a fixed core 52, a movable core 53, a rod 54, and an elastic member 55. The electromagnetic coil 51 is annularly wound around the axis C. The fixed core 52 is disposed radially inward of the electromagnetic coil 51. The movable core 53 is disposed on the pressing chamber side of the fixed core 52 in the direction of the axis C.

ロッド54は、軸線C方向に延びる形状であり、可動コア53に組み付けられている。可動コア53およびロッド54は一体となって軸線C方向に往復動する。ロッド54の加圧室側の端面54aは、吸入弁20の反加圧室側の端面20aに当接する。   The rod 54 is shaped to extend in the direction of the axis C, and is assembled to the movable core 53. The movable core 53 and the rod 54 integrally reciprocate in the direction of the axis C. The end surface 54 a on the pressure chamber side of the rod 54 abuts on the end surface 20 a on the side opposite to the pressure chamber of the suction valve 20.

電磁コイル51への通電が停止された状態では、可動コア53と固定コア52との間にはギャップが形成されている。可動コア53およびロッド54は弾性部材55の弾性力により加圧室側へ移動する。これにより、吸入弁20はロッド54に押され、弾性部材22の弾性力に抗して加圧室側へ移動(開弁作動)する。その結果、吸入弁20のシート面20sは弁座30sから離座し、加圧室10pと低圧通路10bとは吸入通路30bを介して連通した状態となる。   In the state where the energization to the electromagnetic coil 51 is stopped, a gap is formed between the movable core 53 and the fixed core 52. The movable core 53 and the rod 54 are moved to the pressure chamber side by the elastic force of the elastic member 55. As a result, the suction valve 20 is pushed by the rod 54 and moves (opens) the pressure chamber side against the elastic force of the elastic member 22. As a result, the seat surface 20s of the suction valve 20 is separated from the valve seat 30s, and the pressurizing chamber 10p and the low pressure passage 10b communicate with each other through the suction passage 30b.

電磁コイル51への通電を開始すると、可動コア53および固定コア52にはギャップを介して磁束が通じることにより、可動コア53には磁気吸引力が作用する。この磁気吸引力により、可動コア53は軸線C方向において反加圧室側へ移動する。これにより、吸入弁20はロッド54から解放され、弾性部材22の弾性力により反加圧室側へ移動(閉弁作動)する。その結果、吸入弁20のシート面20sは弁座30sに着座し、加圧室10pと低圧通路10bとは連通遮断された状態となる。   When energization of the electromagnetic coil 51 is started, a magnetic attraction force acts on the movable core 53 by the magnetic flux passing through the gap to the movable core 53 and the fixed core 52. The movable core 53 moves to the side opposite to the pressure chamber in the direction of the axis C by the magnetic attraction force. As a result, the suction valve 20 is released from the rod 54, and is moved (closed valve operation) to the opposite pressure chamber side by the elastic force of the elastic member 22. As a result, the seat surface 20s of the suction valve 20 is seated on the valve seat 30s, and the communication between the pressurizing chamber 10p and the low pressure passage 10b is blocked.

次に、先述した軸力Fにより吸入通路部材30が加圧通路部材10に押し付けられて密着する構造について、図3および図4を用いて詳細に説明する。   Next, a structure in which the suction passage member 30 is pressed against the pressure passage member 10 by the above-described axial force F to be in close contact will be described in detail with reference to FIGS. 3 and 4.

吸入通路部材30の加圧室側の端面は、軸線C方向に対して垂直に拡がる平坦形状であり、加圧通路部材10に軸力Fで密着するシール面30fとして機能する。加圧通路部材10の反加圧室側の端面には、シール面30fに向けて突出するシール突起14が形成されている。シール突起14の端面であるシール端面14aは、軸線C方向に対して垂直に拡がる平坦形状であり、吸入通路部材30のシール面30fに軸力Fで密着する。シール面30fおよびシール端面14aは、加圧室10pの周りを取り囲む環状である(図4参照)。   The end face of the suction passage member 30 on the pressure chamber side has a flat shape extending perpendicularly to the direction of the axis C, and functions as a seal surface 30 f in close contact with the pressure passage member 10 with an axial force F. On the end face of the pressure passage member 10 on the side opposite to the pressure chamber, a seal protrusion 14 is formed which protrudes toward the seal surface 30 f. The seal end face 14a which is the end face of the seal projection 14 has a flat shape extending perpendicularly to the direction of the axis C, and is in close contact with the seal face 30f of the suction passage member 30 with an axial force F. The seal surface 30f and the seal end surface 14a are annular in shape surrounding the pressure chamber 10p (see FIG. 4).

さらに、加圧通路部材10の反加圧室側の端面のうち、シール突起14の径方向の外側部分には、吸入通路部材30の加圧室側の端面に向けて突出し、吸入通路部材30に当接する当接突起15が形成されている。当接突起15の端面である当接端面15aは、軸線C方向に対して垂直に拡がる平坦形状であり、吸入通路部材30のシール面30fに軸力Fで密着する。当接端面15aは、シール端面14aの周りを取り囲む環状である(図4参照)。   Further, of the end surface of the pressure passage member 10 on the side opposite to the pressure chamber, it projects toward the end surface of the suction passage member 30 on the pressure chamber side in the radial outer portion of the seal projection 14. Abutment projection 15 is formed to abut on. An abutting end surface 15a which is an end surface of the abutting projection 15 has a flat shape extending perpendicularly to the direction of the axis C, and is in close contact with the sealing surface 30f of the suction passage member 30 with an axial force F. The abutting end surface 15a is an annular shape surrounding the seal end surface 14a (see FIG. 4).

ネジ部40nをネジ穴10eに所定トルクで締結した状態では、シール突起14および当接突起15は、軸力Fにより圧縮され、軸線C方向へ所定量だけ弾性変形した状態になっている。図3では、軸力F付与開始時点の状態であって、弾性変形していない状態を示す。図1および図2では、所定の軸力Fが付与されて状態であって、弾性変形している状態を示す。   In a state in which the screw portion 40 n is fastened to the screw hole 10 e with a predetermined torque, the seal projection 14 and the contact projection 15 are compressed by the axial force F and elastically deformed in the axial direction C by a predetermined amount. FIG. 3 shows the state at the start of application of the axial force F and not elastically deformed. In FIG. 1 and FIG. 2, a predetermined axial force F is applied, and it is in an elastically deformed state.

シール突起14の弾性変形により、シール面30fとシール端面14aとの面圧が所定以上となりシール性が発揮される。よって、加圧室10pの燃料が吸入通路部材30と加圧通路部材10との接触面から漏出することを防止できる。さらに本実施形態では、当接突起15の弾性変形によっても、シール面30fと当接端面15aとの面圧でシール性が発揮される。   By the elastic deformation of the seal projection 14, the surface pressure between the seal surface 30f and the seal end surface 14a becomes a predetermined value or more, and the sealability is exhibited. Therefore, it is possible to prevent the fuel in the pressure chamber 10 p from leaking out from the contact surface between the suction passage member 30 and the pressure passage member 10. Furthermore, in the present embodiment, the sealing performance is exhibited by the surface pressure of the sealing surface 30 f and the abutting end surface 15 a also by the elastic deformation of the abutting projection 15.

軸線C方向におけるシール突起14の弾性変形量(圧縮量)と、当接突起15の弾性変形量(圧縮量)とは同一である。また、シール端面14aの径方向長さと当接端面15aの径方向長さは同一であり、シール端面14aの直径は当接端面15aの直径より小さいので、シール端面14aの面積(シール面積)は当接端面15aの面積(当接面積)より小さい。したがって、シール端面14aでの単位面積当りの軸力(面圧)は当接端面15aでの面圧より大きい。   The amount of elastic deformation (the amount of compression) of the seal protrusion 14 in the direction of the axis C is the same as the amount of elastic deformation (the amount of compression) of the contact protrusion 15. Further, since the radial length of the seal end face 14a and the radial length of the contact end face 15a are the same, and the diameter of the seal end face 14a is smaller than the diameter of the contact end face 15a, the area (seal area) of the seal end face 14a is It is smaller than the area (contact area) of the contact end surface 15a. Therefore, the axial force (surface pressure) per unit area at the seal end surface 14a is larger than the surface pressure at the contact end surface 15a.

そして、吸入通路部材30のうち軸力Fを受ける部分である軸力受部30gは、シール突起14の径方向において、シール突起14と当接突起15の間に位置する。この位置関係について、以下、より詳細に説明する。シール端面14aのうち径方向の中心をシール中心線C1と呼び、当接端面15aのうち径方向の中心を当接中心線C2と呼び、軸力受部30gのうち径方向の中心を軸力中心線C3と呼ぶ。軸力中心線C3は、径方向においてシール中心線C1と当接中心線C2の間に位置する。図4に示す軸線C方向視において、軸力受部30gは、シール端面14aおよび当接端面15aと重複しないように設けられている。つまり、軸力受部30gの内周縁はシール端面14aの外周縁よりも径方向外側に位置し、軸力受部30gの外周縁は当接端面15aの内周縁よりも径方向内側に位置する。   An axial force receiving portion 30 g which is a portion receiving the axial force F of the suction passage member 30 is located between the seal projection 14 and the contact projection 15 in the radial direction of the seal projection 14. This positional relationship will be described in more detail below. The radial center of the seal end face 14a is called a seal center line C1, the radial center of the contact end face 15a is called a contact center line C2, and the radial center of the axial force receiving portion 30g is an axial force. Call it centerline C3. The axial force center line C3 is located between the seal center line C1 and the contact center line C2 in the radial direction. As viewed in the direction of the axis C shown in FIG. 4, the axial force receiving portion 30 g is provided so as not to overlap with the seal end face 14 a and the abutting end face 15 a. That is, the inner peripheral edge of the axial force receiving portion 30g is located radially outward of the outer peripheral edge of the seal end surface 14a, and the outer peripheral edge of the axial force receiving portion 30g is located radially inward of the inner peripheral edge of the abutting end surface 15a. .

以上により、本実施形態によれば、吸入通路部材30にはシール面30fが形成され、加圧通路部材10にはシール突起14が形成される。そのため、本実施形態に反してシール突起14を形成せず、加圧通路部材10の端面全体をシール面30fに密着させてシールする場合に比べて、シール面積が小さくなる。よって、軸力F増大を抑制しつつもシール突起14の面圧を高くでき、シール性を向上できる。   As described above, according to the present embodiment, the seal surface 30 f is formed on the suction passage member 30, and the seal projection 14 is formed on the pressure passage member 10. Therefore, contrary to the present embodiment, the seal protrusion 14 is not formed, and the seal area is smaller than in the case where the entire end face of the pressure passage member 10 is closely attached to the seal surface 30f for sealing. Therefore, the surface pressure of the seal protrusion 14 can be increased while suppressing the increase in the axial force F, and the sealability can be improved.

さて、上述のようにシール突起14でシールする構造を採用した場合、本実施形態に反して当接突起15が備えられていないと、以下の問題が生じるとの知見を本発明者は得ている。すなわち、図5に示す比較例のように加圧通路部材10xに当接突起15が備えられていない場合、軸力受部30gとシール端面14aとの間で、吸入通路部材30に曲げ応力が作用して曲げ変形する。その結果、シール端面14aでの面圧が不均一になり、シール端面14aの外周側エッジに応力集中が生じる等、吸入通路部材30の損傷が懸念される。この懸念の対策として、軸力中心線C3の径方向位置をシール中心線C1の径方向位置に一致させれば、上記曲げ変形を解消できるが、軸力中心線C3とシール中心線C1の径方向位置を一致させるといったレイアウト上の制約が生じる。   By the way, in the case of adopting the structure of sealing with the seal projection 14 as described above, the inventor obtains the knowledge that the following problems occur if the contact projection 15 is not provided contrary to the present embodiment. There is. That is, when the pressing passage member 10x is not provided with the contact projection 15 as in the comparative example shown in FIG. 5, bending stress is applied to the suction passage member 30 between the axial force receiving portion 30g and the seal end face 14a. It acts and bends and deforms. As a result, the surface pressure at the seal end face 14a becomes uneven, and stress concentration is generated at the outer peripheral edge of the seal end face 14a, which may cause damage to the suction passage member 30. As a countermeasure against this concern, if the radial position of the axial center line C3 is made coincident with the radial position of the seal central line C1, the bending deformation can be eliminated, but the diameters of the axial center line C3 and the seal central line C1 There are layout restrictions such as matching the direction position.

特に本実施形態では、軸力受部30gの環状内側にストッパ21が位置するので、軸力中心線C3を径方向内側に位置させるには限界がある。また、燃料の高圧化が進むにつれシート面20sの受圧面積を小さくすることが要求されるので、シート面20sの径寸法を小さくすることが要求される。そのため、シール中心線C1を径方向内側に位置させることが要求され、シール中心線C1を径方向外側に位置させるには限界がある。これらの事情により、本実施形態に係る燃料ポンプ1では、軸力中心線C3をシール中心線C1の径方向外側に位置せざるを得ない。   In particular, in the present embodiment, since the stopper 21 is positioned inside the annular force of the axial force receiving portion 30g, there is a limit in positioning the axial force center line C3 radially inward. Further, as the fuel pressure increases, it is required to reduce the pressure receiving area of the seat surface 20s, so it is required to reduce the diameter of the seat surface 20s. Therefore, it is required to position the seal center line C1 radially inward, and there is a limit in positioning the seal center line C1 radially outward. Due to these circumstances, in the fuel pump 1 according to the present embodiment, the axial force center line C3 has to be located radially outside the seal center line C1.

この事情に鑑みた本実施形態では、シール突起14の径方向外側に位置する当接突起15を形成し、径方向においてシール突起14と当接突起15の間に軸力付与部材40を位置させる。これによれば、シール突起14を支点、軸力受部30gを力点として吸入通路部材30が曲げ変形しようとしても、吸入通路部材30が当接突起15に当接して支持されることで、上記曲げ変形が規制される。そのため、軸力付与部材40とシール突起14との径方向位置を一致させることを不要にしつつ、吸入通路部材30の曲げ変形を抑制できる。よって、吸入通路部材30のシール性低下や損傷の懸念を軽減できる。   In the present embodiment in view of the circumstances, in the present embodiment, the contact projection 15 located radially outside the seal projection 14 is formed, and the axial force application member 40 is positioned between the seal projection 14 and the contact projection 15 in the radial direction. . According to this, even if the suction passage member 30 tries to bend and deform with the seal projection 14 as the fulcrum and the axial force receiving portion 30g as the force point, the suction passage member 30 is supported by being in contact with the contact protrusion 15 Bending deformation is regulated. Therefore, it is possible to suppress the bending deformation of the suction passage member 30 while making it unnecessary to match the radial position of the axial force application member 40 and the seal projection 14. Therefore, the concern about the sealing performance fall and damage of the suction passage member 30 can be reduced.

さらに本実施形態では、当接突起15は、シール突起14の周りを取り囲むように環状に延びる形状である。そのため、当接突起15が吸入通路部材30に当接して支持する機能を向上でき、吸入通路部材30の曲げ変形抑制を促進できる。   Furthermore, in the present embodiment, the abutment projection 15 is shaped so as to extend annularly so as to surround the seal projection 14. Therefore, the function of contacting and supporting the contact projection 15 with the suction passage member 30 can be improved, and bending deformation suppression of the suction passage member 30 can be promoted.

さらに本実施形態では、軸力受部30gは、吸入弁20の軸線C周りに延びる環状である。そのため、軸力付与部材40から吸入通路部材30へ付与される軸力Fは、非環状の場合に比べて軸線C周りに均等に付与されるので、シール端面14aでの面圧を周方向に均等にすることを促進でき、シール性を向上できる。   Furthermore, in the present embodiment, the axial force receiving portion 30 g is an annular shape extending around the axis C of the suction valve 20. Therefore, the axial force F applied from the axial force applying member 40 to the suction passage member 30 is equally applied around the axis C as compared with the non-annular case, so the surface pressure at the seal end face 14a is circumferentially Equalization can be promoted and sealing performance can be improved.

さらに本実施形態では、吸入弁20に取り付けられ、吸入通路部材30に当接することで吸入弁20の開弁側への移動を規制するストッパ21を備え、軸力受部30gの環状内側にストッパ21が位置する。この構成では、軸力受部30gの径方向位置を径方向内側に位置させることが困難になるため、シール中心線C1と軸力中心線C3との径方向位置を同一にすることが困難になる。よって、当接突起15を備えさせることによる曲げ変形抑制の効果が好適に発揮される。   Furthermore, in the present embodiment, a stopper 21 is attached to the suction valve 20 and abuts on the suction passage member 30 to restrict the movement of the suction valve 20 toward the valve opening side. 21 is located. In this configuration, it is difficult to position the radial position of the axial force receiving portion 30g inward in the radial direction, so it is difficult to make the radial positions of the seal center line C1 and the axial center line C3 the same. Become. Therefore, the effect of bending deformation suppression by providing the contact protrusion 15 is suitably exhibited.

ここで、シール端面14aではシール性の機能が要求されるため面圧を高くすることが望ましい。その一方で、当接端面15aでは吸入通路部材30の変形抑制の機能が要求されるため、シール端面14aに比べて面圧を高くする要求が小さい。したがって、シール端面14aでの面圧を当接端面15aでの面圧よりも高くすれば、軸力F増大を抑制しつつシール性を向上できる。よって、この点を鑑みた本実施形態では、シール端面14aでの面圧を当接端面15aでの面圧より大きくすることを促進させているので、軸力F増大を抑制しつつシール性を向上できる。   Here, the seal end face 14a is required to have a sealing function, and it is desirable to increase the surface pressure. On the other hand, since the contact end face 15a is required to have a function of suppressing deformation of the suction passage member 30, the request for increasing the surface pressure is smaller than the seal end face 14a. Therefore, if the surface pressure at the seal end surface 14a is higher than the surface pressure at the contact end surface 15a, the sealing performance can be improved while suppressing the increase in the axial force F. Therefore, in the present embodiment in view of this point, since the surface pressure at the seal end surface 14a is made larger than the surface pressure at the contact end surface 15a, the sealability is suppressed while suppressing the increase in the axial force F. It can improve.

(第2実施形態)
上記第1実施形態では、シール突起14および当接突起15が加圧通路部材10に形成されている。これに対し本実施形態では、図6に示すように、シール突起31および当接突起32が吸入通路部材301に形成されている。以下、先述した軸力Fにより吸入通路部材301が加圧通路部材101に押し付けられて密着する構造について詳細に説明する。
Second Embodiment
In the first embodiment, the seal protrusion 14 and the contact protrusion 15 are formed in the pressure passage member 10. On the other hand, in the present embodiment, as shown in FIG. 6, the seal projection 31 and the contact projection 32 are formed in the suction passage member 301. Hereinafter, the structure in which the suction passage member 301 is pressed against the pressure passage member 101 by the above-described axial force F will be described in detail.

加圧通路部材101の反加圧室側の端面は、軸線C方向に対して垂直に拡がる平坦形状であり、吸入通路部材301に軸力Fで密着するシール面10fとして機能する。吸入通路部材301の加圧室側の端面には、シール面10fに向けて突出するシール突起31が形成されている。シール突起31の端面であるシール端面31aは、軸線C方向に対して垂直に拡がる平坦形状であり、加圧通路部材101のシール面10fに軸力Fで密着する。シール面10fおよびシール端面31aは、加圧室10pの周りを取り囲む環状である。   The end face of the pressure passage member 101 on the side opposite to the pressure chamber has a flat shape extending perpendicularly to the direction of the axis C, and functions as a sealing surface 10 f in close contact with the suction passage member 301 with an axial force F. The end face of the suction passage member 301 on the pressure chamber side is formed with a seal projection 31 projecting toward the seal surface 10 f. A seal end face 31 a which is an end face of the seal projection 31 has a flat shape which expands perpendicularly to the direction of the axis C, and is in close contact with the seal surface 10 f of the pressure passage member 101 with an axial force F. The seal surface 10 f and the seal end surface 31 a are annular in shape surrounding the pressure chamber 10 p.

さらに、吸入通路部材301の加圧室側の端面のうち、シール突起31の径方向の外側部分には、加圧通路部材101の反加圧室側の端面に向けて突出し、加圧通路部材101に当接する当接突起32が形成されている。当接突起32の端面である当接端面32aは、軸線C方向に対して垂直に拡がる平坦形状であり、加圧通路部材101のシール面10fに軸力Fで密着する。当接端面32aは、シール端面31aの周りを取り囲む環状である。   Further, of the end surface of the suction passage member 301 on the pressure chamber side, it projects toward the end surface on the side opposite to the pressure chamber of the pressure passage member 101 in the radial outer part of the seal projection 31. An abutment projection 32 that abuts 101 is formed. An abutting end surface 32 a which is an end surface of the abutting projection 32 has a flat shape expanding perpendicularly to the direction of the axis C, and is in close contact with the sealing surface 10 f of the pressure passage member 101 with an axial force F. The abutting end surface 32a is an annular shape surrounding the seal end surface 31a.

ネジ部40nをネジ穴10eに所定トルクで締結した状態では、シール突起31および当接突起32は、軸力Fにより圧縮され、軸線C方向へ所定量だけ弾性変形した状態になっている。シール突起31の弾性変形により、シール面10fとシール端面31aとの面圧が所定以上となりシール性が発揮される。よって、加圧室10pの燃料が加圧通路部材101と吸入通路部材301との接触面から漏出することを防止できる。さらに本実施形態では、当接突起32の弾性変形によっても、シール面10fと当接端面32aとの面圧でシール性が発揮される。   In a state in which the screw portion 40 n is fastened to the screw hole 10 e with a predetermined torque, the seal projection 31 and the contact projection 32 are compressed by the axial force F and elastically deformed by a predetermined amount in the axis C direction. By the elastic deformation of the seal projection 31, the surface pressure between the seal surface 10f and the seal end surface 31a becomes a predetermined value or more, and the sealability is exhibited. Therefore, it is possible to prevent the fuel in the pressure chamber 10 p from leaking from the contact surface between the pressure passage member 101 and the suction passage member 301. Furthermore, in the present embodiment, the sealing performance is exhibited by the surface pressure of the sealing surface 10 f and the abutting end surface 32 a also by the elastic deformation of the abutting projection 32.

軸線C方向におけるシール突起31の弾性変形量(圧縮量)と、当接突起32の弾性変形量(圧縮量)とは同一であり、シール端面31aの径方向長さと当接端面32aの径方向長さは同一である。   The amount of elastic deformation (the amount of compression) of the seal projection 31 in the direction of the axis C is the same as the amount of elastic deformation (the amount of compression) of the contact projection 32. The radial length of the seal end face 31a and the radial direction of the contact end face 32a The lengths are identical.

そして、吸入通路部材301のうち軸力Fを受ける部分である軸力受部30gは、シール突起14の径方向において、シール突起31と当接突起32の間に位置する。より詳細に説明すると、シール端面31aのうち径方向の中心をシール中心線C1aと呼び、当接端面32aのうち径方向の中心を当接中心線C2aと呼び、軸力受部30gのうち径方向の中心を軸力中心線C3と呼ぶ。軸力中心線C3は、径方向においてシール中心線C1aと当接中心線C2aの間に位置する。軸線C方向視において、軸力受部30gは、シール端面31aおよび当接端面32aと重複しないように設けられている。つまり、軸力受部30gの内周縁はシール端面31aの外周縁よりも径方向外側に位置し、軸力受部30gの外周縁は当接端面32aの内周縁よりも径方向内側に位置する。   An axial force receiving portion 30 g which is a portion receiving the axial force F in the suction passage member 301 is located between the seal projection 31 and the contact projection 32 in the radial direction of the seal projection 14. More specifically, the center of the seal end face 31a in the radial direction is called the seal center line C1a, the center of the contact end face 32a in the radial direction is called the contact center line C2a, and the diameter of the axial force receiving portion 30g The center of the direction is called an axial center line C3. The axial force center line C3 is located between the seal center line C1a and the contact center line C2a in the radial direction. The axial force receiving portion 30g is provided so as not to overlap with the seal end face 31a and the abutting end face 32a in the axial line C direction. That is, the inner peripheral edge of the axial force receiving portion 30g is positioned radially outward of the outer peripheral edge of the seal end surface 31a, and the outer peripheral edge of the axial force receiving portion 30g is positioned radially inward of the inner peripheral edge of the abutting end surface 32a. .

以上により、本実施形態によれば、加圧通路部材101にはシール面10fが形成され、吸入通路部材301にはシール突起31が形成される。そのため、本実施形態に反してシール突起31を形成せず、吸入通路部材301の端面全体をシール面10fに密着させてシールする場合に比べて、シール面積が小さくなる。よって、軸力F増大を抑制しつつもシール突起31の面圧を高くでき、シール性を向上できる。   As described above, according to the present embodiment, the seal surface 10 f is formed on the pressure passage member 101, and the seal projection 31 is formed on the suction passage member 301. Therefore, contrary to the present embodiment, the seal protrusion 31 is not formed, and the seal area is smaller than in the case where the entire end surface of the suction passage member 301 is closely attached to the seal surface 10f for sealing. Therefore, the surface pressure of the seal projection 31 can be increased while suppressing the increase in the axial force F, and the sealability can be improved.

さらに本実施形態では、シール突起31の径方向外側に位置する当接突起32を形成し、径方向においてシール突起31と当接突起32の間に軸力付与部材40を位置させる。これによれば、シール突起31を支点、軸力受部30gを力点として吸入通路部材301が曲げ変形しようとしても、吸入通路部材301が当接突起32に当接して支持されることで、上記曲げ変形が規制される。そのため、軸力付与部材40とシール突起31との径方向位置を一致させることを不要にしつつ、吸入通路部材301に生じる曲げ変形力を抑制できる。よって、吸入通路部材301の曲げ変形によるシール性低下や、吸入通路部材301の損傷の懸念を軽減できる。   Furthermore, in the present embodiment, the contact projection 32 located radially outside the seal projection 31 is formed, and the axial force application member 40 is positioned between the seal projection 31 and the contact projection 32 in the radial direction. According to this, even if the suction passage member 301 tries to bend and deform with the seal projection 31 as the fulcrum and the axial force receiving portion 30g as the force point, the suction passage member 301 is supported by being in contact with the contact protrusion 32 Bending deformation is regulated. Therefore, it is possible to suppress the bending deformation force generated in the suction passage member 301 while making it unnecessary to match the radial position of the axial force applying member 40 and the seal projection 31. As a result, it is possible to reduce the concern about the deterioration of the sealing performance due to the bending deformation of the suction passage member 301 and the damage of the suction passage member 301.

(第3実施形態)
上記第1実施形態に係る加圧通路部材10では、シール突起14および当接突起15は、軸力Fで弾性変形(圧縮変形)させる前の自然状態では、軸線C方向におけるシール突起14の突起高さおよび当接突起15の突起高さは同じに設定されている。そのため、軸力Fによるシール突起14の圧縮変形量と当接突起15の圧縮変形量とが同じである。これに対し、本実施形態に係る加圧通路部材102では、図7に示すように、シール突起14および当接突起15は、軸力Fで弾性変形させる前の自然状態では、シール突起14の突起高さL1が、当接突起15の突起高さL2よりも高く設定されている。そのため、軸力Fによるシール突起14の圧縮変形量が、軸力Fによる当接突起15の圧縮変形量より大きい。よって、シール端面14aでの面圧を当接端面15aでの面圧よりも大きくすることが促進される。
Third Embodiment
In the pressure passage member 10 according to the first embodiment, the seal projection 14 and the contact projection 15 are projections of the seal projection 14 in the direction of the axis C in a natural state before being elastically deformed (compressed deformation) by the axial force F. The height and the protrusion height of the contact protrusion 15 are set to be the same. Therefore, the amount of compressive deformation of the seal projection 14 due to the axial force F and the amount of compressive deformation of the contact projection 15 are the same. On the other hand, in the pressure passage member 102 according to the present embodiment, as shown in FIG. 7, in the natural state before the seal protrusion 14 and the contact protrusion 15 are elastically deformed by the axial force F, The protrusion height L1 is set higher than the protrusion height L2 of the contact protrusion 15. Therefore, the amount of compressive deformation of the seal projection 14 due to the axial force F is larger than the amount of compressive deformation of the contact projection 15 due to the axial force F. Therefore, the surface pressure at the seal end surface 14a is promoted to be larger than the surface pressure at the contact end surface 15a.

以上により、本実施形態によれば、軸力Fによるシール突起14の圧縮変形量が、軸力Fによる当接突起15の圧縮変形量より大きく設定されている。そのため、シール端面14aの面圧を当接端面15aの面圧より増大させることの促進を、簡素な形状(平坦形状)のシール面30fで実現できる。   As described above, according to the present embodiment, the amount of compressive deformation of the seal projection 14 due to the axial force F is set larger than the amount of compressive deformation of the contact projection 15 due to the axial force F. Therefore, promotion of increasing the surface pressure of the seal end surface 14a more than the surface pressure of the contact end surface 15a can be realized by the seal surface 30f having a simple shape (flat shape).

(第4実施形態)
上記第1実施形態に係る加圧通路部材10では、シール端面14aの径方向長さと当接端面15aの径方向長さが同一に設定されている。これに対し、本実施形態に係る加圧通路部材103では、図8に示すように、シール端面14aの径方向長さL1aが当接端面15aの径方向長さL2aよりも短く設定されている。そのため、シール端面14aでの面圧を当接端面15aでの面圧よりも大きくすることが促進されている。よって、シール端面14aの面圧を当接端面15aの面圧より増大させることの促進を、簡素な形状(平坦形状)のシール面30fで実現できる。
Fourth Embodiment
In the pressure passage member 10 according to the first embodiment, the radial length of the seal end face 14a and the radial length of the abutting end face 15a are set to be the same. On the other hand, in the pressure passage member 103 according to the present embodiment, as shown in FIG. 8, the radial length L1a of the seal end face 14a is set shorter than the radial length L2a of the abutting end face 15a. . Therefore, the surface pressure at the seal end surface 14a is promoted to be larger than the surface pressure at the contact end surface 15a. Therefore, promotion of increasing the surface pressure of the seal end surface 14a more than the surface pressure of the contact end surface 15a can be realized by the seal surface 30f having a simple shape (flat shape).

なお、本実施形態では、自然状態でのシール突起14の突起高さL1を当接突起15の突起高さL2と同じにしているが、上記第3実施形態と同様にして、シール突起14の突起高さL1を当接突起15の突起高さL2より高くしてもよい。   In the present embodiment, the protrusion height L1 of the seal protrusion 14 in the natural state is the same as the protrusion height L2 of the contact protrusion 15. However, in the same manner as in the third embodiment, The protrusion height L1 may be higher than the protrusion height L2 of the contact protrusion 15.

(第5実施形態)
上記第2実施形態に係る吸入通路部材301では、シール突起31および当接突起32は、軸力Fで弾性変形(圧縮変形)させる前の自然状態では、軸線C方向におけるシール突起31の突起高さおよび当接突起32の突起高さは同じに設定されている。そのため、軸力Fによるシール突起31の圧縮変形量と当接突起32の圧縮変形量とが同じである。これに対し、本実施形態に係る吸入通路部材302では、図9に示すように、シール突起31および当接突起32は、軸力Fで弾性変形させる前の自然状態では、シール突起31の突起高さL1bが、当接突起32の突起高さL2bよりも高く設定されている。そのため、軸力Fによるシール突起31の圧縮変形量が、軸力Fによる当接突起32の圧縮変形量より大きい。よって、シール端面31aでの面圧を当接端面32aでの面圧よりも大きくすることが促進される。
Fifth Embodiment
In the suction passage member 301 according to the second embodiment, the seal projection 31 and the contact projection 32 have the projection height of the seal projection 31 in the direction of the axis C in a natural state before being elastically deformed (compressed deformation) by the axial force F. And the projection height of the contact projection 32 are set to be the same. Therefore, the amount of compressive deformation of the seal projection 31 due to the axial force F and the amount of compressive deformation of the contact projection 32 are the same. On the other hand, in the suction passage member 302 according to the present embodiment, as shown in FIG. 9, the seal projection 31 and the contact projection 32 are projections of the seal projection 31 in a natural state before being elastically deformed by the axial force F. The height L1b is set to be higher than the projection height L2b of the contact projection 32. Therefore, the amount of compressive deformation of the seal projection 31 due to the axial force F is larger than the amount of compressive deformation of the contact projection 32 due to the axial force F. Therefore, the surface pressure at the seal end surface 31a is promoted to be larger than the surface pressure at the contact end surface 32a.

以上により、本実施形態によれば、軸力Fによるシール突起31の圧縮変形量が、軸力Fによる当接突起32の圧縮変形量より大きく設定されている。そのため、シール端面31aの面圧を当接端面32aの面圧より増大させることの促進を、簡素な形状(平坦形状)のシール面10fで実現できる。   As described above, according to the present embodiment, the amount of compressive deformation of the seal projection 31 due to the axial force F is set larger than the amount of compressive deformation of the contact projection 32 due to the axial force F. Therefore, promotion of increasing the surface pressure of the seal end surface 31a more than the surface pressure of the contact end surface 32a can be realized by the seal surface 10f having a simple shape (flat shape).

(第6実施形態)
上記第2実施形態に係る吸入通路部材301では、シール端面31aの径方向長さと当接端面32aの径方向長さが同一に設定されている。これに対し、本実施形態に係る吸入通路部材303では、図10に示すように、シール端面31aの径方向長さL1cが当接端面32aの径方向長さL2cよりも短く設定されている。そのため、シール端面31aでの面圧を当接端面32aでの面圧よりも大きくすることが促進されている。よって、シール端面31aの面圧を当接端面32aの面圧より増大させることの促進を、簡素な形状(平坦形状)のシール面10fで実現できる。
Sixth Embodiment
In the suction passage member 301 according to the second embodiment, the radial length of the seal end face 31a and the radial length of the abutting end face 32a are set to be the same. On the other hand, in the suction passage member 303 according to the present embodiment, as shown in FIG. 10, the radial length L1c of the seal end face 31a is set shorter than the radial length L2c of the abutting end face 32a. Therefore, the surface pressure at the seal end face 31a is promoted to be larger than the surface pressure at the contact end face 32a. Therefore, promotion of increasing the surface pressure of the seal end surface 31a more than the surface pressure of the contact end surface 32a can be realized by the seal surface 10f having a simple shape (flat shape).

なお、本実施形態では、自然状態でのシール突起31の突起高さL1bを当接突起32の突起高さL2bと同じにしているが、上記第5実施形態と同様にして、シール突起31の突起高さL1bを当接突起32の突起高さL2bより高くしてもよい。   In the present embodiment, the protrusion height L1b of the seal protrusion 31 in the natural state is the same as the protrusion height L2b of the contact protrusion 32. However, in the same manner as the fifth embodiment, The protrusion height L1b may be higher than the protrusion height L2b of the contact protrusion 32.

(第7実施形態)
上記第1実施形態に係る吸入通路部材30では、シール面30fを、軸線C方向に対して垂直に拡がる平坦形状に形成している。これに対し、本実施形態に係る吸入通路部材304では、図11に示すように、シール面304fをテーパ形状に形成している。具体的には、シール面304fは、径方向の外側であるほど加圧通路部材10から軸線C方向に遠ざかる向きに傾斜した形状である。
Seventh Embodiment
In the suction passage member 30 according to the first embodiment, the sealing surface 30 f is formed in a flat shape that extends perpendicularly to the direction of the axis C. On the other hand, in the suction passage member 304 according to the present embodiment, as shown in FIG. 11, the seal surface 304f is formed in a tapered shape. Specifically, the seal surface 304 f is shaped so as to be further away from the pressure passage member 10 in the direction of the axis C as it is closer to the outer side in the radial direction.

そのため、図11中の矢印に示すように、吸入通路部材304を加圧通路部材10に軸線C方向へ押し付けていくと、シール端面14aの方が当接端面15aよりも先にシール面304fに当接する。よって、シール突起14の圧縮変形量が当接突起15の圧縮変形量よりも大きくなるので、シール端面14aの面圧を当接端面15aの面圧より増大させることを促進できる。   Therefore, as shown by the arrows in FIG. 11, when the suction passage member 304 is pressed against the pressure passage member 10 in the direction of the axis C, the seal end face 14a is made earlier on the seal face 304f than the contact end face 15a. Abut. Therefore, since the amount of compressive deformation of the seal projection 14 is larger than the amount of compressive deformation of the contact projection 15, it is possible to promote the surface pressure of the seal end surface 14a to be higher than the surface pressure of the contact end surface 15a.

(第8実施形態)
上記第7実施形態に係る吸入通路部材304では、シール面304fが直線状に傾斜するテーパ形状である。これに対し、本実施形態に係る吸入通路部材305では、図12に示すように、シール面305fが曲線状に傾斜する湾曲形状である。具体的には、シール面305fは、加圧通路部材10の側に凸となる向きに湾曲した形状である。
Eighth Embodiment
In the suction passage member 304 according to the seventh embodiment, the sealing surface 304 f has a tapered shape inclining in a straight line. On the other hand, in the suction passage member 305 according to the present embodiment, as shown in FIG. 12, the sealing surface 305f has a curved shape inclining in a curved shape. Specifically, the seal surface 305 f is shaped so as to be convex toward the pressure passage member 10.

そのため、図12中の矢印に示すように、吸入通路部材305を加圧通路部材10に軸線C方向へ押し付けていくと、シール端面14aの方が当接端面15aよりも先にシール面304fに当接する。よって、上記第7実施形態と同様にしてシール突起14の圧縮変形量が当接突起15の圧縮変形量よりも大きくなるので、シール端面14aの面圧を当接端面15aの面圧より増大させることを促進できる。   Therefore, as shown by the arrows in FIG. 12, when the suction passage member 305 is pressed against the pressure passage member 10 in the direction of the axis C, the seal end face 14a is made earlier on the seal face 304f than the contact end face 15a. Abut. Thus, as in the seventh embodiment, the amount of compressive deformation of the seal projection 14 is larger than the amount of compressive deformation of the contact projection 15, so the surface pressure of the seal end surface 14a is increased than the surface pressure of the contact end surface 15a. Can promote things.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
The preferred embodiments of the invention have been described above, but the invention is not limited to the above-described embodiments, and can be variously modified and implemented as exemplified below. Not only combinations of parts which clearly indicate that combinations are possible in each embodiment, but also combinations of embodiments even if they are not specified unless there is a problem with the combination. Is also possible.

上記各実施形態では、シール突起14、31および当接突起15、32を同じ硬度にしている。これに対し、シール突起14、31を当接突起15、32よりも高い硬度にして、シール端面14a、31aでの面圧向上を図ってもよい。   In the above embodiments, the seal protrusions 14 and 31 and the contact protrusions 15 and 32 have the same hardness. On the other hand, the seal protrusions 14 and 31 may have hardness higher than that of the contact protrusions 15 and 32 to improve the surface pressure at the seal end faces 14a and 31a.

図1に示す実施形態では、吸入弁20のシート面20sが加圧室10pに配置された構造の燃料ポンプ1に本発明を適用させている。これに対し、加圧室10pと連通する連通路(図示せず)が加圧通路部材10に形成され、吸入通路30bが連通路を介して加圧室10pと連通した構造の燃料ポンプ1に本発明を適用させてもよい。この場合、上述した連通路を形成する部材が「加圧通路部材」に相当し、その加圧通路部材に、当接突起およびシール突起の少なくとも一方が形成されていてもよい。   In the embodiment shown in FIG. 1, the present invention is applied to the fuel pump 1 having a structure in which the seat surface 20s of the suction valve 20 is disposed in the pressurizing chamber 10p. On the other hand, in the fuel pump 1 having a structure in which a communication passage (not shown) communicating with the pressure chamber 10p is formed in the pressure passage member 10 and the suction passage 30b communicates with the pressure chamber 10p via the communication passage. The present invention may be applied. In this case, the member forming the communication passage described above may correspond to a "pressure passage member", and at least one of the contact protrusion and the seal protrusion may be formed in the pressure passage member.

図1に示す実施形態では、加圧通路部材10と吸入通路部材30とを直接当接させているが、加圧通路部材10と吸入通路部材30との間にガスケットやワッシャー等のシール部材を介在させてもよい。この場合、シール突起と密着するシール面は上記シール部材の表面により提供され、そのシール部材が「吸入通路部材および加圧通路部材の一方」に相当する。   In the embodiment shown in FIG. 1, the pressure passage member 10 and the suction passage member 30 are in direct contact with each other, but a sealing member such as a gasket or a washer is interposed between the pressure passage member 10 and the suction passage member 30. You may intervene. In this case, the seal surface in close contact with the seal projection is provided by the surface of the seal member, and the seal member corresponds to "one of the suction passage member and the pressure passage member".

上記各実施形態では、図4に示す軸線C方向視において、軸力受部30gは、シール端面14aおよび当接端面15aと重複しないように設けられている。これに対し、軸線C方向視において、軸力受部30gの一部がシール端面14aと重複していてもよいし、軸力受部30gの一部が当接端面15aと重複していてもよい。   In each of the above embodiments, the axial force receiving portion 30g is provided so as not to overlap with the seal end face 14a and the abutting end face 15a in the direction of the axis C shown in FIG. On the other hand, in the direction of the axis C, a portion of the axial force receiving portion 30g may overlap with the seal end surface 14a, or even if a portion of the axial force receiving portion 30g overlaps with the abutting end surface 15a. Good.

上記各実施形態では、シール突起31の弾性変形によるシール機能に加え、当接突起32の弾性変形によるシール機能も発揮させている。これに対し、当接突起32ではシール機能を発揮させていなくてもよい。また、当接突起32は弾性変形していなくてもよい。   In the above embodiments, in addition to the sealing function by the elastic deformation of the seal projection 31, the sealing function by the elastic deformation of the contact projection 32 is also exhibited. On the other hand, the contact projection 32 may not exhibit the sealing function. Further, the contact projection 32 may not be elastically deformed.

上記各実施形態では、シール端面14aの面積を当接端面15aの面積より小さく設定している。これに対し、シール端面14aの面積を当接端面15aの面積と同じに設定してもよいし、シール端面14aの面積を当接端面15aの面積より大きく設定してもよい。   In the above embodiments, the area of the seal end surface 14a is set smaller than the area of the contact end surface 15a. On the other hand, the area of the seal end face 14a may be set to be the same as the area of the contact end face 15a, or the area of the seal end face 14a may be set larger than the area of the contact end face 15a.

1…燃料ポンプ、10、101、102、103…加圧通路部材、10f、30f、304f、305f…シール面、10p…加圧室、11…プランジャ、14、31…シール突起、15、32…当接突起、20…吸入弁、30…吸入通路部材、30b…吸入通路、30s…弁座、40…軸力付与部材。   DESCRIPTION OF SYMBOLS 1 ... Fuel pump, 10, 101, 102, 103 ... Pressurizing passage member, 10f, 30f, 304f, 305f ... Sealing surface, 10p ... Pressure chamber, 11 ... Plunger, 14, 31 ... Seal projection, 15, 32 ... Abutment projection, 20: suction valve, 30: suction passage member, 30b: suction passage, 30s: valve seat, 40: axial force application member.

Claims (8)

加圧室(10p)の燃料を加圧するプランジャ(11)と、
前記加圧室、または前記加圧室と連通する連通路を形成する加圧通路部材(10、101、102、103)と、
前記加圧通路部材に取り付けられ、前記加圧室へ燃料を吸入させる吸入通路(30b)を形成する吸入通路部材(30)と、
前記吸入通路部材に形成された弁座(30s)に離着座して前記吸入通路を開閉する吸入弁(20)と、
前記吸入通路部材に軸力を付与し、前記軸力により前記吸入通路部材を前記加圧通路部材に押し付けて密着させる軸力付与部材(40)と、
を備える燃料ポンプであって、
前記吸入通路部材および前記加圧通路部材の一方に形成され、前記加圧室または前記吸入通路の周りを取り囲む環状のシール面(10f、30f、304f、305f)と、
前記吸入通路部材および前記加圧通路部材の他方に形成され、前記加圧室または前記吸入通路の周りを取り囲む環状かつ前記シール面に向けて突出する形状であり、前記軸力により前記シール面に押し付けられて密着するシール突起(14、31)と、
前記シール突起の径方向の外側に位置し、前記吸入通路部材に形成されて前記加圧通路部材に当接、或いは、前記加圧通路部材に形成されて前記吸入通路部材に当接する当接突起(15、32)と、
を備え、
前記吸入通路部材のうち前記軸力を受ける部分である軸力受部(30g)は、前記径方向において前記シール突起と前記当接突起の間に位置する燃料ポンプ。
A plunger (11) for pressurizing the fuel in the pressurizing chamber (10p);
A pressure passage member (10, 101, 102, 103) forming a communication passage communicating with the pressure chamber or the pressure chamber;
A suction passage member (30) attached to the pressure passage member and forming a suction passage (30b) for drawing fuel into the pressure chamber;
A suction valve (20) which is seated on a valve seat (30s) formed in the suction passage member to open and close the suction passage;
An axial force application member (40) which applies an axial force to the suction passage member and presses the suction passage member against the pressure passage member by the axial force;
A fuel pump comprising
An annular sealing surface (10f, 30f, 304f, 305f) formed in one of the suction passage member and the pressure passage member and surrounding the pressure chamber or the suction passage;
An annular member formed on the other of the suction passage member and the pressure passage member and surrounding the pressure chamber or the suction passage and projecting toward the seal surface, and the seal surface is formed by the axial force. Sealing protrusions (14, 31) that are pressed and in intimate contact;
An abutment projection located on the radially outer side of the seal projection and formed on the suction passage member to abut against the pressure passage member or formed on the pressure passage member to abut the suction passage member (15, 32),
Equipped with
An axial force receiving portion (30g), which is a portion of the suction passage member that receives the axial force, is located between the seal protrusion and the contact protrusion in the radial direction.
前記軸力により前記シール突起と前記シール面との間で生じる面圧が、前記軸力により前記当接突起と前記吸入通路部材との間で生じる面圧より大きい請求項1に記載の燃料ポンプ。   The fuel pump according to claim 1, wherein a surface pressure generated between the seal projection and the seal surface by the axial force is larger than a surface pressure generated between the contact projection and the suction passage member by the axial force. . 前記軸力による前記シール突起の圧縮変形量が、前記軸力による前記当接突起の圧縮変形量より大きい請求項2に記載の燃料ポンプ。   The fuel pump according to claim 2, wherein the amount of compressive deformation of the seal projection due to the axial force is larger than the amount of compressive deformation of the contact projection due to the axial force. 前記シール突起のシール面積が、前記当接突起の当接面積より小さい請求項2または3に記載の燃料ポンプ。   The fuel pump according to claim 2 or 3, wherein a seal area of the seal projection is smaller than an abutment area of the abutment projection. 前記シール突起の硬度が前記当接突起の硬度より高い請求項1〜4のいずれか1つに記載の燃料ポンプ。   The fuel pump according to any one of claims 1 to 4, wherein the hardness of the seal projection is higher than the hardness of the contact projection. 前記当接突起は、前記シール突起の周りを取り囲むように環状に延びる形状である請求項1〜5のいずれか1つに記載の燃料ポンプ。   The fuel pump according to any one of claims 1 to 5, wherein the contact protrusion is annularly extended so as to surround the seal protrusion. 前記軸力受部は、前記吸入弁の中心軸線周りに延びる環状である請求項1〜6のいずれか1つに記載の燃料ポンプ。   The fuel pump according to any one of claims 1 to 6, wherein the axial force receiving portion is an annular shape extending around a central axis of the suction valve. 前記吸入弁に取り付けられ、前記吸入通路部材に当接することで前記吸入弁の開弁側への移動を規制するストッパ(21)を備え、
前記軸力受部の環状内側に前記ストッパが位置する請求項7に記載の燃料ポンプ。
And a stopper (21) attached to the suction valve to restrict movement of the suction valve toward the valve opening side by contacting the suction passage member.
The fuel pump according to claim 7, wherein the stopper is positioned in an annular inner side of the axial force receiving portion.
JP2017083102A 2017-04-19 2017-04-19 Fuel pump Active JP6836177B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017083102A JP6836177B2 (en) 2017-04-19 2017-04-19 Fuel pump
DE102018107053.5A DE102018107053A1 (en) 2017-04-19 2018-03-26 Fuel pump with a suction valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083102A JP6836177B2 (en) 2017-04-19 2017-04-19 Fuel pump

Publications (2)

Publication Number Publication Date
JP2018178945A true JP2018178945A (en) 2018-11-15
JP6836177B2 JP6836177B2 (en) 2021-02-24

Family

ID=63714965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083102A Active JP6836177B2 (en) 2017-04-19 2017-04-19 Fuel pump

Country Status (2)

Country Link
JP (1) JP6836177B2 (en)
DE (1) DE102018107053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228300B1 (en) * 2019-11-14 2021-03-16 주식회사 현대케피코 Fuel injector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591076B2 (en) 2016-09-15 2020-03-17 Proserv Operations, Inc. Low friction hydraulic circuit control components
US11261982B2 (en) 2019-06-27 2022-03-01 Proserv Gilmore Valve Llc Pressure relief valve with bi-directional seat
DE102019130672A1 (en) * 2019-11-13 2021-06-17 Svm Schultz Verwaltungs-Gmbh & Co. Kg Solenoid valve and method of making a solenoid valve
US11828370B2 (en) * 2020-01-02 2023-11-28 Proserv Gilmore Valve Llc Check valve with conforming seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076645A (en) * 2002-08-16 2004-03-11 Denso Corp Assembly structure of fuel injection device
JP2008256091A (en) * 2007-04-04 2008-10-23 Denso Corp Piping joint
JP2010007521A (en) * 2008-06-25 2010-01-14 Denso Corp Fuel injection pump
JP2010174751A (en) * 2009-01-29 2010-08-12 Denso Corp Fuel supply pump
JP2013155702A (en) * 2012-01-31 2013-08-15 Denso Corp Supply pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076645A (en) * 2002-08-16 2004-03-11 Denso Corp Assembly structure of fuel injection device
JP2008256091A (en) * 2007-04-04 2008-10-23 Denso Corp Piping joint
JP2010007521A (en) * 2008-06-25 2010-01-14 Denso Corp Fuel injection pump
JP2010174751A (en) * 2009-01-29 2010-08-12 Denso Corp Fuel supply pump
JP2013155702A (en) * 2012-01-31 2013-08-15 Denso Corp Supply pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228300B1 (en) * 2019-11-14 2021-03-16 주식회사 현대케피코 Fuel injector
US11703022B2 (en) 2019-11-14 2023-07-18 Hyundai Kefico Corporation Fuel injector

Also Published As

Publication number Publication date
DE102018107053A1 (en) 2018-10-25
JP6836177B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP2018178945A (en) Fuel pump
US10851767B2 (en) Pump for supplying high-pressure fuel
JP4437552B2 (en) High pressure fuel pump
US20130052064A1 (en) High pressure pump
JP2006170184A (en) High pressure fuel pump
JP5664604B2 (en) High pressure pump
JP2017032069A (en) Damper device
JP5907145B2 (en) High pressure pump
US10519913B2 (en) High-pressure pump
US8763636B2 (en) Valve assembly for fuel pump
JP5861900B2 (en) High pressure pump
JP2016153634A (en) Fuel pump
JP5408010B2 (en) High pressure pump
JP2015017621A (en) Pulsation damper
JP5862580B2 (en) High pressure fuel pump
JP5682335B2 (en) High pressure pump
JP2011220198A (en) High-pressure pump
JP2011220192A (en) Pulsation damper, and pulsation reducing apparatus and high-pressure pump using the same
JP4453015B2 (en) High pressure fuel pump
JP5854005B2 (en) Pulsation damper and high-pressure pump equipped with the same
US10227976B2 (en) High-pressure fuel pump
WO2022167290A1 (en) Suction valve for a high pressure pump for feeding fuel to an internal combustion engine and pump comprising such a valve
WO2016117297A1 (en) High-pressure pump and method for manufacturing same
US7070163B2 (en) Electromagnetic valve
JP2022013647A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

R151 Written notification of patent or utility model registration

Ref document number: 6836177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250