JP2018176148A - Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water - Google Patents

Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water Download PDF

Info

Publication number
JP2018176148A
JP2018176148A JP2017091982A JP2017091982A JP2018176148A JP 2018176148 A JP2018176148 A JP 2018176148A JP 2017091982 A JP2017091982 A JP 2017091982A JP 2017091982 A JP2017091982 A JP 2017091982A JP 2018176148 A JP2018176148 A JP 2018176148A
Authority
JP
Japan
Prior art keywords
water
air
chamber
particle
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017091982A
Other languages
Japanese (ja)
Inventor
則博 天羽
Norihiro Amo
則博 天羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amo Reiko
JIYUNKOU KK
TOOMIKKU KK
Tomic KK
Original Assignee
Amo Reiko
JIYUNKOU KK
TOOMIKKU KK
Tomic KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amo Reiko, JIYUNKOU KK, TOOMIKKU KK, Tomic KK filed Critical Amo Reiko
Priority to JP2017091982A priority Critical patent/JP2018176148A/en
Publication of JP2018176148A publication Critical patent/JP2018176148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nanobubble generator which generates nanomicrobubble water in air to dissolve the particles in liquid by compression dissolution to work as functional water.SOLUTION: A mechanism is utilized that nanomicroparticle water is produced in an atmosphere with the providence of the nature world that large rain particles adsorb large dust to precipitate for dust removal processing on rain fall to cause moisture contained in grass and soil to evaporize again on an increase in ground surface temperature by later solar insolation, and that nanomicroparticle water occurs in a large amount in an atmosphere on that time to cover the atmosphere of the ground surface with the nanomicroparticle water, and to cause the nanomicroparticle water to adsorb and precipitate microdust or the like for atomospheric purification. A nanobubble generator feeds air into a spray chamber and air compression mixture chamber and spays nanomicro grain diameter microwater (1 nm-10 μm) into the space to dissolve in an aqueous solution accumulated on the bottom while being compressed, so that the aqueous solution works as the functional water.SELECTED DRAWING: Figure 1

Description

本発明は海洋面に浮遊している、大気中の超微細水粒子水、二酸化炭素ガス、エアロゾル粒子粉塵等の超微細粒子が水蒸気分圧の圧力差により、海水に溶解されている仕組みを利用し、大気中の成分を圧力差等により水用液中に取り込み該装置にナノ微細粒子水等を混入して機能水としてなるナノバブル発生装置をなしたものである。その仕組みは地球の海水温度に大きく影響される、海水温度の高い、赤道直下付近では二酸化炭素等の超微細粒子は海水から大気に移動する、海水温度の低い北南半球では、それぞれの二酸化炭素ガス等のその成分の分圧力の差により又加圧圧力によりそれらの超微細粒子成分等が海水に溶解されている。その仕組みは海洋面に浮遊している超微細粒子成分が膜状の海塩フィルム粒子と凝集吸着する特性をもっている。これは風が吹き渡る海面においては常に波が生成され砕け散って波しぶきが上がる。しかしこれはすぐに重力落下してしまう。ここで発生する海塩粒子の生成は波頭の破砕の際に海中に巻き込まれた空気により生じた泡が海面で破裂することにより引き起こされる。ここで生成された膜状のフィルム粒子の口径は0.1〜10μm程度であると言われている.海塩粒子の生成機構によりフィルム粒子及びユニット液層が生成・構築することが出来る.wood cockをはじめとする多くの科学研究者による実験から海塩粒子の生成機構及びその効果が明らかになってきた。現在では世界中で大気に発生する二酸化炭素の約40%が海水に溶解されている事が、明らかになって来た。The present invention uses a system in which ultrafine particles such as ultrafine water particles in the atmosphere, carbon dioxide gas, and aerosol particle dust suspended in the ocean surface are dissolved in seawater by the pressure difference of water vapor partial pressure. A component of the air is taken into a liquid for water by a pressure difference or the like to form a nanobubble generating device in which nanofine particle water or the like is mixed in the device to form functional water. The mechanism is greatly influenced by the temperature of seawater in the earth. Ultrafine particles such as carbon dioxide move from the seawater to the atmosphere near the equatorial region where the seawater temperature is high. The ultrafine particle components etc. are dissolved in the seawater due to the difference in the partial pressure of the components such as. The mechanism is characterized in that the ultrafine particle component suspended on the ocean surface is adsorbed and adsorbed to the film-like sea salt film particles. This is always generated on the sea surface where the wind blows, and it is broken up and the wave splashes up. But this will quickly fall by gravity. The generation of sea salt particles generated here is caused by the bursting of bubbles generated by the air taken into the sea at the time of breaking the wave front at the sea surface. The diameter of the film-like film particles produced here is said to be about 0.1 to 10 μm. Film particles and unit liquid layer can be generated and constructed by the formation mechanism of sea salt particles. The generation mechanism of sea salt particles and its effect have been clarified from experiments by many scientific researchers including wood cock. It has become clear that about 40% of the carbon dioxide generated in the atmosphere around the world is now dissolved in seawater.

日本発の革新的技術である、液中ナノバブル技術は現在経済産業省、企業、大学、研究機関等あげて、独自の技術蓄積と国際標準化に向けて取り組んでいるところであり。この革新技術商品の利用範囲は農業分野、医療分野、食品分野、インフラ分野等非常に広範にわたる裾野の広い技術である。この技術関連産業は供給側では、製造装置メーカー、製造部品メーカー、計測器メーカー、エンジニアリング会社等多くの企業が関係し、需要側でも、土木関連、医療関連、薬品関連、化粧品関連、半導体関連、食品関連、更には農林水産関連まで多くのアプリケーションが関係する分野横断的特徴を有しており、技術の供給、需要双方の産業(ファインバブル産業)は、今後、自動車、家電等と同様に日本を代表する基幹産業となり、更には、世界的にも大きな市場を有する将来型産業となる可能性まで秘めていると考えられている。今後さらなる粒子口径の極小生成技術、極限密度個数、溶存酸素高濃度等の安定生成技術の確立が急務である。The innovative nano bubble technology from Japan, which is an innovative technology from Japan, is currently working on its own technology accumulation and international standardization, with the Ministry of Economy, Trade and Industry, companies, universities, research institutes, etc. The scope of use of this innovative technology product is a wide range of technologies in a wide range of fields such as agriculture, medical care, food, and infrastructure. On the supply side, this technology-related industry involves many companies such as manufacturing equipment manufacturers, manufacturing parts manufacturers, measuring instrument manufacturers, engineering companies, and on the demand side, civil engineering, medical, medicine, medicine, cosmetics, semiconductors, etc. It has a cross-sectoral feature that involves many applications related to food, and also to agriculture, forestry and fisheries, and industries of both supply and demand of technology (fine bubble industry) will be Japan as well as automobiles and home appliances. It is believed that it has the potential to become a key industry that represents Japan, and to be a future-type industry with a large market worldwide. It is urgently needed to establish the technology for the minimum generation of particle diameter, and the stable generation technology such as the limit density number and the high concentration of dissolved oxygen.

日本発のナノバブルの技術の開発経緯から考えると、マイクロバブルとは発生時の気泡直径が50μm以下の気泡であり通常の気泡が水中を急速に上昇して表面で破裂して消えるのに対して、水中で縮小していき、ついには消滅「完全溶解」してしまう。その中でも水中での消滅時におけるフリーラジカルの発生とナノバブルとしての残存が重要である。フリーラジカルは化学物質の分解性に優れているため、例えば水処理に使える。一方では1μm以下の極小気泡であり、ある程度の長時間、水中に存在している。このようなナノバブルを効率的に発生させる為にはある程度の電解質を含んだ水中でマイクロバブルを発生させ、これを自然な状態で浮遊させたり、簡単な物理的刺激を加えたりする必要がある。これにより縮小過程におけるマイクロバブルの周囲に電界質イオン類が高濃度に集積し、気泡内部の溶解を抑制する作用が生まれるため、結果的に極微小な気泡として長期に安定化する。ナノバブルは、気泡としての特性を失いかけている存在として認識できるが、一方において極めて興味深い特性を水に与える。いわゆる機能水としての作用であるConsidering the development history of nano bubble technology from Japan, micro bubbles are bubbles with a bubble diameter of 50 μm or less at the time of generation, and ordinary bubbles rise rapidly in water and burst and disappear on the surface , Shrink in water, eventually disappear "complete dissolution". Among them, the generation of free radicals at the time of extinction in water and the survival as nano bubbles are important. Free radicals can be used, for example, in water treatment because they are excellent in decomposability of chemical substances. On the other hand, they are tiny bubbles of 1 μm or less, and exist in water for a long time for a certain amount of time. In order to efficiently generate such nanobubbles, it is necessary to generate microbubbles in water containing a certain degree of electrolyte and to suspend them in a natural state or to apply a simple physical stimulus. As a result, electrolytic ions are accumulated at a high concentration around the microbubbles in the reduction process, and the action of suppressing the dissolution inside the bubbles is generated, and as a result, the microbubbles are stabilized for a long time. Nanobubbles can be recognized as being near losing their properties as bubbles, while giving the water a very interesting property. It is an action as so-called functional water

現在日本におけるナノバブルの生成する方法とび特性について下記に記載する。
1.溶解型マイクロバブル発生装置。酸素等の気体は水中に溶解する。気体の種類によって溶解量には違いがあるが、基本的に特性として圧力に比例して気体の溶解量も増加する、加圧溶解型のマイクロバブル生成方法はこの特性を利用したものであり、ある程度の高圧で十分な量の気体を水中に溶解させた後、その圧力を開放してやることで溶解した気体の過飽和条件を作り出す。これにより過剰に溶解した気体は不安定な状態になり、過飽和部分の気体分子は水から飛び出そうとする。その結果水中に大量の気泡を発生させる。基本的なシステム構成は加圧駆動が可能なポンプを利用して水槽内の水を循環させる。この時に吸引側からは水と気体を取り込む。これらは押出し側から水槽内に排出されるが、先端にノズルが取り付けてあり、水流の流動抵抗と成るなるため押出し側の圧力が上昇する。一般的には3〜4気圧程度の圧力に調整されている。押出し側の経路内には溶解槽が設けられており、吸引時に取り込んだ気体を水中に効果的に溶解させる。これにより生成された、一つの気泡の粒子径は10μmを中心粒径とし、二つ目はややブロードな分布を示すピークである。加圧溶解型のマイクロバブル発生装置の場合、50μm以下の気泡個数は1mlあたり数千個となる。下記に溶解型マイクロナノバブル発生装置の概念図を示す。
2.気液二相流旋回型マイクロバブル発生装置
一般的に利用されているマイクロバブルの発生手法であり、水流を起こして渦を発生させ、渦内に気体を巻き込み、この渦を崩壊させた時に気泡がバラバラに細分化する現象を利用している。渦の発生方法には多くの手法があり、多種類のマイクロバブル発生装置として市販されている。下記に示すのはその概念図である。これは配管の出口付近に傾斜のついた羽根を装着し、水流が通過するときに旋回流を発生させる。水流は気体を含んでおり、この渦流を崩壊させることでマイクロバブルを発生させる。渦流を崩壊させる方法としては、配管中の障害物を利用する場合もあるが一般的にはバルク水中に渦を放出する方法が利用されている。水槽内の水は止まった状態に相当するので、ノズル部から水槽内に吐き出された渦は瞬間的に崩壊する。これにより渦中の気泡は細分化されマイクロバブルになる。渦を作る方法としては、シャフトにプロペラを取り付けて管内で回転させる方法や、円筒もしくは卵状の容器内に水流を送り込み容器内での水流の回転半径を小さくすることで、強い渦流を発生させる方法などがある。ここで発生された気泡の粒径分布は30μm前後を中心に最少4μmと最大55μmに分布している。気泡個数は1mlあたり3000〜5000個位である。
下記に気液二相流旋回型マイクロバブル発生装置の粒径分布と概念図を示す。
The methods and characteristics of nano bubble formation in Japan are described below.
1. Dissolution type micro bubble generator. Gases such as oxygen dissolve in water. Although there is a difference in the amount dissolved depending on the type of gas, basically, the pressure-dissolving type micro bubble generation method using this characteristic utilizes the characteristic that the amount dissolved in the gas increases in proportion to the pressure as a characteristic. After a sufficient amount of gas is dissolved in water at some high pressure, the pressure is released to create a supersaturated condition of the dissolved gas. As a result, the excessively dissolved gas becomes unstable and gas molecules in the supersaturated portion try to fly out of water. As a result, a large amount of air bubbles are generated in the water. The basic system configuration circulates the water in the water tank using a pump that can be driven by pressure. At this time, water and gas are taken in from the suction side. These are discharged into the water tank from the extrusion side, but the nozzle is attached to the tip and the pressure on the extrusion side rises because it becomes flow resistance of the water flow. Generally, the pressure is adjusted to about 3 to 4 atmospheres. A dissolution tank is provided in the passage on the extrusion side, and the gas taken in at the time of suction is effectively dissolved in water. The particle size of one bubble generated by this is a central particle size of 10 μm, and the second one is a peak showing a somewhat broad distribution. In the case of the pressure dissolution type micro bubble generator, the number of bubbles of 50 μm or less is several thousand per 1 ml. The conceptual diagram of the soluble micro-nano bubble generator is shown below.
2. Gas-Liquid Two-Phase Flow Swirl Type Micro Bubble Generator This is a method of generating micro bubbles that is generally used. It generates water flow to generate vortices, entrains gas in the vortices, and collapses the vortices. Use the phenomenon of breaking up into pieces. There are many methods for generating vortices, which are commercially available as various types of microbubble generating devices. Below is a conceptual diagram. This mounts angled vanes near the outlet of the pipe and produces a swirling flow as the water flow passes. The water flow contains a gas, and the vortex is broken to generate micro bubbles. As a method of collapsing a vortex, there is a case where an obstacle in piping is used, but generally, a method of discharging a vortex into bulk water is used. Since the water in the water tank corresponds to a stopped state, the vortex expelled from the nozzle into the water tank is instantaneously broken. Thereby, the bubbles in the vortex are fragmented into micro bubbles. The vortex can be created by attaching a propeller to the shaft and rotating it in a pipe, or by sending the water flow into a cylindrical or egg-shaped vessel and reducing the rotation radius of the water flow in the vessel to generate a strong vortex. There is a method. The particle size distribution of the bubbles generated here is a minimum of 4 μm and a maximum of 55 μm around 30 μm. The number of bubbles is about 3000 to 5000 per 1 ml.
The particle size distribution and conceptual diagram of the gas-liquid two-phase flow swirl type micro bubble generator are shown below.

現在ナノバブルの応用として、これは酸素ナノバブルとかオゾンナノバブルと呼ばれている物があり、直径が100μm以下で半減期が数か月と非常に長い。酸素ナノバブル水には生物に対する活性効果をオゾンナノバブル水には強力な殺菌効果を認めている。これらのナノバブルを利用して医療や食品、バイオなどを始めとする分野で応用に向けた取り組みが進められている。At present, the applications of nanobubbles include those called oxygen nanobubbles and ozone nanobubbles, which have a diameter of 100 μm or less and a very long half life of several months. Oxygen nano bubble water has an active effect on organisms, and ozone nano bubble water has a strong bactericidal effect. Efforts are being made toward applications for fields such as medicine, food, bio and the like using these nanobubbles.

マイクロバブルの大きな特性として、まず一つ目に、自己加圧効果がある。マイクロバブルは水中で縮小し、ついには消滅する特性を有している。この水中での消滅という現象が、マイクロバブルに非常に面白い特性を与えている。その一つが内部圧力の上昇である。計算上の話ではあるが、消滅の瞬間には無限大の圧力を形成させる。また、この特性は水中への気体の溶解に大きな影響を与えており,飽和濃度以上の気体の溶解を可能にする。これは工学的にも重要な意味をもつ。ここでは内部圧力の増加に関連した事象について紹介する。One of the major characteristics of microbubbles is the self-pressurizing effect. Microbubbles have the property of shrinking in water and eventually disappearing. This phenomenon of extinction in water gives the microbubble a very interesting property. One of them is the increase in internal pressure. As a matter of calculation, the moment of annihilation creates an infinite pressure. In addition, this property has a great influence on the dissolution of the gas in water, which enables the dissolution of the gas above the saturation concentration. This has important meaning also in engineering. Here we introduce the events related to the increase of internal pressure.

マイクロバブルが自己加圧するときにおきる、気泡の上昇速度は、その工学的な応用について検討する上で非常に重要な要素である。そこで透明な希少セルに導いたマイクロバブルを、内部対流が無い状態でマイクロスコープにより観測した。得られた画像データはパソコンに取り込み画像解析を」行って気泡径と上昇速度の関係を求めた。室温、大気圧環境の測定条件で、蒸留水中における空気のマイクロバブルの測定データを下記に示す。ここにはマイクロバブルノ上昇速度入れる。
The rate of rise of the bubbles, which occurs when the microbubbles self-pressurize, is a very important factor in considering its engineering application. Therefore, the microbubbles that led to the transparent rare cells were observed with a microscope without internal convection. The obtained image data was taken into a personal computer and the image analysis was performed to determine the relationship between the bubble diameter and the rising speed. The measurement data of air microbubbles in distilled water under the measurement conditions of room temperature and atmospheric pressure environment are shown below. Here is the microbubble rise rate.

マイクバブルの二つ目の特性について、内部圧力の上昇について、気泡は気液界面により取り込まれた存在であり、その界面には水の表面張力が作用する。表面張力はその表面を小さくするように作用するため,球形の界面を持つ気泡によって、表面張力はその内部の気体を圧縮する力として機能する。環境圧に対しての気泡内部の圧力上昇は理論的にyong−laplaceの次の式により求められる。△p−=4σ/D △pは圧力上昇程度,σは表面張力,Dは気泡直径、である。直径が10μmの微小気泡では約0.3気圧、直径1μmでは約3気圧の圧力上昇となる。気体はヘンリーの法則に従って溶解するため、加圧された気体は効率的に周囲の水に溶解していく。図9にはマイクロバブルの水中での縮小を実測したデータを示す。圧力の上昇は気体の溶解速度を増加させるため,非表面積の増加と相まって、気泡が小さくなるほど縮小速度も大きくなる。そして最終的には水中で消滅する。
With regard to the second characteristic of the microphone bubble, the bubble is taken in by the gas-liquid interface with respect to the rise of the internal pressure, and the surface tension of water acts on the interface. The surface tension acts to make the surface smaller, so by the bubble with spherical interface, the surface tension acts as a force to compress the gas inside it. The pressure rise inside the bubble with respect to the environmental pressure can be theoretically obtained by the following equation of yong-laplace. Δp− = 4σ / D Δp is a pressure rise degree, σ is a surface tension, and D is a bubble diameter. A microbubble of 10 μm in diameter results in a pressure rise of about 0.3 atm, and a diameter of 1 μm of about 3 atm. As the gas dissolves according to Henry's law, the pressurized gas efficiently dissolves in the surrounding water. FIG. 9 shows data obtained by measuring the reduction of microbubbles in water. Because the increase in pressure increases the dissolution rate of the gas, coupled with the increase in non-surface area, the smaller the bubbles, the higher the reduction rate. And finally it disappears in the water.

マイクロバブルの溶解ガス濃度の増加について気体を溶解させるという目的において、マイクロバブルの内部気圧の上昇「自己加圧効果」は重要である。通常のバブリングにおいては、気体の溶解には環境圧に関連した飽和圧が存在する。大気圧環境下では、一気圧に対応する溶解量以上に気体が溶け込むことはない。ところがマイクロバブルの場合、気泡内の圧力が環境圧力より高いため、水に溶け込む気体の溶解量は大気圧から想定されるよりも若干の過飽和条件まで踏み越す現象が認められる。これは水槽内において、表面における気体のやり取りは大気圧に規定されるが、内部における気体の溶解はマイクロバブルの状況に左右されるためである。なおこの飽和度は極端に大きなものではなく、気泡の粒径分布とのバランスで値が決定される。すなわち、水中に浮遊するマイクロバブルは大きさにバラツキを持つため、あるレベルよりも小さなマイクロバブルは縮小しながら気体を水中に溶解させるがそれよりも大きな気泡は、逆に水中に溶解した気体を取り込み、大きな気泡へと成長を始める。溶解気体量はこれらのバランスにより一定値に落ち着く。加圧溶解型の発生装置を利用して、5lの水道水に2分間空気のマイクロバブルを供給した時の溶存酸素濃度(do値)は約15mg/lであった。通常のバブリングを30分間行ったときの値は約9mg/lであり、この値を飽和値とすると、この値に対して5割以上の過飽和条件を実現している。湖や港などの閉鎖性水域の環境汚染の最大の要因の一つは低層部の酸素欠乏である。特に夏場においては温度成層が形成されて表層の酸素を含んだ水が低層部にまで循環しないため、低酸素や無酸素状態になる.このような環境下では好気的な生物が死滅すると共に還元的な状況になって底泥などから栄養塩や重金属類の溶出が始まる。マイクロバブルは効率的に気体を溶解させるため、水環境の改善や化学工学などの分野において有効な手法となる。The "self-pressurizing effect" of the internal pressure of the microbubbles is important for the purpose of dissolving the gas with respect to the increase in the concentration of the dissolved gas in the microbubbles. In normal bubbling, there is a saturation pressure associated with environmental pressure for gas dissolution. Under the atmospheric pressure environment, the gas does not dissolve more than the dissolution amount corresponding to the atmospheric pressure. However, in the case of microbubbles, since the pressure in the bubbles is higher than the environmental pressure, the phenomenon that the amount of dissolved gas dissolved in water is carried over to a slight supersaturation condition than expected from atmospheric pressure is observed. This is because, in the water tank, the exchange of gas at the surface is regulated to the atmospheric pressure, but the dissolution of the gas inside depends on the condition of the microbubbles. The degree of saturation is not extremely large, and the value is determined in balance with the particle size distribution of the bubbles. That is, since microbubbles suspended in water have variation in size, microbubbles smaller than a certain level dissolve gas in water while shrinking, but larger bubbles cause gas dissolved in water. Take up and start to grow into large bubbles. The amount of dissolved gas settles to a constant value due to these balances. The dissolved oxygen concentration (do value) was about 15 mg / l when microbubbles of air were supplied to 5 liters of tap water for 2 minutes using a pressurized dissolution generator. When normal bubbling is performed for 30 minutes, the value is about 9 mg / l, and when this value is a saturation value, over 50% oversaturation condition is realized with respect to this value. One of the biggest causes of environmental pollution in closed waters such as lakes and ports is oxygen deficiency in the lower part. In summer, in particular, thermal stratification is formed, and oxygen-containing water in the surface layer does not circulate to the lower layer, resulting in low oxygen or anoxia. Under such an environment, aerobic organisms die and become reductive, and nutrient salts and heavy metals begin to elute from bottom mud and the like. Since microbubbles dissolve gas efficiently, they become an effective method in the fields such as improvement of water environment and chemical engineering.

また、マイクロバブルを工学的に応用することを考えたとき,もっとも興味深い現象は消滅時におけるフリーラジカルの発生であり、極微小気泡としての残存である。これら相反する現象であるが、作用機序として表面電荷の濃縮が関与している。Also, considering the application of microbubbles to engineering, the most interesting phenomenon is the generation of free radicals at the time of annihilation, and the survival as micro microbubbles. Although these contradictory phenomena, concentration of surface charge is involved as a mechanism of action.

溶液内の気泡が帯電していることは50年以上もまえから知られているが、その詳細は不明であり、系統的な研究もなされていない。その最大の理由は測定の困難さにあった。しかし今日では電気永動法を利用することで正確な解析が可能となった。その結果気泡が帯電していることの工学的な意味合いは重要である。極めて濃厚なマイクロバブルを発生させても、静電気的な反発力が作用する為、気泡同士が合体して気泡濃度を低下させることはない。また汚染物質や金属イオンなどを静電気的な引力により表面に引き付ける効果も期待できる。It has been known for over 50 years that bubbles in the solution are charged, but the details are unknown and systematic studies have not been conducted. The biggest reason was the difficulty of measurement. However, accurate analysis has become possible by using the electric permanence method today. As a result, the engineering implications of the bubble charge are important. Even if extremely thick microbubbles are generated, electrostatic repulsion works, so that the bubbles do not combine to lower the bubble concentration. It can also be expected to attract contaminants and metal ions to the surface by electrostatic attraction.

現在の日本における、マイクロバブルの発生する装置は上記に記載の通り、多くの種類があり市販もされている。しかし何れも液中における装置である。その結果気泡粒子口径は0.15μm前後であり、1ml当りの個数は約8億個といわれている。これらの得られた数値からは、水の特性と性質及びナノ技術はまだまだ把握されていないのが実情であることから、本技術の可能性が非常に高いと考える。上記のことからしかし、現状技術にて得られた数値を踏まえると、大気中の流体抵抗値の差は約19倍と非常に大きいと言われていることから、実状の方法ではこれ以上の数値向上技術に限界があると考える。There are many types of microbubble generating devices in Japan today, as described above, and are also commercially available. However, all are devices in liquid. As a result, the diameter of the bubble particle is about 0.15 μm, and the number per one ml is said to be about 800 million. From the obtained values, the characteristics and properties of water and the fact that nano technology is not yet understood, I think that the possibility of this technology is very high. From the above, however, based on the values obtained by the current technology, the difference in fluid resistance value in the atmosphere is said to be very large at about 19 times, so the actual value is higher than this. I think there is a limit to the improvement technology.

国際公開第2005/030649(WO,A1) 特開2005−246294(JP,A) 特開2005−246293(JP,A) 特開2004−121962(JP,A) 特開2003−334548(JP,A) 特開2003−245662(JP,A) 特開2001−225060(JP,A) 特開2001−009463(JP,A) 特開平09−276675(JP,A) 特開平07−060088(JP,A)WO 2005/030649 (WO, A1) JP 2005-246294 (JP, A) JP 2005-246293 (JP, A) JP 2004-121962 (JP, A) JP 2003-334548 (JP, A) JP-A 2003-245662 (JP, A) JP-A 2001-225060 (JP, A) JP-A 2001-009463 (JP, A) JP-A 09-276675 (JP, A) JP-A 07-060088 (JP, A) ) 大成博文,第1部マイクロバブルの魅力と技術的可能性を探る、混相流レクチャーシリーズ第28回マイクロバブルの魅力とその利用技術、日本、日本混相流学会、2003年6月。Hirofumi Taisei, Part 1: Exploring the Attractiveness and Technological Potential of Microbubbles, Multiphase Flow Lecture Series The Attractiveness of the 28th Microbubble and Its Application Technologies, Japan, The Japanese Society of Mixed Flows, June 2003. 産業技術総合研究所 高橋正好 マイクロバブルおよびナノバブルに関する研究。Masayoshi Takahashi Research Institute of Advanced Industrial Science and Technology Research on microbubbles and nanobubbles.

非特許物件3Non-patent article 3

天羽 則博 ナノ細粒子水の大気中における空気浄化の技術。Norihiro Ama A technology for air purification of nano-fine particle water in the atmosphere.

従来の日本国内にて現在開発製造されている、ナノバブル発生装置はすべて該水溶液容器の水溶液内中及び配管水溶液装置途中に発生装置を構築し、ナノバブルを発生させる仕組みが主流である。水溶液中(比重1.0前後、電気電導度300μs/cm以上)における抵抗損失力は大気中(1気圧、空気比重1.2前後)の抵抗損失力に比較し、それの約19倍前後の抵抗損失力が必要となる。又水溶液中におけるナノバブル発生装置による、気泡の生成された粒度分布の更なる微細縮小化、及び密度個数を大幅に増加させる事は、現在開発製造されている水溶液中内において構築する発生装置の仕組み技術においては更なる革新的な技術開発には限界があり難しいと考える。In the conventional nanobubble generator currently developed and manufactured in Japan, the generator is built in the aqueous solution of the aqueous solution container and in the middle of the aqueous pipe solution apparatus, and the mechanism for generating the nanobubble is the mainstream. The resistance loss force in an aqueous solution (specific gravity around 1.0, electrical conductivity 300 μs / cm or more) is about 19 times that of the resistance loss force in the air (1 atm, air specific gravity around 1.2) Resistance loss power is required. Further, further fine reduction of the generated particle size distribution of the bubbles by the nanobubble generator in the aqueous solution, and the significant increase in the number of density, are the mechanism of the generator constructed in the aqueous solution currently being developed and manufactured. In terms of technology, I think there is a limit to the further innovative technology development and it is difficult.

従来のナノバブル発生装置の性能数値は、粒子口径を測定する粒度分布装置の最少値は平均粒径が0.15μmといわれている。密度個数は1mlあたり約4〜8億個の値がしめされている。As for the performance value of the conventional nano bubble generating device, the minimum value of the particle size distribution device for measuring the particle diameter is said to have an average particle diameter of 0.15 μm. The density number is about 400 to 800 million per ml.

また、ナノバブルの発生による大きな特性は自己加圧効果がある。これは球形の界面を持つ気泡によって表面張力によって内部の気体の圧縮する力として機能する。例えば気泡の口径が1μmの自己加圧力は計算上約3気圧の圧力破壊が働くといわれている。Moreover, the big characteristic by generation | occurrence | production of a nano bubble has a self-pressure effect. This functions as a compression force of the gas inside by surface tension by a bubble having a spherical interface. For example, it is said that a pressure of about 3 atmospheres pressure acts on a self-pressurizing force with a bubble diameter of 1 μm.

上記の[0007]記載による自己加圧力は液中内における、超微細水の運動が天文学的な挙動が発生すると言われている。実際に使われている実施例から例えば水の浄化処理に有効的に効果がある例が報告されている。この作用は自己加圧力時に発生する破壊圧力よる大腸菌、カビ、一般細菌の殺菌効果が得られていると考えられている。It is said that the self-pressurization force described in the above [0007] description causes the astronomical behavior of the movement of ultrafine water in the liquid. Practical examples have been reported to be effective for, for example, water purification treatment. It is thought that this action is a bactericidal effect of E. coli, mold and general bacteria due to the breaking pressure generated at the time of self-pressure.

従来のナノバブル発生装置による性能値は、粒子口径を0.15μm以下にすることは液中内の損失抵抗を考慮すると技術的に厳しいと考える。As for the performance value by the conventional nano bubble generator, it is considered that making the particle diameter smaller than 0.15 μm is technically severe considering the loss resistance in liquid.

従来のナノバブイル発生装置は酸素濃度を液中内に溶存させるために、大気からの空気をポンプ経由若しくはその装置に加圧し引き込む方法が多く見受けられる。従来の方式では溶存酸素濃度を高い値で維持する事は難しいと考える。There are many methods of pressurizing and drawing air from the atmosphere through a pump or a device to dissolve oxygen concentration in the liquid in the conventional nanobubbling generator. It is considered difficult to maintain the dissolved oxygen concentration at a high value by the conventional method.

本発明は,以上のような従来の欠点に鑑み、大気中にナノ微細粒子水を発生させ、そのナノ微細粒子水を含んだ空気と共に液中に溶解溶存させることにより、ナノ微細粒子水の最小縮小化及び密度個数の大幅増加及び溶存酸素濃度を高い濃度に維持することが可能となる、ナノバブル発生装置を提供する事を目的としている。In view of the above-mentioned conventional drawbacks, the present invention generates nano-fine particle water in the atmosphere and dissolves and dissolves in the liquid together with the air containing the nano-fine particle water. An object of the present invention is to provide a nano-bubble generator capable of reducing the size and significantly increasing the number of density and maintaining the dissolved oxygen concentration at a high concentration.

本発明は海洋面の大気成分が海洋水中に溶解溶存する現象及び、海洋内成分が大気に蒸発する自然界の仕組みを利用する事により、大気中空間においてナノ微細粒子水を噴霧し、そのナノ微細粒子水を水溶液中内に溶解溶存させる事により、ナノ微細粒子水を急速に且つ大量に生成する事及び高濃度の溶存酸素を維持出来る事が本発明の特徴である。The present invention sprays nanofine particle water in the atmosphere space by utilizing the phenomenon that the atmospheric component of the ocean surface is dissolved and dissolved in the ocean water and the mechanism of the natural world in which the marine component evaporates to the atmosphere, It is a feature of the present invention that, by dissolving and dissolving particle water in an aqueous solution, nano-fine particle water can be generated rapidly and in large quantities, and high concentration of dissolved oxygen can be maintained.

本発明装置は噴霧室兼空気加圧混合室及び沈殿室兼機能水槽を備えた筺体とし、該噴霧室兼空気加圧混合室は空気循環取入れ口と水煙墳出口を設け、両者間には空気流通制御ベンチュリー隔壁が設けられ隔壁板により空間が形成されている。該噴霧室兼空気加圧混合室の空間においては、ナノ微細粒子水を墳出し加圧ファンにより、ナノ微細粒子水が沈殿室兼機能水槽に溶解溶存し機能水が沈殿貯蔵されていくことになる。沈殿貯蔵された機能水は機能水貯蔵水槽に一旦貯蔵する。用途は例えば、浄化槽の殺菌用途への供給は機能水送水ポンプにて送水管により該浄化槽に送水する、ナノバブル発生装置システムを特徴とする。The apparatus according to the present invention is a housing provided with a spray chamber / air pressure mixing chamber and a precipitation chamber / function water tank, and the spray chamber / air pressure mixing chamber is provided with an air circulation intake and a water smoke outlet, Flow control venturi partition wall is provided, and a space is formed by the partition plate. In the space of the spray chamber and the air pressure mixing chamber, the nanofine particle water is pumped out, and the nanofine particle water is dissolved and dissolved in the settling chamber and functional water tank by the pressure fan, and the functional water is precipitated and stored. Become. The functional water stored in the precipitate is temporarily stored in a functional water storage tank. The application is characterized by, for example, a nanobubble generator system in which the supply to the sterilization application of the septic tank is supplied to the septic tank by a water pipe with a functional water water pump.

本発明は[0001]に記載している自然界の仕組みを応用した装置である。例えば、二酸化炭素は北半球、南半球の海水温の低い地域の海洋面が二酸化炭素を多く吸収している。本発明の装置には沈殿室兼機能水槽の機能水溶液温度を0〜10℃に保ち、ナノ微細粒子水の溶解溶存する速度効果を上昇させる冷却装置をナノバブル発生装置に構築することを特徴とする。The present invention is an apparatus to which the mechanism of the natural world described in [0001] is applied. For example, carbon dioxide is absorbed by the ocean surface of regions with low sea temperatures in the northern and southern hemispheres. The apparatus of the present invention is characterized in that a nanobubble generator is provided with a cooling device that maintains the temperature of the functional aqueous solution of the precipitation chamber and functional water bath at 0 to 10 ° C and increases the rate effect of dissolving and dissolving nanofine particle water. .

更に、噴霧室兼空気加圧混合室に噴霧用ノズルをナノ微細粒子水の生成量により、第1.2.3と設けられることが特徴である。また上記ノズルは噴霧室兼空気加圧混合室に設けた金具に固定され、該ノズルの先端から離れた位置に該ノズルからの噴射水の衝突によりナノ微細粒子水を生成する球体を設けたナノバブル発生装置システムを特徴とする。Furthermore, it is characterized in that a spray nozzle is provided in the spray chamber / air pressure mixing chamber according to the amount of the generated nano-fine particle water, as in 1.2.3. The nozzle is fixed to a metal fitting provided in a spray chamber / air pressure mixing chamber, and a nanobubble provided with a sphere at a position away from the tip of the nozzle to generate nanofine particle water by collision of water jetted from the nozzle. It features a generator system.

以上の説明から明らかなように、本発明によって生成されたナノバブル発生装置からは次に列挙する効果が得られる。
(1)超微細水の大きさを解析する粒度分布装置計測から、従来技術と比較し約150分の1以下の、1〜10nm,1〜20nm,1〜30nm.1〜100nm,1〜1000nmの各粒径分布毎の粒径を生成することが出来た。(nmは単位、ナノメートルの略称)
(2)超微細水の密度個数を解析する装置計測により、従来技術の約250万倍にあたる、1mlあたり1000兆個の値が得られた。
(3)生成された超微細水には、高濃度の溶存酸素濃度、5〜15mg/lが得られ、且つ長時間維持していることが計測できた。この値は従来技術の約2〜3倍にあたる。
As apparent from the above description, the nanobubble generator produced according to the present invention has the following effects.
(1) Particle size distribution apparatus measurement to analyze the size of ultrafine water, compared with the prior art, 1 to 10 nm, 1 to 20 nm, 1 to 30 nm. It was possible to generate particle sizes for each particle size distribution of 1 to 100 nm and 1 to 1000 nm. (Nm stands for unit, nanometer)
(2) By measuring the device for analyzing the number of density of ultra-fine water, 1000 trillion values per 1 ml, which is about 2.5 million times that of the prior art, were obtained.
(3) A high concentration of dissolved oxygen concentration of 5 to 15 mg / l was obtained in the produced ultrafine water, and it could be measured that it was maintained for a long time. This value is about two to three times that of the prior art.

本発明を実施するための最良の第1の形態の装置概要図 図−11 is a schematic diagram of an apparatus according to a first embodiment of the present invention. 本発明のナノバブル装置にて生成された粒度分布図。The particle size distribution figure produced with the nano bubble device of the present invention.

以下、本発明の実施の形態を図面に基づき実施例に沿って説明する。Hereinafter, an embodiment of the present invention will be described along an example based on the drawings.

ここまで
図1は、本発明のナノバブル発生システムを構成するナノバブル発生装置の全体を示している。該ナノバブル発生装置1は底板29.前後の側板30.31.左右の側板32.33.及び筐体28.から成りほぼ正方形状の筐体で外形が構成される。噴霧室兼空気加圧混合室3.の吸込み室2.の空間においてナノ微細粒子水を発生させる。その、ナノ微細粒子水を加圧ファン5.により加圧しながら沈殿室兼機能水槽4.に溶解溶存させる。更に、ナノ微細粒子水は有効な機能水として機能水貯蔵水槽10.に蓄えられていくこととなる。該噴霧室兼空気加圧混合室へ水を供給する給水槽14.と高圧ポンプ15.より構成されている。
Up to this point, FIG. 1 shows the whole of the nanobubble generation device that constitutes the nanobubble generation system of the present invention. The nanobubble generator 1 comprises a bottom plate 29. Front and rear side plates 30.31. Left and right side plates 32.33. And housing 28. The outer shape is configured with a substantially square-shaped casing. Spray chamber / air pressure mixing chamber 3. Suction chamber of 2. Generate nano-fine particle water in the space of The fan that pressurized the nano fine particle water. Precipitation chamber and functional water tank while pressurizing by Dissolve in water In addition, the nano-fine particle water functions as an effective functional water storage water tank 10. Will be stored in 14. Water supply tank for supplying water to the spray chamber / air pressure mixing chamber 14. And high pressure pump 15. It is composed of:

本装置の該吸込み室2に吸込まれる空気(標準空気である、比重1.2、温度0〜40℃、粉塵密度0.5mg/m3以下、湿度0〜99%)は循環送風管27.を経由し加圧ファン5.によりト吸込み室2に加圧供給されることになる。噴霧室兼空気加圧混合室3.においてナノ微細粒子水ー(1nm〜10μmの粒子口径)を噴霧し該ナノ微細粒子水に粉塵等を附着させたナノ微細粒子水は該噴霧室兼空気加圧混合室3.から、冷却された沈殿室兼機能水槽4に加圧ファン5.によって加圧と水蒸気分圧力の差圧によって、沈殿室兼機能水槽4にナノ微細粒子水は沈殿室兼機能水槽4に溶解溶存されていくこととなる。沈殿室兼機能水槽4は一般溶液水から本装置の目的であるナノ微細粒子水と溶存酸素が生成されていく装置である。27. Air sucked into the suction chamber 2 of the present apparatus (standard air, specific gravity 1.2, temperature 0-40 ° C., dust density 0.5 mg / m 3 or less, humidity 0-99%) 5. Pressurized fan via 5. As a result, pressure is supplied to the suction chamber 2. Spray chamber / air pressure mixing chamber 3. 3. Nanofine particle water sprayed with nanofine particle water (particle diameter of 1 nm to 10 .mu.m) to attach dust etc. to the nanofine particle water is the spray chamber / air pressure mixing chamber 3. From the pressure chamber to the cooled sedimentation chamber and functional water tank 4. Thus, the nano fine particle water is dissolved and dissolved in the precipitation chamber / functional water tank 4 in the precipitation chamber / functional water tank 4 due to the pressure difference between the pressurization and the water vapor partial pressure. The precipitation chamber and functional water tank 4 is a device in which nanofine particle water and dissolved oxygen, which are the purpose of this device, are generated from general solution water.

本装置の筐体は、吸込み室2.噴霧室兼空気混合室3、沈殿室兼機能水槽4.ベンチュリー管空気制御用隔壁6.8.と中間中仕切り7.空気チャンバー室9.循環送風管27.加圧ファン5.の機能を纏めて構成している。また、沈殿室兼機能水槽4.の底部周辺に面している箇所に沈殿室兼機能水槽の冷却を目的とした冷却コイル26.を設け水槽温度を5〜10℃に維持する。それは冷却コイル26、冷凍機24、と冷媒配管25.にて形成して冷却機能を維持されることになる。The housing of this device is a suction chamber2. Spray chamber and air mixing chamber 3, precipitation chamber and functional water tank 4. Venturi tube air control partition 6.8. And the middle partition 7. Air chamber 9. Circulation fan 27. Pressure fan 5. It is composed by putting together the function of. Also, a sedimentation chamber and a functional water tank 4. 26. A cooling coil intended to cool the sedimentation chamber and the functional water tank at a location facing the bottom of the gutter 26. Provide a water bath temperature of 5-10 ° C. It has a cooling coil 26, a refrigerator 24, and a refrigerant pipe 25. And the cooling function is maintained.

本装置のノズル11.12.13.から墳出した高圧水を該衝突物体21.22.23.に衝突させることによりナノ微細粒子水を生成し、噴霧室兼空気混合室3.0に吸込まれた空気と共に、加圧ファン5.により沈殿室兼機能水槽4.に、加圧溶解と水蒸気分圧力の差によって、沈殿室兼機能水槽4.にナノ微細粒子水と溶存酸素が該沈殿室兼機能水槽に溶存溶解されてナノバブル機能水が生成されていくこととなる。Nozzles 11.12.13. 21.22.23. The collision object 21.22.23. To generate nano-fine particle water by colliding with the air, and the pressurized fan together with the air sucked into the spray chamber and air mixing chamber 3.0. Precipitation chamber and functional water tank by 4. 4. The settling chamber and functional water tank by the difference between pressure dissolution and water vapor pressure. The nanofine particle water and the dissolved oxygen are dissolved and dissolved in the precipitation chamber and the functional water tank to generate the nanobubble functional water.

図1の噴霧室兼空気加圧混合室3.の中間部上方には側壁より、第1給水管17はその先端に第1ノズル11、第2ノズル19.第3ノズル20.を形成している。1. Spray chamber / air pressure mixing chamber of FIG. The first water supply pipe 17 has a first nozzle 11 and a second nozzle 19. Third nozzle 20. Form.

図1の噴霧室兼空気加圧混合室3.の中間部上方には側壁より、第1給水管17はその先端に第1ノズル11、第2ノズル19.第3ノズル20.を形成している。1. Spray chamber / air pressure mixing chamber of FIG. The first water supply pipe 17 has a first nozzle 11 and a second nozzle 19. Third nozzle 20. Form.

現在のナノバブル技術は国内の産官学挙げて取り組んでいる、日本発の技術である。本発明技術の利用範囲は農業分野おいては、野菜等の成長促進が確認されている、医療分野においては、目薬、薬品、皮膚薬、臓器医療再生技術に使われる、食品分野では飲料抽櫃、排水浄化、食品洗浄、食品乳化品、に既に一部が実用化されている。他に土木分野の汚泥処理装置、化粧品関連、半導体関連、水産関連等々に利用範囲が多岐に亘っており、それぞれに研究開発が進み、そして製品化が一部実用化されている。The current nano bubble technology is a technology originating from Japan, which is working on domestic industry, government and academia. The scope of application of the present invention technology has been confirmed in the agricultural field to promote the growth of vegetables etc. In the medical field it is used for eye drops, medicines, dermatological agents, organ medicine regeneration technology, food lottery in the food field Some of them have already been put to practical use in waste water purification, food washing and food emulsification products. In addition, there are a wide range of applications, such as sludge treatment equipment in the civil engineering field, cosmetics, semiconductors, fisheries, etc., and research and development has progressed in each, and some commercialization has been put to practical use.

▲1▼ 装置概念図 図1
▲2▼ 吸込室
▲3▼ 噴霧室兼空気加圧混合室
▲4▼ 沈殿室兼機能水槽
▲5▼ 加圧ファン
▲6▼ 空気制御用ベンチュリー側壁
▲7▼ 空気制御用中仕切り板
▲8▼ 空気制御用ベンチュリー側壁
▲9▼ 空気チャンバー室
▲10▼ 機能水貯蔵水槽
▲11▼ 機能水送水管1
▲12▼ 機能水送水ポンプ
▲13▼ 機能水送水管 2.
▲14▼ 給水タンク
▲15▼ 高圧ポンプ
▲16▼ 給水ポンプ吸入管
▲17▼ 第1給水管
▲18▼ 第1ノズル
▲19▼ 第2ノズル
▲20▼ 第3ノズル
▲21▼ 衝突球体1.
▲22▼ 衝突球体2.
▲23▼ 衝突球体3.
▲24▼ 冷凍機
▲25▼ 冷媒管
▲26▼ 冷却用コイル
▲27▼ 空気取入れ口
▲28▼ 筐体
▲29▼ 筐体底板
▲30▼ 筐体前後側板1.
▲31▼ 筐体前後側板2.
▲32▼ 筐体左右側板1.
▲33▼ 筐体左右側板2.
▲34▼ 高濃度酸素送風機
▲35▼ 酸素供給エアーダクト
▲36▼ 酸素供給口
{Circle over (1)} Conceptual diagram of apparatus
{Circle over (2)} suction chamber {circle over (3)} spray chamber / air pressure mixing chamber {4} sedimentation chamber / function water tank {circle over (5)} pressure fan {6} venturi side wall for air control {circle over (7)} Venturi side wall for air control 9 9 空 気 air chamber room 10 10 機能 functional water storage tank ▲ 11 機能 functional water water pipe 1
{Circle over (12)} functional water feed pump {circle over (13)} functional water feed pipe 2.
{Circle over (14)} water supply tank {circle over (15)} high pressure pump {circle over (16)} water supply pump suction pipe {circle over (17)} first water supply pipe {circle over (18)} first nozzle {circle over (19)} second nozzle {circle over (20)} third nozzle {21}
22 22 ▼ collision sphere 2.
23 23 ▼ collision sphere 3.
24 24 冷凍 25 冷凍 25 冷媒 refrigerant pipe 26 26 コ イ ル cooling coil 27 27 空 気 air intake ▲ 28 筐 体 case 29 29 筐 体 case bottom plate 30 30 筐 体 case front and rear side plates 1.
31 31 ▼ Case front and rear side plates 2.
32 32 ▼ Case left and right side plates 1.
33 33 ▼ Case left and right side plates 2.
34 34 高 High concentration oxygen blower 35 35 酸 素 Oxygen supply air duct 36 36 酸 素 Oxygen supply port

Claims (8)

本発明装置は海洋面に浮遊している超微細粒子成分である大気中の二酸化炭素ガス、エアロゾル粒子、微細水、酸素等を海洋面の液中内に溶存している。その、自然界の仕組みを利用した装置である。大気中のそれらの成分を水溶液中(鉄、マンガン、カルシウム、ナトリウム、マグネシウムイオン及びその他ミネラル類の電解質イオンが混入した電気伝導度が300μs/cm以上の水溶液をいう)に溶存させてその水溶液は機能水としてなるナノバブル発生装置である。本装置の噴霧室兼空気加圧混合室3.に空気を加圧ファン5.により取り込み,該噴霧室兼空気加圧混合室3.ではナノ微細粒子水(1nm〜10μm)を噴霧し、空気中の成分とナノ微細粒子水と共に該空気加圧混合室3.において加圧と水蒸気分圧力の差圧により、該噴霧室兼空気加圧混合室3.の底部の沈殿室兼機能水槽4.の底部に貯留している任意の深さ、例えば50〜300mm程度の水溶液中に溶解溶存していく。その水溶液は機能水となり、噴霧室兼空気加圧混合室3.から機能水槽10.に送り込み貯留する。機能水槽に貯留された、その水溶液の機能水としての大きな特徴は、水溶液の微細水粒子口径の粒度分布は1nm(ナノメートル)〜10μmの粒度分布を示すこと。及び、その粒子個数は1ml当たり約1000兆個の値を示す。また、溶存酸素濃度は約5〜15mg/lを示す、電気導電率は約0.1〜10μs/cmの値を示すこと。上記の性能数値は機能水として、大きな特徴とするナノバブル発生装置である。The device according to the present invention dissolves carbon dioxide gas, aerosol particles, fine water, oxygen and the like in the air, which are ultrafine particle components suspended on the ocean surface, in the liquid on the ocean surface. The device uses the mechanism of the natural world. The components in the air are dissolved in an aqueous solution (an aqueous solution with an electric conductivity of 300 μs / cm or more mixed with electrolyte ions of iron, manganese, calcium, sodium, magnesium ions and other minerals), and the aqueous solution is It is a nano bubble generator which becomes functional water. Spray chamber and air pressure mixing chamber of this device 3. 5. Pressurize the air into the fan 5. , And the atomizing chamber / air pressure mixing chamber 3. In the above, the fine particle water (1 nm to 10 μm) is sprayed, and the air pressure mixing chamber with the components in the air and the fine particle water. 2. The spray chamber and air pressure mixing chamber according to the pressure difference between the pressure and the pressure of the water vapor partial pressure in 3. Sedimentation chamber and functional water tank at the bottom of 4. It dissolves and dissolves in an aqueous solution of an arbitrary depth, for example, about 50 to 300 mm, stored at the bottom of the The aqueous solution becomes functional water, and a spray chamber / air pressure mixing chamber 3. From functional aquarium 10. Feed and store. A major feature of the aqueous solution as a functional water stored in a functional water tank is that the particle size distribution of the fine water particle diameter of the aqueous solution exhibits a particle size distribution of 1 nm (nanometers) to 10 μm. And, the number of particles shows a value of about 1000 trillion per ml. In addition, the dissolved oxygen concentration is about 5 to 15 mg / l, and the electrical conductivity is about 0.1 to 10 μs / cm. The above performance figures are functional water, which is a nano bubble generating device that is largely characterized. 本発明の装置で生成される機能水の特徴は、例えば、生成する粒度分布を1〜10nm、1〜20nm、1〜30nm、1〜100nm、1〜1000nmに任意に生成することが出来ることが本発明装置の大きな特徴である。また、本装置によって生成される、例えば、粒子口径10nmの大きさでは気泡粒子が消滅時に発生する圧力破壊エネルギーは強大な力が生ずる。その力は300気圧と同じエネルギーが生ずると言われている。例えば一つの応用として、このエネルギーの特徴による大きな効果は例として、排水浄化槽に流入している、大腸菌、カビ,胞子、一般細菌、無機物、有機物等の殺菌分解、凝集沈殿能力が格段と向上することになる。その効果は計り知れない。これらの効果により凝集剤、分離化成品、ブロアエネルギー等の減少により、ランニングコストの大幅な削減となる。また本装置の応用先分野は限りなく広範囲に亘ることが考えられる。The feature of functional water produced by the device of the present invention is that, for example, the particle size distribution to be produced can be optionally produced at 1 to 10 nm, 1 to 20 nm, 1 to 30 nm, 1 to 100 nm, 1 to 1000 nm. This is a major feature of the device of the present invention. In addition, in the case of a particle diameter of 10 nm, which is generated by the present apparatus, for example, the pressure breaking energy generated when the bubble particle disappears generates a strong force. The force is said to produce the same energy as 300 atm. For example, as one application, the great effect of this energy characteristic is, as an example, the ability to sterilize and degrade the aggregation, sedimentation, etc. of E. coli, molds, spores, general bacteria, inorganic substances, organic matter, etc. It will be. The effect is immeasurable. Due to these effects, the running cost is greatly reduced due to the reduction of the coagulant, the separated chemical product, the blower energy and the like. Moreover, the application field of this device can be considered to be as wide as possible. 本発明装置はナノ微細水粒子水(1nm〜10μm粒子口径)の生成を可能とする、固有技術であることが大きな特徴である。It is a major feature that the device of the present invention is an inherent technology that enables the generation of nano-fine water particle water (1 nm to 10 μm particle diameter). 本発明のナノ微細粒子水(1nm〜10μm粒子口径)の生成技術は給水管、高圧ポンプ、ノズル、球体を装置に構築することにより、1nm〜10μmの粒子径のナノ微細粒子水が生成されることが本装置の大きな特徴である。The technology for producing nanofine particle water (1 nm to 10 μm particle diameter) of the present invention is to construct a water supply pipe, a high pressure pump, a nozzle, and spheres in a device to produce nanofine particle water of 1 nm to 10 μm particle diameter Is a major feature of this device. 本発明装置の筐体28.の吸込み室2.から、ナノ微細粒子水を含有した空気が空気制御用ベンチュリー側壁、中仕切り板、6.7.8.を蛇行しながら経由して、その空気は空気チャンバー9.に貯留されることになる。該チャンバーに貯留される空気は、ナノ微細粒子水(1nm〜100nm)となり、酸素濃度(21%〜22%)と高い数値を示す、また高湿度(90%〜99%)であることが本発明の大きな特徴となる。本発明装置は該空気を高濃度酸素送風機34.により、酸素供給エアーダクト35.を経由し課題解決必要な機器等に接続されることになる。例えば、浄化槽の底部に酸素供給口36.から高濃度酸素空気が供給されることにより、浄化槽内の浄化機能が加速されることが本装置の大きな特徴である。Case 28 of the device of the present invention Suction chamber of 2. From the above, air containing nano-fine particle water is a venturi side wall for air control, inner partition plate, 6.7.8. Air meandering through the air chamber 9. It will be stored in the The air stored in the chamber becomes nanofine particle water (1 nm to 100 nm), shows a high numerical value as oxygen concentration (21% to 22%), and has high humidity (90% to 99%). It becomes a big feature of the invention. The device according to the invention comprises a high concentration oxygen blower 34. The oxygen supply air duct 35. Will be connected to the necessary equipment to solve the problem. For example, an oxygen supply port 36. It is a major feature of the present apparatus that the purification function in the septic tank is accelerated by the supply of high concentration oxygen air. 本発明のナノバブル発生装置の該噴霧室兼空気加圧混合室3.は底部に機能水を貯留する。その深さは任意の深さに設定することが出来る。例えば、0〜100mmの水溶液を貯留し、水溶液の温度を例えば5〜10℃前後に保持してなる冷却装置を組み込むことを特徴とする。The spray chamber and air pressure mixing chamber of the nanobubble generator of the present invention 3. Stores functional water at the bottom. The depth can be set to any depth. For example, it is characterized by incorporating a cooling device which stores an aqueous solution of 0 to 100 mm and holds the temperature of the aqueous solution at, for example, about 5 to 10 ° C. 本装置の噴霧室兼空気加圧混合室3.を複数個連結することにより、機能水の性能を示す粒度分布装置から測定解析される、機能水の微細水粒子口径を0〜10,0〜20,0〜30(ナノメートル)とそれぞれの分布に制御可能とするナノバブル発生装置である。又粒子個数も測定により1mlあたり10京以上、溶存酸素濃度は理想値である5〜15mg/lの計測結果を得ることが出来た。Spray chamber and air pressure mixing chamber of this device 3. The diameter of fine water particles of functional water is 0 to 10, 0 to 20, 0 to 30 (nanometers) and their distribution, which are measured and analyzed from a particle size distribution device showing performance of functional water by connecting a plurality of The nano bubble generator can be controlled to In addition, the number of particles was also able to obtain the measurement result of 5 to 15 mg / l, which is an ideal value for the dissolved oxygen concentration, which is 10 or more per ml by measurement. 図1は、本発明のナノバブル発生システムを構成するナノバブル発生装置の全体を示している。該ナノバブル発生装置1は底板29.前後の側板30.31.左右の側板32.33.及び筐体28.から成りほぼ正方形状の筐体で外形が構成される。噴霧室兼空気加圧混合室3.の吸込み室2.の空間においてナノ微細粒子水を発生させる。その、ナノ微細粒子水を加圧ファン5.により加圧しながら沈殿室兼機能水槽4.に溶解溶存させる。更に、ナノ微細粒子水は有効な機能水として機能水貯蔵水槽10.に蓄えられていくこととなる。該噴霧室兼空気加圧混合室へ水を供給する給水槽14.と高圧ポンプ15.より構成されている。FIG. 1 shows the whole of a nanobubble generating device which constitutes the nanobubble generating system of the present invention. The nanobubble generator 1 comprises a bottom plate 29. Front and rear side plates 30.31. Left and right side plates 32.33. And housing 28. The outer shape is configured with a substantially square-shaped casing. Spray chamber / air pressure mixing chamber 3. Suction chamber of 2. Generate nano-fine particle water in the space of The fan that pressurized the nano fine particle water. Precipitation chamber and functional water tank while pressurizing by Dissolve in water In addition, the nano-fine particle water functions as an effective functional water storage water tank 10. Will be stored in 14. Water supply tank for supplying water to the spray chamber / air pressure mixing chamber 14. And high pressure pump 15. It is composed of:
JP2017091982A 2017-04-14 2017-04-14 Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water Pending JP2018176148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091982A JP2018176148A (en) 2017-04-14 2017-04-14 Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091982A JP2018176148A (en) 2017-04-14 2017-04-14 Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water

Publications (1)

Publication Number Publication Date
JP2018176148A true JP2018176148A (en) 2018-11-15

Family

ID=64280415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091982A Pending JP2018176148A (en) 2017-04-14 2017-04-14 Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water

Country Status (1)

Country Link
JP (1) JP2018176148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970168A (en) * 2019-03-05 2019-07-05 江苏方洋水务有限公司 A kind of System and method for suitable for black and odorous water processing
EP3747534A1 (en) 2019-06-03 2020-12-09 Watermax AG Device and method for generating nanobubbles
CN113797779A (en) * 2020-06-11 2021-12-17 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood
CN114053891A (en) * 2020-08-07 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970168A (en) * 2019-03-05 2019-07-05 江苏方洋水务有限公司 A kind of System and method for suitable for black and odorous water processing
CN109970168B (en) * 2019-03-05 2023-10-17 江苏方洋水务有限公司 System and method suitable for black and odorous water body treatment
EP3747534A1 (en) 2019-06-03 2020-12-09 Watermax AG Device and method for generating nanobubbles
CN113797779A (en) * 2020-06-11 2021-12-17 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood
CN113797779B (en) * 2020-06-11 2024-03-22 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood
CN114053891A (en) * 2020-08-07 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood
CN114053891B (en) * 2020-08-07 2023-09-12 佛山市顺德区美的洗涤电器制造有限公司 Microbubble generating device and range hood

Similar Documents

Publication Publication Date Title
JP2018176148A (en) Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water
Temesgen et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review
Khan et al. Micro–nanobubble technology and water-related application
JP4144669B2 (en) Method for producing nanobubbles
US8137703B2 (en) Ozone water and production method therefor
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
JP6762467B2 (en) Aeration device
Ushikubo et al. Zeta-potential of micro-and/or nano-bubbles in water produced by some kinds of gases
JP4931201B2 (en) Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles
CN204469572U (en) Gas-fluid mixing systems
Michailidi et al. Fundamentals and applications of nanobubbles
Ulatowski et al. Gas nanobubble dispersions as the important agent in environmental processes–generation methods review
WO2009116711A2 (en) Apparatus of generating microbubbles
JP2005246294A (en) Oxygen-nanobubble water and production method therefor
JP2008093612A (en) Reaction active species containing water manufacturing method and reaction active species containing water
JP4921332B2 (en) Method for producing nitrogen nanobubble water
Arumugam Understanding the fundamental mechanisms of a dynamic micro-bubble generator for water processing and cleaning applications
KR101829728B1 (en) Nano bubble water generating methode
Jia et al. Full life circle of micro-nano bubbles: Generation, characterization and applications
Zhang et al. Physicochemical characteristics and the scale inhibition effect of air nanobubbles (A-NBs) in a circulating cooling water system
JP3373444B2 (en) Liquid quality alteration bubble box and liquid alteration method
JP3494587B2 (en) Liquid quality reformer
JP2017072122A (en) Scale deposition prevention device and geothermal binary power generation system
WO2008102934A1 (en) Apparatus for manufacturing oxygenated water
Sato Recent patents on micro-and nano-bubble applications and potential application of a swirl-type generator