JP2018174602A - Compressor and device on which compressor is mounted - Google Patents

Compressor and device on which compressor is mounted Download PDF

Info

Publication number
JP2018174602A
JP2018174602A JP2017069573A JP2017069573A JP2018174602A JP 2018174602 A JP2018174602 A JP 2018174602A JP 2017069573 A JP2017069573 A JP 2017069573A JP 2017069573 A JP2017069573 A JP 2017069573A JP 2018174602 A JP2018174602 A JP 2018174602A
Authority
JP
Japan
Prior art keywords
compressor
rotor
stop
magnetic saturation
position information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017069573A
Other languages
Japanese (ja)
Other versions
JP6704372B2 (en
Inventor
智允 加藤
Tomotake Kato
智允 加藤
進太郎 小池
Shintaro Koike
進太郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2017069573A priority Critical patent/JP6704372B2/en
Publication of JP2018174602A publication Critical patent/JP2018174602A/en
Application granted granted Critical
Publication of JP6704372B2 publication Critical patent/JP6704372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compressor that is capable of reducing power consumption, and a device that has the compressor.SOLUTION: This compressor includes a motor having a rotor and a stator, and being capable of performing driving by a 120-degree energization method. When stopping the compressor, a rotor position during a stop is estimated on the basis of information about a magnetic saturation electromotive voltage, and rotor position information during the stop is stored. When starting the compressor, an initial operation condition including a three-phase coil energization pattern is determined by using the stop position information of the rotor.SELECTED DRAWING: Figure 3

Description

本発明は、圧縮機および圧縮機を搭載した機器に関する。   The present invention relates to a compressor and a device equipped with the compressor.

家庭用エアコンや冷蔵庫に使用されているセンサレス制御方式の圧縮機は、一定値の電流を一定時間強制的に印加してロータ位置を固定する「位置決め運転」をしたうえでロータ位置を定めてから、同期運転・センサレス運転へと遷移していく方法が知られている。この位置決め運転に要するモータ電流は、例えば180度通電方式の家庭向け冷蔵庫などに搭載する圧縮機では、3A以上に達する場合があり、製品の消費電力量を増大させる要因となる。   Sensorless control type compressors used in home air conditioners and refrigerators determine the rotor position after performing a "positioning operation" that forcibly applies a constant current for a certain period of time to fix the rotor position. A method of making a transition to synchronous operation / sensorless operation is known. The motor current required for this positioning operation, for example, may reach 3 A or more in a compressor mounted in a household refrigerator with a 180-degree energization method, which increases the power consumption of the product.

特許文献1は、180度通電運転において圧縮機1の停止が指示された場合は、モータの回転数を下げて行き、十分回転数が低下したら、回転子22が所定の位置になったときにインバータ7への転流パルスの供給を停止させてピストン24を停止させることで、固定子を予め定められた位置に停止させるとしている(0025,0031)。また、起動時には低い周波数の回転磁界を発生させて固定子20と回転子22の相を一致させる相固定運転を行う(0026)。   In Patent Literature 1, when the stop of the compressor 1 is instructed in the 180-degree energization operation, the rotational speed of the motor is decreased, and when the rotational speed sufficiently decreases, the rotor 22 is in a predetermined position. The stator is stopped at a predetermined position by stopping the supply of commutation pulses to the inverter 7 and stopping the piston 24 (0025, 0031). In addition, a phase-locking operation is performed in which a rotating magnetic field having a low frequency is generated at the time of startup to match the phases of the stator 20 and the rotor 22 (0026).

特開2007−92686号公報JP 2007-92686 A

しかしながら、特許文献1は、予め定められた位置にピストンや固定子を停止させる方法を具体的に開示していない。また、仮にその具体的手段が当業者に明らかな程度に示唆されているとしても、モータ回転制御およびロータ位置検出のために、三相の電流値および電圧値を検出する電流検出機構および電圧検出機構を有し、両検出値から圧縮機停止直前のピストン位置を検出し、常に一定の位置で停止させるには、ロータ位置推定のための専用制御部や複数のセンサを追加で実装する必要が生じると考えられる。   However, Patent Document 1 does not specifically disclose a method of stopping the piston or the stator at a predetermined position. In addition, even if the specific means is suggested to the extent obvious to those skilled in the art, a current detection mechanism and voltage detection for detecting three-phase current values and voltage values for motor rotation control and rotor position detection. In order to detect the piston position just before the compressor stops from both detection values and always stop at a fixed position, it is necessary to additionally install a dedicated control unit and multiple sensors for rotor position estimation It is thought to occur.

上記事情に鑑みてなされた本発明は、回転子と、固定子と、を有し、120度通電方式による駆動が可能なモータを有する圧縮機であって、当該圧縮機を起動させる場合、前記回転子の停止位置情報を利用して運転初期条件を決定することを特徴とする。   The present invention made in view of the above circumstances is a compressor having a rotor and a stator and having a motor that can be driven by a 120-degree energization method, and when the compressor is started, The initial operation condition is determined by using the stop position information of the rotor.

実施例1の冷蔵庫の概略図Schematic of the refrigerator of Example 1 実施例1の密閉型圧縮機の縦断面図Longitudinal sectional view of the hermetic compressor of Example 1 実施例1の一般的圧縮機起動時の制御フローThe control flow at the time of starting the general compressor of Example 実施例1の圧縮機停止時の圧縮機回転数の変化と磁気飽和起電圧検出範囲をあらわすグラフThe graph showing the change of the compressor rotation speed at the time of the compressor stop of Example 1, and the magnetic saturation electromotive voltage detection range

以下、本発明の実施例について添付の図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は実施例1の冷蔵庫の概略図である。圧縮機を有する機器の一例としての冷蔵庫は、食品を収納する筐体1と、冷媒を圧縮する圧縮機2と、冷媒を循環させる循環部3と、制御部4と、圧縮機2の運転を制御する圧縮機制御部5と、圧縮機2へ通電するインバータ回路部6と、圧縮機モータ8の3相(U相、V相、W相)の磁気飽和起電圧を検出する磁気飽和起電圧検出部7と、を備え、圧縮機2回転中の開放相に現れる磁気飽和起電圧を検出する機能を有する。   FIG. 1 is a schematic view of a refrigerator according to the first embodiment. A refrigerator as an example of a device having a compressor operates a casing 1 that stores food, a compressor 2 that compresses refrigerant, a circulation unit 3 that circulates refrigerant, a control unit 4, and an operation of the compressor 2. Magnetic saturation electromotive force for detecting the magnetic saturation electromotive force of the three phases (U phase, V phase, W phase) of the compressor motor 8 to be controlled, the inverter circuit portion 6 energizing the compressor 2 and the compressor motor 8 And has a function of detecting a magnetic saturation electromotive voltage appearing in the open phase during rotation of the compressor 2.

図2は圧縮機の一例として示す本実施例の密閉型圧縮機100の縦断面図である。密閉型圧縮機100は、密閉容器15内に潤滑油20を貯留すると共に、主に気相の冷媒が充填されている。密閉型圧縮機100は、圧縮要素としてシリンダ16を備えるフレーム14、シリンダ16内を往復自在に嵌入されたピストン13、及びフレーム14の主軸受に軸支されて回転するクランクシャフト18を密閉容器15(上側容器15a、下側容器15b)内に有している。   FIG. 2 is a longitudinal sectional view of a hermetic compressor 100 of the present embodiment shown as an example of a compressor. The hermetic compressor 100 stores lubricating oil 20 in a hermetic container 15 and is mainly filled with a gas-phase refrigerant. The hermetic compressor 100 includes a frame 14 having a cylinder 16 as a compression element, a piston 13 fitted in a reciprocating manner in the cylinder 16, and a crankshaft 18 that is supported by a main bearing of the frame 14 and rotates. (Upper container 15a, lower container 15b).

クランクシャフト18は、主軸受内で回転する主軸部18bと、主軸部18bと一体で、主軸部18bの回転軸周りを公転する偏心部18aとを有している。クランクシャフト18の主軸受はフレーム14に固設、或いはフレーム14と一体に形成されている。偏心部18aの公転運動は、コネクティングロッド28を介してピストン13の往復運動に変換される。コネクティングロッド28は、一端がピストン13に連結し、他端が偏心部18aに連結している。   The crankshaft 18 includes a main shaft portion 18b that rotates within the main bearing, and an eccentric portion 18a that is integral with the main shaft portion 18b and revolves around the rotation axis of the main shaft portion 18b. The main bearing of the crankshaft 18 is fixed to the frame 14 or formed integrally with the frame 14. The revolving motion of the eccentric portion 18 a is converted into the reciprocating motion of the piston 13 via the connecting rod 28. The connecting rod 28 has one end connected to the piston 13 and the other end connected to the eccentric portion 18a.

密閉型圧縮機100はフレーム14の下方に圧縮機モータ8を有している。圧縮機モータ8はクランクシャフト18に回転力を付与する機構であり、インバータ回路部6の指令に応じて電流が流れるコイルが設けられた固定子11と、永久磁石を内蔵し主軸部18bに取付られた回転子25とから構成される。固定子11のコイルに電流が流れることで発生する磁束が回転子25を回転させ、これに伴い主軸部18bが回転する。圧縮機モータ8は、120度通電方式及び180度通電方式による3相駆動を選択的に切り替えることができる。   The hermetic compressor 100 has a compressor motor 8 below the frame 14. The compressor motor 8 is a mechanism for applying a rotational force to the crankshaft 18, and includes a stator 11 provided with a coil through which a current flows in response to a command from the inverter circuit section 6, and a permanent magnet that is attached to the main shaft section 18b. And the rotor 25 thus formed. The magnetic flux generated by the current flowing through the coils of the stator 11 rotates the rotor 25, and the main shaft portion 18b rotates accordingly. The compressor motor 8 can selectively switch between three-phase driving by a 120-degree energization method and a 180-degree energization method.

主軸部18bを起点として、主軸部18bの回転軸に直交する方向(径方向)には、順に、回転子25、固定子11、防振バネ30が設けられている。防振バネ30の一端は、固定子11のコイル110よりも径方向外側でフレーム14に接続している。また、防振バネ30の他端は、潤滑油20の液面より上方に位置している。   A rotor 25, a stator 11, and an anti-vibration spring 30 are sequentially provided in a direction (radial direction) orthogonal to the rotation axis of the main shaft portion 18b starting from the main shaft portion 18b. One end of the anti-vibration spring 30 is connected to the frame 14 on the radially outer side than the coil 110 of the stator 11. Further, the other end of the vibration isolating spring 30 is located above the liquid level of the lubricating oil 20.

圧縮機2、圧縮機制御部5、インバータ回路部6、及び磁気飽和起電圧検出部7は電気的に接続されている。圧縮機制御部5が圧縮機モータ8の3相9(U相、V相、W相)の各相に印加する電圧出力を制御することで、圧縮機モータ8を駆動させる。   The compressor 2, the compressor control unit 5, the inverter circuit unit 6, and the magnetic saturation electromotive voltage detection unit 7 are electrically connected. The compressor controller 8 drives the compressor motor 8 by controlling the voltage output applied to each of the three phases 9 (U phase, V phase, W phase) of the compressor motor 8.

モータ駆動制御として120度通電方式においては、通電は(瞬間的には)2相のみになされ、残りの1相(開放相)には通電されない。この開放相に現れる磁気飽和起電圧には、ロータ(回転子)の位置による特性の変化が現れる。120度通電方式による圧縮機制御では、この磁気飽和起電圧を検出することができ、モータ8駆動中のロータの位置を推定することができる。   In the 120-degree energization method as the motor drive control, energization is performed only for two phases (instantaneously), and the remaining one phase (open phase) is not energized. In the magnetic saturation electromotive voltage appearing in the open phase, a change in characteristics depending on the position of the rotor (rotor) appears. In compressor control by the 120-degree energization method, this magnetic saturation electromotive voltage can be detected, and the position of the rotor during driving of the motor 8 can be estimated.

本実施例では、この磁気飽和起電圧の検出を、圧縮機2の定常運転中だけでなく、停止時のロータ位置推定にも用いる。   In the present embodiment, the detection of the magnetic saturation electromotive voltage is used not only during the steady operation of the compressor 2 but also for estimating the rotor position when stopped.

図3は、圧縮機2の起動制御フローである。制御部4が冷蔵庫筐体内の温度を監視し、冷却運転の必要に応じて圧縮機2を運転させる指令を出力するよう圧縮機制御部5に指示する。圧縮機起動要求を受け取った圧縮機制御部5は(ステップS1,Yes)、前回の圧縮機停止制御の過程で保存したロータ位置情報を呼び出させる(ステップS1,Yes、ステップS2)。ロータ位置情報は、圧縮機の停止制御を未だしたことがない場合、すなわち、圧縮機2の製造後初めての起動をする場合は、呼び出しができないことがある。この場合は、圧縮機2の製造工程においてロータ位置の初期情報を記憶させるようにしておいてもよいし、初めての起動についてはロータ位置情報を呼び出させずに、公知の位置決め運転を実行させるようにしても良い。   FIG. 3 is a startup control flow of the compressor 2. The control unit 4 monitors the temperature in the refrigerator casing and instructs the compressor control unit 5 to output a command for operating the compressor 2 as required for the cooling operation. Receiving the compressor activation request (step S1, Yes), the compressor control unit 5 calls the rotor position information stored in the previous compressor stop control process (step S1, Yes, step S2). The rotor position information may not be recalled when the compressor stop control has not been performed yet, that is, when the compressor is started for the first time after the compressor 2 is manufactured. In this case, initial information on the rotor position may be stored in the manufacturing process of the compressor 2, and a known positioning operation is executed without calling the rotor position information for the first activation. Anyway.

呼び出したロータ位置情報、又は位置決め運転によりロータ位置が既知となるので、これに基づいて圧縮機2は運転初期条件を決定する(ステップS3)。具体的には、ロータ位置によって変化する、ロータの回転に必要な電流磁束方向を決める通電パターン(一般的な三相インバータ回路であれば、六つあるスイッチング素子への通電パターン)を、既知のロータ位置に合わせて決定する。このような通電パターンは周知である。   Since the rotor position becomes known from the called rotor position information or the positioning operation, the compressor 2 determines the initial operation condition based on this (step S3). Specifically, an energization pattern that determines the direction of the current magnetic flux necessary for the rotation of the rotor, which varies depending on the rotor position (in the case of a general three-phase inverter circuit, an energization pattern for six switching elements) is known. Determine according to the rotor position. Such an energization pattern is well known.

その後、圧縮機2は同期運転を開始する(ステップS4)。同期運転では、センサレス運転に必要な電流値の情報が得られる回転数まで、モータの回転数を加速させる。電流値の検出が可能になった場合(ステップS5,Yes)、モータ負荷にあわせた電圧制御を開始し、センサレス運転に移行する(ステップS6)。   Thereafter, the compressor 2 starts synchronous operation (step S4). In the synchronous operation, the rotational speed of the motor is accelerated to the rotational speed at which information on the current value necessary for the sensorless operation can be obtained. If the current value can be detected (step S5, Yes), voltage control according to the motor load is started, and the operation proceeds to sensorless operation (step S6).

センサレス運転中、圧縮機2の停止指令を受取った場合(ステップS7,Yes)、圧縮機制御部5はモータ8への電圧出力を停止し、圧縮機2の駆動を停止させる制御を開始する。   If a stop command for the compressor 2 is received during the sensorless operation (step S7, Yes), the compressor control unit 5 stops the voltage output to the motor 8 and starts control for stopping the drive of the compressor 2.

図4は圧縮機2停止時の圧縮機2回転数の変化と磁気飽和起電圧検出範囲をあらわすグラフである。180度通電方式又は120度通電方式でモータへの電圧出力を行っている(例えば電圧制御を行っている)状態で、ステップS7で制御部4から圧縮機2の停止指令を受取った圧縮機制御部5は、即座にモータへの電圧出力を停止するのではなく、ロータの回転数を徐々に低下させる(ステップS8、「減速開始」)。圧縮機2の運転の安定性の観点からは、この間の通電方式は180度通電方式が好ましい。   FIG. 4 is a graph showing a change in the rotation speed of the compressor 2 when the compressor 2 is stopped and a magnetic saturation electromotive voltage detection range. Compressor control that receives a stop command for the compressor 2 from the control unit 4 in step S7 in a state in which voltage output to the motor is performed (for example, voltage control is performed) by the 180 degree energization method or the 120 degree energization method. The unit 5 does not immediately stop the voltage output to the motor, but gradually decreases the rotational speed of the rotor (step S8, “deceleration start”). From the viewpoint of the stability of the operation of the compressor 2, the energization method during this period is preferably a 180 ° energization method.

回転数を減速させていき、第1の閾値、例えば1500min−1に到達したら、制御部4は、駆動方式を120度通電方式に切り替えるように指令を出す(ステップS9、「120度通電方式に切替え」)。元々120度通電方式で駆動していた場合は、その通電方式を維持する。これにより、開放相が生じることとなり、磁気飽和起電圧の観測が可能になる。 When the rotational speed is decreased and a first threshold value, for example, 1500 min −1 is reached, the control unit 4 issues a command to switch the drive method to the 120-degree energization method (step S9, “Change to 120-degree energization method”). Switching "). If it was originally driven by the 120-degree energization method, the energization method is maintained. As a result, an open phase is generated, and the magnetic saturation electromotive voltage can be observed.

しかし、120度通電方式に切り替える指令を出した直後は、通電方式の切り替えに伴い電圧が乱れているため、直ちには磁気飽和起電圧の観測を開始しない方が好ましい。このため、さらに回転数が低下して、第2の閾値、例えば1000min−1を下回ったら、磁気飽和起電圧検出部7は磁気飽和起電圧の検出を開始し(ステップS10、「磁気飽和起電圧測定区間」)、圧縮機2のロータ位置推定を行う。ロータ位置推定の精度を確保するために、或る程度の時間に亘って測定を行うことが好ましい。本実施例では概ね10秒以上測定を行うようにしている。 However, immediately after issuing the command to switch to the 120-degree energization method, it is preferable not to immediately start observing the magnetic saturation electromotive voltage because the voltage is disturbed as the energization method is switched. For this reason, when the rotational speed further decreases and falls below a second threshold value, for example, 1000 min −1 , the magnetic saturation electromotive force detection unit 7 starts detecting the magnetic saturation electromotive voltage (Step S10, “Magnetic saturation electromotive voltage”). Measurement section "), the rotor position of the compressor 2 is estimated. In order to ensure the accuracy of rotor position estimation, it is preferable to perform measurement over a certain period of time. In this embodiment, the measurement is performed for approximately 10 seconds or longer.

圧縮機2には、駆動を維持可能な最低回転数があり、回転数が低下していきこれに到達すると、急激に回転数が低下して停止する。第2の閾値は、この最低回転数よりも高い回転数であり、制御部4が圧縮機2の回転数を低下させていく際、この最低回転数に至らせる10秒以上前、好ましくは15秒以上前から磁気飽和起電圧を観測できるように設定することが好ましい。   The compressor 2 has a minimum number of rotations that can maintain the drive. When the number of rotations decreases and reaches this level, the number of rotations rapidly decreases and stops. The second threshold value is a rotational speed higher than the minimum rotational speed. When the control unit 4 decreases the rotational speed of the compressor 2, it is 10 seconds or more before reaching the minimum rotational speed, preferably 15 seconds. It is preferable to set so that the magnetic saturation electromotive force can be observed from a second or more before.

回転数の減速を開始してから第1の閾値に至るまで(ステップS8開始からステップS9実行まで)、第1の閾値から第2の閾値に至るまで(ステップS9開始からステップS10実行まで)、第2の閾値から後述する電圧印加を停止するまで(ステップS10開始からステップS11実行まで)、のそれぞれの間、回転数の減速速度は略一定にすることが好ましい。本実施例では、これらすべての間を通じて一定の減速速度に設定している。これにより、停止制御を滑らかに行うことができるとともに、磁気飽和起電圧の検出精度を好適にすることができる。   From the start of deceleration of the rotational speed until the first threshold is reached (from the start of step S8 to the execution of step S9), from the first threshold to the second threshold (from the start of step S9 to the execution of step S10), It is preferable that the deceleration speed of the rotational speed is substantially constant during each period from the second threshold until the voltage application described later is stopped (from the start of step S10 to the execution of step S11). In this embodiment, a constant deceleration speed is set throughout all of these. Thereby, stop control can be performed smoothly and the detection accuracy of the magnetic saturation electromotive voltage can be made suitable.

なお、本実施例のように第2の閾値前後で減速速度を略一定にしても良いが、例えば磁気飽和起電圧の検出を開始してからは、圧縮機2の回転数の減速速度を制御して、ロータの停止位置を制御してもよい。これにより、ロータ停止位置を、圧縮機2の下死点を避ける、上死点を避ける又は上死点に設定させるようにすることもできる。下死点を避ける場合、圧縮機2の起動直後、すなわち低速時の運転で流体の圧縮を行う必要が低減できるので、起動を容易に行いやすくなる。   Although the deceleration speed may be substantially constant before and after the second threshold as in this embodiment, for example, after the detection of the magnetic saturation electromotive force is started, the deceleration speed of the rotation speed of the compressor 2 is controlled. Then, the stop position of the rotor may be controlled. Thereby, the rotor stop position can be set to avoid the bottom dead center of the compressor 2, avoid the top dead center, or set to the top dead center. When avoiding the bottom dead center, it is possible to reduce the necessity of compressing the fluid immediately after the compressor 2 is started, that is, at a low speed, so that the startup can be easily performed.

モータの回転数が十分に低下して、圧縮機2の最低回転数又はこの近傍の回転数である第3の閾値、例えば100min−1に到達したら、制御部4はモータへの電圧の印加を停止する(ステップS11)。磁気飽和起電圧検出部7が観測していた磁気飽和起電圧の情報に基づいて、圧縮機制御部5は停止時のロータ位置を推定する。圧縮機2は、この推定した位置情報を保存する(ステップS12)。この情報の保存は、圧縮機2内部または外部の記憶装置に保存させることで実行できる。 When the rotational speed of the motor is sufficiently lowered and reaches a third threshold value, for example, 100 min −1 , which is the minimum rotational speed of the compressor 2 or the rotational speed in the vicinity thereof, the control unit 4 applies voltage to the motor. Stop (step S11). Based on the information of the magnetic saturation electromotive voltage that the magnetic saturation electromotive voltage detection unit 7 has observed, the compressor control unit 5 estimates the rotor position at the time of stop. The compressor 2 stores the estimated position information (step S12). This information can be stored by storing it in the storage device inside or outside the compressor 2.

その後、再び圧縮機運転の開始要求があった場合(ステップS1,Yes)、保存した位置情報を呼び出す(ステップS2)。これにより、効果的な運転初期条件の決定(ステップS3)を行うことができる。   Thereafter, when there is a request to start the compressor operation again (step S1, Yes), the stored position information is called (step S2). Thereby, the effective driving | running | working initial condition can be determined (step S3).

なお、120度通電方式への切替え回転数(第1の閾値)、および磁気飽和起電圧検出開始の回転数(第2の閾値)、モータへの電圧の印加を停止する時の回転数(第3の閾値)は、前述の数値に限られるものではない。   Note that the number of rotations for switching to the 120-degree energization method (first threshold value), the number of rotations at which magnetic saturation electromotive voltage detection starts (second threshold value), and the number of rotations when the voltage application to the motor is stopped (first value). The threshold value 3 is not limited to the above-described numerical value.

以上の動作により、圧縮機制御部5は停止中の圧縮機のロータ位置を把握することができるから、起動時に改めてロータを所定の位置に合せる必要性が低減又はなくなるため、消費電力量を低減した圧縮機、および圧縮機を搭載した機器を提供することができる。   With the above operation, the compressor control unit 5 can grasp the rotor position of the stopped compressor, so that the necessity of re-aligning the rotor to a predetermined position at the time of start-up is reduced or eliminated, thereby reducing power consumption. And a device equipped with the compressor can be provided.

1 筐体
2 圧縮機
3 冷媒循環部
4 制御部
5 圧縮機制御部
6 インバータ回路部
7 磁気飽和起電圧検出部
8 モータ
9 三相(U相、V相、W相)
DESCRIPTION OF SYMBOLS 1 Case 2 Compressor 3 Refrigerant circulation part 4 Control part 5 Compressor control part 6 Inverter circuit part 7 Magnetic saturation electromotive voltage detection part 8 Motor 9 Three phase (U phase, V phase, W phase)

Claims (4)

回転子と、固定子と、を有し、120度通電方式による駆動が可能なモータを有する圧縮機であって、
当該圧縮機を起動させる場合、
前記回転子の停止位置情報を利用して運転初期条件を決定することを特徴とする圧縮機。
A compressor having a rotor and a stator and having a motor capable of being driven by a 120-degree conduction method,
When starting the compressor,
A compressor characterized in that initial operating conditions are determined using stop position information of the rotor.
当該圧縮機を停止させる場合、
前記回転子の回転数を減少させていき、
前記120度通電方式を実行させて磁気飽和起電圧を測定し、
前記回転子を停止させる指令を出力し、
該測定した磁気飽和起電圧の情報を利用して前記回転子の停止位置情報を保存し、
当該圧縮機を次回起動させる場合、前記停止位置情報を利用して運転初期条件を決定することを特徴とする請求項1に記載の圧縮機。
When stopping the compressor,
Reduce the number of rotations of the rotor,
The magnetic saturation electromotive force is measured by executing the 120 degree energization method,
Outputs a command to stop the rotor,
The information on the measured magnetic saturation electromotive voltage is used to store the rotor stop position information,
2. The compressor according to claim 1, wherein when the compressor is started next time, an initial operation condition is determined using the stop position information.
前記運転初期条件は、前記固定子の3相コイルの通電パターンを含むことを特徴とする請求項1又は2に記載の圧縮機。   The compressor according to claim 1, wherein the initial operation condition includes a current-carrying pattern of a three-phase coil of the stator. 請求項1乃至3何れか一項に記載の圧縮機を有することを特徴とする機器。   A device comprising the compressor according to any one of claims 1 to 3.
JP2017069573A 2017-03-31 2017-03-31 Compressors and equipment equipped with compressors Expired - Fee Related JP6704372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017069573A JP6704372B2 (en) 2017-03-31 2017-03-31 Compressors and equipment equipped with compressors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069573A JP6704372B2 (en) 2017-03-31 2017-03-31 Compressors and equipment equipped with compressors

Publications (2)

Publication Number Publication Date
JP2018174602A true JP2018174602A (en) 2018-11-08
JP6704372B2 JP6704372B2 (en) 2020-06-03

Family

ID=64107603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069573A Expired - Fee Related JP6704372B2 (en) 2017-03-31 2017-03-31 Compressors and equipment equipped with compressors

Country Status (1)

Country Link
JP (1) JP6704372B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247982A (en) * 1996-03-11 1997-09-19 Mitsubishi Electric Corp Controller of refrigerator with freezer
JPH10285984A (en) * 1997-04-03 1998-10-23 Nippon Densan Corp Driving device
JP2007092686A (en) * 2005-09-29 2007-04-12 Sharp Corp Drive device for compressor
JP2009189176A (en) * 2008-02-07 2009-08-20 Renesas Technology Corp Drive system for synchronous motor
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247982A (en) * 1996-03-11 1997-09-19 Mitsubishi Electric Corp Controller of refrigerator with freezer
JPH10285984A (en) * 1997-04-03 1998-10-23 Nippon Densan Corp Driving device
JP2007092686A (en) * 2005-09-29 2007-04-12 Sharp Corp Drive device for compressor
JP2009189176A (en) * 2008-02-07 2009-08-20 Renesas Technology Corp Drive system for synchronous motor
JP2014079041A (en) * 2012-10-09 2014-05-01 Hitachi Appliances Inc Motor controller, and refrigerator and electrical machine using the same

Also Published As

Publication number Publication date
JP6704372B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP4075338B2 (en) Control method of electric compressor
KR100254932B1 (en) Refrigerating apparatus, and refrigerator control and brushless motor starter used in same
US5518373A (en) Compressor start-up controller
KR100775703B1 (en) Brushless motor start method, drive device, and refrigerator
CN106575930B (en) Method for braking a compressor, and compressor for a refrigeration device, air-conditioning device or heat pump, and refrigeration device, air-conditioning device or heat pump having said compressor
CN106575934B (en) Method for stopping a compressor and compressor for a refrigeration device
JP3672637B2 (en) Compressor motor control device
JPH0599165A (en) Starting control device for compressor
JP2016163480A (en) Compressor motor control device
JP3776102B2 (en) Brushless motor control device
JP6704372B2 (en) Compressors and equipment equipped with compressors
JP2010252406A (en) Motor drive and refrigerator using the same
KR101256749B1 (en) Motor-driven compressor and controller therefor
WO2007116730A1 (en) Apparatus and method for controlling reciprocal compressor
JP2012186876A (en) Compressor drive unit and refrigerator using the same
JP2016226184A (en) Compressor motor control device and electrically-driven compressor
KR20120096268A (en) Driving method of electric compressor of vehicle
JP3669972B2 (en) Refrigerator control device
JP7006558B2 (en) Electric compressor
JP2007040281A (en) Reciprocating compressor control device
US11955915B2 (en) Variable-frequency compressor with adaptive heating power control and method for operating the same
JP2014155268A (en) Driving device for reciprocal compressor
JP2009027923A (en) Motor controller
JP2006304444A (en) Motor driving unit and refrigerator
CN109964398B (en) Method for stopping a reciprocating piston compressor, refrigeration device, reciprocating piston compressor for an air-conditioning device or heat pump, and refrigeration device, air-conditioning device or heat pump

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200512

R150 Certificate of patent or registration of utility model

Ref document number: 6704372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees