JP2018173327A - Method for evaluating water-resisting property of coating film - Google Patents

Method for evaluating water-resisting property of coating film Download PDF

Info

Publication number
JP2018173327A
JP2018173327A JP2017071132A JP2017071132A JP2018173327A JP 2018173327 A JP2018173327 A JP 2018173327A JP 2017071132 A JP2017071132 A JP 2017071132A JP 2017071132 A JP2017071132 A JP 2017071132A JP 2018173327 A JP2018173327 A JP 2018173327A
Authority
JP
Japan
Prior art keywords
water
coating film
flat
evaluation method
water resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017071132A
Other languages
Japanese (ja)
Other versions
JP6878094B2 (en
Inventor
由佳子 高橋
Yukako Takahashi
由佳子 高橋
崇 寺村
Takashi Teramura
崇 寺村
水野 誠
Makoto Mizuno
誠 水野
修 坂田
Osamu Sakata
修 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kose Corp
Original Assignee
Kose Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kose Corp filed Critical Kose Corp
Priority to JP2017071132A priority Critical patent/JP6878094B2/en
Publication of JP2018173327A publication Critical patent/JP2018173327A/en
Application granted granted Critical
Publication of JP6878094B2 publication Critical patent/JP6878094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating a water-resisting property of a coating film that can be executed rapidly, easily, and inexpensively and can be performed with a high level of reproductivity.SOLUTION: A method for evaluating a water-resisting property of a coating film includes the step of: immersing a flat film on which a test subject material is applied and is dried into a water tank container containing water; rotating the container with the flat film being fixed, thereby generating water flow of a specific flow rate to the flat film; bringing the water flow into contact with the test subject material; and measuring a residual ratio of the material.SELECTED DRAWING: Figure 1

Description

本発明は、塗膜の耐水性評価方法に関し、詳細には、被験物質の水浴後の残存性をin vitro試験法により評価する方法に関する。   The present invention relates to a method for evaluating the water resistance of a coating film, and in particular, relates to a method for evaluating the persistence of a test substance after a water bath by an in vitro test method.

日焼け止め料等の耐水性は近年求められている機能の1つであり、各社が技術開発を行っている。そして、かかる耐水性の評価方法としては、in vivo試験法が一般的に行われており、具体的には、被験者の皮膚に試料を塗布し、該塗布した部位を所定の時間・回数で水浴させ、その後、SPF残存率を評価するというものである(特許文献1、非特許文献1)。   Water resistance such as sunscreen is one of the functions that have been demanded in recent years, and each company is developing technology. As such a water resistance evaluation method, an in vivo test method is generally performed. Specifically, a sample is applied to the skin of a subject, and the applied site is bathed in a predetermined time and number of times. Then, the SPF residual rate is evaluated (Patent Document 1, Non-Patent Document 1).

詳細には、被験者はジャグジープールなどに入浴して塗布部位に水流を当てる方法が取られるが、当該方法によると、塗布部位に安定して水流を当てることが困難であり、検査結果にバラつきが見られた。また、測定期間が長期にわたること、測定費用も高額になること、被験者への負担が大きいなど、課題も多かった。   Specifically, the subject takes a method of bathing in a jacuzzi pool or the like and applying a water flow to the application site, but according to the method, it is difficult to stably apply a water flow to the application site, and the test results vary. It was seen. In addition, there were many problems such as a long measurement period, high measurement costs, and a heavy burden on the subjects.

さらに、かかる試験法によると、精緻な水浴条件を設定することが難しく、耐水性機能の差を検出することが困難な場合があった。   Further, according to such a test method, it is difficult to set precise water bath conditions, and it may be difficult to detect a difference in water resistance function.

そこで、かかる課題を解決するために、短期間で簡便に実施でき、低コストで再現性の高いin vitro試験法の要請が高まっていた。   Therefore, in order to solve such a problem, there has been a growing demand for an in vitro test method that can be easily carried out in a short period of time and is low in cost and highly reproducible.

かかるin vitro試験法として考えられるのが、試料を塗布した平膜をビーカー内の水に浸漬し、かかるビーカー内の水をスターラーにより攪拌するという方法である。しかしながら、かかる方法によると、ビーカー内の上部と下部において水流の差が生じ、その結果、平膜の上下で結果のバラつきが生じることが分かった。   A conceivable example of such an in vitro test method is to immerse a flat film coated with a sample in water in a beaker and stir the water in the beaker with a stirrer. However, it has been found that according to such a method, a difference in water flow occurs between the upper part and the lower part in the beaker, and as a result, the result varies between the upper and lower parts of the flat membrane.

また、その他の方法として、タライ状の水槽容器内において、該容器の周壁に沿って回流する水流をポンプによって発生させ、かかる水流中に当たるように平膜を設置するという方法も考えられる。しかしながら、この方法によると、水槽容器の外側と内側において水流の差が生じ、また、ポンプの前後においても水流の差が生じるため、平膜の設置場所の違いで結果のバラつきが生じ、その結果、同じ条件で試験を実施する為には1回の試験で1サンプルしか測定できないことが分かった。   As another method, a method is also conceivable in which a water flow that circulates along the peripheral wall of the container is generated by a pump in a tarai-shaped water tank container, and a flat membrane is installed so as to hit the water flow. However, according to this method, there is a difference in water flow between the outside and inside of the aquarium container, and there is also a difference in water flow before and after the pump. In order to carry out the test under the same conditions, it was found that only one sample can be measured in one test.

特表2002−506435Special table 2002-506435

GUIDELINES FOR EVALUATING SUN PRODUCT WATER RESISTANCE, December 2005(COLIPA)GUIDELINES FOR EVALUATING SUN PRODUCT WATER REISTANCE, December 2005 (COLIPA)

そこで本発明は、従来の塗膜の耐水性評価方法のかかる欠点を克服し、短期間で簡便に実施でき、低コストで再現性の高い塗膜の耐水性評価方法の提供をその課題とするものである。   Therefore, the present invention has an object to provide a method for evaluating the water resistance of a coating film that overcomes the drawbacks of the conventional method for evaluating water resistance of a coating film, can be easily implemented in a short period of time, and is low in cost and high in reproducibility. Is.

本発明は、上記課題を解決するものであり、被験物質を塗布して乾燥させた平膜を、内部に水を収容した水槽容器に浸漬し、該平膜の位置は固定したままで該水槽容器を回転させることにより該平膜に対する所定の流速の水流を発生させ、該水流を被験物質に当てた後、被験物質の残存率を測定する塗膜の耐水性評価方法である。   The present invention solves the above-mentioned problem, and immerses a flat film coated with a test substance and dried in a water tank container containing water therein, and the position of the flat film remains fixed. This is a method for evaluating the water resistance of a coating film, in which a water flow having a predetermined flow velocity is generated with respect to the flat membrane by rotating a container, the water flow is applied to a test substance, and then the residual rate of the test substance is measured.

本発明にかかる塗膜の耐水性評価方法は、水槽容器を回転させることにより水流が安定し、これにより、水浴条件を精緻化することが可能となった。その結果、水流の差による検査結果のバラつきが解消された。   In the method for evaluating water resistance of a coating film according to the present invention, the water flow is stabilized by rotating the water tank container, thereby making it possible to refine the water bath conditions. As a result, the variation in test results due to the difference in water flow was eliminated.

また、本発明にかかる塗膜の耐水性評価方法によると、水槽内における水流が安定するため、複数サンプルの測定を同時に行うことができる。   In addition, according to the water resistance evaluation method for a coating film according to the present invention, since the water flow in the water tank is stabilized, a plurality of samples can be measured simultaneously.

また、本発明にかかる塗膜の耐水性評価方法によると、被験者による試験法に比べ、短期間、低コストで簡便に測定することができる。   Moreover, according to the method for evaluating water resistance of a coating film according to the present invention, it is possible to easily measure in a short period of time and at a low cost as compared with a test method by a subject.

本発明に係る塗膜の耐水性評価方法で用いられる水槽容器を模式的に示した平面図。The top view which showed typically the water tank container used with the water resistance evaluation method of the coating film which concerns on this invention. (a)本発明に係る塗膜の耐水性評価方法の水浴方法で得られたPMMA平膜の酸化亜鉛分布をヒートマップとして可視化したもの、(b)異なる水浴方法で得られたPMMA平膜の酸化亜鉛分布をヒートマップとして可視化したもの。(A) The zinc oxide distribution of the PMMA flat film obtained by the water bath method of the water resistance evaluation method of a coating film according to the present invention is visualized as a heat map, (b) the PMMA flat film obtained by a different water bath method Visualization of zinc oxide distribution as a heat map.

以下、本発明にかかる塗膜の耐水性評価方法の実施態様を具体的に説明する。なお、本発明はこれら実施態様に何ら制約されるものではない。   Hereinafter, embodiments of the method for evaluating water resistance of a coating film according to the present invention will be specifically described. Note that the present invention is not limited to these embodiments.

本発明にかかる塗膜の耐水性評価方法は、被験物質を塗布して乾燥させた平膜を、水を収容した水槽容器に浸漬し、該平膜の位置は固定したままで該水槽容器を回転させることにより該平膜に対する所定の流速の水流を発生させ、該水流を被験物質に当てた後、乾燥させ、被験物質の残存率を測定する。以下、その具体的な試験方法と条件について説明する。   The method for evaluating the water resistance of a coating film according to the present invention includes immersing a flat membrane coated with a test substance and drying it in a water tank container containing water, and fixing the position of the flat film to the water tank container. By rotating, a water flow with a predetermined flow velocity with respect to the flat membrane is generated, the water flow is applied to the test substance, and then dried, and the residual ratio of the test substance is measured. Specific test methods and conditions will be described below.

本発明の塗膜の耐水性評価方法に使用される水槽容器は、内部に水を収容できる水槽容器であり、その形状は、円形の底部とその縁部から立設する周壁よりなる、いわゆるタライ状であることが好ましい。該水槽容器は、その内部に一定量の水を収容することができる容量を備えた大きさであることが好ましく、具体的には、その直径が10〜200cmが好ましく、より好ましくは30〜100cm、深さが5〜50cmが好ましく、より好ましくは10〜30cmの範囲で形成されたタライ状であることが好ましい。また、その材質については特に限定されないが、内部に水を収容した状態で水槽容器を回転させたときに、内部の水にかかる遠心力により周壁に対する負荷に強度的に耐えられるものであればよい。   The water tank container used in the water resistance evaluation method for a coating film of the present invention is a water tank container that can contain water therein, and the shape thereof is a so-called tarai comprising a circular bottom and a peripheral wall standing from its edge. It is preferable that it is a shape. The water tank container is preferably of a size having a capacity capable of accommodating a certain amount of water inside, and specifically, the diameter is preferably 10 to 200 cm, more preferably 30 to 100 cm. The depth is preferably 5 to 50 cm, more preferably a talai shape formed in the range of 10 to 30 cm. The material is not particularly limited as long as it can withstand the load on the peripheral wall due to the centrifugal force applied to the water when the aquarium container is rotated with water contained therein. .

本発明の塗膜の耐水性評価方法に使用される平膜は、ポリメタクリル酸メチル樹脂製平膜、ポリエチレン製平膜、ポリプロピレン製平膜、セルロース製平膜、石英製平膜、摘出皮膚、人工皮革などを使用することができ、これらの中でも、MeOH溶液に溶解せず、紫外線を透過する性質を有するポリメタクリル酸メチル樹脂(Polymethyl methacrylate、以下、「PMMA」と略する)製の平膜が好ましい。さらに、かかるPMMA製の平膜において、人間の皮膚に対する被験物質の付着力や表面積により近づけるために、その表面に凹凸を形成したものがより好ましい。   The flat membrane used in the water resistance evaluation method of the coating film of the present invention is a polymethyl methacrylate resin flat membrane, a polyethylene flat membrane, a polypropylene flat membrane, a cellulose flat membrane, a quartz flat membrane, an isolated skin, Artificial leather and the like can be used, and among these, a flat membrane made of polymethyl methacrylate resin (hereinafter, abbreviated as “PMMA”) which does not dissolve in MeOH solution and has a property of transmitting ultraviolet rays. Is preferred. Furthermore, in this flat film made of PMMA, in order to make it closer to the adhesion force and surface area of the test substance to human skin, it is more preferable that the surface is formed with irregularities.

本発明の塗膜の耐水性評価方法に使用される水槽容器は、水を内部に収容した状態で回転運動が加えられる。水槽容器の回転手段は、水槽容器を一定速度で回転させられるものであれば特に限定されない。かかる回転により、固定された平膜に対して所定の流速の水流が発生するが、かかる流速は、一定の流速であることが好ましく、固定された平膜に対して、5〜50cm/sの範囲が好ましく、10〜20cm/sの範囲が特に好ましい。また、かかる流速を発生させるために、水槽容器の回転速度も一定であることが好ましく、特に、10〜30rpmが好ましい。   The water tank container used in the water resistance evaluation method for a coating film of the present invention is subjected to rotational motion while water is contained inside. The means for rotating the water tank container is not particularly limited as long as the water tank container can be rotated at a constant speed. Such rotation generates a water flow having a predetermined flow rate with respect to the fixed flat membrane. The flow rate is preferably a constant flow rate, and is 5 to 50 cm / s with respect to the fixed flat membrane. The range is preferable, and the range of 10 to 20 cm / s is particularly preferable. Moreover, in order to generate this flow rate, it is preferable that the rotation speed of a water tank container is also constant, and 10-30 rpm is especially preferable.

平膜の固定手段については、水槽容器上から吊り下げた状態で平膜を水槽容器内に浸漬して固定できればよい。平膜の設置場所(水平軸)は、水槽容器内の水流が安定的に発生する周壁側が好ましく、周壁と水槽容器の回転軸(中心)の間の距離L1と、平膜と水槽容器の回転軸(中心)の間の距離L2との比率が、1:0.5〜1:0.95であることが好ましい。また、平膜の設置場所(垂直軸)に関し、水槽容器底面からの距離を1cm以上とすることにより、水面ないし容器底面からのゆらぎの影響を少なくすることができるため、好ましい。   As for the means for fixing the flat membrane, it is only necessary that the flat membrane is immersed in the water tank container and fixed in a state of being suspended from the water tank container. The installation location (horizontal axis) of the flat membrane is preferably the peripheral wall side where the water flow in the aquarium vessel is stably generated, the distance L1 between the peripheral wall and the rotation axis (center) of the aquarium vessel, and the rotation of the flat membrane and the aquarium vessel The ratio with the distance L2 between the axes (centers) is preferably 1: 0.5 to 1: 0.95. Moreover, regarding the installation location (vertical axis) of the flat membrane, it is preferable to set the distance from the bottom of the water tank container to 1 cm or more because the influence of fluctuation from the water surface or the bottom of the container can be reduced.

また、設置される平膜は1つだけに限定されず、複数個を同時に設置してもよい。その場合、図1に示すように、水槽容器の回転軸(中心)に対して同心円状に等間隔にて複数設置することが好ましい(図1中、矢印は水槽容器の回転方向および水流の方向を示す)。さらに、平膜の設置時の向きに関し、水流の乱れを防ぐために、容器中心を通る直線Xに対して外周側を水槽容器の回転方向に所定の角度α傾斜させることが好ましい。かかる角度αは、10〜80度が好ましい。このように、平膜を所定の角度で傾けることにより、平膜に当たった水流は周壁側へ逃げるため、水槽容器内における水流の乱れを最小限にすることができる。   Further, the number of flat membranes to be installed is not limited to one, and a plurality of flat membranes may be installed at the same time. In that case, as shown in FIG. 1, it is preferable to install a plurality of concentric circles at equal intervals with respect to the rotation axis (center) of the aquarium container (in FIG. 1, arrows indicate the rotation direction of the aquarium container and the direction of water flow Showing). Furthermore, with respect to the orientation at the time of installation of the flat membrane, it is preferable to incline the outer peripheral side with respect to the straight line X passing through the container center by a predetermined angle α in the rotation direction of the water tank container. The angle α is preferably 10 to 80 degrees. In this way, by tilting the flat membrane at a predetermined angle, the water flow hit the flat membrane escapes to the peripheral wall side, so that the disturbance of the water flow in the aquarium vessel can be minimized.

さらに、平膜を浸漬する水の温度は10〜50℃の範囲が好ましく、平膜を浸漬する時間は10〜480分の範囲が好ましく、平膜に塗布される被験試料の塗布量は0.1〜5mg/cmまたは0.1〜5μL/cmの範囲が好ましい。ただし、これらの条件は測定対象等によって異なる。 Furthermore, the temperature of the water for immersing the flat membrane is preferably in the range of 10 to 50 ° C., the time for immersing the flat membrane is preferably in the range of 10 to 480 minutes, and the coating amount of the test sample applied to the flat membrane is 0.00. A range of 1-5 mg / cm 2 or 0.1-5 μL / cm 2 is preferred. However, these conditions differ depending on the measurement object.

本発明の塗膜の耐水性評価方法の被験試料は、特に限定されず、例えば、メーキャップ化粧料、スキンケア化粧料、ボディー用化粧料、ヘアケア化粧料、医薬品、医薬部外品等を用いることができる。また、被験試料の剤型も特に限定されず、水系、油性系、乳化系(水中油乳化型、油中水乳化型)、可溶化系、粉体系、溶剤系等を用いることができる。また、被験試料の形態も特に限定されず、固形剤、半固形剤、液剤、スプレー剤、粉体等を用いることができる。これらの中でも、耐水性が求められる日焼け止め料、下地、リキッドファンデーション、パウダーファンデーションなどが挙げられる。   The test sample of the water resistance evaluation method for a coating film of the present invention is not particularly limited, and for example, makeup cosmetics, skin care cosmetics, body cosmetics, hair care cosmetics, pharmaceuticals, quasi drugs, and the like may be used. it can. Also, the dosage form of the test sample is not particularly limited, and water-based, oil-based, emulsion systems (oil-in-water emulsion type, water-in-oil emulsion type), solubilization system, powder system, solvent system and the like can be used. Further, the form of the test sample is not particularly limited, and a solid agent, a semisolid agent, a liquid agent, a spray agent, a powder, and the like can be used. Among these, sunscreens, bases, liquid foundations, powder foundations and the like that require water resistance are included.

本発明の塗膜の耐水性評価方法において、被験物質の残存率は、被験物質に含まれる紫外線吸収剤、紫外線散乱剤、またはその両方について水浴前後の値を測定し、該値をSPFシミュレーターに代入することにより求められる。なお、本発明の塗膜の耐水性評価方法において、被験物質の残存率を測定する方法はこれに限らず、SPFを予測する上で必要となる290〜400nmの波長領域について測定可能な通常の分光光度計、或いは積分球分光光度計、特にSPF予測を目的に開発されたSPFアナライザー(UV−1000SやUV−2000S、何れもラボスフェア社製)等を用い、その透過率測定により残存率を算出することができる。   In the water resistance evaluation method for a coating film of the present invention, the residual rate of the test substance is measured by measuring the value before and after the water bath for the UV absorber, the UV scattering agent, or both contained in the test substance, and using the SPF simulator. It is obtained by substituting. In addition, in the water resistance evaluation method of the coating film of the present invention, the method for measuring the residual ratio of the test substance is not limited to this, and it is possible to measure the wavelength range of 290 to 400 nm which is necessary for predicting SPF. Use a spectrophotometer or an integrating sphere spectrophotometer, especially SPF analyzers developed for SPF prediction (UV-1000S and UV-2000S, both manufactured by Labosphere) to calculate the residual rate by measuring the transmittance. can do.

以下、本発明を実施例により更に具体的に説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to this Example.

試 験 例 1
本発明にかかる塗膜の耐水性評価方法により、被験試料のSPF残存率を以下の手順により求めた。
(1)被験試料(下記処方の水中油型日焼け止め料)をPMMA平膜3cm(縦3cm、横1cm)に6μlを指サックを嵌めた人差し指にて均一に塗布し、15分間乾燥させた。
(2)直径が50cm、深さが15cmのタライ状の水槽容器に11cmの深さで水を入れ、PMMA平膜を固定した平板を水槽容器の回転軸から21cmの距離で、10cmの深さで浸漬するように設置した。その状態で水槽容器を回転させ、平板前の水流の流速が12〜14cm/s、水槽容器の回転速度が22rpmになるように調整した。
(3)被験試料を塗布したPMMA平膜を平板に固定し、該平膜を水槽容器に底面から1cmの位置に固定して浸漬させ、水槽容器を回転させて水浴を開始した。
(4)80分間経過した後、PMMA平膜を固定した平板を水槽容器内から取り出し、15分間乾燥させた。
(5)PMMA平膜をエネルギー分散型蛍光X線を用いてPMMA平膜にX線を照射し、試料から発生する蛍光X線強度及び分布を測定し、残存する紫外線散乱剤量を計測した。
(6)乾燥した平膜を1cm角に切断した。
(7)MeOH溶液を1ml入れたサンプル管に切断した平膜を入れた。
(8)30分超音波にかけ紫外線吸収剤を溶出した。
(9)抽出溶液をフィルターに通しながらHPLCサンプル管に移し、蓋をして、HPLCにより残存する紫外線吸収剤量を測定した。
(10)それぞれの測定結果から、水浴前の値と比較し紫外線吸収剤・散乱剤の残存率を求めた。
(11)得られた残存率から紫外線吸収剤・散乱剤の残存量を算出し、その値及び水浴前の配合量の値をSPFシミュレーター(BASF社製)へ代入し、水浴前及び水浴後SPF値を求めた。
(12)SPF残存率を(水浴後SPF−1)/(水浴前SPF−1)の計算式により求めた。以上の測定を3回行い、その結果を表1に示す。なお、水浴前のSPF値を測定する場合は、上記(1)の後に、上記(5)以下の手順を行えばよい。
(処方)
Test example 1
The SPF residual rate of the test sample was determined by the following procedure using the water resistance evaluation method for a coating film according to the present invention.
(1) A test sample (oil-in-water sunscreen with the following formulation) was uniformly applied to a PMMA flat membrane 3 cm 2 (length 3 cm, width 1 cm) with an index finger fitted with a finger sack and dried for 15 minutes. .
(2) Water is poured into a talai-shaped aquarium vessel having a diameter of 50 cm and a depth of 15 cm at a depth of 11 cm, and a flat plate on which a PMMA flat membrane is fixed is 10 cm deep at a distance of 21 cm from the rotation axis of the aquarium vessel. It was installed so as to be immersed. The water tank container was rotated in that state, and it adjusted so that the flow rate of the water flow before a flat plate might be 12-14 cm / s, and the rotation speed of the water tank container might be 22 rpm.
(3) The PMMA flat membrane to which the test sample was applied was fixed to a flat plate, and the flat membrane was fixed and immersed in a water tank container at a position 1 cm from the bottom, and the water tank was rotated to start a water bath.
(4) After 80 minutes, the flat plate on which the PMMA flat membrane was fixed was taken out of the water tank container and dried for 15 minutes.
(5) The PMMA flat film was irradiated with X-rays using energy dispersive fluorescent X-rays, the intensity and distribution of fluorescent X-rays generated from the sample were measured, and the amount of remaining UV scattering agent was measured.
(6) The dried flat film was cut into 2 square 1 cm.
(7) A cut flat membrane was placed in a sample tube containing 1 ml of MeOH solution.
(8) The ultraviolet absorber was eluted by applying ultrasonic waves for 30 minutes.
(9) The extracted solution was transferred to an HPLC sample tube while passing through a filter, capped, and the amount of remaining UV absorber was measured by HPLC.
(10) From the respective measurement results, the residual ratio of the ultraviolet absorber / scattering agent was obtained by comparison with the value before the water bath.
(11) The remaining amount of the UV absorber / scattering agent is calculated from the obtained residual rate, and the value and the blending amount value before the water bath are substituted into an SPF simulator (manufactured by BASF), and SPF before and after the water bath. The value was determined.
(12) The SPF residual ratio was determined by the following formula: (SPF-1 after water bath) / (SPF-1 before water bath). The above measurement was performed three times, and the results are shown in Table 1. In addition, what is necessary is just to perform the procedure of said (5) or less after said (1), when measuring the SPF value before a water bath.
(Prescription)

また、in vivo試験法により、上記実施例と同じ被験試料(水中油型日焼け止め料)のSPF残存率を求めた。具体的には、被験者の背部皮膚に2μL/cm塗布し、15分乾燥後、ジャグジープールに20分間の入浴を4回、計80分間行った。水浴前と水浴後のSPFを算出し、(水浴後SPF−1)/(水浴前SPF−1)からSPF残存率を求めた。以上の測定を3回行い、その結果を表1に示す。(比較例1) Moreover, the SPF residual rate of the same test sample (oil-in-water sunscreen) as in the above example was determined by an in vivo test method. Specifically, 2 μL / cm 2 was applied to the subject's back skin, dried for 15 minutes, and then bathed for 20 minutes in the jacuzzi pool four times for a total of 80 minutes. The SPF before and after the water bath was calculated, and the SPF residual ratio was calculated from (SPF-1 after water bath) / (SPF-1 before water bath). The above measurement was performed three times, and the results are shown in Table 1. (Comparative Example 1)

表1から明らかなように、in vivo(ヒト背部)試験法では3回の測定結果におけるSPF残存率のバラつきが大きいのに対し、本発明の評価法の場合は測定結果のバラつきが小さいことが分かった。   As is clear from Table 1, the SPF residual rate in the measurement results of three times is large in the in vivo test method, whereas the variation in the measurement results is small in the evaluation method of the present invention. I understood.

試 験 例 2 (実施例2、3)
本発明にかかる塗膜の耐水性評価方法により、被験試料のSPF残存率を以下の手順により求めた。
(1)被験試料(前記処方の水中油型日焼け止め料)をPMMA平膜3cm(縦3cm、横1cm)に6μlを指サックを嵌めた人差し指にて均一に塗布し、15分間乾燥させた。
(2)直径が50cm、深さが15cmのタライ状の水槽容器に11cmの深さで水を入れ、平板を水槽容器の回転軸から21cmの距離で、10cmの深さで浸漬するように設置した。その状態で水槽容器を回転させ、平板前の水流の流速が12〜14cm/s、水槽容器の回転速度が22rpmになるように調整した。
(3)被験試料を塗布したPMMA平膜を平板に固定し、該平膜を水槽容器に底面から1cmの位置に固定して回転している水槽容器に浸漬させて、水浴を開始した。
(4)80分間経過した後、PMMA平膜をセットした平板を水槽容器内から取り出し、15分間乾燥させた。
(5)PMMA平膜をエネルギー分散型蛍光X線を用いてPMMA平膜にX線を照射し、試料から発生する蛍光X線強度及び分布を測定し、残存する紫外線散乱剤量を計測した。
(6)乾燥した平膜を1cm角に切断した。
(7)MeOH溶液を1ml入れたサンプル管に切断した平膜を入れた。
(8)30分超音波にかけ紫外線吸収剤を溶出した。
(9)抽出溶液をフィルターに通しながらHPLCサンプル管に移し、蓋をして、HPLCにより残存する紫外線吸収剤量を測定した。
(10)それぞれの測定結果から、水浴前の値と比較し紫外線吸収剤・散乱剤の残存率を求めた。その結果を表2および表3に示す(実施例2、3)
Test Example 2 (Examples 2 and 3)
The SPF residual rate of the test sample was determined by the following procedure using the water resistance evaluation method for a coating film according to the present invention.
(1) A test sample (oil-in-water sunscreen of the above-mentioned formulation) was uniformly applied to a PMMA flat film 3 cm 2 (length 3 cm, width 1 cm) with an index finger fitted with a finger sack and dried for 15 minutes. .
(2) Place the water in a talai-shaped aquarium container having a diameter of 50 cm and a depth of 15 cm at a depth of 11 cm, and immerse the flat plate at a distance of 21 cm from the rotation axis of the aquarium container at a depth of 10 cm. did. The water tank container was rotated in that state, and it adjusted so that the flow rate of the water flow before a flat plate might be 12-14 cm / s, and the rotation speed of the water tank container might be 22 rpm.
(3) The PMMA flat membrane to which the test sample was applied was fixed to a flat plate, and the flat membrane was fixed to the water tank container at a position 1 cm from the bottom and immersed in a rotating water tank container to start a water bath.
(4) After 80 minutes, the flat plate on which the PMMA flat film was set was taken out of the water tank container and dried for 15 minutes.
(5) The PMMA flat film was irradiated with X-rays using energy dispersive fluorescent X-rays, the intensity and distribution of fluorescent X-rays generated from the sample were measured, and the amount of remaining UV scattering agent was measured.
(6) The dried flat film was cut into 1 cm 2 squares.
(7) A cut flat membrane was placed in a sample tube containing 1 ml of MeOH solution.
(8) The ultraviolet absorber was eluted by applying ultrasonic waves for 30 minutes.
(9) The extracted solution was transferred to an HPLC sample tube while passing through a filter, capped, and the amount of remaining UV absorber was measured by HPLC.
(10) From the respective measurement results, the residual ratio of the ultraviolet absorber / scattering agent was obtained by comparison with the value before the water bath. The results are shown in Tables 2 and 3 (Examples 2 and 3).

また、異なる水浴法として、被験試料(前記処方の油中水型日焼け止め料)を塗布したPMMA平膜を浸漬したビーカー内の水を、ビーカー内底部に配置したスターラーで80分間攪拌し、乾燥後に平膜の残存率を算出したものを表2および表3に示す。(比較例2、3)   Also, as a different water bath method, the water in the beaker in which the PMMA flat film coated with the test sample (water-in-oil type sunscreen of the above formulation) is immersed is stirred for 80 minutes with a stirrer placed at the bottom of the beaker and dried. Tables 2 and 3 show the flat film remaining rate calculated later. (Comparative Examples 2 and 3)

表2および表3から明らかなように、ビーカーによる水浴試験法では2回の測定結果における紫外吸収剤及び散乱剤残存率のバラつきが大きいのに対し、本発明の評価法の場合は測定結果のバラつきが小さいことが分かった。なお、試験例2では紫外吸収剤及び紫外線散乱剤の残存率を求めているが、紫外吸収剤の残存率または紫外線散乱剤の残存率の一方のみ求めた場合でも本発明の塗膜の耐水性評価方法の効果を得ることができることが分かった。   As is clear from Tables 2 and 3, in the water bath test method using a beaker, there are large variations in the residual ratio of the UV absorber and the scattering agent in the two measurement results, whereas in the evaluation method of the present invention, the measurement result I found that the variation was small. In Test Example 2, the residual ratios of the ultraviolet absorber and the ultraviolet scattering agent are obtained, but even when only one of the residual ratio of the ultraviolet absorbent and the residual ratio of the ultraviolet scattering agent is obtained, the water resistance of the coating film of the present invention is determined. It was found that the effect of the evaluation method can be obtained.

試 験 例 3
次に、一つの平膜内における水流のバラつきについて試験を行った結果を以下に示す。まず、本発明にかかる耐水性評価方法中、上記(1)ないし(4)の手順により、被験試料(前記処方の水中油型日焼け止め料)を塗布したPMMA平膜を80分間水浴させた後、乾燥後にPMMA平膜の酸化亜鉛分布をエネルギー分散型蛍光X線照射装置を用いヒートマップとして可視化したものを図2(a)に示す。なお、上記(1)の手順において、PMMA平膜3cm(縦3cm、横1cm)に1cmあたり2μlの割合で6μl塗布した。
Test example 3
Next, the results of tests on the variation in water flow in one flat membrane are shown below. First, in the water resistance evaluation method according to the present invention, the PMMA flat film coated with the test sample (oil-in-water sunscreen of the above formulation) was bathed for 80 minutes according to the procedures (1) to (4) above. FIG. 2A shows a visualization of the zinc oxide distribution of the PMMA flat film after drying as a heat map using an energy dispersive fluorescent X-ray irradiation apparatus. In the procedure (1), 6 μl of PMMA flat film was applied at a rate of 2 μl per 1 cm 2 on 3 cm 2 (3 cm long, 1 cm wide).

また、異なる水浴法として、被験試料(前記処方の油中水型日焼け止め料)を塗布したPMMA平膜を浸漬したビーカー内の水を、ビーカー内底部に配置したスターラーで80分間攪拌し、乾燥後にPMMA平膜の酸化亜鉛分布を同様にヒートマップとして可視化したものを図2(b)に示す。なお、上記(1)の手順において、PMMA平膜3cm(縦3cm、横1cm)に1cmあたり2μlの割合で6μl塗布した。 In addition, as a different water bath method, water in a beaker in which a PMMA flat film coated with a test sample (water-in-oil type sunscreen of the above formulation) is immersed is stirred for 80 minutes with a stirrer placed at the bottom of the beaker and dried. The zinc oxide distribution of the PMMA flat film later visualized as a heat map is shown in FIG. 2 (b). In the procedure (1), 6 μl of PMMA flat film was applied at a rate of 2 μl per 1 cm 2 on 3 cm 2 (3 cm long, 1 cm wide).

図2において、色の薄い部分は酸化亜鉛が付着している部分であり、色が濃い部分は酸化亜鉛が落ちている部分である。図2(a)から明らかなように、本発明にかかる耐水性評価方法における水浴法の場合は酸化亜鉛の分布が均一であり、よって、水流が被験試料に均一に当たってムラなく酸化亜鉛が落ちていることが分かった。   In FIG. 2, the light-colored portion is a portion where zinc oxide is adhered, and the dark-colored portion is a portion where zinc oxide is dropped. As is clear from FIG. 2 (a), in the case of the water bath method in the water resistance evaluation method according to the present invention, the distribution of zinc oxide is uniform, so that the water flow uniformly hits the test sample and the zinc oxide falls evenly. I found out.

これに対し、図2(b)のビーカーを用いた水浴法の場合、スターラーに近い下部は色が濃く、酸化亜鉛の残存量が少ないのに対し、スターラーから遠い上部では色が薄く、酸化亜鉛の残存量が多いことが分かった。すなわち、ビーカーを用いた水浴法では、被験試料に当たる水流が一定ではなく、酸化亜鉛の落ち方にもムラがあることが分かった。   On the other hand, in the case of the water bath method using the beaker of FIG. 2 (b), the lower part near the stirrer is dark in color and the residual amount of zinc oxide is small, whereas the upper part far from the stirrer is light in color, and the zinc oxide It was found that the residual amount of was large. In other words, in the water bath method using a beaker, it was found that the water flow hitting the test sample was not constant, and that the zinc oxide dropped off.

以上の通り、本発明の塗膜の耐水性評価方法によると、バラつきの少ない水浴条件が設定でき、その結果、in vivo 試験では検出の困難であった耐水機能の差を評価することが可能となった。さらに、処方骨格や配合成分による耐水性機能の差を評価できるようになった。   As described above, according to the water resistance evaluation method for a coating film of the present invention, it is possible to set water bath conditions with little variation, and as a result, it is possible to evaluate the difference in water resistance function that was difficult to detect in an in vivo test. became. Furthermore, it became possible to evaluate the difference in water resistance depending on the prescription skeleton and the compounding components.

本発明の塗膜の耐水性評価方法は、簡便な方法により短期間に低コストで試験結果を得ることができ、さらに、再現性が高いため、in vivo試験前のスクリーニングとしての活用が可能である。さらに、化粧料に限らず、その他の分野の塗膜の耐水性評価にも応用することが可能である。   The water resistance evaluation method of the coating film of the present invention can obtain test results at a low cost in a short time by a simple method, and furthermore, since it is highly reproducible, it can be used as a screening before an in vivo test. is there. Furthermore, it can be applied not only to cosmetics but also to water resistance evaluation of coatings in other fields.

1 … … 水槽容器
2 … … 平膜をセットした定規
L1 … … 水槽容器周壁と水槽容器の回転軸(中心)の距離
L2 … … 平膜と水槽容器の回転軸(中心)の距離
X … … 水槽容器の中心を通る直線
α … … 直線Xに対する平膜の設置角度
DESCRIPTION OF SYMBOLS 1 ...… Aquarium container 2…… Ruler with flat membrane set L1…… Distance between aquarium vessel peripheral wall and rotation axis (center) of aquarium vessel L2…… Distance between flat membrane and rotation axis (center) of aquarium vessel X…… Straight line passing through the center of the aquarium container α… Installation angle of the flat membrane relative to the straight line X

Claims (9)

被験物質を塗布して乾燥させた平膜を、水を収容した水槽容器に浸漬し、該平膜の位置は固定したままで該水槽容器を回転させることにより該平膜に対する所定の流速の水流を発生させ、該水流を被験物質に当てた後、被験物質の残存率を測定する塗膜の耐水性評価方法。   The flat membrane coated with the test substance and dried is immersed in a water tank container containing water, and the water flow at a predetermined flow rate with respect to the flat film is rotated by rotating the water tank container while the position of the flat film is fixed. The water resistance evaluation method of the coating film which measures the residual rate of a test substance after generating this and applying this water flow to a test substance. 前記水槽容器は、その直径が10〜200cm、深さが5〜50cmで形成されたタライ状であることを特徴とする請求項1に記載の塗膜の耐水性評価方法。   The method for evaluating the water resistance of a coating film according to claim 1, wherein the water tank container has a talai shape having a diameter of 10 to 200 cm and a depth of 5 to 50 cm. 前記水流の流速が、固定された平膜に対して10〜14cm/sであることを特徴とする請求項1または2に記載の塗膜の耐水性評価方法。   The water resistance evaluation method for a coating film according to claim 1 or 2, wherein the flow velocity of the water flow is 10 to 14 cm / s with respect to a fixed flat membrane. 前記水槽容器の周壁と該水槽容器の回転軸の間の距離と、前記平膜と前記回転軸の間の距離との比率が、1:0.5〜1:0.95であることを特徴とする請求項1ないし3のいずれかに記載の塗膜の耐水性評価方法。   The ratio of the distance between the peripheral wall of the aquarium container and the rotation axis of the aquarium container and the distance between the flat membrane and the rotation axis is 1: 0.5 to 1: 0.95. The water resistance evaluation method for a coating film according to any one of claims 1 to 3. 前記平膜が、水槽容器底面からの距離が1cm以上の位置に設置されていることを特徴とする請求項1ないし4のいずれかに記載の塗膜の耐水性評価方法。   The water resistance evaluation method for a coating film according to any one of claims 1 to 4, wherein the flat membrane is installed at a position where the distance from the bottom of the water tank container is 1 cm or more. 前記平膜が、前記水槽容器の回転軸に対して同心円状に等間隔に複数設置されていることを特徴とする請求項1ないし5のいずれかに記載の塗膜の耐水性評価方法。   The water resistance evaluation method for a coating film according to any one of claims 1 to 5, wherein a plurality of the flat membranes are provided at equal intervals in a concentric manner with respect to the rotation axis of the water tank container. 前記平膜が、前記水槽容器の中心を通る直線に対して外周側を水槽容器の回転方向に所定の角度で傾斜させて設置されていることを特徴とする請求項1ないし6のいずれかに記載の塗膜の耐水性評価方法。   7. The flat membrane is installed with an outer peripheral side inclined at a predetermined angle with respect to a straight line passing through the center of the aquarium container at a predetermined angle in the rotation direction of the aquarium container. The water resistance evaluation method of the coating film of description. 前記平膜が、ポリメタクリル酸メチル樹脂製の平膜であることを特徴とする請求項1ないし7のいずれかに記載の塗膜の耐水性評価方法。   The water resistance evaluation method for a coating film according to any one of claims 1 to 7, wherein the flat film is a flat film made of polymethyl methacrylate resin. 前記被験物質の残存率は、被験物質に含まれる紫外線吸収剤および/または紫外線散乱剤の水浴前後の値を測定することにより求められる請求項1ないし8のいずれかに記載の塗膜の耐水性評価方法。   The water resistance of the coating film according to any one of claims 1 to 8, wherein the residual ratio of the test substance is obtained by measuring values before and after a water bath of an ultraviolet absorber and / or an ultraviolet scattering agent contained in the test substance. Evaluation method.
JP2017071132A 2017-03-31 2017-03-31 Water resistance evaluation method for coating film Active JP6878094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071132A JP6878094B2 (en) 2017-03-31 2017-03-31 Water resistance evaluation method for coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071132A JP6878094B2 (en) 2017-03-31 2017-03-31 Water resistance evaluation method for coating film

Publications (2)

Publication Number Publication Date
JP2018173327A true JP2018173327A (en) 2018-11-08
JP6878094B2 JP6878094B2 (en) 2021-05-26

Family

ID=64108629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071132A Active JP6878094B2 (en) 2017-03-31 2017-03-31 Water resistance evaluation method for coating film

Country Status (1)

Country Link
JP (1) JP6878094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655207A (en) * 2021-07-21 2021-11-16 安徽五岳松纳米技术有限公司 Spray detection device for nano hydrophobic texture real stone paint water resistance experiment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387685U (en) * 1976-12-21 1978-07-19
JP2009216652A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Coated film corrosion resistance evaluating device and coated film corrosion resistance evaluating method
JP2011191274A (en) * 2010-03-16 2011-09-29 Mazda Motor Corp Method for evaluating deterioration degree of adhesive
JP2016006029A (en) * 2014-05-30 2016-01-14 花王株式会社 Cosmetic preparation for skin
WO2016173927A1 (en) * 2015-04-29 2016-11-03 Dsm Ip Assets B.V. Topical sunscreen emulsions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387685U (en) * 1976-12-21 1978-07-19
JP2009216652A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Coated film corrosion resistance evaluating device and coated film corrosion resistance evaluating method
JP2011191274A (en) * 2010-03-16 2011-09-29 Mazda Motor Corp Method for evaluating deterioration degree of adhesive
JP2016006029A (en) * 2014-05-30 2016-01-14 花王株式会社 Cosmetic preparation for skin
WO2016173927A1 (en) * 2015-04-29 2016-11-03 Dsm Ip Assets B.V. Topical sunscreen emulsions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655207A (en) * 2021-07-21 2021-11-16 安徽五岳松纳米技术有限公司 Spray detection device for nano hydrophobic texture real stone paint water resistance experiment
CN113655207B (en) * 2021-07-21 2023-12-15 安徽五岳松纳米技术有限公司 Spray detection device for water resistance experiment of nano hydrophobic texture real stone paint

Also Published As

Publication number Publication date
JP6878094B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
Wei et al. Aerosol microdroplets exhibit a stable pH gradient
Baij et al. A review of solvent action on oil paint
Ehrenberg et al. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye
Oppong et al. Microrheology and structure of a yield-stress polymer gel
US8365582B2 (en) Device for measuring viscosity/elasticity and method for measuring viscosity/elasticity
Rogers et al. Rotational diffusion of spherical colloids close to a wall
JP2018173327A (en) Method for evaluating water-resisting property of coating film
CN108333196A (en) A kind of ground water sensitivity analysis system and its control method
Song et al. Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets
Garcia-Diez et al. Nanoparticle characterization by continuous contrast variation in small-angle X-ray scattering with a solvent density gradient
Garcia-Diez et al. Simultaneous size and density determination of polymeric colloids by continuous contrast variation in small angle X-ray scattering
CN103751813B (en) A kind of ultrasonic coupling agent for photoacoustic tomography and preparation method thereof
Catsimpoolas et al. Electrophoresis with continuous scanning densitometry: Separation of cells in a density gradient
JP2802327B2 (en) Standard substance for quality confirmation in optical sample analyzer and its use
Crum et al. Instability development in heated human erythrocytes
JP2008101992A (en) Mammography equipment
JP2021162405A (en) Evaluation method of skin application composition
US2962592A (en) Dosimeter
SCHACHMAN et al. The physical properties of infective particles
US2712235A (en) Paint testing machine
RU2500998C2 (en) Method to calibrate optical measurement equipment in assessment of average diameter of dispersed particles
Cozzolino et al. Correlation between small-angle X-ray scattering spectra and apparent diffusion coefficients in the study of structure and interaction of sodium taurodeoxycholate micelles
CN110907420B (en) Device for measuring mass transfer equilibrium time between immiscible solution and liquid phase and measuring method using device
KR101398002B1 (en) Thin optical phantom for mimicking human body and method of manufacturing the same
Isaksen et al. Laser light scattering for determination of agglomeration in dispersed systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250