JP2018170297A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2018170297A
JP2018170297A JP2018149946A JP2018149946A JP2018170297A JP 2018170297 A JP2018170297 A JP 2018170297A JP 2018149946 A JP2018149946 A JP 2018149946A JP 2018149946 A JP2018149946 A JP 2018149946A JP 2018170297 A JP2018170297 A JP 2018170297A
Authority
JP
Japan
Prior art keywords
glass
solid
layer
battery
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018149946A
Other languages
Japanese (ja)
Inventor
和仁 小笠
Kazuhito Ogasa
和仁 小笠
巧 西之園
Takumi NISHINOSONO
巧 西之園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2018149946A priority Critical patent/JP2018170297A/en
Publication of JP2018170297A publication Critical patent/JP2018170297A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid-state battery, capable of preventing a battery from being deteriorated by preventing moisture (water vapor) from entering from the outside and also capable of exhibiting original charge and discharge characteristics by suppressing the inhibition of expansion/contraction of an all-solid-state battery electrode and suppressing a reaction between a glass layer and a battery element.SOLUTION: In an all-solid-state battery, a buffer layer is provided so as to cover a battery element including a positive electrode, a negative electrode and a solid electrolyte, and a glass layer is provided around the buffer layer covering a periphery of the battery element. By the configuration of the glass layer, an electrode can be expanded and contracted, and by suppressing a reaction between the glass layer and the battery element, the battery element can maintain long-term charge/discharge performance.SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池に関する。   The present invention relates to an all solid state battery.

無機固体電解質を用い、電極にも有機物を用いない全固体電池は、有機電解液の漏液や有機電解液からのガス発生の心配がないため、安全な電池として期待されている。また、全固体電池は、液系の電池と比較して電池反応以外の副反応が生じることが少ないため、液系の電池に比べて長寿命化が期待できる。   An all-solid battery that uses an inorganic solid electrolyte and does not use organic substances as an electrode is expected as a safe battery because there is no concern about leakage of the organic electrolyte or gas generation from the organic electrolyte. In addition, the all-solid-state battery is less likely to cause side reactions other than the battery reaction as compared with the liquid battery, so that it can be expected to have a longer life than the liquid battery.

このような全固体電池において、電池反応以外の副反応をより生じさせず、電池の劣化防止を図るため、外部からの水分(水蒸気)侵入を防ぐ必要がある。アルミラミネートパッケージングもコインカシメもいずれも接合部分に樹脂部分があるため、水分の侵入を完全には防げない。また、いずれもケーシングのための電池要素以外の体積が大きくなる。そのため、この体積が大きくなることを防ぎ、かつ確実に水分侵入を防ぐパッケージングが求められている。   In such an all-solid-state battery, it is necessary to prevent moisture (water vapor) from entering from the outside in order to prevent side reactions other than the battery reaction and prevent the battery from deteriorating. Since both aluminum laminate packaging and coin caulking have a resin part at the joint, moisture penetration cannot be completely prevented. In addition, in all cases, the volume other than the battery element for the casing is increased. Therefore, there is a need for packaging that prevents this volume from increasing and reliably prevents moisture intrusion.

例えば特許文献1の図6には、全固体電池の保存特性を向上させるために、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極とに介在する固体電解質とで構成される電池要素を含み、電解質の周りにガラスフリットからなる封止部を有する、全固体電池が記載されている。   For example, FIG. 6 of Patent Document 1 includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a solid electrolyte interposed between the positive electrode and the negative electrode in order to improve storage characteristics of an all-solid battery. An all-solid battery is described that includes a battery element that has a sealing portion made of glass frit around an electrolyte.

特開2007‐80812号公報JP 2007-80812 A

しかしながら、本発明者は、特許文献1のような全固体電池では、封止に用いるガラスによって、電極の膨張収縮が阻害され、またガラス層と電池要素との分解反応(電池要素中に含まれる正極層、負極層、固体電解質層の分解反応)により、電池の充放電特性を発揮できないおそれがある、という新たな技術課題を見出した。   However, in the all-solid-state battery as disclosed in Patent Document 1, the present inventor inhibits the expansion and contraction of the electrode by the glass used for sealing, and the decomposition reaction between the glass layer and the battery element (included in the battery element). A new technical problem has been found that there is a possibility that the charge / discharge characteristics of the battery may not be exhibited by the decomposition reaction of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer.

本発明は、この課題に鑑みてなされたものであって、その目的とするところは、外部からの水分(水蒸気)侵入を防いで電池の劣化防止が可能で、かつ全固体電池の電極の膨張収縮の阻害を抑制することやガラス層と電池要素との分解反応を抑制することにより、本来の充放電特性を発揮することが可能な、全固体電池を提供することにある。   The present invention has been made in view of this problem. The object of the present invention is to prevent the deterioration of the battery by preventing the entry of moisture (water vapor) from the outside, and the expansion of the electrode of the all-solid-state battery. An object of the present invention is to provide an all-solid-state battery capable of exhibiting original charge / discharge characteristics by suppressing the inhibition of shrinkage and suppressing the decomposition reaction between the glass layer and the battery element.

そこで、本発明者は、正極と負極と固体電解質とを含む電池要素を覆うように、所定の緩衝層を設けることにより、封止に用いるガラス層を設けても、電極の膨張収縮を可能にし、またガラス層と電池要素との分解反応を抑制することにより、長期間充放電性能を維持できることを見出した。
具体的には、本発明は以下のようなものを提供する。
Therefore, the present inventor has provided a predetermined buffer layer so as to cover the battery element including the positive electrode, the negative electrode, and the solid electrolyte, thereby enabling expansion and contraction of the electrode even if a glass layer used for sealing is provided. Moreover, it discovered that charging / discharging performance could be maintained for a long time by suppressing the decomposition reaction of a glass layer and a battery element.
Specifically, the present invention provides the following.

(1) 全固体電池であって、
電池要素と第一の緩衝層とガラス層と導電板を含み、
該電池要素は、正極層と負極層と固体電解質層とを含み、
第一の緩衝層は、該電池要素の周面上の少なくとも一部を被覆し、
該ガラス層は、該電池要素と該第一の緩衝層とが全固体電池外に露出しないように、少なくとも該第一の緩衝層の周面上に設けられ、
該導電板は、該電池要素の両主面上に配置される、
該全固体電池。
(2)該電池要素と該導電板の間に、該電池要素の少なくとも一部を被覆するように、第二の緩衝層を設ける、(1)に記載の全固体電池。
(3)該第一の緩衝層はセラミックスを含む、(1)又は(2)に記載の全固体電池。
(4)該ガラス層のガラスは、ガラス転移点(Tg)が500℃以下である、(1)〜(3)のいずれかに記載の全固体電池。
(5)該ガラス層のガラスは、B、TeO、A(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分を含有するガラスである、である、(1)〜(4)のいずれかに記載の全固体電池。
(6)該ガラス層のガラスは、A(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)及びD(式中、DはP、Vからなる群より選択される1種以上)成分を含有するガラスである、(1)〜(4)のいずれかに記載の全固体電池。
(7)該導電板は、ステンレス鋼又はCo基合金からなる、(1)〜(6)のいずれかに記載の全固体電池。
(8)該第二の緩衝層の材質が、気孔率が30%以上の、炭素、ステンレス鋼、ニッケル、ニッケル合金又はアルミニウムである、である、(1)〜(7)のいずれかに記載の全固体電池。
(1) An all-solid battery,
Including a battery element, a first buffer layer, a glass layer, and a conductive plate;
The battery element includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer,
The first buffer layer covers at least part of the peripheral surface of the battery element;
The glass layer is provided on at least the peripheral surface of the first buffer layer so that the battery element and the first buffer layer are not exposed outside the all-solid-state battery,
The conductive plate is disposed on both main surfaces of the battery element.
The all solid state battery.
(2) The all-solid-state battery according to (1), wherein a second buffer layer is provided between the battery element and the conductive plate so as to cover at least a part of the battery element.
(3) The all-solid-state battery according to (1) or (2), wherein the first buffer layer includes ceramics.
(4) The all-solid-state battery according to any one of (1) to (3), wherein the glass of the glass layer has a glass transition point (Tg) of 500 ° C. or lower.
(5) The glass of the glass layer is B 2 O 3 , TeO 2 , A 2 O 3 (wherein A is one or more selected from the group consisting of Al, Bi, La) and Rn 2 O ( In the formula, Rn is a glass containing a component (one or more selected from the group consisting of Li, Na, K, Rb, and Cs). Solid battery.
(6) The glass of the glass layer is A 2 O 3 (wherein A is one or more selected from the group consisting of Al, Bi, La), Rn 2 O (where Rn is Li, Na) , One or more selected from the group consisting of K, Rb and Cs) and D 2 O 5 (wherein D is one or more selected from the group consisting of P and V). The all solid state battery according to any one of (1) to (4).
(7) The all-solid-state battery according to any one of (1) to (6), wherein the conductive plate is made of stainless steel or a Co-based alloy.
(8) The material of the second buffer layer is carbon, stainless steel, nickel, nickel alloy or aluminum having a porosity of 30% or more, and any one of (1) to (7) All-solid battery.

本発明によれば、外部からの水分(水蒸気)侵入を防ぐためにガラス層を設けても、電池要素の膨張収縮を可能にすることやガラス層と電池要素との分解反応を抑制することにより、充放電性能等の電池性能を長期間維持できる、劣化しにくい全固体電池を提供できる。
また、本発明によれば、電池要素が正極層や負極層や固体電解質層をそれぞれ複数積層した積層体であり電極の膨張収縮が大きくなるおそれがある場合でも、この緩衝層とガラス層の構成により、電池要素の膨張収縮の阻害を抑制して長時間充放電性能を維持できる、全固体電池を提供できる。
According to the present invention, even if a glass layer is provided to prevent moisture (water vapor) intrusion from the outside, by allowing expansion and contraction of the battery element and suppressing the decomposition reaction between the glass layer and the battery element, It is possible to provide an all solid state battery that can maintain battery performance such as charge / discharge performance for a long period of time and hardly deteriorates.
Further, according to the present invention, even if the battery element is a laminate in which a plurality of positive electrode layers, negative electrode layers, and solid electrolyte layers are laminated, and the expansion and contraction of the electrode may be increased, the configuration of the buffer layer and the glass layer. Thus, it is possible to provide an all-solid-state battery that can inhibit the expansion and contraction of the battery element and maintain long-time charge / discharge performance.

全固体電池の一例を示す断面図である。(a)は正面断面図であり、(b)は(a)のA1−A2部の平面断面図である。It is sectional drawing which shows an example of an all-solid-state battery. (A) is front sectional drawing, (b) is a plane sectional view of A1-A2 part of (a). 第一の緩衝層の配置を説明するための図(平面図)である。It is a figure (plan view) for demonstrating arrangement | positioning of a 1st buffer layer. 実施例で作製するシートA〜Gに形成される、開口部の模式図である。It is a schematic diagram of the opening part formed in sheet | seat AG produced in an Example.

以下、必要に応じて図1から図3を参照しながら、本発明の全固体電池及びその製造方法の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。   Hereinafter, embodiments of an all solid state battery and a method for manufacturing the same according to the present invention will be described in detail with reference to FIGS. 1 to 3 as necessary. However, the present invention is not limited to the following embodiments. Instead, it can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.

(本発明の全固体電池の基本形態)
図1に示すように、本発明の全固体電池1は、電池要素5と第一の緩衝層4とガラス層3と導電板2とを含む。電池要素5は、正極層と負極層と固体電解質層とを含む。
電池要素5の周面上の少なくとも一部に第一の緩衝層4を被覆するが、電池要素5の周囲全面を被覆してもよい。
好ましくは、更に、電池要素5と導電板2の間に、電池要素5の主面の少なくとも一部を被覆するように、第二の緩衝層6を設ける。
ガラス層3は、電池要素5と第一の緩衝層4とが全固体電池1の外に露出しないように、少なくとも第一の緩衝層4の外側に設けられる。導電板5は、電池要素5の両主面上に配置される。
ここで、電池要素5の主面とは、電池要素の外側の面が、正極層のみの面側又は負極層のみの面側の面をいう。電池要素5の周面とは、電池要素5の主面以外の面をいう。
なお、図1や図2では、コイン型の(円筒状の)全固体電池を示しているが、本発明は、コイン型以外の形態(例えば四角柱のような多角形柱や楕円柱など)に変更して、実施することができる。
(Basic form of the all-solid-state battery of the present invention)
As shown in FIG. 1, the all solid state battery 1 of the present invention includes a battery element 5, a first buffer layer 4, a glass layer 3, and a conductive plate 2. Battery element 5 includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
The first buffer layer 4 is coated on at least a part of the peripheral surface of the battery element 5, but the entire periphery of the battery element 5 may be covered.
Preferably, a second buffer layer 6 is further provided between the battery element 5 and the conductive plate 2 so as to cover at least a part of the main surface of the battery element 5.
The glass layer 3 is provided at least outside the first buffer layer 4 so that the battery element 5 and the first buffer layer 4 are not exposed to the outside of the all-solid battery 1. The conductive plate 5 is disposed on both main surfaces of the battery element 5.
Here, the main surface of the battery element 5 refers to a surface on the surface side of only the positive electrode layer or the surface side of only the negative electrode layer on the outer surface of the battery element. The peripheral surface of the battery element 5 refers to a surface other than the main surface of the battery element 5.
1 and FIG. 2 show a coin-type (cylindrical) all-solid-state battery, but the present invention has a form other than a coin-type (for example, a polygonal column such as a square column or an elliptical column). Can be implemented.

(電池要素5について)
本発明の実施態様における電池要素5は、正極層と負極層と固体電解質層とを有し、電池反応に寄与する、電池の基本的な構成体である。固体電解質層は、正極層と負極層の間に配置されている。なお、本明細書では、正極層及び負極層を電極層と総称し、正極活物質及び負極活物質を電極活物質と総称して記載する。
電池要素5は、正極層と負極層と固体電解質層とが1層ずつ積層される形態でもよく、複数の正極層と複数の負極層と複数の固体電解質層とを積層する形態でもよい。
また、電池要素5の厚さは、体積効率(エネルギー密度の向上)の観点から、好ましくは外径の1/1000、より好ましくは1/100、さらに好ましくは1/10を下限とし、強度の観点から、好ましくは外径の1/2倍、より好ましくは1倍、さらに好ましくは2倍を上限とする。
(About battery element 5)
The battery element 5 in the embodiment of the present invention is a basic battery structure that has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer and contributes to a battery reaction. The solid electrolyte layer is disposed between the positive electrode layer and the negative electrode layer. In this specification, the positive electrode layer and the negative electrode layer are collectively referred to as an electrode layer, and the positive electrode active material and the negative electrode active material are collectively referred to as an electrode active material.
The battery element 5 may have a form in which a positive electrode layer, a negative electrode layer, and a solid electrolyte layer are stacked one by one, or may have a form in which a plurality of positive electrode layers, a plurality of negative electrode layers, and a plurality of solid electrolyte layers are stacked.
In addition, the thickness of the battery element 5 is preferably 1/1000 of the outer diameter, more preferably 1/100, and even more preferably 1/10 from the viewpoint of volume efficiency (improvement of energy density). From the viewpoint, the upper limit is preferably ½ times the outer diameter, more preferably 1 time, and even more preferably 2 times.

(正極層について)
本発明の実施態様における正極層は、下記正極活物質を含むが、下記固体電解質や、下記導電助剤を含んでいてもよい。正極層に接合される固体電解質層と正極層中の活物質とのイオン(例えばリチウムイオン)伝導パスを良好に形成する為に、正極層に、固体電解質や導電助剤が含まれるのが好ましい。
(About positive electrode layer)
The positive electrode layer in the embodiment of the present invention contains the following positive electrode active material, but may contain the following solid electrolyte or the following conductive auxiliary. In order to satisfactorily form an ion (for example, lithium ion) conduction path between the solid electrolyte layer bonded to the positive electrode layer and the active material in the positive electrode layer, the positive electrode layer preferably contains a solid electrolyte or a conductive aid. .

上記のものを含む正極層の作製は、例えば、電極活物質および導電助剤と共にイオン伝導性の固体電解質の粉末又は焼結後にイオン伝導性を発現する無機固体粉末を混合し、焼結や加圧成形などをすることにより行う。   The positive electrode layer including the above can be prepared, for example, by mixing an electrode active material and a conductive additive with an ion conductive solid electrolyte powder or an inorganic solid powder exhibiting ionic conductivity after sintering, and sintering or processing. This is done by pressure forming.

(負極層について)
本発明の実施態様における負極層は、下記負極活物質を含むが、下記固体電解質や導電助剤を含んでいてもよい。負極層に接合される固体電解質層と負極層中の活物質とのイオン(例えばリチウムイオン)伝導パスを良好に形成する為に、負極層に、イオン伝導助剤として、固体電解質が含まれるのが好ましい。
(About negative electrode layer)
The negative electrode layer in the embodiment of the present invention contains the following negative electrode active material, but may contain the following solid electrolyte and conductive aid. In order to satisfactorily form an ion (for example, lithium ion) conduction path between the solid electrolyte layer joined to the negative electrode layer and the active material in the negative electrode layer, the negative electrode layer contains a solid electrolyte as an ion conduction aid. Is preferred.

上記のものを含む負極層の作製は、例えば、電極活物質および導電助剤と共にイオン伝導性の固体電解質の粉末又は焼結後にイオン伝導性を発現する無機固体粉末を混合し、焼結や加圧成形などをすることにより行う。   The negative electrode layer including the above can be prepared, for example, by mixing an electrode active material and a conductive auxiliary agent with an ion conductive solid electrolyte powder or an inorganic solid powder exhibiting ionic conductivity after sintering, and sintering or processing. This is done by pressure forming.

(電極活物質)
電極活物質のうち正極活物質は、電池要素5の放電容量をより高めるために、イオン(例えばリチウムイオン)を吸蔵し易やすくすることができる物質であることが好ましい。例えば、LiFePO、LiCoPO、LiCoO、LiMnである。
(Electrode active material)
Of the electrode active materials, the positive electrode active material is preferably a material that can easily absorb ions (for example, lithium ions) in order to further increase the discharge capacity of the battery element 5. For example, LiFePO 4 , LiCoPO 4 , LiCoO 2 , LiMn 2 O 4 .

一方で、負極活物質は、電池要素5の放電容量をより高めるために、イオン(例えばリチウムイオン)を吸蔵し易やすくすることができる物質であることが好ましい。例えばLi(PO、LiFe(PO、LiFePO、LiTi12、SiOx(0.25≦x≦2)、CuSnである。 On the other hand, the negative electrode active material is preferably a substance that can easily store ions (for example, lithium ions) in order to further increase the discharge capacity of the battery element 5. For example, Li 2 V 2 (PO 4 ) 3 , Li 2 Fe 2 (PO 4 ) 3 , LiFePO 4 , Li 4 Ti 5 O 12 , SiOx (0.25 ≦ x ≦ 2), and Cu 6 Sn 5 .

(導電助剤)
本発明の実施態様では、電極層中に形成された狭い電子伝導経路を通じて伝導できる電流量を増大させ、電池要素5の充放電特性を高めるために、正極層を構成する正極材料中又は、負極層を構成する負極材料中に、導電助剤が含まれることが好ましい。
導電助剤として、炭素、並びにNi、Fe、Mn、Co、Mo、Cr、Ag及びCuの少なくとも1種以上からなる金属及びこれらの合金を用いることできる。また、チタン、ステンレス、アルミニウム等の金属や、白金、銀、金、ロジウム等の貴金属を用いてもよい。また、WOやSnOのような金属酸化物を用いてもよい。
(Conductive aid)
In the embodiment of the present invention, in order to increase the amount of current that can be conducted through the narrow electron conduction path formed in the electrode layer and to improve the charge / discharge characteristics of the battery element 5, It is preferable that a conductive additive is contained in the negative electrode material constituting the layer.
As the conductive additive, carbon, a metal composed of at least one of Ni, Fe, Mn, Co, Mo, Cr, Ag, and Cu, and alloys thereof can be used. Alternatively, a metal such as titanium, stainless steel, or aluminum, or a noble metal such as platinum, silver, gold, or rhodium may be used. It may also be used metal oxides such as WO 3 or SnO 2.

(固体電解質層)
固体電解質層は、下記固体電解質を含む層であり、正極層及び負極層の間に介在する、イオン伝導性(例えばリチウムイオン伝導性)を有する層である。
(Solid electrolyte layer)
The solid electrolyte layer is a layer including the following solid electrolyte, and is a layer having ion conductivity (for example, lithium ion conductivity) interposed between the positive electrode layer and the negative electrode layer.

(固体電解質)
電極層や固体電解質層に含まれる固体電解質は、イオン伝導性(例えばリチウムイオン伝導性)を有する材料を用いることができる。例えばNASICON型、β−Fe(SO型、及びペロブスカイト型から選ばれる酸化物の結晶や、LiO−P系ガラスやLiO−P−M’系のガラス(PがSiに置換されたものも含む。M’はAl、B、Y、Scである。)などのリチウムイオン伝導性を有するガラス、を含有する材料が挙げられる。
(Solid electrolyte)
As the solid electrolyte contained in the electrode layer or the solid electrolyte layer, a material having ion conductivity (for example, lithium ion conductivity) can be used. For example, an oxide crystal selected from NASICON type, β-Fe 2 (SO 4 ) 3 type, and perovskite type, Li 2 O—P 2 O 5 glass, Li 2 O—P 2 O 5 —M ′ 2 Examples thereof include materials containing lithium ion conductive glass such as O 3 -based glass (including those in which P is replaced by Si, M ′ is Al, B, Y, Sc).

(電池要素5の作製)
原料組成物から、焼結や加圧成形等により、電極層前駆体、固体電解質層前駆体をそれぞれ作製する。これらの前駆体を積層し、焼成や加圧成形等で各層を接合することにより、電池要素5を作製する。
(Production of battery element 5)
From the raw material composition, an electrode layer precursor and a solid electrolyte layer precursor are respectively produced by sintering, pressure molding, or the like. The battery element 5 is produced by laminating these precursors and bonding the layers by firing or pressure molding.

なお、電極層上に集電体を積層する場合は、薄膜状の金属層を接合しても良く、前駆体から焼成により形成しても良い。電極層自体の電子伝導性が高ければ、集電体はなくても良い。   In addition, when laminating | stacking a collector on an electrode layer, a thin metal layer may be joined and you may form by baking from a precursor. If the electrode layer itself has high electron conductivity, the current collector may be omitted.

ここで、電池要素5に含まれる固体電解質、電極活物質及び導電助剤の含有量とこれらの組成は、電池要素5を構成する固体電解質層及び/又は電極層を削り出して、電界放出形透過電子顕微鏡(FE−TEM)に搭載されたエネルギー損出分析装置若しくはX線分析装置、又は電界放出形走査顕微鏡(FE−SEM)に搭載されたX線分析装置を用いて特定することが可能である。このような定量分析や点分析を用いることで、例えば固体電解質の存在の有無やその組成比がわかる。X線分析装置を用いた場合、LiOは直接分析できないため、他の構成成分から電荷を算出することで、LiO含有量を推定する。 Here, the content of the solid electrolyte, the electrode active material and the conductive additive contained in the battery element 5 and the composition thereof are obtained by cutting out the solid electrolyte layer and / or the electrode layer constituting the battery element 5 to obtain a field emission type. It is possible to specify using an energy loss analyzer or X-ray analyzer mounted on a transmission electron microscope (FE-TEM), or an X-ray analyzer mounted on a field emission scanning microscope (FE-SEM) It is. By using such quantitative analysis or point analysis, for example, the presence or absence of a solid electrolyte and its composition ratio can be known. When an X-ray analyzer is used, Li 2 O cannot be analyzed directly, so the Li 2 O content is estimated by calculating the charge from other components.

(第一の緩衝層4について)
本発明の実施態様における第一の緩衝層4は、電池要素5の周面上の少なくとも一部を又は全部を被覆する層であり、電池要素5とガラス層3の間に設けられる層である。本発明の第一の緩衝層4には、所定の無機粒子を元とする材料(セラミックス等)を用いる。所定の無機粒子を元とする材料とは、電池要素5の膨張収縮を可能にし、電子絶縁性があり、電池要素5との反応性が低い、材料である。電池要素5の膨張収縮を可能にすることが求められるのは、サイクル特性の観点からである。電子絶縁性が求められるのは電気要素5の正極面や負極面に接触するため電極の短絡防止の観点からである。電池要素5との反応性が低いことが求められるのは、ガラス層3と電池要素5の反応(電池要素5中に含まれる正極層、負極層、固体電解質層の分解反応)を防ぐ観点からである。
また、耐水性を上げる上で吸湿性を有する材料や1000℃まで加熱しても放熱あるいは吸熱反応を示さず重量の増減が1%以下である材料を用いるとより好ましい。例えば、ZrO成分、SiO成分、MgO成分、Al成分やCaCO成分を含む材料であり、ZrO成分が95質量%以上含有する材料、SiO成分を95質量%以上含有する材料、Al成分が95質量%以上含有する材料、CaCO成分が95質量%以上含有する材料、ZrO成分が100質量の材料、SiO成分を100質量%以上の材料、Al成分が100質量%の材料、CaCO成分が100質量%の材料も挙げられる。
第一の緩衝層4の材料の形状は、例えば球状、繊維状、中空状の形状であるが、膨張収縮時の体積変化を吸収し、形状の崩れが少ない、繊維状の形状が好ましい。例えば、このような形状の材料として、Al成分及びSiO成分を含有するセラミック繊維や、シリカ繊維、アルミナ繊維、グラスウールの材料が挙げられる。
また、第一の緩衝層4の厚さは、電池要素5の膨張収縮の影響を吸収する観点とガラス層3と電池要素5の反応を抑制する観点から、好ましくは電池要素外径の1/1000、より好ましくは1/100、さらに好ましくは1/50を下限とし、エネルギー密度の観点から、好ましくは1/5、より好ましくは1/10、さらに好ましくは1/20を上限とする。
(About the first buffer layer 4)
The first buffer layer 4 in the embodiment of the present invention is a layer that covers at least a part or all of the peripheral surface of the battery element 5, and is a layer provided between the battery element 5 and the glass layer 3. . For the first buffer layer 4 of the present invention, a material (ceramics or the like) based on predetermined inorganic particles is used. The material based on the predetermined inorganic particles is a material that enables expansion and contraction of the battery element 5, is electronically insulating, and has low reactivity with the battery element 5. The battery element 5 is required to be able to expand and contract from the viewpoint of cycle characteristics. Electronic insulation is required from the viewpoint of preventing short-circuiting of the electrodes because they are in contact with the positive and negative electrode surfaces of the electric element 5. Low reactivity with the battery element 5 is required from the viewpoint of preventing the reaction between the glass layer 3 and the battery element 5 (the decomposition reaction of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer contained in the battery element 5). It is.
Further, in order to increase water resistance, it is more preferable to use a material having hygroscopicity or a material that does not exhibit heat dissipation or endothermic reaction even when heated to 1000 ° C. and has a weight increase or decrease of 1% or less. For example, a material containing a ZrO 2 component, a SiO 2 component, a MgO component, an Al 2 O 3 component or a CaCO 3 component, a material containing a ZrO 2 component of 95% by mass or more, and a SiO 2 component containing 95% by mass or more. Material, material containing 95% or more of Al 2 O 3 component, material containing 95% or more of CaCO 3 component, material containing ZrO 2 component of 100%, material containing SiO 2 component of 100% or more, Al 2 A material in which the O 3 component is 100% by mass and a material in which the CaCO 3 component is 100% by mass are also included.
The shape of the material of the first buffer layer 4 is, for example, a spherical shape, a fibrous shape, or a hollow shape, but a fibrous shape that absorbs a volume change at the time of expansion and contraction and has little shape collapse is preferable. For example, examples of the material having such a shape include ceramic fibers containing an Al 2 O 3 component and an SiO 2 component, silica fibers, alumina fibers, and glass wool materials.
In addition, the thickness of the first buffer layer 4 is preferably 1/0 of the outer diameter of the battery element from the viewpoint of absorbing the influence of expansion and contraction of the battery element 5 and suppressing the reaction between the glass layer 3 and the battery element 5. 1000, more preferably 1/100, more preferably 1/50 is the lower limit, and from the viewpoint of energy density, the upper limit is preferably 1/5, more preferably 1/10, and even more preferably 1/20.

(第一の緩衝層4の作製法)
電池要素5に塗布するための、第一の緩衝層4に用いるスラリー状の材料を準備する。電池要素5の周面上に、このスラリー状の材料を塗布し、このスラリー状の材料を乾燥させることにより、第一の緩衝層4を作製する。
(Method for producing first buffer layer 4)
A slurry-like material used for the first buffer layer 4 to be applied to the battery element 5 is prepared. The slurry-like material is applied on the peripheral surface of the battery element 5, and the slurry-like material is dried to produce the first buffer layer 4.

(ガラス層3について)
本発明の実施態様におけるガラス層3は、全固体電池1への外部からの水分(水蒸気)侵入を防ぐために設けられる層である。ガラス層3に用いるガラスは、ガラスの熱的安定性や化学的安定性を有し、外部からの水分(水蒸気)侵入を防ぎ、かつ粉体状態又はペーストとして扱いやすくする観点から、ガラス転移点(Tg)が500℃以下であるのが好ましく、400℃以下であるのが好ましく、350℃以下であるのが更に好ましい。例えば、酸化物基準のモル%で、所定量のB、TeO、A(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分を含有するガラスである(以下Te系ガラスという)や、所定量のA(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)、RnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)及びD(式中、DはP、Vからなる群より選択される1種以上)成分を含有するガラス(以下リン酸系ガラスという)を用いることができる。なお、「酸化物基準」とは、ガラス構成成分の原料として使用される炭酸塩や硝酸塩等が溶融時に全て分解され酸化物へ変化すると仮定した場合に、該生成酸化物の総和を100モル%として、ガラス中に含有される各成分を標記した組成である。
また、ガラス層3の厚さは、強度と水分透過性および耐久性の観点から、好ましくは0.01mm、より好ましくは0.02mm、さらに好ましくは0.05mmを下限とし、エネルギー密度の観点から、好ましくは0.5mm、より好ましくは0.3mm、さらに好ましくは0.2mmを上限とする。
(About glass layer 3)
The glass layer 3 in the embodiment of the present invention is a layer provided in order to prevent moisture (water vapor) from entering the all solid state battery 1 from the outside. The glass used for the glass layer 3 has a glass transition point from the viewpoint of having the thermal stability and chemical stability of the glass, preventing moisture (water vapor) from entering from the outside, and facilitating handling as a powder or paste. (Tg) is preferably 500 ° C. or less, preferably 400 ° C. or less, and more preferably 350 ° C. or less. For example, a predetermined amount of B 2 O 3 , TeO 2 , A 2 O 3 (wherein A is one or more selected from the group consisting of Al, Bi, and La) and Rn in mol% based on oxide. 2 O (wherein Rn is one or more selected from the group consisting of Li, Na, K, Rb and Cs) or a glass containing a predetermined amount of A 2 O (hereinafter referred to as Te glass). 3 (wherein A is one or more selected from the group consisting of Al, Bi and La), Rn 2 O (wherein Rn is selected from the group consisting of Li, Na, K, Rb and Cs) One or more) and D 2 O 5 (wherein D is one or more selected from the group consisting of P and V) components (hereinafter referred to as phosphate glass) can be used. The “oxide standard” means that the total amount of the generated oxides is 100 mol% when it is assumed that carbonates and nitrates used as raw materials for glass constituents are all decomposed and changed to oxides when melted. As a composition in which each component contained in the glass is marked.
Further, the thickness of the glass layer 3 is preferably 0.01 mm, more preferably 0.02 mm, and still more preferably 0.05 mm from the viewpoint of strength, moisture permeability and durability, and from the viewpoint of energy density. The upper limit is preferably 0.5 mm, more preferably 0.3 mm, and still more preferably 0.2 mm.

以下、Te系ガラスやリン酸塩系ガラスに含有される好ましい成分について説明する。なお、各成分はモル%にて表現する。モル%で表されるガラス組成は全て酸化物基準でのモル%で表されたものである。   Hereinafter, preferable components contained in the Te glass and the phosphate glass will be described. Each component is expressed in mol%. All glass compositions expressed in mol% are expressed in mol% on an oxide basis.

まず、Te系ガラスに含有される成分について記載する。   First, the components contained in the Te glass will be described.

TeO成分はガラス形成酸化物の役割を果たし、ガラスの安定性の向上に寄与し、500℃以下の低いガラス転移点(Tg)とするのにも寄与する成分である。このような観点から、TeO成分の含有量の上限は90%とするのが好ましく、70%とするのがより好ましく、65%とするのが最も好ましく、またTeO成分の含有量の下限は5%とするのが好ましく、15%とするのがより好ましく、20%とするのが最も好ましい。 The TeO 2 component is a component that plays the role of a glass-forming oxide, contributes to the improvement of the stability of the glass, and contributes to a low glass transition point (Tg) of 500 ° C. or lower. From such a viewpoint, the upper limit of the TeO 2 component content is preferably 90%, more preferably 70%, most preferably 65%, and the lower limit of the TeO 2 component content. Is preferably 5%, more preferably 15%, and most preferably 20%.

はガラスの形成酸化物であり、ガラスの安定性の向上に寄与する成分である。500℃以下の低いガラス転移点(Tg)とするのには、Bの含有量の上限は80%とすることが好ましく、60%とすることがより好ましく、50%とすることが最も好ましく、Bの含有量の下限は5%以上とするのが好ましく、8%以上とするのがより好ましく、12%以上とするのが最も好ましい。 B 2 O 3 is a glass-forming oxide and is a component that contributes to improving the stability of the glass. In order to obtain a low glass transition point (Tg) of 500 ° C. or lower, the upper limit of the content of B 2 O 3 is preferably 80%, more preferably 60%, and more preferably 50%. Most preferably, the lower limit of the content of B 2 O 3 is preferably 5% or more, more preferably 8% or more, and most preferably 12% or more.

Alはガラス安定性の向上に効果があり、特に熱処理においてガラスの安定性を維持するのに寄与する成分である。ガラスの安定性を保つために、Alの含有量の下限は0.1%とするのが好ましく、4%とするのがより好ましく、8%とするのが最も好ましい。しかし、Alの含有量が過剰に多い場合、ガラス転移点(Tg)が高くなると共に結晶化しやすくため、これらを防ぐために、Alの含有量の上限は40%とするのが好ましく、30%とするのがより好ましく、22%とするのが最も好ましい。 Al 2 O 3 is effective in improving the glass stability, and is a component that contributes to maintaining the stability of the glass particularly during heat treatment. In order to maintain the stability of the glass, the lower limit of the content of Al 2 O 3 is preferably 0.1%, more preferably 4%, and most preferably 8%. However, when the content of Al 2 O 3 is excessively large, the glass transition point (Tg) is increased and crystallization is facilitated. In order to prevent these, the upper limit of the content of Al 2 O 3 is 40%. Is preferable, 30% is more preferable, and 22% is most preferable.

ガラスを粉体状態やペースト状態にした後、被覆作業を行うとガラスが結晶化し、被覆作業(ガラス封止層を設ける作業)がしにくい。粉体状態/ペースト状態でも、安定なガラスを維持するためには、酸化物基準のモル%で表されたAl/TeO比は0.1以上が好ましく、0.15以上がより好ましく、0.2以上が最も好ましい。しかし、Al/TeO比が大きすぎるとガラス転移点(Tg)が高くなりすぎると共に結晶化しやすくなるため、その上限は1.5以下が好ましく、1.0以下がより好ましく、0.7以上が最も好ましい。 When the coating operation is performed after the glass is in a powder state or a paste state, the glass is crystallized, and the coating operation (operation for providing a glass sealing layer) is difficult. In order to maintain a stable glass even in the powder state / paste state, the Al 2 O 3 / TeO 2 ratio expressed in mol% based on the oxide is preferably 0.1 or more, more preferably 0.15 or more. Preferably, 0.2 or more is the most preferable. However, if the Al 2 O 3 / TeO 2 ratio is too large, the glass transition point (Tg) becomes too high and crystallization tends to occur, so the upper limit is preferably 1.5 or less, more preferably 1.0 or less, and 0 .7 or more is most preferable.

Bi成分はガラス形成酸化物の役割を果たし、特に熱処理においてガラスの安定性を維持することと、低Tg化(ガラスの低温処理化)に寄与する成分である。しかし、含有量が多すぎるとガラス安定性が損なわれ、ガラス化しづらくなるとともに化学的耐久性が悪化するおそれがある。よって、Bi量は上限を40%とするのが好ましく、15%とするのがより好ましく、5%とするのが最も好ましい。 The Bi 2 O 3 component plays the role of a glass-forming oxide, and is a component that contributes to maintaining the stability of the glass during heat treatment and lowering the Tg (lowering the glass temperature). However, when there is too much content, glass stability will be impaired, and it will become difficult to vitrify, and there exists a possibility that chemical durability may deteriorate. Therefore, the upper limit of Bi 2 O 3 content is preferably 40%, more preferably 15%, and most preferably 5%.

La成分は化学的耐久性の向上に寄与するが、含有量が多すぎるとガラス転移点(Tg)も上昇おそれがある。従って、La成分は、上限を30%とするのが好ましく、20%とするのがより好ましく、10%とするのが最も好ましい。また、特に前記効果を充分に得たい場合は下限を0.1%とするのが好ましく、0.2%とするのがより好ましく、0.3%とするのが最も好ましい。 The La 2 O 3 component contributes to the improvement of chemical durability, but if the content is too large, the glass transition point (Tg) may also increase. Therefore, the upper limit of the La 2 O 3 component is preferably 30%, more preferably 20%, and most preferably 10%. In particular, when it is desired to sufficiently obtain the above effect, the lower limit is preferably 0.1%, more preferably 0.2%, and most preferably 0.3%.

RnO(R=Li,Na,K,Cs)成分はガラス溶解の際にバッチの発泡性を抑え、ガラスの溶融性と安定性の向上、ガラス転移点(Tg)の低減及び400nmでの透過率向上に効果が大きい有用な成分であるが、多く入るとガラスの化学耐久性が悪くなりやすいので、上限を50%とするのが好ましく、45%とするのがさらに好ましい。 Rn 2 O (R = Li, Na, K, Cs) component suppresses the foamability of the batch during glass melting, improves the meltability and stability of the glass, reduces the glass transition point (Tg) and at 400 nm. Although it is a useful component having a large effect in improving the transmittance, the chemical durability of the glass tends to deteriorate when added in a large amount, so the upper limit is preferably 50%, and more preferably 45%.

次に、リン酸系ガラスに含有される成分について記載する。なお、A(A=Al、Bi、La)成分やRnO(R=Li、Na、K、Cs)成分については、上述の通りである。 Next, it describes about the component contained in phosphate glass. The A 2 O 3 (A = Al, Bi, La) component and the Rn 2 O (R = Li, Na, K, Cs) component are as described above.

成分はガラス骨格を形成する成分であり、ガラスの安定化に寄与する成分である。 P 2 O 5 component is a component for forming a glass network, which is a component that contributes to the stabilization of the glass.

成分は低Tg化(ガラスの低温処理化)に寄与する成分である。 V 2 O 5 component is a component that contributes to low Tg (low temperature treatment of glass).

ZrO成分は化学的耐久性の向上に寄与する成分である。任意に添加し得る成分であるが、含有量が多すぎるとガラスの溶融性と安定性も低下すると共にガラス転移点(Tg)も大幅に上昇する。従って、ZrO成分の含有量の上限を15%とするのが好ましく、10%とするのがより好ましく、5%とするのが最も好ましい。 The ZrO 2 component is a component that contributes to improvement of chemical durability. Although it is a component that can be optionally added, if the content is too large, the meltability and stability of the glass are lowered and the glass transition point (Tg) is also significantly increased. Therefore, the upper limit of the content of the ZrO 2 component is preferably 15%, more preferably 10%, and most preferably 5%.

ガラスのTgは、JOGIS(日本光学硝子工業会規格)8−2003に則り、熱膨張曲線の低温側と高温側の2つの直線部分を外挿して得られる交点から求める。   The Tg of the glass is determined from the intersection obtained by extrapolating two linear portions of the low temperature side and the high temperature side of the thermal expansion curve according to JOGIS (Japan Optical Glass Industry Association Standard) 8-2003.

なお、ガラス層3に用いられる材料(ガラス粉末)は、十分な耐候性をもち低温で封止処理できる材料であればよい。上述のTe系ガラスやリン酸塩系ガラス以外でも、ガラス層3に用いられる材料として、市販の電子部品気密封止・接着用などに適したガラス粉末を用いることもできる。具体的には、日立化成株式会社製環境適合バナジウム系低融点ガラス「バニーテクト」VP―1175(標準封止条件370℃ 10分)、VP―1176(標準封止条件380℃ 10分)、VP―1177(標準封止条件390℃ 10分)、VP―1179(標準封止条件400℃ 10分)や、旭硝子製低温シール用無鉛フリット KP312AS((標準封止条件430℃ 10分)、旭硝子製ガラスフリットT015を用いても良い。   In addition, the material (glass powder) used for the glass layer 3 should just be a material which has sufficient weather resistance and can be sealed at low temperature. In addition to the Te glass and phosphate glass described above, as a material used for the glass layer 3, a commercially available glass powder suitable for hermetic sealing / adhesion of electronic components can also be used. Specifically, environmentally-friendly vanadium-based low melting glass “Bunny Tect” VP-1175 (standard sealing condition 370 ° C. 10 minutes), VP-1176 (standard sealing condition 380 ° C. 10 minutes), VP- 1177 (standard sealing condition 390 ° C. 10 minutes), VP-1179 (standard sealing condition 400 ° C. 10 minutes), Asahi Glass lead-free frit KP312AS (standard sealing condition 430 ° C. 10 minutes), Asahi Glass glass Frit T015 may be used.

(ガラス層3の作製法)
第一の緩衝層4に塗布するための、ガラス層3に用いるスラリー状の材料を準備する。スラリーに用いるバインダーは、脱脂温度の点で、アクリルバインダーが最も好ましい。電池要素5と第一の緩衝層4とが全固体電池1外に露出しないように、少なくとも第一の緩衝層4の周面上に、このスラリー状の材料を塗布し、このスラリー状の材料を乾燥後に脱脂・焼成させることにより、ガラス層3を作製する。
(Production method of glass layer 3)
A slurry-like material used for the glass layer 3 to be applied to the first buffer layer 4 is prepared. The binder used for the slurry is most preferably an acrylic binder in terms of the degreasing temperature. The slurry-like material is applied on at least the peripheral surface of the first buffer layer 4 so that the battery element 5 and the first buffer layer 4 are not exposed to the outside of the all-solid battery 1. The glass layer 3 is produced by degreasing and baking after drying.

(導電板2について)
本発明の実施態様における導電板2は、集電体としての機能を有し、かつ外部からの水分(水蒸気)の侵入を防ぐためのものである。導電板2は、上述の電池要素5の両主面上に配置される。導電板2に用いられる材料としては、導電性と耐水性および耐熱性の観点から、耐熱性を有する例えばマルテンサイト系ステンレス鋼(SUS410)やCo基合金などの導電性を有した材料、又はグラッシーカーボンや、ガラスにカーボンを高分散させた導電性ガラスや、導電性セラミックスを用いることができる。
導電板2の厚さは、エネルギー密度の観点から重量が軽く薄い方が好ましく、好ましくは0.5mm、より好ましくは0.4mm、さらに好ましくは0.2mmを上限とする。また、強度の観点から、ある程度の厚みがある方が好ましく、導電板2の厚さは、好ましくは0.01mm、より好ましくは0.02mm、さらに好ましくは0.05mmを下限とする。
(About conductive plate 2)
The conductive plate 2 in the embodiment of the present invention has a function as a current collector and prevents moisture (water vapor) from entering from the outside. The conductive plate 2 is disposed on both main surfaces of the battery element 5 described above. As the material used for the conductive plate 2, from the viewpoint of conductivity, water resistance and heat resistance, heat-resistant materials such as martensitic stainless steel (SUS410) and Co-based alloys, or glassy are used. Carbon, conductive glass in which carbon is highly dispersed in glass, or conductive ceramics can be used.
The thickness of the conductive plate 2 is preferably light and thin from the viewpoint of energy density, preferably 0.5 mm, more preferably 0.4 mm, and still more preferably 0.2 mm. Further, from the viewpoint of strength, it is preferable that there is a certain thickness, and the thickness of the conductive plate 2 is preferably 0.01 mm, more preferably 0.02 mm, and still more preferably 0.05 mm.

(第二の緩衝層6について)
本発明の実施態様における第二の緩衝層6は、電池要素5の厚み方向の膨張収縮を可能にして充放電不良防止を図るための部材であり、電池要素5と導電板2の間に、電池要素5の少なくとも一部を被覆するように設ける。
第二の緩衝層6には、集電性の観点から、電子伝導性等を有し、電池要素5の膨張収縮を可能にするような柔軟性を有し、かつガラスを封止する際に変質しない耐熱性を有する材料を用いることができる。例えば、この材料は、気孔率が30%以上の(好ましくは気孔率が40%以上の、更に好ましくは気孔率が50%の)、炭素、ステンレス鋼、ニッケル、ニッケル合金又はアルミニウムである。具体的には、カーボンフェルト、発泡金属(多孔質金属)又はアルミメッシュからなる材料である。
また、第二の緩衝層6の厚さは、電池要素5の膨張収縮による体積変化を吸収する観点から、好ましくは電池要素5の厚さの1/10000、より好ましくは1/1000、さらに好ましくは1/100を下限とし、エネルギー密度の観点から、好ましくは外径の電池要素5の厚さの1/10倍、より好ましくは、さらに好ましくは1/5を上限とする。
なお、電池要素5の周面方向への膨張収縮が少ない場合は、下記実施例21のように第一の緩衝層4を含まず、電池要素5とガラス層3と導電板2と第二の緩衝層6とを含む全固体電池1を構成することも考えられる。
(About the second buffer layer 6)
The second buffer layer 6 in the embodiment of the present invention is a member that enables expansion and contraction in the thickness direction of the battery element 5 and prevents charge / discharge failure, and between the battery element 5 and the conductive plate 2, It is provided so as to cover at least a part of the battery element 5.
The second buffer layer 6 has electron conductivity and the like from the viewpoint of current collection, has flexibility to enable expansion and contraction of the battery element 5, and seals the glass. A heat-resistant material that does not change quality can be used. For example, the material is carbon, stainless steel, nickel, nickel alloy or aluminum having a porosity of 30% or more (preferably having a porosity of 40% or more, more preferably 50%). Specifically, it is a material made of carbon felt, foam metal (porous metal) or aluminum mesh.
Further, the thickness of the second buffer layer 6 is preferably 1 / 10,000, more preferably 1/1000, and still more preferably from the viewpoint of absorbing volume change due to expansion and contraction of the battery element 5. 1/100 is the lower limit, and from the viewpoint of energy density, the upper limit is preferably 1/10 times the thickness of the battery element 5 having an outer diameter, more preferably 1/5.
When the expansion and contraction in the circumferential direction of the battery element 5 is small, the first buffer layer 4 is not included as in Example 21 below, and the battery element 5, the glass layer 3, the conductive plate 2, and the second buffer layer 5 are not included. It is also conceivable to configure the all-solid battery 1 including the buffer layer 6.

(固体電解質の準備)
固体電解質として、セラミック電解質とガラス電解質を用いた。
負極スラリー用及び固体電解質ペースト用の固体電解質用セラミック電解質として、Li1.3Al0.1Zr1.80.1Si0.12.912を作製した。原料としてLiCO、ZrO、Al、Y及びSiOの紛体と、HPO溶液とを量論比で混合した後、白金板上にて1480℃で1時間焼成した。焼成した原料の混合物をスタンプミルで200μm以下に粉砕し、φ2mmのYTZボール、エタノールを加え、遊星ボールミルで粉砕した。得られた粉末を乾燥し、1.0μm(D50)のセラミック電解質粉末を得た。
正極スラリー用の固体電解質用セラミック電解質として、Li1.7Al0.4Zr1.80.1Si0.22.812を作製した。原料としてLiCO、ZrO、Al、Y及びSiOの紛体と、HPO溶液とを量論比で混合した後、白金板上にて1480℃で1時間焼成した。焼成した原料の混合物をスタンプミルで200μm以下に粉砕し、φ2mmのYTZボール、エタノールを加え、遊星ボールミルで粉砕した。得られた粉末を乾燥し、1.0μm(D50)のセラミック電解質粉末を得た。
(Preparation of solid electrolyte)
As the solid electrolyte, a ceramic electrolyte and a glass electrolyte were used.
Li 1.3 Al 0.1 Zr 1.8 Y 0.1 Si 0.1 P 2.9 O 12 was produced as a ceramic electrolyte for a solid electrolyte for a negative electrode slurry and a solid electrolyte paste. Li 2 CO 3 , ZrO 2 , Al 2 O 3 , Y 2 O 3, and SiO 2 powder and a H 3 PO 4 solution were mixed in a stoichiometric ratio as raw materials, and then mixed at 1480 ° C. on a platinum plate. Baked for hours. The fired mixture of raw materials was pulverized to 200 μm or less with a stamp mill, φ2 mm YTZ balls and ethanol were added, and pulverized with a planetary ball mill. The obtained powder was dried to obtain a 1.0 μm (D50) ceramic electrolyte powder.
Li 1.7 Al 0.4 Zr 1.8 Y 0.1 Si 0.2 P 2.8 O 12 was produced as the ceramic electrolyte for the solid electrolyte for the positive electrode slurry. Li 2 CO 3 , ZrO 2 , Al 2 O 3 , Y 2 O 3, and SiO 2 powder and a H 3 PO 4 solution were mixed in a stoichiometric ratio as raw materials, and then mixed at 1480 ° C. on a platinum plate. Baked for hours. The fired mixture of raw materials was pulverized to 200 μm or less with a stamp mill, φ2 mm YTZ balls and ethanol were added, and pulverized with a planetary ball mill. The obtained powder was dried to obtain a 1.0 μm (D50) ceramic electrolyte powder.

ガラス電解質として、LiO−Al−P系ガラスを作製した。酸化物基準組成で、50mol%のLiOと、6mol%のAlと、44mol%のPとを含有するように原料を秤量して均一に混合した後、坩堝に投入して1250℃で溶解した。熔解したガラスを水中にキャストすることで、ガラス電解質を作製した。この電解質を、スタンプミルと遊星ボールミルを用いて平均粒子径2μm(D50)まで粉砕することで、ガラス電解質粉末を得た。 As the glass electrolyte, to prepare a Li 2 O-Al 2 O 3 -P 2 O 5 -based glass. The raw materials were weighed and mixed uniformly so as to contain 50 mol% Li 2 O, 6 mol% Al 2 O 3 , and 44 mol% P 2 O 5 with an oxide reference composition, and then charged into a crucible. And dissolved at 1250 ° C. A glass electrolyte was produced by casting the melted glass into water. The electrolyte was pulverized to an average particle size of 2 μm (D50) using a stamp mill and a planetary ball mill to obtain a glass electrolyte powder.

(正極スラリー・負極スラリー・固体電解質スラリーの作製)
正極スラリーは、正極活物質としてLiFePOを用い、これに上述のセラミック電解質及びガラス電解質と、導電助剤であるアセチレンブラックを表1に示す量で混合し、これにバインダー、分散剤、湿潤材、可塑剤及び溶剤を表2に示す量で加えてボールミルで混合して作製した。
負極スラリーは、負極活物質としてLiTi12を用い、これに上述のセラミック電解質及びガラス電解質と、導電助剤であるアセチレンブラックを表1に示す量で混合し、これにバインダー、分散剤、湿潤材、可塑剤及び溶剤を表2に示す量で加えてボールミルで混合して作製した。
固体電解質スラリーは、上述のセラミック電解質及びガラス電解質を表1に示す量で混合し、これにバインダー、分散剤、湿潤材、可塑剤及び溶剤を表2に示す量で加えてボールミルで混合して作製した。
なお、表2記載のDOSは、セバシン酸ジ−2−エチルヘキシルである。
(Preparation of positive electrode slurry, negative electrode slurry, solid electrolyte slurry)
The positive electrode slurry uses LiFePO 4 as a positive electrode active material, and the ceramic electrolyte and glass electrolyte described above and acetylene black, which is a conductive additive, are mixed in the amounts shown in Table 1, and a binder, a dispersant, a wetting material are mixed therewith. A plasticizer and a solvent were added in the amounts shown in Table 2 and mixed by a ball mill.
The negative electrode slurry uses Li 4 Ti 5 O 12 as a negative electrode active material, and the ceramic electrolyte and glass electrolyte described above and acetylene black, which is a conductive additive, are mixed in the amounts shown in Table 1, and a binder and dispersion are mixed therewith. An agent, a wetting material, a plasticizer and a solvent were added in the amounts shown in Table 2 and mixed by a ball mill.
The solid electrolyte slurry is prepared by mixing the above-mentioned ceramic electrolyte and glass electrolyte in the amounts shown in Table 1, adding a binder, a dispersant, a wetting material, a plasticizer and a solvent in the amounts shown in Table 2, and mixing them with a ball mill. Produced.
Note that DOS described in Table 2 is di-2-ethylhexyl sebacate.

Figure 2018170297
Figure 2018170297

Figure 2018170297
Figure 2018170297

表1と2に記載の正極スラリーを塗工機で塗布し、厚さ80μm、幅18cm、長さ5mのシートを作製し、そのシートを12cm角に裁断することにより正極シートを作製した。
表1と2に記載の負極スラリーを塗工機で塗布し、厚さ80μm、幅18cm、長さ5mのシートを作製し、そのシートを12cm角に裁断することにより負極シートを作製した。
表1と2に記載の固体電解質スラリーを塗工機で塗布し、厚さ30μm、幅18cm、長さ5mのシートを作製し、そのシートを12cm角に裁断することにより固体電解質シートを作製した。
The positive electrode slurry described in Tables 1 and 2 was applied by a coating machine to prepare a sheet having a thickness of 80 μm, a width of 18 cm, and a length of 5 m, and the sheet was cut into a 12 cm square to prepare a positive electrode sheet.
The negative electrode slurry described in Tables 1 and 2 was applied by a coating machine to prepare a sheet having a thickness of 80 μm, a width of 18 cm, and a length of 5 m, and the sheet was cut into a 12 cm square to prepare a negative electrode sheet.
The solid electrolyte slurry described in Tables 1 and 2 was applied with a coating machine to produce a sheet having a thickness of 30 μm, a width of 18 cm, and a length of 5 m, and the sheet was cut into a 12 cm square to produce a solid electrolyte sheet. .

このうち、正極シート及び負極シートに、レーザ加工機(パナソニック電工SUNX社製、型番LPV−15U)を用いてレーザを照射し、直径1mmの円形の開口を有する開口部を形成した。図3(c)に示すように開口部を形成した正極シートをシートCとして7枚準備し、図3(a)に示すように開口部を形成した負極シートをシートAとして7枚準備した。このとき、正極シートと負極シートで、異なる位置に開口部を形成するようにした。また、図3(d)に示すように開口部を形成しない正極シートをシートDとして1枚準備し、図3(b)に示すように開口部を形成しない負極シートをシートBとして1枚準備した。
他方で、固体電解質シートにも、レーザ加工機を用いてレーザを照射し、正極シート及び負極シートのうち少なくとも一方の開口部の中心と重なる位置に、直径0.8mmの円形の開口を有する開口部を形成した。このとき、図3(g)に示すように正極シートの開口部の中心と重なる位置のみに開口部を形成した固体電解質シートをシートGとして1枚準備し、図3(f)に示すように負極シートの開口部の中心と重なる位置のみに開口部を形成した固体電解質シートをシートFとして1枚準備し、図3(e)に示すように両方の位置に開口部を形成した固体電解質シートをシートEとして13枚準備した。
シートA〜Gに形成する開口部の模式図を図3に示す。
Among these, the positive electrode sheet and the negative electrode sheet were irradiated with laser using a laser processing machine (manufactured by Panasonic Electric Works SUNX Co., Ltd., model number LPV-15U) to form an opening having a circular opening with a diameter of 1 mm. As shown in FIG. 3 (c), seven positive electrode sheets having openings formed thereon were prepared as sheets C, and seven negative electrode sheets having openings formed therein as sheets A were prepared as shown in FIG. At this time, the positive electrode sheet and the negative electrode sheet were formed with openings at different positions. Further, as shown in FIG. 3D, one sheet of positive electrode sheet not forming an opening is prepared as a sheet D, and one sheet of negative electrode sheet not forming an opening is prepared as a sheet B as shown in FIG. did.
On the other hand, the solid electrolyte sheet is irradiated with laser using a laser processing machine, and an opening having a circular opening with a diameter of 0.8 mm is provided at a position overlapping with the center of at least one opening of the positive electrode sheet and the negative electrode sheet. Part was formed. At this time, as shown in FIG. 3F, one sheet of solid electrolyte sheet having an opening formed only at a position overlapping with the center of the opening of the positive electrode sheet is prepared as a sheet G, and as shown in FIG. A solid electrolyte sheet in which an opening is formed only at a position overlapping with the center of the opening of the negative electrode sheet is prepared as a sheet F, and a solid electrolyte sheet in which openings are formed at both positions as shown in FIG. 13 sheets were prepared as sheet E.
The schematic diagram of the opening part formed in sheet | seat AG is shown in FIG.

次いで、枚葉式積層機(アルファーシステム株式会社製)を用いて、正極シート、正極シート、固体電解質シート、負極シート、固体電解質シート及び正極シートの順で交互に積層した。より具体的には、シートD、シートF、シートA、シートE、シートC及びシートCを順に積層した後、シートE、シートA、シートE、シートC及びシートCの順で6回繰り返して積層し、その後シートG及びシートBを順に積層した。このとき、2枚の正極シートの共通する位置にある開口部と、その開口部に隣接する固体電解質シートにある開口部を重ね合せるとともに、負極シートの開口部とそれに隣接する固体電解質シートにある開口部を重ね合せた。
このとき、離形処理後のシート外寸は15cm角になるようにし、各層を積層するごとに仮積層を行い、最後に本積層として2段階のプレスを行った。仮積層は常圧で行い、100kPaのプレス圧で行った。次いで、真空脱気を行い、シート中の気泡を取り除いた。その後に行われる本積層は250kPaのプレス圧で行いシート積層体を得た。
Subsequently, the positive electrode sheet, the positive electrode sheet, the solid electrolyte sheet, the negative electrode sheet, the solid electrolyte sheet, and the positive electrode sheet were alternately stacked in this order using a single wafer type laminator (manufactured by Alpha System Co., Ltd.). More specifically, after the sheet D, the sheet F, the sheet A, the sheet E, the sheet C, and the sheet C are sequentially stacked, the sheet E, the sheet A, the sheet E, the sheet C, and the sheet C are repeated six times in this order. After that, the sheet G and the sheet B were sequentially laminated. At this time, the opening at the common position of the two positive electrode sheets and the opening at the solid electrolyte sheet adjacent to the opening are overlapped, and the opening of the negative electrode sheet and the solid electrolyte sheet adjacent thereto are present. The openings were overlapped.
At this time, the outer dimension of the sheet after the release treatment was set to 15 cm square, temporary lamination was performed every time each layer was laminated, and finally, two-stage pressing was performed as the main lamination. Temporary lamination was performed at normal pressure and a press pressure of 100 kPa. Next, vacuum deaeration was performed to remove bubbles in the sheet. Subsequent lamination was performed at a pressing pressure of 250 kPa to obtain a sheet laminate.

このシート積層体を直径11mmでくり抜き、窒素雰囲気中で3時間にわたり400℃で脱脂した。その後、成形型に入れて上型を乗せ、油圧プレスで2000kg/cmの圧力を掛けながら600℃まで2℃/secの昇温速度で加熱し、600℃に到達した後に圧力を開放して室温まで放冷した。外周0.75mmを#800の砥石で研磨し、直径9.5mmの電池要素5を得た。得られた電池要素5についての構成を表3と表4に示す。 This sheet laminate was cut out at a diameter of 11 mm and degreased at 400 ° C. for 3 hours in a nitrogen atmosphere. Thereafter, the upper mold is placed in a mold, heated to 600 ° C. at a rate of 2 ° C./sec while applying a pressure of 2000 kg / cm 2 with a hydraulic press, and after reaching 600 ° C., the pressure is released. Allowed to cool to room temperature. The outer periphery of 0.75 mm was polished with a # 800 grindstone to obtain a battery element 5 having a diameter of 9.5 mm. The configurations of the obtained battery element 5 are shown in Tables 3 and 4.

Figure 2018170297
Figure 2018170297

Figure 2018170297
Figure 2018170297

(第一の緩衝層4に用いるためのスラリー(スラリーA)の準備)
電池要素5の周面上に第一の緩衝層4を配置するため、第一の緩衝層4に用いるためのスラリーを、以下のように準備した。調合は300ccポリプロピレン容器で行った。下記表4に示した緩衝層材料(AlTOMBO(登録商標)、SiO又はCaCO)60g、バインダー10g(互応化学工業株式会社製、KFA−611)、溶剤(互応化学工業株式会社製、テキサノール)20g、分散剤1g(BYK製、DISPERBYK180)を加え、可塑剤(互応化学工業製、DOA)0.5g、Φ10mmのYTZボール100gを入れて、泡とり錬太郎(THINKY社製、ARV−200)を用いて1000rpmにて5分間混練を3セット実施後、YTZボールを分離し、100Torr、1000rpmにて5分間脱泡し、第一の緩衝層4に用いるためのスラリーを完成させた。なお、上述のTOMBOは、ニチアス株式会社製ファインフレックス(登録商標)バルクファイバー(No.5200−Z(Al34質量%、SiO50質量%及びZrO16質量%))である。
(Preparation of slurry (slurry A) for use in first buffer layer 4)
In order to arrange the first buffer layer 4 on the peripheral surface of the battery element 5, a slurry for use in the first buffer layer 4 was prepared as follows. Blending was performed in a 300 cc polypropylene container. 60 g of buffer layer material (Al 2 O 3 TOMBO (registered trademark), SiO 2 or CaCO 3 ) shown in Table 4 below, 10 g of binder (manufactured by Kyoyo Chemical Industry Co., Ltd., KFA-611), solvent (Kyoyo Chemical Industry Co., Ltd.) 20 g of texanol), 1 g of dispersant (manufactured by BYK, DISPERBYK180), 0.5 g of plasticizer (manufactured by Kyoyo Chemical Industry, DOA), and 100 g of YTZ balls having a diameter of 10 mm, After three sets of kneading for 5 minutes at 1000 rpm using ARV-200), the YTZ balls were separated and defoamed at 100 Torr and 1000 rpm for 5 minutes to complete the slurry for use in the first buffer layer 4. It was. In addition, the above-mentioned TOMBO is a fine flex (registered trademark) bulk fiber (No. 5200-Z (Al 2 O 3 34 mass%, SiO 2 50 mass% and ZrO 2 16 mass%)) manufactured by NICHIAS Corporation.

(導電板2の準備)
マルテンサイト系ステンレス鋼(SUS316L)を準備した。大きさ(φ)は9.6mm、厚さは0.15mmである。
(Preparation of conductive plate 2)
Martensitic stainless steel (SUS316L) was prepared. The size (φ) is 9.6 mm, and the thickness is 0.15 mm.

(ガラス層3に用いるためのスラリー(スラリーB)の準備)
電池要素5や第一の緩衝層4の外周側面にガラス層3を配置するため、ガラス層3に用いるためのスラリーを、以下のように準備した。
下記表5に示す酸化物基準のモル%で表されたに示す組成比となるように、硼酸、メタリン酸アルミニウム、酸化アルミニウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、メタリン酸リチウム、リン酸リチウム、酸化ジルコニウム、二酸化テルルなどのガラス原料バッチを調合した。ガラス原料バッチはアルミナるつぼ、石英るつぼ、金るつぼ、又は白金坩堝へ充填し、電気炉により750℃〜1300℃の温度で30分から4時間加熱溶融した。溶融したガラスは板上に成形し、徐冷した。作製したガラスは、スタンプミルとアルミナ乳鉢を用いて平均粒子径で50μmまで粉砕した。
(Preparation of slurry (slurry B) for use in glass layer 3)
In order to arrange the glass layer 3 on the outer peripheral side surfaces of the battery element 5 and the first buffer layer 4, a slurry for use in the glass layer 3 was prepared as follows.
Boric acid, aluminum metaphosphate, aluminum oxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium metaphosphate, lithium phosphate, so as to have the composition ratio shown in mol% of oxide basis shown in Table 5 below. Glass raw material batches such as zirconium oxide and tellurium dioxide were prepared. The glass raw material batch was filled into an alumina crucible, a quartz crucible, a gold crucible, or a platinum crucible, and heated and melted at a temperature of 750 ° C. to 1300 ° C. for 30 minutes to 4 hours in an electric furnace. The molten glass was formed on a plate and slowly cooled. The produced glass was pulverized to an average particle size of 50 μm using a stamp mill and an alumina mortar.

Figure 2018170297
Figure 2018170297

調合は300ccポリプロピレン容器で行った。表3に示したガラス又は市販のガラス(旭硝子製のKP312AS(Tgが280℃)若しくはT015(Tgが320℃))を60g、バインダー20g(互応化学製、KFA−611)、溶剤20g(互応化学製、テキサノール)、分散剤1g(BYK製、DISPERBYK180)、可塑剤(互応化学製、DOA)を加え、Φ10mmのYTZボール100gを入れて、泡とり錬太郎(THINKY社製、ARV−200)を用いて1000rpmにて5分間混練を3セット実施後、YTZボールを分離し、100Torr、1000rpmにて5分間脱泡してスラリーとした。   Blending was performed in a 300 cc polypropylene container. Glass shown in Table 3 or commercially available glass (KP312AS (Tg: 280 ° C.) or T015 (Tg: 320 ° C.) manufactured by Asahi Glass) 60 g, binder 20 g (Kohyo Chemical Co., KFA-611), solvent 20 g (Kohyo Chemical) Manufactured, Texanol), 1 g of dispersing agent (manufactured by BYK, DISPERBYK180), plasticizer (manufactured by Kyoyo Kagaku, DOA), put 100 g of YTZ balls of Φ10 mm, and add Awatori Rentaro (made by THINKY, ARV-200). After three sets of kneading at 1000 rpm for 5 minutes, YTZ balls were separated and defoamed at 100 Torr and 1000 rpm for 5 minutes to obtain a slurry.

(第二の緩衝層6に用いるための材料の準備)
カーボンフェルト、発泡金属(多孔質金属)又はアルミメッシュからなる材料を準備して、第二の緩衝層として準備した。大きさ(φ)は9.6mm、厚さは0.15mmである。
(Preparation of material for use in second buffer layer 6)
A material made of carbon felt, foam metal (porous metal) or aluminum mesh was prepared and prepared as a second buffer layer. The size (φ) is 9.6 mm, and the thickness is 0.15 mm.

(全固体電池1の作製)
表6に示す材質および配置、図2に示す配置にて、導電板2、第二の緩衝層6、電池要素5、第二の緩衝層6、導電板2の順で挟み、導電板2上の両面から500gの加重をかけて固定した。
この固定後、電池要素5の周面上に、上述のスラリーAを塗布し、スラリーの乾燥処理(100℃、10分間)を行い、第一の緩衝層4を設けた。
この乾燥処理後、該第一の緩衝層4や電池要素5の周面上に上述のスラリーBを塗布し、スラリーの乾燥処理(100℃、10分間)を行い、ガラス層3を設けた。
この乾燥後、導電板上の上面から500gの加重をかけ、窒素雰囲気で350℃まで昇温後、1時間保持し、露点0℃のドライエアーに切り替えて4時間脱脂した。
脱脂後、430℃まで昇温し、10分間かけて、ガラス層3を軟化させた後、降温し、ケーシングし、全固体電池1を得た。
なお、以下表6記載の実施例21として、第一の緩衝層4を設けない例を作製した。
(Preparation of all-solid battery 1)
With the materials and arrangements shown in Table 6 and the arrangement shown in FIG. 2, the conductive plate 2, the second buffer layer 6, the battery element 5, the second buffer layer 6, and the conductive plate 2 are sandwiched in this order on the conductive plate 2 It fixed by applying a weight of 500 g from both sides.
After the fixing, the above-described slurry A was applied on the peripheral surface of the battery element 5, and the slurry was subjected to a drying process (100 ° C., 10 minutes) to provide the first buffer layer 4.
After the drying treatment, the slurry B described above was applied on the peripheral surfaces of the first buffer layer 4 and the battery element 5, and the slurry was dried (100 ° C., 10 minutes) to provide the glass layer 3.
After this drying, a weight of 500 g was applied from the upper surface on the conductive plate, the temperature was raised to 350 ° C. in a nitrogen atmosphere, held for 1 hour, switched to dry air with a dew point of 0 ° C., and degreased for 4 hours.
After degreasing, the temperature was raised to 430 ° C. and the glass layer 3 was softened over 10 minutes, and then the temperature was lowered and casing was performed to obtain the all-solid battery 1.
In addition, the example which does not provide the 1st buffer layer 4 as Example 21 of Table 6 below was produced.

Figure 2018170297
Figure 2018170297

表6の標記について説明する。周面配置とは電池要素5の周面に第一の緩衝層4を設ける配置をいい、主面配置とは電池要素5の主面に第二の緩衝層6を設ける配置をいう。ここで、電池要素5の主面とは、電池要素の外側の面が、正極層のみの面側又は負極層のみの面側の面をいう。電池要素5の周面とは、電池要素5の主面以外の面をいう。
周面配置については、「全周」は第一の緩衝層を全周設けたことを示し、「1/2(a、b)」は第一の緩衝層4を全周のうち図2に示すaとbの位置に設けたことを示し、「1/2(a、c)」は第一の緩衝層4を全周のうち図2に示すaとcの位置に設けたことを示し、「なし」は第一の緩衝層4を設けていないことを示す。主面の配置については、「両面」は第二の緩衝層6を両主面に設けた例を示し、「上面」は第二の緩衝層6を上面のみ設けた例を示す。「上面」とは、主面であって電池要素5の開口部を形成しない正極シートが設けられた側の面をいう。
The titles in Table 6 will be described. The peripheral surface arrangement refers to an arrangement in which the first buffer layer 4 is provided on the peripheral surface of the battery element 5, and the main surface arrangement refers to an arrangement in which the second buffer layer 6 is provided on the main surface of the battery element 5. Here, the main surface of the battery element 5 refers to a surface on the surface side of only the positive electrode layer or the surface side of only the negative electrode layer on the outer surface of the battery element. The peripheral surface of the battery element 5 refers to a surface other than the main surface of the battery element 5.
Regarding the circumferential arrangement, “all circumference” indicates that the first buffer layer is provided all around, and “½ (a, b)” indicates that the first buffer layer 4 is provided in FIG. “1/2 (a, c)” indicates that the first buffer layer 4 is provided at the positions a and c shown in FIG. 2 in the entire circumference. "None" indicates that the first buffer layer 4 is not provided. Regarding the arrangement of the main surfaces, “both surfaces” indicates an example in which the second buffer layer 6 is provided on both main surfaces, and “upper surface” indicates an example in which the second buffer layer 6 is provided only on the upper surface. The “upper surface” refers to a surface on the side where the positive electrode sheet that is the main surface and does not form the opening of the battery element 5 is provided.

(全固体電池の評価)
実施例について、コイン電池評価治具(アスカ電子製)を用い、下側に正極、上側に負極を配置して、電池性能の評価をした。セットしたコイン評価治具は、加速試験のため恒温恒湿槽内に入れ、60℃、湿度80%下にて、交流テスターであるLCRメータ(日置電機、3522−50)による抵抗測定と充放電試験を行った。充放電レートは1/10C(10時間で電極活物質を全て使う充放電電流)と定電流充電、定電流放電とし、充電時カットオフ電圧は2.8V、放電時カットオフ電圧は0.3Vとした。評価結果(充放電試験、サイクル試験結果)を以下表7に示す。
(Evaluation of all-solid-state battery)
About the Example, the coin battery evaluation jig | tool (made by Asuka Electronics) was used, the positive electrode was arrange | positioned at the lower side, the negative electrode was arrange | positioned at the upper side, and battery performance was evaluated. The set coin evaluation jig is placed in a constant temperature and humidity chamber for an acceleration test, resistance measurement and charge / discharge with an LCR meter (Hioki Electric, 3522-50) as an AC tester at 60 ° C. and a humidity of 80%. A test was conducted. Charge / discharge rate is 1 / 10C (charge / discharge current using all electrode active material in 10 hours), constant current charge, constant current discharge, cut-off voltage at charge is 2.8V, cut-off voltage at discharge is 0.3V It was. The evaluation results (charge / discharge test and cycle test results) are shown in Table 7 below.

(比較例1)
比較例1として、電池要素5のみの例を作製した。この電池要素5の構成は、上述の実施例と同じである。電池要素5を、100℃真空乾燥1時間乾燥後、コイン電池評価治具(アスカ電子製)を用い、下側に正極面、上側に負極面を配置して集電を取った。セットしたコイン評価治具は、加速試験のため恒温恒湿槽内に入れ、60℃、湿度80%下にてLCRメータによる抵抗測定と充放電試験を行った。充放電レートは1/10Cと定電流充電、定電流放電とし、充電時カットオフ電圧は2.8V、放電時カットオフ電圧は0.3Vとした。評価結果(充放電試験、サイクル試験結果)を以下表7に示す。
(Comparative Example 1)
As Comparative Example 1, an example of only the battery element 5 was produced. The configuration of the battery element 5 is the same as that in the above-described embodiment. After the battery element 5 was vacuum-dried at 100 ° C. for 1 hour, a coin battery evaluation jig (manufactured by Asuka Electronics Co., Ltd.) was used to collect current by arranging a positive electrode surface on the lower side and a negative electrode surface on the upper side. The set coin evaluation jig was placed in a constant temperature and humidity chamber for an acceleration test, and resistance measurement and a charge / discharge test were performed using an LCR meter at 60 ° C. and a humidity of 80%. The charging / discharging rate was 1/10 C, constant current charging and constant current discharging, the charging cutoff voltage was 2.8 V, and the discharging cutoff voltage was 0.3 V. The evaluation results (charge / discharge test and cycle test results) are shown in Table 7 below.

(比較例2)
比較例2として、電池要素5にアルミラミネートパッケージをした例を作製した。電池要素5を100℃真空乾燥1時間乾燥させた。パッケージングは露点−50℃のドライルームにて実施した。タブフィルムとアルミラミネートフィルム、銅箔、アルミ箔で作製したセルホルダーを用いて、セルを真空状態でパッケージングした。なお、負極側を銅箔(集電体)、正極側をアルミ箔(集電体)とした。クリップで止め、加速試験のため恒温恒湿槽内に入れ、60℃、湿度80%下にてLCRメータによる抵抗測定と充放電試験を行った。充放電レートは1/10Cと定電流充電、定電流放電とし、充電時カットオフ電圧は2.8V、放電時カットオフ電圧は0.3Vとした。評価結果(充放電試験、サイクル試験結果)を以下表7に示す。
(Comparative Example 2)
As Comparative Example 2, an example in which an aluminum laminate package was used for the battery element 5 was produced. The battery element 5 was dried at 100 ° C. under vacuum for 1 hour. Packaging was performed in a dry room having a dew point of -50 ° C. The cell was packaged in a vacuum state using a cell holder made of a tab film, an aluminum laminate film, copper foil, and aluminum foil. The negative electrode side was a copper foil (current collector), and the positive electrode side was an aluminum foil (current collector). The sample was stopped with a clip, placed in a constant temperature and humidity chamber for an acceleration test, and subjected to resistance measurement and charge / discharge test using an LCR meter at 60 ° C. and a humidity of 80%. The charging / discharging rate was 1/10 C, constant current charging and constant current discharging, the charging cutoff voltage was 2.8 V, and the discharging cutoff voltage was 0.3 V. The evaluation results (charge / discharge test and cycle test results) are shown in Table 7 below.

(比較例3)
比較例3として、電池要素5にコインカシメを施した例を作製した。電池要素5を100℃真空乾燥1時間乾燥させた。パッケージングは露点−50℃のドライルームにて実施した。正極側と負極側にそれぞれカーボンペーパーの緩衝層を設けた上で、カシメ型のΦ15mmの金属製コインケース(SUS310製)に入れてカシメにて密封した。コイン評価治具を用いてコインケースの集電をとった。セットしたコイン評価治具は、加速試験のため恒温恒湿槽内に入れ、60℃、湿度80%下にてLCRメータによる抵抗測定と充放電試験を行った。評価結果(充放電試験、サイクル試験結果)を以下表7に示す。
(Comparative Example 3)
As Comparative Example 3, an example in which the battery element 5 was subjected to coin caulking was produced. The battery element 5 was dried at 100 ° C. under vacuum for 1 hour. Packaging was performed in a dry room having a dew point of -50 ° C. After providing a buffer layer of carbon paper on each of the positive electrode side and the negative electrode side, it was placed in a caulking type Φ15 mm metal coin case (made of SUS310) and sealed with caulking. The coin case was collected using a coin evaluation jig. The set coin evaluation jig was placed in a constant temperature and humidity chamber for an acceleration test, and resistance measurement and a charge / discharge test were performed using an LCR meter at 60 ° C. and a humidity of 80%. The evaluation results (charge / discharge test and cycle test results) are shown in Table 7 below.

Figure 2018170297
Figure 2018170297

(評価結果の考察)
実施例21を除いたいずれの実施例も100サイクル容量維持率は高くなった。比較例1では、ケースが無いため、重量が軽く高いエネルギー密度を示したが、サイクル劣化が激しく100サイクルで3%となった。比較例1については、露点50℃以下のドライルーム内で実施した充放電試験でのサイクル維持率は100%であったため、この劣化は、湿度の影響であると考えられる。一方、実施例では、湿度の影響による劣化を抑制できていることを示している。
また、緩衝層の材質に吸湿能力のあるCaCOを用いた実施例9のサイクル劣化が最も低い。このことからも、全固体電池においても湿度の影響が強いことがわかる。本評価でも、微量水分が混入しているため、電池形成後にも水分を除去、又は形成中に水分混入できる吸湿能力のある材料が、第一の緩衝層4の材質として、より有効であることが確認できた。
放電容量は比較例3と実施例7が最も高かった。実施例7については、側面緩衝層に反応性の低いZrOが添加されている材料を用いたことと、緩衝効果が高い繊維状構造を用いたことにより、シールによる放電容量低下が抑制できるものと考えられる。抵抗については、比較例3とアルミメッシュを用いた実施例17が最も低かった、集電が良くとれているためと考えられる。電池のエネルギー密度、サイクル特性などを総合すると、実施例13が最も高い性能を示した。
(Consideration of evaluation results)
In all the examples except Example 21, the 100 cycle capacity retention rate was high. In Comparative Example 1, since there was no case, the weight was light and the energy density was high, but the cycle deterioration was severe and became 3% in 100 cycles. About Comparative Example 1, since the cycle maintenance rate in the charge / discharge test conducted in a dry room having a dew point of 50 ° C. or less was 100%, this deterioration is considered to be an influence of humidity. On the other hand, in the Example, it has shown that the deterioration by the influence of humidity can be suppressed.
Further, the cycle deterioration of Example 9 using CaCO 3 having a moisture absorption capability as the material of the buffer layer is the lowest. This also shows that the influence of humidity is strong even in all solid state batteries. Even in this evaluation, since a very small amount of water is mixed, a material capable of removing moisture even after the battery is formed or having water absorption ability that can be mixed during the formation is more effective as the material of the first buffer layer 4. Was confirmed.
The discharge capacity was the highest in Comparative Example 3 and Example 7. Regarding Example 7, the use of a material in which low-reactivity ZrO 2 is added to the side buffer layer and the use of a fibrous structure having a high buffer effect can suppress a decrease in discharge capacity due to the seal. it is conceivable that. Regarding the resistance, it is considered that Comparative Example 3 and Example 17 using the aluminum mesh were the lowest, and the current collection was good. When the energy density, cycle characteristics, etc. of the battery were combined, Example 13 showed the highest performance.

1 全固体電池
2 導電板
3 ガラス層
4 第一の緩衝層
5 電池要素
6 第二の緩衝層
DESCRIPTION OF SYMBOLS 1 All-solid-state battery 2 Conductive plate 3 Glass layer 4 First buffer layer 5 Battery element 6 Second buffer layer

Claims (8)

全固体電池であって、
電池要素と第一の緩衝層とガラス層と導電板を含み、
該電池要素は、正極層と負極層と固体電解質層とを含み、
第一の緩衝層は、該電池要素の周面上の少なくとも一部を被覆し、
該ガラス層は、該電池要素と該第一の緩衝層とが全固体電池外に露出しないように、少なくとも該第一の緩衝層の周面上に設けられ、
該導電板は、該電池要素の両主面上に配置される。
ことを特徴とする、該全固体電池。
An all-solid battery,
Including a battery element, a first buffer layer, a glass layer, and a conductive plate;
The battery element includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer,
The first buffer layer covers at least part of the peripheral surface of the battery element;
The glass layer is provided on at least the peripheral surface of the first buffer layer so that the battery element and the first buffer layer are not exposed outside the all-solid-state battery,
The conductive plate is disposed on both main surfaces of the battery element.
The all-solid-state battery characterized by the above-mentioned.
該電池要素と該導電板の間に、該電池要素の少なくとも一部を被覆するように、第二の緩衝層を設ける、請求項1記載の全固体電池。   The all-solid-state battery according to claim 1, wherein a second buffer layer is provided between the battery element and the conductive plate so as to cover at least a part of the battery element. 該第一の緩衝層はセラミックスを含む、請求項1又は2に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the first buffer layer includes ceramics. 該ガラス層のガラスは、ガラス転移点(Tg)が500℃以下である、請求項1〜3のいずれかに記載の全固体電池。   The glass of this glass layer is an all-solid-state battery in any one of Claims 1-3 whose glass transition point (Tg) is 500 degrees C or less. 該ガラス層のガラスは、B、TeO、A(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)及びRnO(式中、RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)成分を含有するガラスである、請求項1〜4のいずれかに記載の全固体電池。 The glass of the glass layer includes B 2 O 3 , TeO 2 , A 2 O 3 (wherein A is one or more selected from the group consisting of Al, Bi, La) and Rn 2 O (wherein 5. The all-solid-state battery according to claim 1, wherein Rn is a glass containing one or more components selected from the group consisting of Li, Na, K, Rb, and Cs. 該ガラス層のガラスは、A(式中、Aは、Al、Bi、Laからなる群より選択される1種以上)、RnO(RnはLi、Na、K、Rb、Csからなる群より選択される1種以上)及びD(式中、DはP、Vからなる群より選択される1種以上)成分を含有するガラスである、請求項1〜4のいずれかに記載の全固体電池。 The glass of the glass layer is A 2 O 3 (wherein A is one or more selected from the group consisting of Al, Bi, La), Rn 2 O (Rn is Li, Na, K, Rb, Cs). 1 or more selected from the group consisting of) and D 2 O 5 (wherein D is one or more selected from the group consisting of P and V), which is a glass containing components. The all-solid-state battery in any one. 該導電板は、ステンレス鋼又はCo基合金からなる、請求項1〜6のいずれかに記載の全固体電池。   The all-solid-state battery according to claim 1, wherein the conductive plate is made of stainless steel or a Co-based alloy. 該第二の緩衝層が、気孔率が30%以上の、炭素、ステンレス鋼、ニッケル、ニッケル合金又はアルミニウムである、請求項1〜7のいずれかに記載の全固体電池。   The all-solid-state battery according to any one of claims 1 to 7, wherein the second buffer layer is carbon, stainless steel, nickel, a nickel alloy, or aluminum having a porosity of 30% or more.
JP2018149946A 2018-08-09 2018-08-09 All-solid-state battery Pending JP2018170297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149946A JP2018170297A (en) 2018-08-09 2018-08-09 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149946A JP2018170297A (en) 2018-08-09 2018-08-09 All-solid-state battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013253602A Division JP6386224B2 (en) 2013-12-06 2013-12-06 All solid battery

Publications (1)

Publication Number Publication Date
JP2018170297A true JP2018170297A (en) 2018-11-01

Family

ID=64020620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149946A Pending JP2018170297A (en) 2018-08-09 2018-08-09 All-solid-state battery

Country Status (1)

Country Link
JP (1) JP2018170297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745637A (en) * 2020-05-27 2021-12-03 北京卫蓝新能源科技有限公司 Solid-state battery, preparation method and application thereof
WO2023248793A1 (en) * 2022-06-20 2023-12-28 日本電気硝子株式会社 All-solid-state secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022250A (en) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd All solid battery
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2007273436A (en) * 2006-03-08 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte sheet
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022250A (en) * 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd All solid battery
JP2007005279A (en) * 2004-12-13 2007-01-11 Matsushita Electric Ind Co Ltd Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it
JP2006351326A (en) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd Solid battery
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
JP2007273436A (en) * 2006-03-08 2007-10-18 Idemitsu Kosan Co Ltd Solid electrolyte sheet
JP2010503957A (en) * 2006-09-14 2010-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochemical energy source and electronic device comprising such an electrochemical energy source
JP2009158476A (en) * 2007-12-03 2009-07-16 Seiko Epson Corp Sulfide-based lithium-ion-conducting solid electrolyte glass, all-solid lithium secondary battery, and method of manufacturing all-solid lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745637A (en) * 2020-05-27 2021-12-03 北京卫蓝新能源科技有限公司 Solid-state battery, preparation method and application thereof
WO2023248793A1 (en) * 2022-06-20 2023-12-28 日本電気硝子株式会社 All-solid-state secondary battery

Similar Documents

Publication Publication Date Title
JP6386224B2 (en) All solid battery
US11417873B2 (en) Solid-state batteries, separators, electrodes, and methods of fabrication
JP5484928B2 (en) All solid battery
US9413033B2 (en) All-solid lithium ion secondary battery
JP5721540B2 (en) Lithium ion conductive inorganic material
JP5731278B2 (en) All-solid-state lithium ion battery
US11404726B2 (en) All-solid-state sodium ion secondary battery
WO2014141456A1 (en) Solid electrolyte, and all-solid ion secondary cell using same
WO2014132320A1 (en) All-solid ion secondary cell
JP6294094B2 (en) Glass electrolyte and all solid lithium ion secondary battery
JP2009181920A (en) Solid battery
WO2014020654A1 (en) All-solid ion secondary cell
JP6446768B2 (en) Stacked lithium ion solid state battery
KR20150065739A (en) Glass composition for the use as a sealant
WO2018016166A1 (en) Battery
JP2015056326A (en) Solid electrolyte, and all-solid-state ion secondary battery
JP2018170297A (en) All-solid-state battery
JP5306663B2 (en) Laminate for lithium ion secondary battery and method for producing the same
JP2019012685A (en) Air electrode catalyst and manufacturing method therefor
JP6622974B2 (en) Manufacturing method of all solid state battery
JP2020095814A (en) Electrode for lithium ion battery, lithium ion battery, and method for manufacturing electrode for lithium ion battery
JP2009181912A (en) Solid lithium secondary battery and its manufacturing method
JP2023041135A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190529

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200225