JP2018168473A - Spheroidizing heat treatment method for alloy steel - Google Patents

Spheroidizing heat treatment method for alloy steel Download PDF

Info

Publication number
JP2018168473A
JP2018168473A JP2018128715A JP2018128715A JP2018168473A JP 2018168473 A JP2018168473 A JP 2018168473A JP 2018128715 A JP2018128715 A JP 2018128715A JP 2018128715 A JP2018128715 A JP 2018128715A JP 2018168473 A JP2018168473 A JP 2018168473A
Authority
JP
Japan
Prior art keywords
heat treatment
less
spheroidizing
point
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018128715A
Other languages
Japanese (ja)
Inventor
亮廣 松ヶ迫
Akihiro Matsugaseko
亮廣 松ヶ迫
山下 浩司
Koji Yamashita
浩司 山下
慎治 福岡
Shinji Fukuoka
慎治 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018128715A priority Critical patent/JP2018168473A/en
Publication of JP2018168473A publication Critical patent/JP2018168473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

To provide a spheroidizing heat treatment method for an alloy steel capable of sufficiently spheroidizing a carbide of an alloy steel containing alloy elements such as Mn and Cr.SOLUTION: There is provided a method for spheroidizing heat treatment of an alloy steel containing C, Si, Mn, P, S, Al, N, and Cr and having an area ratio of bainite of 0.8 or more. The spheroidizing heat treatment includes a first stage heat treatment and a subsequent second heat treatment. The conditions of the first stage heat treatment and the second stage heat treatment are as follows. (1) the first stage heat treatment: heating temperature of (Acpoint-10)°C or higher and lower than Acpoint, heating holding time of 0.5 to 3 hours, mean cooling rate of 30°C/hour or less in the temperature range from the heating temperature to (Acpoint-50)°C, and cooling finish temperature of (Acpoint-50)°C or lower. (2) the second stage heat treatment: heating temperature of (Acpoint+10)°C or higher and (Acpoint+35)°C or lower, heating holding time of 0.5 to 3 hours, and mean cooling rate of 10°C/hour or less in the temperature range from the Acpoint to (Acpoint-50)°C.SELECTED DRAWING: None

Description

本発明は、合金鋼の球状化熱処理方法に関する。より詳しくは、自動車用部品、建設機械用部品等の各種部品の製造に用いられる冷間加工用機械構造用鋼を主な用途とする合金鋼を球状化熱処理する方法に関する。   The present invention relates to a spheroidizing heat treatment method for alloy steel. More specifically, the present invention relates to a method for spheroidizing heat treatment of alloy steel mainly used for cold working machine structural steel used for manufacturing various parts such as automobile parts and construction machine parts.

一般的に、自動車用部品等を製造する際には、ビレットなどの鋼片を熱間圧延して得られた熱間圧延材に、冷間鍛造性などの冷間加工性を付与する目的で球状化熱処理(球状化焼鈍)を施す。球状化熱処理後の熱間圧延材はその後、冷間鍛造などの冷間加工、及び切削加工などの機械加工が施されることによって所定の形状に成形され、焼入れ焼戻し処理を行って最終的な強度調整が行われる。   Generally, when manufacturing automotive parts, etc., for the purpose of imparting cold workability such as cold forgeability to a hot rolled material obtained by hot rolling a billet or other steel slab. Spheroidizing heat treatment (spheroidizing annealing) is performed. The hot rolled material after the spheroidizing heat treatment is then formed into a predetermined shape by being subjected to cold working such as cold forging and machining such as cutting, and finally subjected to quenching and tempering treatment. Strength adjustment is performed.

しかし、例えば球状化焼鈍が不十分で、素材の軟質化が不足している場合や、材料組織中に棒状の炭化物が顕著に存在する場合には、一般に、冷間鍛造性などの冷間加工性が低下する問題がある。そのため従来、球状化焼鈍を促進する技術として、例えば特許文献1、2に記載される熱処理方法等が提案されている。   However, for example, when spheroidizing annealing is insufficient and softening of the material is insufficient, or when rod-like carbides are prominently present in the material structure, cold work such as cold forgeability is generally used. There is a problem that the performance decreases. Therefore, conventionally, as a technique for promoting spheroidizing annealing, for example, a heat treatment method described in Patent Documents 1 and 2 has been proposed.

特許文献1では、短時間で球状化焼鈍できる球状化焼鈍方法が提案されているが、球状化率(その視野におけるセメンタイトに対しての(短径)/(長径)の比が0.5以上であるセメンタイトの割合(%))は80%前後であり、厳しい加工に用いるには不十分な球状化率である。また、特許文献2には低Crである中炭素鋼の焼鈍方法が提案されているが、低Crでは部品とした際に十分に強度を発揮できない。   Patent Document 1 proposes a spheroidizing method capable of spheroidizing annealing in a short time, but the ratio of spheroidizing ratio ((minor axis) / (major axis) to cementite in the field of view is 0.5 or more. The ratio (%) of cementite is about 80%, which is an insufficient spheroidization rate for severe processing. Further, Patent Document 2 proposes a method for annealing medium carbon steel, which is low Cr. However, when Cr is used as a component, sufficient strength cannot be exhibited.

特開平10−025521号公報Japanese Patent Laid-Open No. 10-025521 特開2011−256456号公報JP 2011-256456 A

そこで、本発明は上述した従来技術の問題点を解消し、Mn、Cr等の合金元素を含む合金鋼の炭化物を十分に球状化できる合金鋼の球状化熱処理方法を提供することを目的とする。   Accordingly, the present invention aims to provide a spheroidizing heat treatment method for alloy steel which can sufficiently spheroidize carbides of alloy steel containing alloy elements such as Mn and Cr, eliminating the above-mentioned problems of the prior art. .

上記目的を達成した本発明は、
C :0.1〜0.6%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.005〜0.5%、
Mn:0.1〜1.7%、
P :0.03%以下(0%を含まない)、
S :0.03%以下(0%を含まない)、
Al:0.01〜0.1%、
N :0.015%以下(0%を含まない)、
Cr:0.5〜1.8%
を含有し、残部が鉄及び不可避不純物であり、ベイナイトの面積割合が0.8以上である合金鋼を球状化熱処理する方法であって、
前記球状化熱処理は、1段目熱処理と、これに続く2段目熱処理とから構成され、これら1段目熱処理及び2段目熱処理の条件は以下の通りである合金鋼の球状化熱処理方法である。
(1)1段目熱処理
加熱温度:(Ac1点−10)℃以上、Ac1点未満
加熱保持時間:0.5〜3時間
平均冷却速度:上記加熱温度〜(Ac1点−50)℃の温度範囲を30℃/時間以下
冷却終了温度:(Ac1点−50)℃以下
(2)2段目熱処理
加熱温度:(Ac1点+10)℃以上、(Ac1点+35)℃以下
加熱保持時間:0.5〜3時間
平均冷却速度:Ac1点〜(Ac1点−50)℃の温度範囲を10℃/時間以下
The present invention which has achieved the above object
C: 0.1 to 0.6% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.005 to 0.5%,
Mn: 0.1 to 1.7%,
P: 0.03% or less (excluding 0%),
S: 0.03% or less (excluding 0%),
Al: 0.01 to 0.1%,
N: 0.015% or less (excluding 0%),
Cr: 0.5 to 1.8%
The balance is iron and inevitable impurities, and the area ratio of bainite is 0.8 or more, and a method of spheroidizing heat treatment,
The spheroidizing heat treatment is composed of a first stage heat treatment followed by a second stage heat treatment, and the conditions of the first stage heat treatment and the second stage heat treatment are as follows. is there.
(1) First-stage heat treatment Heating temperature: (Ac 1 point−10) ° C. or more and less than Ac 1 point Heating holding time: 0.5 to 3 hours Average cooling rate: heating temperature to (Ac 1 point−50) ° C. 30 ° C./hour or less Cooling end temperature: (Ac 1 point−50) ° C. or less (2) Second stage heat treatment Heating temperature: (Ac 1 point + 10) ° C. or more, (Ac 1 point + 35) ° C. or less Heating Holding time: 0.5 to 3 hours Average cooling rate: Ac 1 point to (Ac 1 point −50) ° C. within a temperature range of 10 ° C./hour or less

前記した合金鋼は、必要に応じて更に、(a)Mo:1%以下(0%を含まない)、Ni:3%以下(0%を含まない)、Cu:0.25%以下(0%を含まない)、及びB:0.01%以下(0%を含まない)よりなる群から選択される1種以上、(b)Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、及びV:0.5%以下(0%を含まない)よりなる群から選択される1種以上を含んでいても良い。   The alloy steel described above may further include (a) Mo: 1% or less (not including 0%), Ni: 3% or less (not including 0%), Cu: 0.25% or less (0) as necessary. %), And B: one or more selected from the group consisting of 0.01% or less (not including 0%), (b) Ti: 0.2% or less (not including 0%), One or more selected from the group consisting of Nb: 0.2% or less (not including 0%) and V: 0.5% or less (not including 0%) may be included.

本発明の球状化熱処理方法によれば、Mn、Cr等の合金元素を含む合金鋼を十分に球状化できるという優れた効果を奏する。   According to the spheroidizing heat treatment method of the present invention, there is an excellent effect that alloy steel containing alloy elements such as Mn and Cr can be sufficiently spheroidized.

前述した通り、自動車用部品等の製造工程では、鋼片を熱間圧延して得られた線材、棒鋼などの熱間圧延材に、冷間加工性を付与する目的で球状化熱処理(球状化焼鈍)を施してから冷間加工を行い、その後機械加工を施すことによって所定形状に成形し、焼入れ焼戻し処理を行って最終的な強度調整を行う。また、そのような製造工程が採用される鋼材は、一般的に、焼入性を高めるために、Mn、Crなどの合金元素を一定以上含有している。   As described above, in the manufacturing process of automobile parts and the like, spheroidizing heat treatment (spheroidizing) is performed for the purpose of imparting cold workability to hot-rolled materials such as wire rods and steel bars obtained by hot-rolling steel pieces. After annealing, cold working is performed, and then machining is performed into a predetermined shape, followed by quenching and tempering, and final strength adjustment is performed. In addition, steel materials that employ such a manufacturing process generally contain a certain amount of alloy elements such as Mn and Cr in order to improve hardenability.

本発明者らは、冷間鍛造などの冷間加工における加工限界を高めるためには、炭化物の球状化率(以下、単に「球状化率」と呼ぶ)を高めることが有効であることから、更なる球状化率の向上に取り組んだ。その結果、良好な球状化組織を得る上で、球状化熱処理前の組織において、パーライト組織を減らし、ベイナイト組織とすることが重要であることが明らかとなった。そして、さらに詳細に検討した結果、球状化熱処理前の組織において、ベイナイトの割合を面積率で0.8以上とし、以下に説明するような2段階の熱処理工程から構成される球状化熱処理方法を採用することによって、良好な球状化率が達成できることを見出した。以下、2段階の熱処理工程について詳細に説明する。   In order to increase the working limit in cold working such as cold forging, the present inventors are effective to increase the spheroidization rate of carbide (hereinafter simply referred to as “spheroidization rate”). Worked to further improve the spheroidization rate. As a result, it became clear that, in obtaining a good spheroidized structure, it is important to reduce the pearlite structure to a bainite structure in the structure before the spheroidizing heat treatment. As a result of further detailed examination, in the structure before the spheroidizing heat treatment, a spheroidizing heat treatment method comprising a bainite ratio of 0.8 or more in area ratio and comprising a two-step heat treatment process as described below It has been found that a good spheroidization rate can be achieved by adopting it. Hereinafter, the two-stage heat treatment process will be described in detail.

(1)1段目熱処理
1段目の熱処理工程は、対象となる合金鋼(鋼成分及び組織については後述する。)を加熱、昇温し、(Ac1点−10)℃以上、Ac1点未満で、0.5〜3時間保持する加熱保持工程を有する。その後、(Ac1点−50)℃までの温度範囲の冷却速度が30℃/時間以下となるように、(Ac1点−50)℃以下まで冷却する冷却工程を実施する。本発明では、温度条件については熱処理に用いる炉の設定温度を意味する。
(1) First-stage heat treatment In the first-stage heat treatment step, the target alloy steel (steel components and structure will be described later) is heated and heated to (Ac 1 point−10) ° C. or higher, Ac 1 It has a heating and holding process of holding for 0.5 to 3 hours below the point. Then, the cooling process which cools to (Ac 1 point-50) degree C or less is implemented so that the cooling rate of the temperature range to (Ac 1 point -50) degree C may be 30 degrees C / hour or less. In the present invention, the temperature condition means the set temperature of the furnace used for the heat treatment.

従来から、Ac1点以上へ加熱保持して冷却する球状化熱処理(焼鈍)は良く知られている。本発明では、球状化率を従来よりも向上させるため、球状化熱処理する前の組織をベイナイトの面積割合が0.8以上とした上で、(Ac1点−10)℃以上、Ac1点未満の温度範囲に加熱、昇温し、この温度範囲で保持する点に特徴を有している。これにより、ベイナイト中に固溶していた炭素が析出し、加熱前から存在していた微細な球状炭化物が成長する。また、球状化熱処理前にパーライトが少量存在していた場合には、棒状炭化物(パーライトラメラ)が幾分か分断され、球状化率の向上に寄与する。ベイナイトの面積割合が0.8を下回ると棒状炭化物(パーライトラメラ)が分断しきれず、球状化率が悪化する。球状化熱処理する前の組織におけるベイナイトの面積割合は、0.82以上が好ましく、より好ましくは0.85以上である。ベイナイトの面積割合の上限は限定されず、1であっても良い。なお、ベイナイトの面積割合は、熱間圧延後の冷却速度を適宜調整することによって制御できる。 Conventionally, a spheroidizing heat treatment (annealing) in which heat is retained and cooled to Ac 1 point or higher is well known. In the present invention, in order to improve the spheroidization rate as compared with the prior art, the structure before the spheroidizing heat treatment is set to an area ratio of bainite of 0.8 or more, (Ac 1 point−10) ° C. or more, Ac 1 point. It is characterized in that it is heated and heated to a temperature range below, and held in this temperature range. As a result, carbon that has been dissolved in bainite precipitates, and fine spherical carbides that have existed before heating grow. Further, when a small amount of pearlite is present before the spheroidizing heat treatment, the rod-like carbide (pearlite lamella) is somewhat divided, which contributes to the improvement of the spheroidization rate. If the area ratio of bainite is less than 0.8, the rod-like carbide (pearlite lamella) cannot be divided and the spheroidization rate deteriorates. The area ratio of bainite in the structure before spheroidizing heat treatment is preferably 0.82 or more, more preferably 0.85 or more. The upper limit of the area ratio of bainite is not limited and may be 1. The area ratio of bainite can be controlled by appropriately adjusting the cooling rate after hot rolling.

加熱温度が(Ac1点−10)℃未満になると、炭化物の球状化のための保持時間が長くかかりすぎる。一方、加熱温度がAc1点以上となると、オーステナイトが生成して炭化物が固溶しすぎてしまう。加熱温度は、好ましくは(Ac1点−8)℃以上、Ac1点未満である。 When the heating temperature is less than (Ac 1 point−10) ° C., the holding time for spheroidizing the carbide takes too long. On the other hand, when the heating temperature is at least Ac 1 point, austenite is generated and the carbide is excessively dissolved. The heating temperature is preferably (Ac 1 point−8) ° C. or higher and lower than Ac 1 point.

1段目熱処理での加熱保持時間が短すぎると、十分に炭素が析出しないため、加熱保持時間は0.5時間以上とする。また、加熱保持時間が長すぎても効果が飽和するため、3時間以下とする。加熱保持時間の下限は、好ましくは0.7時間以上であり、より好ましくは1時間以上、更に好ましくは1.5時間以上である。加熱保持時間の上限は、好ましくは2.5時間以下であり、より好ましくは2.3時間以下であり、更に好ましくは2時間以下である。   If the heating and holding time in the first stage heat treatment is too short, the carbon does not sufficiently precipitate, so the heating and holding time is set to 0.5 hours or more. Moreover, since the effect is saturated even if the heating and holding time is too long, it is set to 3 hours or less. The lower limit of the heating and holding time is preferably 0.7 hours or more, more preferably 1 hour or more, and further preferably 1.5 hours or more. The upper limit of the heating and holding time is preferably 2.5 hours or less, more preferably 2.3 hours or less, and even more preferably 2 hours or less.

前記温度範囲((Ac1点−10)℃以上、Ac1点未満)への昇温速度は特に限定されないが、生産性の観点や、温度管理を適切に行う観点などから、20℃/時間以上が好ましい。昇温速度は速くても問題ないが、バッチ式炉で熱処理を実施する場合、コイル全体をできるだけ均一に昇温させる必要性から1000℃/時間以下の平均昇温速度で昇温することが好ましい。 The rate of temperature rise to the temperature range ((Ac 1 point−10) ° C. or higher, less than Ac 1 point) is not particularly limited, but is 20 ° C./hour from the viewpoint of productivity and appropriate temperature management. The above is preferable. There is no problem even if the rate of temperature increase is fast, but when heat treatment is performed in a batch furnace, it is preferable to increase the temperature at an average temperature increase rate of 1000 ° C./hour or less from the need to increase the temperature of the entire coil as uniformly as possible. .

1段目熱処理での冷却工程では、炭化物を完全に析出及び成長させるため、(Ac1点−50)℃以下まで冷却する必要がある。炉を用いた熱処理では一般に設定温度と鋼材の実際の温度に差異があり、鋼材成分にもばらつきがあるので、1段目加熱の設定温度を(Ac1点−10)℃以上、Ac1点未満としていても、部分的に炭化物が固溶してしまって十分に析出及び成長していないことがある。そこで炭化物を完全に析出及び成長させるため、(Ac1点−50)℃以下まで冷却する。冷却終了温度の下限は特に限定されないが、通常(Ac1点−80)℃程度である。この冷却の際、急冷すると再生パーライトが生成して球状化率を悪化させることがある。従って、平均冷却速度は30℃/時間以下が好ましく、より好ましくは25℃/時間以下である。平均冷却速度の下限は特に限定されないが、通常3℃/時間程度である。 In the cooling step in the first stage heat treatment, it is necessary to cool to (Ac 1 point−50) ° C. or lower in order to completely precipitate and grow the carbide. In the heat treatment using a furnace, there is generally a difference between the set temperature and the actual temperature of the steel material, and the steel material composition also varies. Therefore, the set temperature for the first stage heating is (Ac 1 point−10) ° C. or more, Ac 1 point. Even if it is less than the range, the carbide may be partially dissolved and may not be sufficiently precipitated and grown. Therefore, in order to completely precipitate and grow the carbide, it is cooled to (Ac 1 point−50) ° C. or lower. The lower limit of the cooling end temperature is not particularly limited, but is usually about (Ac 1 point-80) ° C. In this cooling, if it is cooled rapidly, regenerated pearlite may be generated and the spheroidization rate may be deteriorated. Therefore, the average cooling rate is preferably 30 ° C./hour or less, more preferably 25 ° C./hour or less. The lower limit of the average cooling rate is not particularly limited, but is usually about 3 ° C./hour.

(2)2段目熱処理
2段目の熱処理工程は、前記1段目の熱処理工程を経た鋼を(Ac1点+10)℃以上、(Ac1点+35)℃以下へ加熱、昇温し、該温度範囲で0.5〜3時間保持する加熱保持工程を有する。その後、Ac1点〜(Ac1点−50)℃の温度範囲を10℃/時間以下の平均冷却速度で冷却する冷却工程を実施する。
(2) Second-stage heat treatment The second-stage heat treatment step heats and heats the steel that has undergone the first-stage heat treatment step to (Ac 1 point + 10) ° C. or higher and (Ac 1 point + 35) ° C. or lower, A heating and holding step of holding for 0.5 to 3 hours in the temperature range is included. Then, carrying out the Ac 1 point ~ (Ac 1 point -50) cooling step of cooling at an average cooling rate temperature range of 10 ° C. / time ° C..

上述した通り、前記1段目の熱処理工程では、ベイナイト中の球状炭化物を成長させ、パーライトラメラを分断する。その後の2段目の熱処理工程では、棒状の炭化物の析出を抑制し、球状炭化物の析出及び粗大化を図ってほぼ球状率を向上させるとともに、若干残存している棒状炭化物を分解し、さらに球状化率を高める。従って、2段目の熱処理工程では、1段目の熱処理工程における熱処理条件よりも少し高温側の温度範囲に昇温保持する。   As described above, in the first heat treatment step, spherical carbides in bainite are grown and the pearlite lamella is divided. In the subsequent second heat treatment step, the precipitation of rod-like carbides is suppressed, the precipitation and coarsening of spherical carbides are improved to improve the sphericity, and the remaining rod-like carbides are decomposed to further reduce the spherical shape. Increase the conversion rate. Therefore, in the second heat treatment step, the temperature is kept in a temperature range slightly higher than the heat treatment conditions in the first heat treatment step.

2段目の熱処理工程での加熱温度が(Ac1点+10)℃を下回る場合や、加熱保持時間が0.5時間未満の場合には、棒状炭化物の溶解(分解)が不十分となる。一方、加熱温度が(Ac1点+35)℃を超える場合や、加熱保持時間が3時間を超える場合は、炭化物が溶解しすぎてしまい、引き続き行われる冷却過程で再度棒状の炭化物が析出しやすくなる。加熱温度の好ましい下限は(Ac1点+15)℃以上であり、加熱温度の好ましい上限は(Ac1点+32)℃以下である。また、加熱保持時間の好ましい下限は1時間以上であり、加熱保持時間の好ましい上限は2時間以下である。 When the heating temperature in the second heat treatment step is lower than (Ac 1 point + 10) ° C., or when the heating and holding time is less than 0.5 hours, the rod-shaped carbide is not sufficiently dissolved (decomposed). On the other hand, when the heating temperature exceeds (Ac 1 point + 35) ° C. or when the heating and holding time exceeds 3 hours, the carbide is excessively dissolved, and the rod-like carbide tends to precipitate again in the subsequent cooling process. Become. The preferable lower limit of the heating temperature is (Ac 1 point + 15) ° C. or more, and the preferable upper limit of the heating temperature is (Ac 1 point + 32) ° C. or less. Moreover, the minimum with a preferable heat retention time is 1 hour or more, and the preferable upper limit of a heat retention time is 2 hours or less.

また、前記温度範囲((Ac1点+10)℃以上、(Ac1点+35)℃以下)への昇温速度は特に限定されないが、前記1段目の熱処理工程と同様に、生産性の観点や、温度管理を適切に行う観点などから、20℃/時間以上が好ましい。昇温速度は速くても問題ないが、バッチ式炉で熱処理を実施する場合、1000℃/時間以下の平均昇温速度で昇温することが好ましい。 Further, the rate of temperature increase to the temperature range ((Ac 1 point + 10) ° C. or higher, (Ac 1 point + 35) ° C. or lower) is not particularly limited, but as with the first heat treatment step, the viewpoint of productivity. In addition, 20 ° C./hour or more is preferable from the viewpoint of appropriately performing temperature control. There is no problem even if the heating rate is fast, but when heat treatment is carried out in a batch furnace, it is preferable to raise the temperature at an average heating rate of 1000 ° C./hour or less.

2段目熱処理での冷却工程では、前記した加熱保持工程で適度に溶解させた棒状炭化物が再析出することを抑制し、球状炭化物が析出した組織とする必要がある。従って、前記加熱保持工程の後、任意の冷却速度で冷却した後は、少なくともAc1点〜(Ac1点−50)℃の温度範囲を徐冷する必要がある。この徐冷速度は、1段目熱処理の冷却工程での平均冷却速度よりも更に遅い10℃/時間以下(平均冷却速度を意味する)とする。平均冷却速度が10℃/時間を超えると、棒状炭化物の一部が析出する。平均冷却速度の好ましい上限は8℃/時間以下であり、下限は特に限定されないが、通常3℃/時間程度である。 In the cooling step in the second-stage heat treatment, it is necessary to suppress the precipitation of rod-like carbides appropriately dissolved in the heating and holding step, and to form a structure in which spherical carbides are precipitated. Therefore, after the heating and holding step, after cooling at an arbitrary cooling rate, it is necessary to gradually cool at least a temperature range of Ac 1 point to (Ac 1 point−50) ° C. This slow cooling rate is set to 10 ° C./hour or less (meaning an average cooling rate) that is slower than the average cooling rate in the cooling process of the first stage heat treatment. When the average cooling rate exceeds 10 ° C./hour, a part of the rod-like carbide precipitates. A preferable upper limit of the average cooling rate is 8 ° C./hour or less, and the lower limit is not particularly limited, but is usually about 3 ° C./hour.

なお、本書においてAc1点とは、下記(1)式によって求めた温度を意味する。下記(1)式は、「講座・現代の金属学 材料編 第4巻 鉄鋼材料 社団法人日本金属学会」などの書籍にて定義されている。
Ac1(℃)
=723−10.7×(%Mn)−16.9×(%Ni)+29.1×(%Si)
+16.9×(%Cr)+290×(%As)+6.38×(%W)・・・(1)
上記(1)式において、(%元素名)は各元素の質量基準での含有量を表し、鋼が上記(1)式に規定される元素を含んでいない場合は、その含有量を0%として(1)式を計算すれば良い。
Incidentally, the Ac 1 point in this document, refers to a temperature determined by the following equation (1). The following formula (1) is defined in books such as “Lecture / Modern Metallurgy Materials Volume 4 Steel Materials Japan Institute of Metals”.
Ac 1 (℃)
= 723-10.7 × (% Mn) −16.9 × (% Ni) + 29.1 × (% Si)
+ 16.9 × (% Cr) + 290 × (% As) + 6.38 × (% W) (1)
In the above formula (1), (% element name) represents the content of each element on the mass basis, and when the steel does not contain the element defined in the above formula (1), the content is 0%. (1) should be calculated as follows.

以上、本発明の球状化熱処理方法について説明したが、線材の場合は、球状化熱処理前に伸線を行うと炭化物の球状化が促進されることが従来から知られている。しかし、上述した本発明の球状化熱処理を行えば、伸線処理を行わずとも良好な球状化が可能となる。
但し、本発明の球状化熱処理による球状化を一層促進する目的で、冷間伸線を行ってから本発明の球状化熱処理を行っても良い。
As described above, the spheroidizing heat treatment method of the present invention has been described. However, in the case of a wire, it is conventionally known that spheroidization of carbides is promoted by drawing before spheroidizing heat treatment. However, if the above-described spheroidizing heat treatment of the present invention is performed, good spheroidization is possible without performing the wire drawing process.
However, for the purpose of further promoting spheroidization by the spheroidizing heat treatment of the present invention, the spheroidizing heat treatment of the present invention may be performed after cold drawing.

次に、本発明の球状化熱処理の対象となる合金鋼の成分について説明する。   Next, the components of the alloy steel to be subjected to the spheroidizing heat treatment of the present invention will be described.

C:0.1〜0.6%
Cは、鋼の強度(最終製品の強度)を確保するために添加する。そこでC量を0.1%以上と定めた。C量は好ましくは0.2%以上であり、より好ましくは0.3%以上である。しかし、過剰に含有されると強度が高くなりすぎて冷間加工性が低下する。そこでC量を0.6%以下と定めた。C量は好ましくは0.5%以下であり、より好ましくは0.46%以下である。
C: 0.1 to 0.6%
C is added to ensure the strength of the steel (the strength of the final product). Therefore, the C amount is set to 0.1% or more. The amount of C is preferably 0.2% or more, and more preferably 0.3% or more. However, when it contains excessively, intensity | strength will become high too much and cold workability will fall. Therefore, the C amount is set to 0.6% or less. The amount of C is preferably 0.5% or less, and more preferably 0.46% or less.

Si:0.005〜0.5%
Siは、脱酸元素として、また固溶体硬化による最終製品の強度を増加させるのに有効である。そこでSi量を0.005%以上と定めた。Si量は、好ましくは0.01%以上であり、より好ましくは0.07%以上である。一方、Si量が過剰になると強度が過度に上昇して冷間加工性を劣化させる。そこでSi量を0.5%以下と定めた。Si量は好ましくは0.45%以下であり、より好ましくは0.4%以下である。
Si: 0.005 to 0.5%
Si is effective as a deoxidizing element and to increase the strength of the final product by solid solution hardening. Therefore, the amount of Si is set to 0.005% or more. The amount of Si is preferably 0.01% or more, and more preferably 0.07% or more. On the other hand, when the amount of Si is excessive, the strength is excessively increased and the cold workability is deteriorated. Therefore, the Si amount is set to 0.5% or less. The amount of Si is preferably 0.45% or less, and more preferably 0.4% or less.

Mn:0.1〜1.7%
Mnは、焼入れ性の向上を通じて、最終製品の強度を増加させるのに有効な元素である。そこで、Mn量を0.1%以上と定めた。Mn量は、好ましくは0.2%以上であり、より好ましくは0.4%以上である。一方、Mn量が過剰になると強度が過度に上昇して冷間加工性を劣化させる。そこで、Mn量を1.7%以下と定めた。Mn量は、好ましくは1.6%以下であり、より好ましくは1.4%以下である。
Mn: 0.1 to 1.7%
Mn is an effective element for increasing the strength of the final product through improvement of hardenability. Therefore, the amount of Mn is set to 0.1% or more. The amount of Mn is preferably 0.2% or more, and more preferably 0.4% or more. On the other hand, when the amount of Mn is excessive, the strength is excessively increased and the cold workability is deteriorated. Therefore, the amount of Mn is set to 1.7% or less. The amount of Mn is preferably 1.6% or less, and more preferably 1.4% or less.

P:0.03%以下(0%を含まない)
Pは、鋼中に不可避的に含まれる元素であり、鋼中で粒界偏析を起こして延性を劣化させる原因となる。そこでP量を0.03%以下と定めた。P量は、好ましくは0.025%以下であり、より好ましくは0.02%以下である。Pは少なければ少ない程好ましいが、製造工程の制約上0%とすることは難しく、通常0.001%以上含まれる。
P: 0.03% or less (excluding 0%)
P is an element that is inevitably contained in the steel, and causes grain boundary segregation in the steel and causes deterioration in ductility. Therefore, the P content is set to 0.03% or less. The amount of P is preferably 0.025% or less, and more preferably 0.02% or less. The smaller the amount of P, the better. However, it is difficult to make it 0% due to the limitation of the manufacturing process, and usually 0.001% or more is included.

S:0.03%以下(0%を含まない)
Sは、鋼中に不可避的に含まれる元素であり、鋼中でMnSとして存在し、冷間加工性を劣化させる有害な元素である。そこでS量を0.03%以下と定めた。S量は、好ましくは0.025%以下であり、より好ましくは0.02%以下である。Sは少なければ少ない程好ましいが、製造工程の制約上0%とすることは難しく、通常0.001%以上含まれる。
S: 0.03% or less (excluding 0%)
S is an element inevitably contained in steel, is present as MnS in steel, and is a harmful element that deteriorates cold workability. Therefore, the S amount is set to 0.03% or less. The amount of S is preferably 0.025% or less, and more preferably 0.02% or less. The smaller the amount of S, the better. However, it is difficult to make it 0% due to the limitation of the manufacturing process, and usually 0.001% or more is included.

Al:0.01〜0.1%
Alは、脱酸元素として有用であるとともに、鋼中に存在する固溶NをAlNとして固定するのに有用である。こうした効果を有効に発揮させるため、Al量を0.01%以上と定めた。Al量は、好ましくは0.015%以上であり、より好ましくは0.02%以上である。一方、Al量が過剰になると、Al23が過剰に生成し冷間加工性を劣化させる。そこでAl量を0.1%以下と定めた。Al量は、好ましくは0.08%以下であり、より好ましくは0.06%以下である。
Al: 0.01 to 0.1%
Al is useful as a deoxidizing element and is useful for fixing solute N present in steel as AlN. In order to exhibit such an effect effectively, the Al content is determined to be 0.01% or more. The amount of Al is preferably 0.015% or more, more preferably 0.02% or more. On the other hand, when the amount of Al is excessive, Al 2 O 3 is excessively generated and the cold workability is deteriorated. Therefore, the Al content is set to 0.1% or less. The amount of Al is preferably 0.08% or less, and more preferably 0.06% or less.

N:0.015%以下(0%を含まない)
Nは、鋼中に不可避的に含まれる元素であり、鋼中に固溶Nが含まれると、歪み時効による硬度上昇及び延性低下を招き、冷間加工性を劣化させる。そこでN量を0.015%以下と定めた。N量は、好ましくは0.013%以下であり、より好ましくは0.01%以下である。N量は少なければ少ない程好ましいが、製造工程の制約上0%とすることは難しく、通常0.001%以上含まれる。
N: 0.015% or less (excluding 0%)
N is an element inevitably contained in the steel. When solid solution N is contained in the steel, hardness is increased and ductility is lowered due to strain aging, and cold workability is deteriorated. Therefore, the N content is set to 0.015% or less. The N amount is preferably 0.013% or less, more preferably 0.01% or less. The smaller the amount of N, the better. However, it is difficult to make it 0% due to the limitation of the manufacturing process, and usually 0.001% or more is included.

Cr:0.5〜1.8%
Crは、焼入れ性の増加等によりベイナイトを生成させやすくするとともに、最終製品の強度を増加させる。また球状化焼鈍途中において未固溶炭化物を安定的に確保することに有効な元素である。このような効果を有効に発揮させるため、Cr量を0.5%以上と定めた。Cr量は、好ましくは0.6%以上であり、より好ましくは0.7%以上である。一方、Cr量が過剰になると、強度が高くなり過ぎて冷間加工性を劣化させる。そこでCr量を1.8%以下と定めた。Cr量は、好ましくは1.5%以下であり、より好ましくは1.3%以下である。
Cr: 0.5 to 1.8%
Cr makes it easy to generate bainite by increasing hardenability and the like, and increases the strength of the final product. In addition, it is an element effective for stably securing undissolved carbide during spheroidizing annealing. In order to effectively exhibit such an effect, the Cr content is set to 0.5% or more. The amount of Cr is preferably 0.6% or more, and more preferably 0.7% or more. On the other hand, when the amount of Cr is excessive, the strength becomes too high and the cold workability is deteriorated. Therefore, the Cr content is set to 1.8% or less. The amount of Cr is preferably 1.5% or less, and more preferably 1.3% or less.

本発明に用いられる合金鋼の基本成分は上記の通りであり、残部は実質的に鉄である。
但し、原材料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。さらに本発明では、必要に応じて、本発明の作用効果を阻害しない範囲の以下の任意元素を含有していても良い。以下の任意元素を含むことによって、鋼材の特性を更に向上できる。
The basic components of the alloy steel used in the present invention are as described above, and the balance is substantially iron.
However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, in this invention, you may contain the following arbitrary elements of the range which does not inhibit the effect of this invention as needed. By including the following optional elements, the properties of the steel material can be further improved.

Mo:1%以下(0%を含まない)、Ni:3%以下(0%を含まない)、Cu:0.25%以下(0%を含まない)、及びB:0.01%以下(0%を含まない)よりなる群から選択される1種以上
Mo、Ni、Cu及びBは、いずれも鋼材の焼入れ性を向上させることによって、最終製品の強度を増加させるのに有効な元素であり、必要によって単独で又は2種以上で含有される。このような効果はこれら元素の含有量が増加するにつれて大きくなり、前記効果を有効に発揮させるため、Mo、Ni、Cu量は夫々、0.02%以上(より好ましくは0.05%以上)が好ましく、B量は0.0003%以上(より好ましくは0.0005%以上)が好ましい。しかしながら、これらの元素の含有量が過剰になると、強度が高くなり過ぎ、冷間加工性を劣化させる。従って、Mo量は1%以下、Ni量は3%以下、Cu量は0.25%以下、B量は0.01%以下が好ましい。より好ましくは、Mo量が0.90%以下(更に好ましくは0.80%以下)、Ni量が2.5%以下(更に好ましくは2.0%以下)、Cu量が0.2%以下(更に好ましくは0.15%以下)、B量が0.007%以下(更に好ましくは0.005%以下)である。
Mo: 1% or less (not including 0%), Ni: 3% or less (not including 0%), Cu: 0.25% or less (not including 0%), and B: 0.01% or less ( 1 or more selected from the group consisting of Mo, Ni, Cu and B are effective elements for increasing the strength of the final product by improving the hardenability of the steel material. Yes, if necessary, alone or in combination of two or more. Such effects increase as the content of these elements increases, and in order to effectively exhibit the effects, the amounts of Mo, Ni, and Cu are 0.02% or more (more preferably 0.05% or more), respectively. The amount of B is preferably 0.0003% or more (more preferably 0.0005% or more). However, when the content of these elements is excessive, the strength becomes too high and the cold workability is deteriorated. Therefore, the Mo amount is preferably 1% or less, the Ni amount is 3% or less, the Cu amount is 0.25% or less, and the B amount is 0.01% or less. More preferably, the Mo amount is 0.90% or less (more preferably 0.80% or less), the Ni amount is 2.5% or less (more preferably 2.0% or less), and the Cu amount is 0.2% or less. (More preferably 0.15% or less) and the B content is 0.007% or less (more preferably 0.005% or less).

Ti:0.2%以下(0%を含まない)、Nb:0.2%以下(0%を含まない)、及びV:0.5%以下(0%を含まない)よりなる群から選択される1種以上
Ti、Nb及びVは、いずれもNと化合物を形成し、固溶Nを低減することで、変形抵抗低減の効果を発揮するため、必要によって単独で又は2種以上で含有される。このような効果はこれら元素の含有量が増加するにすれて大きくなり、前記効果を有効に発揮させるため、Ti、Nb及びV量は夫々、0.03%以上(より好ましくは0.05%以上)が好ましい。しかしながら、これらの元素の含有量が過剰になると、形成される化合物が変形抵抗の上昇を招き、却って冷間加工性を低下させる。そこで、Ti及びNb量は夫々、0.2%以下が好ましく、V量は0.5%以下が好ましい。より好ましくは、Ti及びNb量がそれぞれ0.18%以下(更に好ましくは0.15%以下)であり、V量は0.45%以下(更に好ましくは0.40%以下)である。
Selected from the group consisting of Ti: 0.2% or less (not including 0%), Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%) One or more of Ti, Nb, and V are all formed as a compound with N, and by reducing solid solution N, the effect of reducing deformation resistance is exhibited. Is done. Such effects increase as the content of these elements increases, and in order to effectively exhibit the effects, the Ti, Nb, and V amounts are each 0.03% or more (more preferably 0.05%). Above) is preferable. However, when the content of these elements becomes excessive, the formed compound causes an increase in deformation resistance, and on the contrary, it decreases the cold workability. Therefore, the Ti and Nb amounts are each preferably 0.2% or less, and the V amount is preferably 0.5% or less. More preferably, the Ti and Nb amounts are each 0.18% or less (more preferably 0.15% or less), and the V amount is 0.45% or less (more preferably 0.40% or less).

本発明の球状化熱処理を行えば、球状化率の高い、具体的には、長径を短径で除して求められるアスペクト比が2.0以下である炭化物の個数が、全炭化物の個数に対して90%以上(好ましくは93%以上)である鋼を得ることができる。よって、本発明の球状化熱処理を施して得られる鋼は、冷間鍛造性などの冷間加工性に優れており、自動車用部品、建設機械用部品等の各種部品に好適に用いられる。   When the spheroidizing heat treatment of the present invention is performed, the number of carbides having a high spheroidization rate, specifically, the aspect ratio obtained by dividing the major axis by the minor axis is 2.0 or less is the number of all carbides. On the other hand, steel that is 90% or more (preferably 93% or more) can be obtained. Therefore, the steel obtained by performing the spheroidizing heat treatment of the present invention is excellent in cold workability such as cold forgeability and is suitably used for various parts such as automobile parts and construction machine parts.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

表1に記載の化学成分組成を有する鋼を熱間圧延し、冷却速度を制御してφ15mmの線材コイルを製造した。球状化熱処理前のコイル端部から、ベイナイト割合の測定に用いるサンプルを採取した。その後、これらの線材コイルをバッチ炉に装入し、表2に示す条件で1段目、2段目の球状化熱処理を行い、球状化熱処理後のコイル端部から、球状化率の評価用のサンプルを採取した。   Steel having the chemical composition shown in Table 1 was hot-rolled, and the cooling rate was controlled to produce a φ15 mm wire coil. A sample used for measurement of the bainite ratio was taken from the end of the coil before the spheroidizing heat treatment. After that, these wire coils were charged into a batch furnace and subjected to the first and second spheroidizing heat treatment under the conditions shown in Table 2, and the spheroidizing rate was evaluated from the coil end after the spheroidizing heat treatment. Samples were taken.

Figure 2018168473
Figure 2018168473

そして、球状化熱処理前の線材のベイナイト組織、及び球状化熱処理後の線材の球状化率を、下記の要領で測定及び評価した。   And the bainite structure of the wire before spheroidizing heat treatment and the spheroidization rate of the wire after spheroidizing heat treatment were measured and evaluated in the following manner.

(1)ベイナイト組織の評価
球状化熱処理前のコイル端部からサンプルを採取し、サンプルの横断面のD/8位置(Dはサンプルの直径)の位置の組織を評価した。D/8位置の横断面を、光学顕微鏡を用いて倍率400倍で観察し(観察視野は225μm×180μm)、写真を10枚撮影した。撮影した写真を夫々画像解析し、フェライトおよびパーライト以外の箇所をベイナイトとし、ベイナイトの面積率を最大1として算出した。それぞれの写真でのベイナイトの面積割合を算出し、10枚の写真の結果の算術平均値を各サンプルのベイナイトの面積割合とした。
(1) Evaluation of bainite structure A sample was taken from the end of the coil before spheroidizing heat treatment, and the structure at the D / 8 position (D is the diameter of the sample) in the cross section of the sample was evaluated. The cross section at the D / 8 position was observed at 400 × magnification using an optical microscope (observation field is 225 μm × 180 μm), and 10 photographs were taken. Each photograph taken was image-analyzed, and the area other than ferrite and pearlite was calculated as bainite, and the area ratio of bainite was calculated as 1. The area ratio of bainite in each photograph was calculated, and the arithmetic average value of the results of 10 photographs was taken as the area ratio of bainite in each sample.

(2)球状化率の評価
球状化熱処理後のコイル端部からサンプルを採取し、サンプルの横断面のD/8位置(Dはサンプルの直径)を評価した。前記したD/8位置の横断面を、走査型電子顕微鏡(Scanning Electron Microscope、SEM)を用いて倍率4000倍で観察し(観察視野は30μm×23μm)、写真を10枚撮影した。撮影した写真を夫々画像解析し、写真内に観察された炭化物のアスペクト比(長径/短径)を算出した。それぞれの写真について、写真内に観察された炭化物の総数に対する、アスペクト比が2.0以下の炭化物の個数割合を算出し、10枚の写真の結果を算術平均したものを、各サンプルの球状化率とした。なお、測定対象とした炭化物のサイズの下限は、SEMの測定限界から、面積でおおよそ0.0025μm2程度である。
(2) Evaluation of spheroidization rate A sample was taken from the end of the coil after the spheroidizing heat treatment, and the D / 8 position (D is the diameter of the sample) of the cross section of the sample was evaluated. The cross section at the D / 8 position described above was observed at a magnification of 4000 using a scanning electron microscope (SEM) (observation field of view was 30 μm × 23 μm), and 10 photographs were taken. Each photograph taken was subjected to image analysis, and the aspect ratio (major axis / minor axis) of the carbide observed in the photograph was calculated. For each photograph, the ratio of the number of carbides with an aspect ratio of 2.0 or less to the total number of carbides observed in the photograph was calculated, and the result of 10 photographs was arithmetically averaged to spheroidize each sample. Rate. In addition, the lower limit of the size of the carbide to be measured is approximately 0.0025 μm 2 in terms of area from the measurement limit of SEM.

表2に、各熱処理工程における熱処理条件と、上記のベイナイト組織の評価結果及び球状化率の評価結果を示す。   Table 2 shows the heat treatment conditions in each heat treatment step, the evaluation results of the bainite structure, and the evaluation results of the spheroidization rate.

Figure 2018168473
Figure 2018168473

表2から、本発明の球状化熱処理を行った試験No.1、2、9〜11、18〜22は、得られた合金鋼線材の球状化率がいずれも90%以上であり、優れた球状化特性を有していることが分かる。   From Table 2, test no. 1, 2, 9-11, and 18-22 all have a spheroidizing ratio of 90% or more of the obtained alloy steel wires, and it is understood that they have excellent spheroidizing characteristics.

一方、試験No.7、8及び23は、熱処理前の鋼材の組織においてフェライト及びパーライト組織が多くベイナイトの割合が0.8未満だった例であり、熱処理後の球状化率が低下した。また、No.3、4は1段目熱処理での加熱温度が本発明の要件を外れており、No.5は1段目熱処理での加熱保持時間が短く、No.6は1段目熱処理での冷却終了温度が高かったため、いずれも熱処理後の球状化率が低下した。   On the other hand, test no. Nos. 7, 8 and 23 are examples in which the structure of the steel material before the heat treatment had many ferrite and pearlite structures, and the proportion of bainite was less than 0.8, and the spheroidization rate after the heat treatment decreased. No. In Nos. 3 and 4, the heating temperature in the first stage heat treatment deviates from the requirement of the present invention. No. 5 has a short heating and holding time in the first stage heat treatment. No. 6 had a high cooling end temperature in the first stage heat treatment, so that the spheroidization rate after the heat treatment decreased in any case.

No.12は1段目熱処理の冷却工程での冷却速度が速く、No.13は2段目熱処理の冷却工程での冷却速度が速く、No.14、15は2段目熱処理での加熱温度が本発明の要件を外れており、いずれも熱処理後の球状化率が低下した。また、No.16、17は2段目熱処理の加熱保持時間が本発明の要件を外れており、熱処理後の球状化率が低下した。   No. No. 12 has a high cooling rate in the cooling process of the first stage heat treatment. No. 13 has a high cooling rate in the cooling process of the second stage heat treatment. In Nos. 14 and 15, the heating temperature in the second-stage heat treatment deviated from the requirement of the present invention, and in both cases, the spheroidization rate after the heat treatment decreased. No. In Nos. 16 and 17, the heating and holding time of the second stage heat treatment deviated from the requirement of the present invention, and the spheroidization rate after the heat treatment decreased.

Claims (3)

C :0.1〜0.6%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.005〜0.5%、
Mn:0.1〜1.7%、
P :0.03%以下(0%を含まない)、
S :0.03%以下(0%を含まない)、
Al:0.01〜0.1%、
N :0.015%以下(0%を含まない)、
Cr:0.5〜1.8%
を含有し、残部が鉄及び不可避不純物であり、ベイナイトの面積割合が0.8以上である合金鋼を球状化熱処理する方法であって、
前記球状化熱処理は、1段目熱処理と、これに続く2段目熱処理とから構成され、これら1段目熱処理及び2段目熱処理の条件は以下の通りであり、球状化熱処理後の合金鋼の横断面のD/8位置(Dは横断面の直径)における球状化率が90%以上である合金鋼の球状化熱処理方法。
(1)1段目熱処理
加熱温度:(Ac1点−10)℃以上、Ac1点未満
加熱保持時間:0.5〜3時間
平均冷却速度:上記加熱温度〜(Ac1点−50)℃の温度範囲を30℃/時間以下
冷却終了温度:(Ac1点−50)℃以下
(2)2段目熱処理
加熱温度:(Ac1点+10)℃以上、(Ac1点+35)℃以下
加熱保持時間:0.5〜3時間
平均冷却速度:Ac1点〜(Ac1点−50)℃の温度範囲を10℃/時間以下
C: 0.1 to 0.6% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.005 to 0.5%,
Mn: 0.1 to 1.7%,
P: 0.03% or less (excluding 0%),
S: 0.03% or less (excluding 0%),
Al: 0.01 to 0.1%,
N: 0.015% or less (excluding 0%),
Cr: 0.5 to 1.8%
The balance is iron and inevitable impurities, and the area ratio of bainite is 0.8 or more, and a method of spheroidizing heat treatment,
The spheroidizing heat treatment is composed of a first-stage heat treatment followed by a second-stage heat treatment, and the conditions of the first-stage heat treatment and the second-stage heat treatment are as follows. A spheroidizing heat treatment method for alloy steel in which the spheroidizing rate at the D / 8 position (D is the diameter of the cross section) is 90% or more.
(1) First-stage heat treatment Heating temperature: (Ac 1 point−10) ° C. or more and less than Ac 1 point Heating holding time: 0.5 to 3 hours Average cooling rate: heating temperature to (Ac 1 point−50) ° C. 30 ° C./hour or less Cooling end temperature: (Ac 1 point−50) ° C. or less (2) Second stage heat treatment Heating temperature: (Ac 1 point + 10) ° C. or more, (Ac 1 point + 35) ° C. or less Heating Holding time: 0.5 to 3 hours Average cooling rate: Ac 1 point to (Ac 1 point −50) ° C. within a temperature range of 10 ° C./hour or less
前記合金鋼が更に、
Mo:1%以下(0%を含まない)、
Ni:3%以下(0%を含まない)、
Cu:0.25%以下(0%を含まない)、及び
B :0.01%以下(0%を含まない)
よりなる群から選択される1種以上を含む請求項1に記載の合金鋼の球状化熱処理方法。
The alloy steel further includes
Mo: 1% or less (excluding 0%),
Ni: 3% or less (excluding 0%),
Cu: 0.25% or less (not including 0%) and B: 0.01% or less (not including 0%)
The spheroidizing heat treatment method for alloy steel according to claim 1, comprising at least one selected from the group consisting of:
前記合金鋼が更に、
Ti:0.2%以下(0%を含まない)、
Nb:0.2%以下(0%を含まない)、及び
V :0.5%以下(0%を含まない)
よりなる群から選択される1種以上を含む請求項1又は2に記載の合金鋼の球状化熱処理方法。
The alloy steel further includes
Ti: 0.2% or less (excluding 0%),
Nb: 0.2% or less (not including 0%), and V: 0.5% or less (not including 0%)
The spheroidizing heat treatment method for alloy steel according to claim 1 or 2, comprising at least one selected from the group consisting of:
JP2018128715A 2018-07-06 2018-07-06 Spheroidizing heat treatment method for alloy steel Pending JP2018168473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128715A JP2018168473A (en) 2018-07-06 2018-07-06 Spheroidizing heat treatment method for alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128715A JP2018168473A (en) 2018-07-06 2018-07-06 Spheroidizing heat treatment method for alloy steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014047343A Division JP2015168882A (en) 2014-03-11 2014-03-11 Spheroidizing heat treatment method for alloy steel

Publications (1)

Publication Number Publication Date
JP2018168473A true JP2018168473A (en) 2018-11-01

Family

ID=64018559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128715A Pending JP2018168473A (en) 2018-07-06 2018-07-06 Spheroidizing heat treatment method for alloy steel

Country Status (1)

Country Link
JP (1) JP2018168473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066909B (en) * 2019-04-03 2021-01-01 西宁特殊钢股份有限公司 Heat treatment process for improving hardenability hardness of GCr15SiMn steel tail end
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104718A (en) * 1987-10-19 1989-04-21 Nippon Steel Corp Manufacture of bar stock or wire rod for cold forging
JP2001073033A (en) * 1999-09-03 2001-03-21 Nisshin Steel Co Ltd Production of medium-high carbon steel sheet excellent in local ductility
JP2009174004A (en) * 2008-01-24 2009-08-06 Nippon Steel Corp Middle carbon chromium-molybdenum sttel for machine structure, and production method therefor
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening
JP2013234349A (en) * 2012-05-08 2013-11-21 Nippon Steel & Sumitomo Metal Corp Steel wire rod/steel bar having excellent cold-workability, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104718A (en) * 1987-10-19 1989-04-21 Nippon Steel Corp Manufacture of bar stock or wire rod for cold forging
JP2001073033A (en) * 1999-09-03 2001-03-21 Nisshin Steel Co Ltd Production of medium-high carbon steel sheet excellent in local ductility
JP2009174004A (en) * 2008-01-24 2009-08-06 Nippon Steel Corp Middle carbon chromium-molybdenum sttel for machine structure, and production method therefor
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening
JP2013234349A (en) * 2012-05-08 2013-11-21 Nippon Steel & Sumitomo Metal Corp Steel wire rod/steel bar having excellent cold-workability, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066909B (en) * 2019-04-03 2021-01-01 西宁特殊钢股份有限公司 Heat treatment process for improving hardenability hardness of GCr15SiMn steel tail end
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof
CN115341076B (en) * 2022-07-15 2023-08-18 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Similar Documents

Publication Publication Date Title
JP2015168882A (en) Spheroidizing heat treatment method for alloy steel
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
JP6079903B2 (en) Bearing parts, steel materials for bearing parts, and manufacturing methods thereof
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5018305B2 (en) Manufacturing method of rough bearing product
US10837080B2 (en) Rolled steel bar or rolled wire rod for cold-forged component
JP6319437B2 (en) Steel for cold forging
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
WO2016158428A1 (en) Steel wire for mechanical structural parts
JP2018168473A (en) Spheroidizing heat treatment method for alloy steel
JP2015183265A (en) Method for producing steel material excellent in cold workability or machinability
JPWO2019151048A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2017106048A (en) Steel wire for machine structural component
JP6100676B2 (en) Spheroidizing heat treatment method for alloy steel
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP6420656B2 (en) Spring steel, spring and method for producing them
JP5972823B2 (en) Manufacturing method of steel for cold forging
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JP6632281B2 (en) Case hardening steel for cold forging with excellent resistance to grain coarsening
JP5159296B2 (en) Steel wire rod or bar for cold working, method for producing the same, and cold worked steel parts

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303