JP2018168280A - Method of manufacturing coke - Google Patents

Method of manufacturing coke Download PDF

Info

Publication number
JP2018168280A
JP2018168280A JP2017066482A JP2017066482A JP2018168280A JP 2018168280 A JP2018168280 A JP 2018168280A JP 2017066482 A JP2017066482 A JP 2017066482A JP 2017066482 A JP2017066482 A JP 2017066482A JP 2018168280 A JP2018168280 A JP 2018168280A
Authority
JP
Japan
Prior art keywords
coal
charcoal
charged
carbonization chamber
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017066482A
Other languages
Japanese (ja)
Other versions
JP6583334B2 (en
Inventor
一穂 穐鹿
Issui Akishika
一穂 穐鹿
松井 貴
Takashi Matsui
貴 松井
幹也 永山
Mikiya Nagayama
幹也 永山
功美 南里
Narumi Nanri
功美 南里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017066482A priority Critical patent/JP6583334B2/en
Publication of JP2018168280A publication Critical patent/JP2018168280A/en
Application granted granted Critical
Publication of JP6583334B2 publication Critical patent/JP6583334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method of manufacturing coke by which extruded charcoal is less likely to be powdered when being loaded into a coke oven chamber, while suppressing an increase in manufacturing costs of the extruded charcoal.SOLUTION: A method of manufacturing coke includes loading extruded charcoal whose particle diameter exceeds 15 mm from a larry car into a coke oven chamber of a coke oven, followed by drying up by distillation. Extruded charcoal is molded in two more different strengths and loaded into the coke oven chamber in descending order of strength.SELECTED DRAWING: Figure 4

Description

本発明は、成型炭の粉化を抑制することで、高い生産性でコークスを製造するコークスの製造方法に関する。   The present invention relates to a coke production method for producing coke with high productivity by suppressing powdering of coal.

高炉に装入されるコークスを製造する設備として室炉式コークス炉が広く使用されてきている。長年の使用によって老朽化している室炉式コークス炉には、複数の炭化室のうち、炉壁が損耗するなどして補修のために休止せざるを得ない炭化室が存在する場合がある。その場合、稼働可能な炭化室で従来と同程度の生産量を確保するべく、乾留時間に対する石炭装入量で表されるコークスの生産性を向上させることが望ましい。   As a facility for producing coke charged into a blast furnace, a room-type coke oven has been widely used. In a furnace-type coke oven that has become obsolete due to long-term use, there may be a carbonization chamber that must be stopped for repairing due to wear of the furnace wall among a plurality of carbonization chambers. In that case, it is desirable to improve the productivity of the coke expressed by the amount of coal charged with respect to the carbonization time in order to ensure the same amount of production as before in an operable carbonization chamber.

特許文献1には、炭化室に装入される石炭の全てを、粘結力指数が70〜90であり、全膨張率が40以下である非微粘結炭を40質量%以上配合した配合原料炭を成型して得られる成型炭にしてコークスを製造する技術が開示されている。そして、炭化室に装入される石炭の全てを粉炭とした場合の石炭装入量を1とすると、炭化室に装入される石炭の全てを成型炭とすると石炭装入量は0.9となる一方で、装入される石炭の全てを粉炭とした場合の乾留時間を1とすると、全てを成型炭とした場合の乾留時間は0.7〜0.8に短縮されるので、全てを成型炭とした場合のコークス生産性は、全てを粉炭とした場合の1.1〜1.3倍となることが開示されている。   In Patent Document 1, all the coal charged into the carbonization chamber is blended with 40% by mass or more of non-slightly caking coal having a caking strength index of 70 to 90 and a total expansion coefficient of 40 or less. A technique for producing coke by forming coal obtained by molding raw coal is disclosed. Then, assuming that the coal charge when all the coal charged into the carbonization chamber is pulverized coal is 1, if all the coal charged into the carbonization chamber is formed coal, the coal charge is 0.9. On the other hand, if the carbonization time when all the coal to be charged is powdered coal is 1, the carbonization time when all the coal is formed is reduced to 0.7 to 0.8, It is disclosed that coke productivity when using coal as a coal is 1.1 to 1.3 times that when using coal as a whole.

また、特許文献2には、石炭原料中の成型炭の割合を70〜95質量%とし、石炭原料中の粉状炭の割合を5〜30質量%とすることで、コークスの生産性を向上できることが開示されている。   In Patent Document 2, coke productivity is improved by setting the proportion of coal coal in the coal raw material to 70 to 95 mass% and the proportion of pulverized coal in the coal raw material to 5 to 30 mass%. It is disclosed that it can be done.

特許第4505074号公報Japanese Patent No. 4505004 特開2016−27138号公報Japanese Unexamined Patent Publication No. 2016-27138

特許文献1によれば、炭化室に装入される石炭の全てを成型炭とすることで、粉状炭を炭化室に全量装入した場合よりもコークスの生産性を向上できる。また、特許文献2によれば、炭化室に装入する成型炭の割合を70〜95質量%にすることで、粉状炭を炭化室に全量装入した場合よりもコークスの生産性を向上できる。しかしながら、強度の低い成型炭を用いると、炭化室装入時の衝撃により成型炭が破壊、粉化されて炭化室内の成型炭の割合が減少し、コークスの生産性を向上できない可能性がある。この成型炭の粉化を抑制するためには、成型炭の強度を高めることが考えられるが、成型炭の強度を高めるには、添加するバインダーを増やすことが必要になり成型炭の製造コストが増加する。   According to Patent Document 1, by making all the coal charged into the carbonization chamber into molded coal, the productivity of coke can be improved as compared with the case where the entire amount of powdered coal is charged into the carbonization chamber. Moreover, according to patent document 2, the productivity of coke is improved compared with the case where all the amount of pulverized coal is charged into a carbonization chamber by making the ratio of the molding coal charged into a carbonization chamber into 70-95 mass%. it can. However, if low-strength coal is used, the coal may be destroyed and pulverized due to impact during charging of the carbonization chamber, reducing the proportion of coal in the carbonization chamber, which may not improve coke productivity. . In order to suppress the pulverization of the coal, it is conceivable to increase the strength of the coal. However, to increase the strength of the coal, it is necessary to increase the binder to be added and the production cost of the coal is increased. To increase.

本発明は、上記の事情を鑑みてなされたもので、その目的とするところは、成型炭の製造コストの上昇を抑制しながら、炭化室装炭時の成型炭の粉化を抑制できる方法で装炭してコークスを製造するコークスの製造方法を提供することにある。   This invention is made in view of said situation, The place made into the objective is the method which can suppress pulverization of the forming coal at the time of carbonization chamber coalification, suppressing the raise of the manufacturing cost of forming coal. An object of the present invention is to provide a coke production method for producing coke by carbonization.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)粒径が15mmを超える成型炭をコークス炉の炭化室に装炭車から装入して乾留するコークスの製造方法であって、前記成型炭を2種以上の異なる強度に成型し、強度が高い成型炭から順に前記炭化室に装入する、コークスの製造方法。
(2)粒径が15mmを超える成型炭をコークス炉の炭化室に装炭車から装入して乾留するコークスの製造方法であって、前記成型炭を2種以上の異なる強度に成型し、それぞれの成型炭について、落下高さと粉化比率の割合の関係を求め、それぞれの成型炭を、前記装炭車から前記炭化室の炉底までの落下高さ、または、前記装炭車から前記炭化室にすでに装入された成型炭層の上面までの落下高さが、前記落下高さと粉化比率の割合の関係に基づいて求めた成型炭の粉化比率が目標値となる落下高さより低くなった後に前記炭化室に装入する、コークスの製造方法。
(3)前記成型炭は、前記装炭車から前記炭化室の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%以下となる強度の高い成型炭と、前記装炭車から前記前記炭化室の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%を超える強度の低い成型炭と、を含み、前記強度の高い成型炭を炭化室に装入し、前記装炭車から前記炭化室にすでに装入された成型炭層の上面までの落下高さが、前記強度の低い成型炭の粒径が15mm以下となる粉化比率が20質量%以下になる落下高さよりも低くなった後に、前記強度の低い成型炭を前記炭化室に装入する、(1)または(2)に記載のコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing coke in which coking coal having a particle size of more than 15 mm is charged into a coking chamber of a coke oven from a charcoal car and dry-distilled, wherein the coking coal is molded into two or more different strengths, A method for producing coke, in which the charcoal chamber is charged in order from a high-coal coal.
(2) A method for producing coke in which coking coal having a particle size of more than 15 mm is charged into a coking chamber of a coke oven from a charcoal truck and dry-distilled, wherein the coking coal is molded into two or more different strengths, As regards the coals, the relationship between the drop height and the ratio of the pulverization ratio was determined, and the respective coals were dropped from the coal-car to the furnace bottom of the carbonization chamber, or from the coal-car to the carbonization chamber. After the fall height to the upper surface of the already formed coal coal layer is lower than the fall height at which the coal powder pulverization ratio obtained based on the relationship between the fall height and the ratio of the pulverization ratio is lower than the target value A method for producing coke, which is charged into the carbonization chamber.
(3) When the height from the charcoal vehicle to the furnace bottom of the carbonization chamber is dropped, the coal is a strong coal that has a strength of 20% by mass or less with a pulverization ratio of 15 mm or less. And a low-strength cast charcoal with a pulverization ratio exceeding 20% by mass when the particle size is 15 mm or less when the height from the charcoal vehicle to the furnace bottom of the carbonization chamber is dropped, and High strength coal is charged into the carbonization chamber, and the drop height from the charcoal vehicle to the upper surface of the coal layer already charged in the carbonization chamber is such that the particle size of the low strength coal is 15 mm or less. The method for producing coke according to (1) or (2), wherein the low-strength cast charcoal is charged into the carbonization chamber after the falling ratio becomes lower than 20% by mass or less.

本発明の実施により、強度の低い成型炭を用いる場合でも、装炭時の成型炭の粉化を抑制できる。これにより、成型炭の製造コストの上昇を抑制しつつ、炭化室装炭時の成型炭の粉化を抑制できる。   By carrying out the present invention, it is possible to suppress the pulverization of the coal at the time of coal loading even when the coal having a low strength is used. Thereby, pulverization of the forming charcoal at the time of carbonization chamber charcoal control can be controlled, suppressing a raise of the manufacturing cost of forming charcoal.

コークス炉の斜視図である。It is a perspective view of a coke oven. 成型炭の装入実験に用いた試験容器10の斜視図である。It is a perspective view of the test container 10 used for the charging experiment of a charcoal. 成型炭の粉化比率と、落下高さの関係を示すグラフである。It is a graph which shows the relationship between the pulverization ratio of molding charcoal, and the fall height. 2種類の成型炭を装入した場合の成型炭の粉化比率と、落下高さの関係を示すグラフである。It is a graph which shows the relationship between the pulverization ratio of the charcoal at the time of charging two types of charcoal, and the fall height. コークス炉の上面模式図である。It is an upper surface schematic diagram of a coke oven.

まず、室炉式コークス炉を用いて原料炭を乾留してコークスを製造する工程について説明する。図1は、コークス炉の斜視図である。コークス炉1は、蓄熱室が複数並べられて構成される蓄熱部2、及び、蓄熱部2の上に炭化室3と燃焼室4を複数有し、炭化室3と燃焼室4とは交互に隣接して並べられている。炭化室3と燃焼室4との上を、装炭車5がコークス炉1の炉長手方向Lに沿って走行する。図示は省略しているが、炭化室3の上壁には、装入孔が、コークス炉1の炉短手方向Sに沿って複数形成されており、装入孔を通じて、原料炭が炭化室3に装入される。炭化室3の両側には窯口3aが設けられており、図示は省略しているが、窯口3aは脱着可能な炉蓋で覆われている。炭化室3の一方の窯口3a側には押出機6が配置され、他方の窯口3a側にはガイド車8が配置され、押出機6とガイド車8とが炉長手方向Lに沿って走行する。   First, a process for producing coke by dry distillation of raw coal using a chamber furnace type coke oven will be described. FIG. 1 is a perspective view of a coke oven. The coke oven 1 has a heat storage unit 2 configured by arranging a plurality of heat storage chambers, and a plurality of carbonization chambers 3 and combustion chambers 4 on the heat storage unit 2. The carbonization chambers 3 and the combustion chambers 4 are alternately arranged. Adjacent to each other. The charcoal vehicle 5 travels along the furnace longitudinal direction L of the coke oven 1 over the carbonization chamber 3 and the combustion chamber 4. Although not shown, a plurality of charging holes are formed in the upper wall of the coking chamber 3 along the short-side direction S of the coke oven 1, and the raw coal is carbonized through the charging holes. 3 is charged. A kiln opening 3a is provided on both sides of the carbonization chamber 3, and although not shown, the kiln opening 3a is covered with a removable furnace lid. An extruder 6 is disposed on the side of one kiln 3a of the carbonization chamber 3, a guide wheel 8 is disposed on the other side of the kiln 3a, and the extruder 6 and the guide wheel 8 extend along the furnace longitudinal direction L. Run.

炭化室3では、装入された原料炭が乾留されてコークスとなる。原料炭を乾留するために、蓄熱部2の各蓄熱室から燃料ガスを燃焼室4に供給し燃焼させて、燃焼熱を燃焼室4に隣接する炭化室3に伝えることで、炭化室3を加熱する。燃焼室4での燃焼熱が隣接する炭化室3に伝わり、炭化室3の温度が上昇し、原料炭が乾留される。乾留が終了した後に、窯口3aから炉蓋を取外し、押出機6の押出ラムを炭化室3に挿入し、押出ラムで、石炭の乾留で得られるコークスを炭化室3から押し出して、押出機6の反対側にあるガイド車8で受け止める。ガイド車8の下側には、蓄熱部2の前を炉長手方向Lに沿って走行可能な消火車9が配置されて、ガイド車8から消火車9がコークスを受ける。次いで、消火車9は、コークスを所定の場所まで移動する。   In the carbonization chamber 3, the charged raw coal is dry-distilled into coke. In order to dry-distill the raw coal, fuel gas is supplied from each heat storage chamber of the heat storage section 2 to the combustion chamber 4 and burned, and the combustion heat is transmitted to the carbonization chamber 3 adjacent to the combustion chamber 4, thereby Heat. The combustion heat in the combustion chamber 4 is transmitted to the adjacent carbonization chamber 3, the temperature of the carbonization chamber 3 rises, and the raw coal is carbonized. After the dry distillation is completed, the furnace lid is removed from the kiln opening 3a, the extrusion ram of the extruder 6 is inserted into the carbonization chamber 3, and the coke obtained by the dry distillation of coal is extruded from the carbonization chamber 3 with the extrusion ram. It is received by a guide car 8 on the opposite side of 6. A fire extinguisher 9 that can travel along the furnace longitudinal direction L in front of the heat storage unit 2 is disposed below the guide car 8, and the fire extinguisher 9 receives coke from the guide car 8. Next, the fire extinguisher 9 moves the coke to a predetermined location.

コークスを押出機6で押し出して、炭化室3が空となったら、装入孔を通じて装炭車5から再び原料炭を炭化室3に装入し乾留してコークスとし、コークスを炭化室3から押し出すという工程を繰り返して、コークス炉の操業を行う。   When coke is extruded by the extruder 6 and the carbonization chamber 3 becomes empty, the raw coal is again charged into the carbonization chamber 3 from the coal-coating vehicle 5 through the charging hole, and is dry-distilled into coke, and the coke is extruded from the carbonization chamber 3. This process is repeated to operate the coke oven.

本実施形態に係るコークスの製造方法では、炭化室3へ装入される原料炭として粒径が15mmを超える2種以上の異なる強度の成型炭を用いて、強度が高い成型炭から順に炭化室3に装入する。すなわち、炭化室3に成型炭が装入されてなく、装入時の落下高さが高い場合には強度の高い成型炭を炭化室3に装入する。これにより、成型炭装入時の衝撃による成型炭の粉化を抑制できる。   In the method for producing coke according to the present embodiment, two or more kinds of differently shaped coals having a particle size of more than 15 mm are used as raw coals charged into the carbonization chamber 3, and the carbonization chambers are sequentially ordered from the highest strength coals. 3 is charged. That is, when the coal char is not charged into the carbonization chamber 3 and the drop height at the time of charging is high, the coal charcoal chamber 3 is charged with high strength coal. Thereby, the pulverization of the forming charcoal due to the impact at the time of charging the forming charcoal can be suppressed.

一方、炭化室3に成型炭が装入されて装入時の落下高さが低い場合には強度の低い成型炭を炭化室3に装入する。炭化室3に成型炭が装入されることによって、成型炭の落下高さが低くなるとともに炭化室3に装入された成型炭による緩衝効果により、装入時に成型炭にかかる衝撃が緩和される。このため、炭化室3に強度の高い成型炭が装入された後であって、成型炭装入時の落下高さが低くなった後には、製造コストが低廉な強度の低い成型炭を炭化室3に装入する。これにより、成型炭製造コストの上昇を抑制できる。   On the other hand, when the coal is charged into the carbonization chamber 3 and the drop height at the time of charging is low, the coal with a low strength is charged into the carbonization chamber 3. When the charcoal chamber 3 is charged with coal, the falling height of the charcoal is lowered, and the buffering effect of the charcoal charged in the carbonization chamber 3 reduces the impact on the charcoal during charging. The For this reason, after the high strength coal is charged into the carbonization chamber 3 and the drop height at the time of charging the coal is low, carbonization of low strength coal with low manufacturing cost is performed. Charge into chamber 3. Thereby, an increase in the cost of forming coal can be suppressed.

なお、本実施形態における粒径とは、JIS Z 8801−1に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径が15mmを超えるとは、JIS Z 8801−1に準拠した公称目開き15mmの篩を用いて篩上に篩分けされる粒径を意味し、15mm未満とは公称目開き15mmの篩を用いて篩下に篩分けされる粒径を意味する。   In addition, the particle diameter in this embodiment is a particle diameter screened using the sieve of the nominal opening based on JISZ8801-1, for example, when a particle diameter exceeds 15 mm, it is JISZ8801. Means a particle size sieved on a sieve using a sieve with a nominal opening of 15 mm in accordance with -1, and less than 15 mm means a particle diameter sieved under a sieve using a sieve with a nominal opening of 15 mm means.

このように、成型炭装入時の落下高さが高い場合には、炭化室3に強度の高い成型炭を装入し、成型炭装入時の落下高さが低い場合には、炭化室3に強度の低い成型炭を装入する。これにより、成型炭の製造コストの上昇を抑制しつつ、成型炭の粉化を抑制できる。   Thus, when the fall height at the time of charging the charcoal is high, the carbonization chamber 3 is charged with high strength charcoal, and when the fall height at the time of charging the charcoal is low, the carbonization chamber 3 is charged with low strength coal. Thereby, pulverization of the forming coal can be suppressed while suppressing an increase in the manufacturing cost of the forming coal.

次に、成型炭の強度と、落下高さと、成型炭の粉化比率の関係を確認した成型炭の装入実験について説明する。図2は、成型炭の装入実験に用いた試験容器10の斜視図である。試験容器10は、幅寸法L1が430mm、高さ寸法L2が7520mm、長さ寸法L3が3020mmの矩形の容器であり、高さ寸法L2は、一般的なコークス炉の炭化室に石炭を装入する場合の石炭の落下高さと同程度の高さを有している。試験容器10の上面には開口部12が設けられ、側面には、高さ1mごとに開閉可能な窓14が複数設けられている。   Next, a charging experiment of forming coal in which the relationship between the strength of the forming coal, the drop height, and the pulverization ratio of the forming coal is confirmed will be described. FIG. 2 is a perspective view of the test container 10 used in the charging experiment of the coal char. The test container 10 is a rectangular container having a width dimension L1 of 430 mm, a height dimension L2 of 7520 mm, and a length dimension L3 of 3020 mm, and the height dimension L2 is charged with coal in a carbonization chamber of a general coke oven. It has the same height as the falling height of coal. An opening 12 is provided on the upper surface of the test container 10, and a plurality of windows 14 that can be opened and closed every 1 m in height are provided on the side surface.

成型炭の装入実験では、試験容器10の開口部12から成型炭を装入する。装入する成型炭は、縦44mm、横44mm、高さ36mmのマセック型の成型炭である。成型炭の圧潰強度は、バインダーであるSOPの添加量を変えることで1.9kN、1.7kN、1.1kN、0.7kNに調整した。成型炭の圧潰強度は、圧縮試験機を用いて圧縮速度1mm/minで成型炭を圧縮して測定される最大強度を圧潰強度とした。   In the charcoal charging experiment, the charcoal is charged from the opening 12 of the test container 10. The charcoal to be charged is Macek type charcoal having a length of 44 mm, a width of 44 mm, and a height of 36 mm. The crushing strength of the coal was adjusted to 1.9 kN, 1.7 kN, 1.1 kN, and 0.7 kN by changing the amount of SOP as a binder. For the crushing strength of the coal, the maximum strength measured by compressing the coal at a compression speed of 1 mm / min using a compression tester was defined as the crushing strength.

試験容器10を満たすまで開口部12から成型炭を6t装入した後、側面に設けられた窓14から成型炭を採取し、成型炭の粉化比率を測定した。なお、本実施形態において、試験容器10の窓14から採取した全成型炭のうち、目開き15mmの篩を用いて篩下に篩分けられた成型炭は粉状炭になったとして、成型炭の粉化比率を、篩下質量と、全成型炭質量と、下記(1)式を用いて算出した。
粉化比率(質量%)=[篩下質量(kg)/全成型炭質量(kg)]×100・・(1)
After 6t of coal was charged from the opening 12 until the test container 10 was filled, the coal was collected from the window 14 provided on the side surface, and the pulverization ratio of the coal was measured. In the present embodiment, among all the coals collected from the window 14 of the test container 10, the coals that have been sieved under a sieve using a sieve having a mesh opening of 15 mm are changed to powder coals. The pulverization ratio was calculated using the mass under sieving, the total coal mass, and the following equation (1).
Pulverization ratio (mass%) = [mass under sieve (kg) / total coal mass (kg)] × 100 (1)

図3は、成型炭の粉化比率と、落下高さの関係を示すグラフである。図3において、横軸は、粉化比率(質量%)であり、縦軸は、落下高さ(m)である。図3によれば、落下高さが高くなるにつれて粉化比率は増加し、圧潰強度の高い成型炭は、粉化比率が低くなり、圧潰強度の低い成型炭は、粉化比率が高くなることがわかる。一般的なコークス炉の炭化室3に装入する際の高さである約8mの落下では、圧潰強度が1.7kN以上の成型炭では粉化比率が20質量%以下となるが、圧潰強度が1.7kN未満の成型炭では粉化比率が20質量%より大きくなった。   FIG. 3 is a graph showing the relationship between the pulverization ratio of cast charcoal and the drop height. In FIG. 3, the horizontal axis represents the powdering ratio (mass%), and the vertical axis represents the drop height (m). According to FIG. 3, the pulverization ratio increases as the drop height increases, and the coal with high crushing strength has a low pulverization ratio, and the coal with low crushing strength has a high pulverization ratio. I understand. With a drop of about 8m, which is the height when charging into the carbonization chamber 3 of a general coke oven, the pulverization ratio is 20% by mass or less for the coal with a crushing strength of 1.7 kN or more. However, in the case of coal with less than 1.7 kN, the pulverization ratio was greater than 20% by mass.

特許文献2によれば、炭化室3に装入された成型炭の割合を70〜95質量%にすることで高い生産性でコークスを製造できることが開示されている。例えば、炭化室3に成型炭を装入してコークスを製造する場合に、粉化比率を20質量%以下に抑えることができれば、炭化室3の成型炭の割合を70〜95質量%の範囲内にすることができる。このため、炭化室3に成型炭が装入されてなく、落下高さが約8mである場合には、炭化室3に圧潰強度が1.7kN以上の成型炭を装入する。これにより、成型炭の粉化比率を20質量%以下に抑えることができ、炭化室3の成型炭の割合を70〜95質量%の範囲内にすることができる。   According to Patent Document 2, it is disclosed that coke can be produced with high productivity by setting the ratio of the coal coal charged in the carbonization chamber 3 to 70 to 95% by mass. For example, in the case where coke is produced by charging coal into the carbonization chamber 3, if the powdering ratio can be suppressed to 20% by mass or less, the proportion of the coal coal in the carbonization chamber 3 is in the range of 70 to 95% by mass. Can be inside. For this reason, when the coal is not charged into the carbonization chamber 3 and the drop height is about 8 m, the carbonization chamber 3 is charged with coal with a crushing strength of 1.7 kN or more. Thereby, the pulverization ratio of the charcoal can be suppressed to 20% by mass or less, and the ratio of the charcoal in the carbonization chamber 3 can be within the range of 70 to 95% by mass.

一方、圧潰強度が1.7kN未満である1.1kNの成型炭の粉化比率を20質量%以下にするには、図3から成型炭の落下高さを5.5m以下にすればよいことがわかる。同じく、圧潰強度が1.7kN未満である0.7kNの成型炭の粉化比率を20質量%以下にするには、成型炭の落下高さを4.2m以下にすればよいことがわかる。   On the other hand, in order to reduce the pulverization ratio of 1.1 kN coal, whose crushing strength is less than 1.7 kN, to 20% by mass or less, the fall height of the coal should be 5.5 m or less from FIG. I understand. Similarly, it can be seen that, in order to reduce the pulverization ratio of 0.7 kN coal with a crushing strength of less than 1.7 kN to 20% by mass or less, it is necessary to set the fall height of the coal to 4.2 m or less.

これらのことから、例えば、装炭車5から炭化室3の炉底までの落下高さ8.0mのコークス炉において、圧潰強度1.7kNの高強度の成型炭と、圧潰強度1.1kNの低強度の成型炭を用いた場合では、まず、圧潰強度1.7kNの成型炭を高さ2.5mまで炭化室3に装入し、次に、圧潰強度1.1kNの成型炭を炭化室3の上部まで装入することで、炭化室3に装入された成型炭の粉化比率を20質量%以下にできることがわかる。   For these reasons, for example, in a coke oven with a drop height of 8.0 m from the coal loaded vehicle 5 to the furnace bottom of the carbonization chamber 3, a high strength coal with a crushing strength of 1.7 kN and a low crushing strength of 1.1 kN are obtained. In the case of using high-strength coal, first, the coal with a crushing strength of 1.7 kN is charged into the carbonization chamber 3 up to a height of 2.5 m, and then the coal with a crushing strength of 1.1 kN is introduced into the carbonization chamber 3. It turns out that the powdering ratio of the charcoal charged into the carbonization chamber 3 can be reduced to 20% by mass or less by charging up to the upper part.

また、例えば、圧潰強度1.7kNの高強度の成型炭と、圧潰強度0.7kNの低強度の成型炭を用いた場合では、まず、圧潰強度1.7kNの成型炭を高さ3.8mまで炭化室3に装入し、次に、圧潰強度0.7kNの成型炭を炭化室3の上部まで装炭することで、炭化室3に装入された成型炭の粉化比率を20質量%以下にできることがわかる。   For example, in the case of using a high strength coal with a crushing strength of 1.7 kN and a low strength coal with a crushing strength of 0.7 kN, first, a coal with a crushing strength of 1.7 kN is set to a height of 3.8 m. The carbonization chamber 3 is charged up to the next, and then the coal powder with a crushing strength of 0.7 kN is charged up to the upper part of the carbonization chamber 3 so that the pulverization ratio of the coal coal charged into the carbonization chamber 3 is 20 mass. It can be seen that it can be reduced to less than%.

このように、本実施形態に係るコークスの製造方法においては、装炭車5から炭化室3の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%以下となる圧潰強度の高い成型炭と、炭化室3の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%を超える強度の低い成型炭とを用いて、まず、圧潰強度の高い成型炭から炭化室3に装入し、装炭車から炭化室3にすでに装入された成型炭層の上面までの落下高さが、圧潰強度の低い成型炭の15mm以下の粉化比率が20質量%以下となる高さよりも低くなった後に、圧潰強度の低い成型炭を炭化室に装入する。上述したように、圧潰強度の低い成型炭を用いることで成型炭の製造コストの上昇を抑制できるので、成型炭の製造コストの上昇を抑制しつつ、成型炭装入時の成型炭の粉化を抑制できる。さらに、成型炭の粉化を抑制して成型炭の粉化比率を20質量%以下とし、炭化室3に装入された成型炭の割合を70〜95質量%にすることで、高い生産性でコークスを製造できる、という効果が得られる。   Thus, in the manufacturing method of the coke which concerns on this embodiment, when the height from the charcoal vehicle 5 to the furnace bottom of the carbonization chamber 3 is dropped, the pulverization ratio in which the particle size becomes 15 mm or less is 20% by mass. A coal with a high crushing strength and a coal with a low strength exceeding 20% by mass when the particle size becomes 15 mm or less when the height to the furnace bottom of the carbonization chamber 3 is dropped. First, the carbonized coal 3 is charged from the coal with high crushing strength, and the fall height from the charcoal vehicle to the upper surface of the coal coal layer already charged in the carbonizing chamber 3 is low. After the pulverization ratio of 15 mm or less becomes lower than the height at which the pulverization ratio is 20% by mass or less, the coal with low crushing strength is charged into the carbonization chamber. As mentioned above, since the increase in the manufacturing cost of coal can be suppressed by using the coal with low crushing strength, pulverization of the coal at the time of charging the coal is suppressed while suppressing the increase in the manufacturing cost of the coal. Can be suppressed. Furthermore, by suppressing the pulverization of the coal, the pulverization ratio of the coal is 20% by mass or less, and the ratio of the coal to be charged in the carbonization chamber 3 is 70 to 95% by mass, so that high productivity is achieved. Can produce coke.

図4は、2種類の成型炭を装入した場合の成型炭の粉化比率と、落下高さの関係を示すグラフである。図4において、横軸は粉化比率(質量%)であり、縦軸は落下高さ(m)である。図4の実線は、圧潰強度1.7kNの成型炭を試験容器10に3t装入し、次に、圧潰強度1.1kNの成型炭を試験容器10に3t装入した場合の粉化比率を示す。また、図4の破線は、圧潰強度1.7kNの成型炭を試験容器10に3t装入し、次に、圧潰強度0.7kNの成型炭を試験容器10に3t装炭した場合の粉化比率を示す。   FIG. 4 is a graph showing the relationship between the pulverization ratio of the coal and the drop height when two types of coal are charged. In FIG. 4, the horizontal axis represents the powdering ratio (mass%), and the vertical axis represents the drop height (m). The solid line in FIG. 4 shows the pulverization ratio when 3 tons of coal with a crushing strength of 1.7 kN is charged into the test vessel 10 and then 3 tons of coal with a crushing strength of 1.1 kN is charged into the test vessel 10. Show. Also, the broken line in FIG. 4 indicates pulverization in the case where 3 tons of coal with a crushing strength of 1.7 kN is charged into the test container 10 and then 3 tons of coal with a crushing strength of 0.7 kN is loaded into the test vessel 10. Indicates the ratio.

圧潰強度1.7kNの成型炭を3t装入し、次に、圧潰強度1.1kNの成型炭を3t装入した場合には、試験容器10に圧潰強度1.7kNの成型炭が4.0mまで装入されるので、圧潰強度1.1kNの成型炭の落下高さは4.0mになる。このように、圧潰強度1.7kNの成型炭を試験容器10に半分装入することで、圧潰強度1.1kNの成型炭の落下高さを5.5m以下にできるので、図4に示すように、成型炭の粉化比率を20質量%以下にすることができた。   When 3 tons of coal with a crushing strength of 1.7 kN is charged and then 3 tons of coal with a crushing strength of 1.1 kN is charged, 4.0 m of coal with a crushing strength of 1.7 kN is placed in the test container 10. Therefore, the fall height of the coal with a crushing strength of 1.1 kN is 4.0 m. Thus, by inserting half of the coal with a crushing strength of 1.7 kN into the test vessel 10, the falling height of the coal with a crushing strength of 1.1 kN can be reduced to 5.5 m or less, as shown in FIG. In addition, the powdering ratio of the coal was reduced to 20% by mass or less.

また、圧潰強度1.7kNの成型炭を3t装入し、次に、圧潰強度0.7kNの成型炭を3t装入した場合には、圧潰強度1.7kNの成型炭が4.0mまで装入されるので、圧潰強度0.7kNの成型炭の落下高さは4.0mになる。このように、圧潰強度1.7kNの成型炭を試験容器10に半分装入することで、圧潰強度0.7kNの成型炭の落下高さを4.2m以下にできるので、図4に示すように、成型炭の粉化比率を20質量%以下にすることができた。   In addition, when 3 tons of coal with a crushing strength of 1.7 kN is charged, and then 3 tons of coal with a crushing strength of 0.7 kN is charged, the coal with a crushing strength of 1.7 kN is charged to 4.0 m. Therefore, the falling height of the coal with a crushing strength of 0.7 kN is 4.0 m. In this way, by placing half of the coal with a crushing strength of 1.7 kN into the test vessel 10, the falling height of the coal with a crushing strength of 0.7 kN can be reduced to 4.2 m or less, as shown in FIG. In addition, the powdering ratio of the coal was reduced to 20% by mass or less.

なお、本実施形態において、成型炭の強度を圧潰強度で示したが、これに限られない。成型炭の強度として、圧潰強度に代えて、トロンメル強度やI型ドラム強度などの回転強度、シャッター強度、落下試験によって求められる粉率を用いてもよい。また、本実施形態では、2種の圧潰強度の成型炭を用いた例を示したが、これに限られず、2種以上の異なる圧潰強度の成型炭を用いて、圧潰強度の高い成型炭から順に炭化室3に装入することで、成型炭の製造コストの上昇を抑制しながら、炭化室装炭時の成型炭の粉化を抑制できる。   In addition, in this embodiment, although the intensity | strength of the forming charcoal was shown by the crushing intensity | strength, it is not restricted to this. As the strength of the forming charcoal, instead of the crushing strength, rotational strength such as trommel strength and I-type drum strength, shutter strength, and powder rate determined by a drop test may be used. Moreover, in this embodiment, although the example using 2 types of crushing strength coals was shown, it is not restricted to this, From 2 or more types of coals with different crushing strengths, By charging into the carbonization chamber 3 in order, powdering of the coal at the time of carbonization chamber coalification can be suppressed while suppressing an increase in the production cost of coal coal.

上記の例では、装炭車のホッパーの成型炭切り出し口から炭化室3の炉底までの落下距離が8.0mであり、成型炭の粉化比率の目標値を20%以下とした例について説明したが、これに限られない。特に、成型炭の粉化比率の目標値は、求められるコークスの生産性の向上度合いに応じて任意の値としてよい。コークス原料として用いる成型炭について、予め落下高さと粉化比率の関係を求めておけば、その関係に基づいて、粉化比率の目標値となる落下高さを定めることができる。そして、それぞれの成型炭を、装炭車から炭化室3の炉底まで、または、炭化室3にすでに装入された成型炭層の上面までの落下高さが、粉化比率の目標値となる落下高さよりも低くなった後に装炭室3に装入すれば、成型炭の粉化比率は目標値より小さくなり、炭化室装炭時の成型炭の粉化を好適に抑制できる。   In the above example, an example is described in which the fall distance from the coal severing opening of the hopper of the charcoal vehicle to the furnace bottom of the carbonization chamber 3 is 8.0 m and the target value of the coal pulverization ratio is 20% or less. However, it is not limited to this. In particular, the target value of the pulverization ratio of the charcoal may be an arbitrary value according to the required degree of improvement in coke productivity. If the relationship between the drop height and the pulverization ratio is obtained in advance for the coal used as the coke raw material, the drop height that is the target value of the pulverization ratio can be determined based on the relationship. And the fall height from the coal car to the furnace bottom of the carbonization chamber 3 or the top surface of the coal coal layer already charged in the carbonization chamber 3 becomes the target value of the pulverization ratio. If the charging chamber 3 is charged after being lower than the height, the pulverization ratio of the formed coal becomes smaller than the target value, and the pulverization of the formed coal during the carbonization chamber charging can be suitably suppressed.

成型炭は、一般に粉砕した石炭をバインダーと混合し、成形機を用いて成型することによって製造される。成型炭の強度には、バインダーの量、バインダーの種類、成型条件、水分量、石炭の粒度などが影響するので、これら因子を変更することによって成型炭の強度は変更できる。また、成型炭には、石炭以外に、粉コークス、オイルコークス類、粘結材、プラスチック類、油類、バイオマスなどが含まれていてもよい。   Coal coal is generally produced by mixing pulverized coal with a binder and molding it using a molding machine. Since the strength of the coal is affected by the amount of binder, the type of binder, the molding conditions, the amount of water, the particle size of the coal, etc., the strength of the coal can be changed by changing these factors. In addition to coal, coking coal may include powdered coke, oil coke, caking material, plastics, oils, biomass, and the like.

次に、コークス炉の炭化室に2種類の圧潰強度の成型炭を装炭して乾留を行い、コークスを製造した実施例を説明する。図5は、コークス炉の上面模式図である。本実施例では、2種類の異なる圧潰強度の成型炭を、圧潰強度の高い順に試験窯26に装入する。このため、成型工場20では、圧潰強度の低い成型炭と、圧潰強度の高い成型炭とが成型される。成型工場20で成型された圧潰強度の低い成型炭は、例えば、石炭塔22に搬送され、圧潰強度の高い成型炭は、例えば、石炭塔24に搬送される。装炭車5は、まず、石炭塔24から圧潰強度の高い成型炭を受け取り、試験窯26に半分装入する(1回目装炭)。次に、装炭車5は、石炭塔22から圧潰強度の低い成型炭を受け取り、試験窯26に半分装入し(2回目装炭)、試験窯26内で成型炭を乾留してコークスを製造した。表1に本実施例における装炭条件および評価結果を示す。   Next, an example will be described in which coke is produced by coking two types of crushing strength coal into a coking chamber of a coke oven and performing dry distillation. FIG. 5 is a schematic top view of the coke oven. In this embodiment, two types of coals having different crushing strengths are charged into the test kiln 26 in descending order of crushing strength. For this reason, in the molding factory 20, molding coal with low crushing strength and molding coal with high crushing strength are molded. The coal with low crushing strength molded at the molding factory 20 is conveyed to, for example, the coal tower 22, and the coal with high crushing strength is conveyed to, for example, the coal tower 24. First, the charcoal vehicle 5 receives cast coal with high crushing strength from the coal tower 24, and half-charges it into the test kiln 26 (first charcoal). Next, the charcoal vehicle 5 receives coal with low crushing strength from the coal tower 22, and half-charges it into the test kiln 26 (second charcoal), and carbonizes the charcoal in the test kiln 26 to produce coke. did. Table 1 shows the coal loading conditions and evaluation results in this example.

表1における「1回目装炭」の列は、1回目に試験窯26に装炭した成型炭の圧潰強度(kN)を示す。「2回目装炭」の列は、2回目に試験窯26に装炭した成型炭の圧潰強度(kN)を示す。「押出負荷」の列は、押出ラムを駆動するモータにかかる電流値を用いて算出したコークスの押出し性を示す指標であって、比較例1を100として規格化した値を示す。「乾留」の列に示した「○」は、比較例1と同じ乾留時間で成型炭が十分に乾留されたことを示し、「×」は、比較例1と同じ乾留時間で成型炭が十分に乾留されなかったことを示す。   The column of “1st Charcoal” in Table 1 indicates the crushing strength (kN) of the cast charcoal that was first loaded in the test kiln 26. The column “2nd Charcoal” indicates the crushing strength (kN) of the coal that was loaded in the test kiln 26 the second time. The column of “extrusion load” is an index indicating the extrudability of coke calculated using the current value applied to the motor driving the extrusion ram, and shows a value normalized with Comparative Example 1 as 100. “◯” shown in the column of “Cryogenic distillation” indicates that the coal was sufficiently carbonized at the same carbonization time as in Comparative Example 1, and “X” indicates that the coal is sufficient at the carbonization time as in Comparative Example 1. Indicates that it was not carbonized.

比較例1では、1回目装炭および2回目装炭ともに圧潰強度1.7kNの成型炭を試験窯26に装入して乾留した。比較例1は、押出負荷の増加も見られず、成型炭は十分に乾留されていた。しかしながら、圧潰強度が1.7kNの成型炭を全量用いているので、成型炭製造時にバインダーの使用量が増加し、成型炭の製造コストが上昇した。   In Comparative Example 1, cast coal with a crushing strength of 1.7 kN was charged into the test kiln 26 and dry-distilled for both the first and second coals. In Comparative Example 1, no increase in the extrusion load was observed, and the coal was sufficiently dry distilled. However, since the entire amount of coal with a crushing strength of 1.7 kN is used, the amount of binder used during the production of coal is increased, and the production cost of coal is increased.

比較例2では、1回目装炭および2回目装炭ともに圧潰強度1.1kNの成型炭を試験窯26に装入して乾留した。比較例2では、1回目の装炭時に成型炭が粉化し、試験窯26の底部において成型炭の嵩密度が上昇した。このため、コークスと炉壁との隙間が減少して押出負荷が増加し、また、成型炭の嵩密度が上昇したために、成型炭が十分に乾留されなかった。   In Comparative Example 2, cast coal having a crushing strength of 1.1 kN was charged into the test kiln 26 and dry-distilled for both the first and second coals. In Comparative Example 2, the coal was pulverized during the first coal loading, and the bulk density of the coal was increased at the bottom of the test kiln 26. For this reason, the gap between the coke and the furnace wall was reduced, the extrusion load was increased, and the bulk density of the coal was increased, so that the coal was not sufficiently dry-distilled.

比較例3では、1回目装炭および2回目装炭ともに圧潰強度0.7kNの成型炭を試験窯26に装入して乾留した。比較例3では、1回目の装炭時に成型炭が粉化し、試験窯26の底部において成型炭の嵩密度が上昇した。このため、コークスと炉壁との隙間が減少して押出負荷が増加し、また、成型炭の嵩密度が上昇したために、成型炭が十分に乾留されなかった。   In Comparative Example 3, cast coal having a crushing strength of 0.7 kN was charged into the test kiln 26 and dry-distilled for both the first and second coals. In Comparative Example 3, the coal was pulverized during the first coal charging, and the bulk density of the coal was increased at the bottom of the test kiln 26. For this reason, the gap between the coke and the furnace wall was reduced, the extrusion load was increased, and the bulk density of the coal was increased, so that the coal was not sufficiently dry-distilled.

発明例1では、1回目装炭で圧潰強度1.7kNの成型炭を試験窯26に装入し、2回目装炭で圧潰強度1.1kNの成型炭を試験窯26に装入して乾留した。発明例1では、押出負荷の増加も見られず、成型炭は十分に乾留されていた。また、2回目装炭では、圧潰強度が1.1kNの成型炭を用いているので、成型炭製造時におけるバインダーの使用量を抑制でき、成型炭の製造コストの上昇も抑制できた。   In Invention Example 1, the first charcoal is charged with a coal having a crushing strength of 1.7 kN into the test kiln 26, and the second charcoal is charged with a crushing strength of 1.1 kN into the test kiln 26 and dry-distilled. did. In Invention Example 1, no increase in extrusion load was observed, and the coal was sufficiently dry distilled. In addition, since the second coal was formed using a coal having a crushing strength of 1.1 kN, the amount of binder used during the production of the coal can be suppressed, and an increase in the manufacturing cost of the coal can be suppressed.

発明例2では、1回目装炭で圧潰強度1.7kNの成型炭を試験窯26に装入し、2回目装炭で圧潰強度0.7kNの成型炭を試験窯26に装入して乾留した。発明例2では、押出負荷の増加も見られず、成型炭は十分に乾留されていた。また、2回目装炭では、圧潰強度が0.7kNの成型炭を用いているので、成型炭製造時におけるバインダーの使用量を抑制でき、成型炭の製造コストの上昇も抑制できた。   In Invention Example 2, the first charcoal is loaded with coal with a crushing strength of 1.7 kN into the test kiln 26, and the second charcoal with crushing strength of 0.7 kN is loaded into the test kiln 26 and dry-distilled. did. In Invention Example 2, no increase in extrusion load was observed, and the coal was sufficiently dry distilled. Moreover, in the second round coal, since the coal with a crushing strength of 0.7 kN is used, the amount of binder used during the production of the coal can be suppressed, and an increase in the cost of manufacturing the coal can be suppressed.

1 コークス炉
2 蓄熱部
3 炭化室
3a 窯口
4 燃焼室
5 装炭車
6 押出機
8 ガイド車
9 消火車
10 試験容器
12 開口部
14 窓
20 成型工場
22 石炭塔
24 石炭塔
26 試験窯
DESCRIPTION OF SYMBOLS 1 Coke oven 2 Heat storage part 3 Carbonization chamber 3a Kiln opening 4 Combustion chamber 5 Charcoal vehicle 6 Extruder 8 Guide vehicle 9 Fire extinguisher 10 Test vessel 12 Opening 14 Window 20 Molding plant 22 Coal tower 24 Coal tower 26 Test kiln

Claims (3)

粒径が15mmを超える成型炭をコークス炉の炭化室に装炭車から装入して乾留するコークスの製造方法であって、
前記成型炭を2種以上の異なる強度に成型し、
強度が高い成型炭から順に前記炭化室に装入する、コークスの製造方法。
A method for producing coke in which coking coal having a particle size of more than 15 mm is charged into a coking chamber of a coke oven from a charcoal vehicle and dry-distilled,
Molding the charcoal into two or more different strengths,
A method for producing coke, which is charged into the carbonization chamber in order from a high strength coal.
粒径が15mmを超える成型炭をコークス炉の炭化室に装炭車から装入して乾留するコークスの製造方法であって、
前記成型炭を2種以上の異なる強度に成型し、
それぞれの成型炭について、落下高さと粉化比率の割合の関係を求め、
それぞれの成型炭を、前記装炭車から前記炭化室の炉底までの落下高さ、または、前記装炭車から前記炭化室にすでに装入された成型炭層の上面までの落下高さが、前記落下高さと粉化比率の割合の関係に基づいて求めた成型炭の粉化比率が目標値となる落下高さより低くなった後に前記炭化室に装入する、コークスの製造方法。
A method for producing coke in which coking coal having a particle size of more than 15 mm is charged into a coking chamber of a coke oven from a charcoal vehicle and dry-distilled,
Molding the charcoal into two or more different strengths,
For each charcoal, find the relationship between the drop height and the ratio of the pulverization ratio,
The falling height of each of the coals from the coal loading vehicle to the bottom of the carbonization chamber or the height of the fall from the coal loading vehicle to the upper surface of the coal formation layer already charged in the carbonization chamber A method for producing coke, wherein the carbonization chamber is charged after the powdered coal charcoal ratio obtained based on the relationship between the height and the powdered ratio is lower than the target drop height.
前記成型炭は、前記装炭車から前記炭化室の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%以下となる強度の高い成型炭と、
前記装炭車から前記前記炭化室の炉底までの高さを落下させた場合に粒径が15mm以下となる粉化比率が20質量%を超える強度の低い成型炭と、を含み、
前記強度の高い成型炭を炭化室に装入し、
前記装炭車から前記炭化室にすでに装入された成型炭層の上面までの落下高さが、前記強度の低い成型炭の粒径が15mm以下となる粉化比率が20質量%以下になる落下高さよりも低くなった後に、前記強度の低い成型炭を前記炭化室に装入する、請求項1または請求項2に記載のコークスの製造方法。
The molding charcoal is a high-strength molding charcoal having a pulverization ratio of 20% by mass or less when the particle size is 15 mm or less when dropping the height from the charcoal vehicle to the furnace bottom of the carbonization chamber;
A low-strength coal with a pulverization ratio exceeding 20% by mass when the particle size is 15 mm or less when the height from the charcoal vehicle to the furnace bottom of the carbonization chamber is dropped, and
Charging the high strength coal into the carbonization chamber,
The drop height from the charcoal vehicle to the upper surface of the coal layer already charged in the carbonization chamber is such that the powdering ratio at which the particle size of the low strength coal is 15 mm or less is 20% by mass or less. The coke production method according to claim 1 or 2, wherein the low-strength coal is charged into the carbonization chamber after the temperature becomes lower than the above.
JP2017066482A 2017-03-30 2017-03-30 Coke production method Active JP6583334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066482A JP6583334B2 (en) 2017-03-30 2017-03-30 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066482A JP6583334B2 (en) 2017-03-30 2017-03-30 Coke production method

Publications (2)

Publication Number Publication Date
JP2018168280A true JP2018168280A (en) 2018-11-01
JP6583334B2 JP6583334B2 (en) 2019-10-02

Family

ID=64018501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066482A Active JP6583334B2 (en) 2017-03-30 2017-03-30 Coke production method

Country Status (1)

Country Link
JP (1) JP6583334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386390A (en) * 2022-06-22 2022-11-25 中南大学 Petroleum coke calcining process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115386390A (en) * 2022-06-22 2022-11-25 中南大学 Petroleum coke calcining process
CN115386390B (en) * 2022-06-22 2024-01-16 中南大学 Petroleum coke calcining process

Also Published As

Publication number Publication date
JP6583334B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
US20220056342A1 (en) Multi-modal beds of coking material
US20210340454A1 (en) High-quality coke products
JP4879706B2 (en) Method for producing blast furnace coke
US8888960B2 (en) Method for compacting coal in a manner suitable for coke oven chambers
JP6299332B2 (en) Coking coal for coke production
JP6583334B2 (en) Coke production method
JPS5811914B2 (en) Method for manufacturing coke for blast furnaces
JP6102484B2 (en) Method for producing sintered ore
JP6838570B2 (en) Briquette charging method and coke manufacturing method
JP6575551B2 (en) Coke production method
CN104531190B (en) Process for simultaneously producing machine coke and molded coke by use of stamp-charging coke oven
JP6965907B2 (en) Coal tower, coal input method and coke manufacturing method
US11111441B2 (en) Method for producing ferrocoke
JP6624181B2 (en) Raw material charging method for coke oven
JP6323050B2 (en) Coking coal for coke production and method for producing coke
JP2009235221A (en) Method for producing ferro coke
JP7028210B2 (en) Manufacturing method of coal tower and coke
JP6257094B2 (en) Coke production method
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP6079142B2 (en) Coke production method
JP5532574B2 (en) Method for producing a coagulation material for sinter production
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP6562218B2 (en) Coke oven coal charging method
JP6863001B2 (en) How to make coke
JP2007063350A (en) Method for producing coke

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250