JP2018164963A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2018164963A
JP2018164963A JP2017062963A JP2017062963A JP2018164963A JP 2018164963 A JP2018164963 A JP 2018164963A JP 2017062963 A JP2017062963 A JP 2017062963A JP 2017062963 A JP2017062963 A JP 2017062963A JP 2018164963 A JP2018164963 A JP 2018164963A
Authority
JP
Japan
Prior art keywords
layer
tialn
crystal
value
representative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017062963A
Other languages
Japanese (ja)
Other versions
JP6850996B2 (en
Inventor
健志 山口
Kenji Yamaguchi
健志 山口
強 大上
Tsutomu Ogami
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017062963A priority Critical patent/JP6850996B2/en
Publication of JP2018164963A publication Critical patent/JP2018164963A/en
Application granted granted Critical
Publication of JP6850996B2 publication Critical patent/JP6850996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool which exhibits excellent chipping resistance and abrasion resistance in a high-speed intermittent cutting work.SOLUTION: In a surface-coated cutting tool having a hard coating layer including at least a TiAlN layer provided on a surface of a tool base, (a) the TiAlN layer contains at least a TiAlN crystal grain having a cubic crystal structure, and an average composition of the layer satisfies 0.65≤x≤0.9 in a composition formula: (TiAl)N (x is an atomic ratio), and (b) a longitudinal section of the TiAlN layer is analyzed by a crystal orientation analyzer attached to TEM, for each crystal grain formed of TiAlN having the cubic crystal structure, the maximum value of IC values acquired on each measure point in the crystal grain is determined as representative IC values and the representative IC values for each of the crystal grains are compared with each other, for the crystal grains indicating the representative IC value of 30% or less, when an angle formed by a normal line of a (112) plane of the fine crystal grains and a normal line of the surface of the tool base is measured, an area ratio of the crystal grains having the angle of 20 degrees or less in the total area of the crystal grains indicating the representative IC value of 30% or less is 30% or more.SELECTED DRAWING: None

Description

この発明は、合金鋼などの高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance in a high-speed intermittent cutting process such as alloy steel, and exhibits excellent cutting performance over a long period of use. Tool).

一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
In general, as a coated tool, for throwing inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various materials such as steel and cast iron, and for drilling and cutting the work material Known drills and miniature drills, end mills used for chamfering and grooving, shoulder processing, etc. of the work material, solid hob, pinion cutter used for gear cutting of the tooth profile of the work material, etc. Yes.
Many proposals have been made for the purpose of improving the cutting performance of the coated tool.

例えば、特許文献1に示すように、工具基体表面に、物理蒸着によって堆積された耐火性層を含むコーティングを含む被覆工具であって、 前記耐火性層がM1−xAlN(式中、x≧0.68であり、MがTi、CrまたはZrである)を含み、前記耐火性層が立方晶結晶相を含有し、少なくとも25GPaの硬度を有する厚膜、高硬度および低残留応力の耐摩耗性被覆工具が提案されている。 For example, as shown in Patent Document 1, a coated tool including a coating including a refractory layer deposited by physical vapor deposition on the surface of a tool base, wherein the refractory layer is M 1-x Al x N (wherein X ≧ 0.68, and M is Ti, Cr or Zr), and the refractory layer contains a cubic crystal phase and has a hardness of at least 25 GPa, high hardness and low residual stress Abrasion-resistant coated tools have been proposed.

また、特許文献2には、工具基体表面にTiAlN層からなる硬質被覆層を被覆した被覆工具において、上記硬質被覆層が、層厚方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、さらに、上記Al最高含有点が、組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.70〜0.95を示す)、上記Al最低含有点が、組成式:(Ti1−YAl )N(ただし、原子比で、Yは0.40〜0.65を示す)、をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである耐摩耗性にすぐれた被覆工具が提案されている。 Further, in Patent Document 2, in a coated tool in which a hard coating layer composed of a TiAlN layer is coated on the surface of a tool base, the hard coating layer has an Al maximum content point (Ti minimum content point) along the layer thickness direction. Al lowest content points (Ti highest content points) are alternately present at predetermined intervals, and the Al highest content point to the Al lowest content point, the Al lowest content point to the Al highest content point Al ( Ti) It has a component concentration distribution structure in which the content changes continuously, and the Al highest content point is the composition formula: (Ti 1-X Al X ) N (wherein the atomic ratio, X is 0. 70 to 0.95), and the above-mentioned lowest Al content point is a composition formula: (Ti 1-Y Al Y ) N (wherein Y represents 0.40 to 0.65 in atomic ratio), respectively. Satisfied and adjacent Al highest content point and Al lowest Distance Yu points, coated tool having excellent wear resistance is 0.01~0.1μm have been proposed.

特開2015−36189号公報Japanese Patent Laying-Open No. 2015-36189 特開2003−211304号公報JP 2003-211304 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化の傾向にあるが、上記従来の被覆工具においては、これを鋼や鋳鉄などの通常の切削条件での切削加工に用いた場合には、特段の問題は生じないが、これを、例えば、合金鋼等の高速断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷がかかる切削加工に用いた場合には、クラックの発生・伝播を抑制することができないため、チッピングが発生しやすく、また、摩耗進行も促進されるため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been dramatically improved, while there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting has become a trend toward higher speed and higher efficiency. However, in the above-mentioned conventional coated tool, when this is used for cutting under normal cutting conditions such as steel and cast iron, no particular problem occurs. Crack generation / propagation cannot be suppressed when used for cutting that involves high heat generation, such as high-speed interrupted cutting, and that imposes an impact and intermittent high load on the cutting edge. Therefore, chipping is likely to occur and the progress of wear is promoted, so that the service life is reached in a relatively short time.

例えば、特許文献1に示される従来被覆工具においては、M1−xAlNの一つの形態であるTiAlN層は高硬度で耐摩耗性にすぐれる層であり、Al含有量が多いほど耐摩耗性にすぐれるが、その一方で、格子歪が大きくなるため、耐チッピング性が低下するという問題があった。
また、特許文献2に示される従来被覆工具においては、層厚方向に組成変化を形成することで高温硬さと耐熱性、靱性を両立せしめることができるが、層厚方向に形成される層内の異方性によって、層厚と垂直方向のクラックの発生・伝播を十分に防止することはできないという問題があった。
For example, in the conventional coated tool shown in Patent Document 1, a TiAlN layer which is one form of M 1-x Al x N is a layer having high hardness and excellent wear resistance, and the higher the Al content, the more resistant it is. Although it is excellent in wearability, on the other hand, there is a problem that chipping resistance is lowered because lattice strain increases.
Moreover, in the conventional coated tool shown by patent document 2, although high temperature hardness, heat resistance, and toughness can be made compatible by forming a composition change in the layer thickness direction, in the layer formed in the layer thickness direction Due to the anisotropy, the generation and propagation of cracks perpendicular to the layer thickness cannot be sufficiently prevented.

そこで、本発明者等は、上述の観点から、合金鋼などの高速断続切削加工のような、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する切削加工条件下で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を両立し得る被覆工具を開発すべく、硬質被覆層の成分組成、結晶構造および層構造等に着目し研究を行った結果、次のような知見を得た。   In view of the above, the present inventors, from the above-mentioned viewpoint, are accompanied by high heat generation such as high-speed intermittent cutting of alloy steel and the like, and a cutting operation in which a shocking and intermittent high load acts on the cutting blade. As a result of conducting research focusing on the component composition, crystal structure and layer structure of the hard coating layer in order to develop a coated tool that can achieve both chipping resistance and wear resistance with excellent hard coating layer under the conditions, The following findings were obtained.

即ち、本発明者は、工具基体表面に、少なくともTiとAlの複合窒化物(以下、「TiAlN」で示す場合がある。)層を含む硬質被覆層を設けた被覆工具において、該層におけるAlのTiとAlの合量に占める組成割合を高くすることにより、まず、耐摩耗性を高め、これに加えて、TiAlN層を構成する立方晶構造のTiAlN結晶粒の結晶方位が揃っているかどうかの指標としてImage Correlation index(以下、「IC値」という)と(112)配向性とを関連付けて制御し、特に、IC値が高く結晶方位が揃っている立方晶構造のTiAlN結晶粒の(112)配向性を高めることにより、TiAlN層の耐摩耗性を保持しつつ、耐チッピング性を向上させることができることを見出したのである。
その結果、本発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼等の高速断続切削加工条件下で、すぐれた耐チッピング性と耐摩耗性を両立することができるのである。
That is, the inventor of the present invention provides a coated tool in which a hard coating layer including at least a composite nitride of Ti and Al (hereinafter sometimes referred to as “TiAlN”) layer is provided on the surface of the tool base. By increasing the composition ratio in the total amount of Ti and Al, first, wear resistance is improved, and in addition to this, whether the crystal orientation of the TiAlN crystal grains of the cubic structure constituting the TiAlN layer is aligned. Image Correlation Index (hereinafter referred to as “IC value”) and (112) orientation are controlled in association with each other, and in particular, (112) of TiAlN crystal grains having a cubic structure with a high IC value and a uniform crystal orientation. It was found that by increasing the orientation, the chipping resistance can be improved while maintaining the wear resistance of the TiAlN layer.
As a result, the coated tool of the present invention has excellent chipping resistance under high-speed interrupted cutting conditions such as alloy steel that is accompanied by high heat generation and impact and intermittent high load acts on the cutting edge. And wear resistance.

この発明は、上記の知見に基づいてなされたものであって、
「(1)WC基超硬合金、TiCN基サーメットおよび立方晶窒化硼素焼結体のいずれかからなる工具基体表面に、0.5〜10.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
(a)前記TiとAlの複合窒化物層は、その組成を、
組成式:(Ti1−xAl)N
で表した場合、0.65≦x≦0.9(ただし、xは原子比)を満足する平均組成を有し、
(b)前記TiとAlの複合窒化物層は、少なくとも立方晶構造のTiとAlの複合窒化物からなる結晶粒を含み、
(c)前記TiとAlの複合窒化物層の縦断面を透過型電子顕微鏡に付属する結晶方位解析装置を用いて解析し、立方晶構造のTiとAlの複合窒化物からなる各結晶粒について、それぞれの結晶粒内の各測定点で取得されるIC値の最大値を当該結晶粒の代表IC値として求め、結晶粒毎の代表IC値を比較して、上位30%以内の代表IC値を示した結晶粒について、それぞれの結晶粒の(112)面の法線と工具基体表面の法線とのなす角度を測定したとき、前記なす角度が20度以下である結晶粒が、前記上位30%以内の代表IC値を示した結晶粒の全面積に占める面積割合は30%以上であることを特徴とする表面被覆切削工具。
(2)前記硬質被覆層は、前記TiとAlの複合窒化物層の単層により構成されていることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記硬質被覆層は、2層以上の積層構造として構成され、該積層構造のうちの少なくとも一つの層は、前記TiとAlの複合窒化物層により構成されていることを特徴とする前記(1)に記載の表面被覆切削工具。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) A composite nitride of Ti and Al having an average layer thickness of 0.5 to 10.0 μm on the surface of a tool substrate made of any one of a WC-based cemented carbide, a TiCN-based cermet and a cubic boron nitride sintered body In a surface-coated cutting tool provided with a hard coating layer including at least a layer,
(A) The composite nitride layer of Ti and Al has the composition
Composition formula: (Ti 1-x Al x ) N
In this case, it has an average composition satisfying 0.65 ≦ x ≦ 0.9 (where x is an atomic ratio),
(B) The Ti and Al composite nitride layer includes crystal grains composed of at least a cubic Ti and Al composite nitride,
(C) A longitudinal section of the Ti and Al composite nitride layer is analyzed using a crystal orientation analyzer attached to a transmission electron microscope, and each crystal grain made of a Ti and Al composite nitride having a cubic structure is analyzed. The maximum IC value obtained at each measurement point in each crystal grain is obtained as the representative IC value of the crystal grain, and the representative IC value for each crystal grain is compared, and the representative IC value within the top 30% is compared. When the angle formed between the normal of the (112) plane of each crystal grain and the normal of the tool substrate surface is measured, the crystal grain having the angle of 20 degrees or less is A surface-coated cutting tool characterized in that an area ratio in a total area of crystal grains exhibiting a representative IC value within 30% is 30% or more.
(2) The surface-coated cutting tool according to (1), wherein the hard coating layer is formed of a single layer of the composite nitride layer of Ti and Al.
(3) The hard coating layer is configured as a laminated structure of two or more layers, and at least one layer of the laminated structure is configured by the composite nitride layer of Ti and Al. The surface-coated cutting tool according to (1) above. "
It is characterized by.

つぎに、この発明の被覆工具について、詳細に説明する。   Next, the coated tool of the present invention will be described in detail.

TiAlN層の平均層厚:
硬質被覆層は、少なくともTiAlN層を含むが、該TiAlN層の平均層厚が0.5μm未満では、TiAlN層によって付与される耐摩耗性向上効果、耐チッピング性向上効果が十分に発揮されず、一方、平均層厚が10.0μmを超えると、TiAlN層の中の歪みが大きくなり自壊しやすくなるため、TiAlN層の平均層厚は0.5〜10.0μmとする。
なお、TiAlN層の平均層厚は、TiAlN層の縦断面について走査型電子顕微鏡(SEM)を用いて測定し、複数個所での測定値を平均することによって、その平均層厚とする。
Average thickness of the TiAlN layer:
The hard coating layer includes at least a TiAlN layer, but if the average thickness of the TiAlN layer is less than 0.5 μm, the wear resistance improving effect and chipping resistance improving effect imparted by the TiAlN layer are not sufficiently exhibited, On the other hand, when the average layer thickness exceeds 10.0 μm, the strain in the TiAlN layer increases and the layer itself tends to break, so the average layer thickness of the TiAlN layer is set to 0.5 to 10.0 μm.
In addition, the average layer thickness of a TiAlN layer is measured using the scanning electron microscope (SEM) about the longitudinal section of a TiAlN layer, and it is set as the average layer thickness by averaging the measured value in several places.

TiAlN層の平均組成:
TiAlN層を、
組成式:(Ti1−xAl)N
で表した場合、0.65≦x≦0.9(ただし、xは原子比)を満足する平均組成を有することが必要である。
Al成分の平均組成を表すxが0.9を超える場合には、六方晶構造のTiAlN結晶粒の割合が高くなり、TiAlN層の硬度が低下し十分な耐摩耗性を得ることができない。
一方、Al成分の平均組成を表すxが0.65未満となる場合には、Al成分の組成割合が減少するため、TiAlN層の高温硬さおよび高温耐酸化性が低下する。
したがって、Al成分の平均組成xは、0.65≦x≦0.9とする。
Al成分の平均組成xは、走査型電子顕微鏡(SEM)とエネルギー分散型X線分光法(EDS)を用いて、TiAlN層の縦断面の複数個所(例えば、3箇所)でAl量を測定し、その測定値を平均することによって求めることができる。
なお、前記組成式において、N/(Ti+Al+N)の値は、必ずしも、化学量論比である0.5である必要はなく、工具基体表面の汚染の影響などで不可避的に検出される炭素や酸素などの元素をのぞいてTi、Al、Nの含有割合の原子比を定量し、TiとAlとNの含有割合の原子比の合計に対するNの含有割合の原子比が0.45以上0.65以下の範囲であれば、本発明のTiAlN層において同等の効果が得られ特に問題はない。
Average composition of TiAlN layer:
TiAlN layer,
Composition formula: (Ti 1-x Al x ) N
It is necessary to have an average composition satisfying 0.65 ≦ x ≦ 0.9 (where x is an atomic ratio).
When x representing the average composition of the Al component exceeds 0.9, the ratio of TiAlN crystal grains having a hexagonal crystal structure is increased, and the hardness of the TiAlN layer is lowered, so that sufficient wear resistance cannot be obtained.
On the other hand, when x representing the average composition of the Al component is less than 0.65, the composition ratio of the Al component decreases, so that the high-temperature hardness and high-temperature oxidation resistance of the TiAlN layer decrease.
Therefore, the average composition x of the Al component is 0.65 ≦ x ≦ 0.9.
For the average composition x of the Al component, the amount of Al is measured at a plurality of locations (for example, three locations) in the longitudinal section of the TiAlN layer using a scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It can be obtained by averaging the measured values.
In the above composition formula, the value of N / (Ti + Al + N) does not necessarily need to be a stoichiometric ratio of 0.5. Carbon or carbon that is inevitably detected due to the influence of contamination on the surface of the tool base or the like. Excluding elements such as oxygen, the atomic ratio of the content ratio of Ti, Al, and N is quantified, and the atomic ratio of the content ratio of N to the total atomic ratio of the content ratios of Ti, Al, and N is 0.45 or more. In the range of 65 or less, the same effect can be obtained in the TiAlN layer of the present invention, and there is no particular problem.

TiAlN層における立方晶構造のTiAlN結晶粒:
本発明のTiAlN層は、所定の成膜法によって成膜することによって、該層を構成する立方晶構造のTiAlN結晶粒のIC値と(112)配向性を関連付けて制御することができ、これによって、TiAlN層の耐摩耗性を保持しつつ、耐チッピング性を向上させることができる。
即ち、結晶性がすぐれているIC値が高い立方晶構造のTiAlN結晶粒について、各TiAlN結晶粒の(112)面の法線と工具基体表面の法線とのなす角度が20度以下となる結晶粒の面積割合を高めること、即ち、(112)配向性を高めることによって、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する高速断続切削加工条件下で、すぐれた耐摩耗性を保持しつつ、耐チッピング性を向上させることができる。
TiAlN crystal grains having a cubic structure in the TiAlN layer:
By forming the TiAlN layer of the present invention by a predetermined film formation method, the IC value of the TiAlN crystal grains having a cubic structure constituting the layer and the (112) orientation can be controlled in association with each other. Thus, the chipping resistance can be improved while maintaining the wear resistance of the TiAlN layer.
That is, for a TiAlN crystal grain having a cubic structure with excellent crystallinity and a high IC value, the angle formed between the normal of the (112) plane of each TiAlN crystal grain and the normal of the tool substrate surface is 20 degrees or less. By increasing the area ratio of crystal grains, that is, by increasing the (112) orientation, high heat generation occurs, and high-speed intermittent cutting conditions under which impact and intermittent high load act on the cutting blade Thus, chipping resistance can be improved while maintaining excellent wear resistance.

ここで、立方晶構造のTiAlN結晶粒の特定は、次のように行う。
なお、本発明における「硬質被覆層の縦断面」とは、硬質被覆層と工具基体との界面(工具基体表面)に対して垂直方向の断面のことをいう。
TiAlN層の縦断面の測定範囲において、透過型電子顕微鏡(TEM)に付属する結晶方位解析装置を用いて、前記測定範囲内の各測定点における(112)面の法線方向の角度を測定するとともに、隣接する測定点における(112)面の法線方向の角度差を求め、該角度差が5度以上の場合には、隣接する測定点の間にTiAlN結晶粒の粒界が存在するとして粒界の位置を定め、そして、粒界によって囲まれた領域をTiAlN結晶粒であるとする。
より詳細には以下の様に進める。
まず、TiAlN層を含む硬質被覆層の縦断面を切り出した後、30nm以下に研磨した切片をセットし、200kVに加速された電子線を前記切片の表面(すなわちTiAlN層を含む硬質被覆層に相当する表面)に照射することで観察を行う。次にTiAlN層を含む硬質被覆層の縦断面の観察結果から、結晶粒幅、面積割合及び工具基体表面に対する結晶方位の解析範囲を決める方法は以下の通りである。次いで、硬質被覆層の縦断面の観察画像における、硬質被覆層と工具基体との界面上の2点を任意で選定する。その際、2点間を線分でつないだ長さは1000nmになるよう選定する。結晶方位の解析範囲は、前記線分と平行方向に1000nm(この方向を以下「解析範囲の横方向」と定義する)、垂直方向に最低400nm(この方向を以下「解析範囲の縦方向」と定義する)の長方形の範囲とする。その際、前記の範囲には全てTiAlN層の縦断面のみ含める(工具基体、ならびにTiAlN層以外の硬質被覆層は含めない)。
前記の測定範囲において、結晶方位のマップデータを得る解析方法は以下の通りである。前記縦断面に、縦断面の表面の法線方向に対して0.5〜1.0度に傾けた電子線をPrecession(歳差運動)照射しながら、電子線を任意のビーム径及び間隔でスキャンし、連続的に電子線回折パターンを取り込み、個々の測定点の結晶方位を解析する。なお、本測定に用いた回折パターンの取得条件は、カメラ長20cm、ビームサイズ2.2nmで、測定ステップは2.0nmである。
さらに、IC値と結晶方位を以下のように求める。
個々の測定点の電子線回折パターンを、立方晶の任意の方位に対してあらかじめ計算した電子線回折パターンと比較し、最も良くマッチした結晶方位をその測定点の結晶方位として採用する。これはE.F.Rauch and L. Dupuy, Arch. Metall. Mater. 50 (2005) 87.による「Template Matching」という手法であり、下記に数式で示したデータ処理の概要を図2に示した。
立方晶の対称要素を考慮し全ての結晶方位を表現できるステレオ投影図の一部の範囲において、例えば1°の角度精度で計算した電子線回折パターンを用意する場合、およそ3000通りのパターンが必要である。このパターンの種類を表わす係数をiとし、計算した電子線回折パターン内での座標をjとすると、測定点kにおけるIC値を

と示す事が出来る。ここで
は、全てのパターンに対する大括弧[]の中の式の値の最大値を採用することを表わし、
は測定点kにおける電子線回折パターン内の座標jの強度、
は、i番目の結晶方位に対して計算した電子線回折パターン内の座標jの強度を表わす。すなわち、最大値をとるiの示す結晶方位が、その測定点での結晶方位を表わし、その時のIC(k)値が測定点kにおけるIC値となる。
得られる電子線回折パターンから個々の結晶粒を判別するための解析方法は、以下の通りである。まず、測定点の隣接点同士の(112)面の法線方向が5度以上離れている場合、測定点間を粒界と判断する。次に、粒界に囲まれている部分を結晶粒と定義する。ただし、この線分がTiAlN層表面、TiAlN層と硬質被覆層が接する面、または工具基体表面と接する場合は、それぞれの表面または界面に隣接しTiAlN層に属する測定点を粒界に属する測定点とみなす。
以上の様にして得られたある立方晶構造のTiAlN結晶粒に属する測定点に対し、工具基体表面の法線と(112)面の法線のなす角度を各測定点に対して求めてから平均値を得ることで、この値を該立方晶構造のTiAlN結晶粒の(112)面の法線と工具基体表面の法線のなす角度とする。このようにして測定範囲内の全ての立方晶構造のTiAlN結晶粒に対する(112)面の法線と工具基体表面の法線のなす角度が求められる。さらにIC値に対しては結晶粒内の最大値をもってその結晶粒の代表IC値とする。上位30%以内の代表IC値を示した結晶粒に属する全ての測定点の数で、(112)面の法線と工具基体表面の法線とのなす角度が20度以下となる結晶粒に属する測定点の数を割り百分率に換算することで、以下に示すような本発明のTiAlN層の特性を評価する面積割合を得る。
以上のようにして求めたIC(k)値の理論上の最大値100は、測定点kにおいて試料切片を透過した電子線を散乱した基本格子の結晶方位が完全に同じ向きに揃っている事を表わす。逆に結晶方位を定めた最大IC(k)値が小さいほど、試料切片を透過した電子線を散乱した基本格子の結晶方位にばらつきが大きいことを表わす。
Here, the identification of cubic AlTiN crystal grains is performed as follows.
The “longitudinal section of the hard coating layer” in the present invention refers to a cross section in a direction perpendicular to the interface between the hard coating layer and the tool base (tool base surface).
In the measurement range of the longitudinal section of the TiAlN layer, the angle in the normal direction of the (112) plane at each measurement point in the measurement range is measured using a crystal orientation analyzer attached to a transmission electron microscope (TEM). In addition, the angle difference in the normal direction of the (112) plane at the adjacent measurement points is obtained, and when the angle difference is 5 degrees or more, there is a grain boundary of TiAlN crystal grains between the adjacent measurement points. The position of the grain boundary is determined, and the region surrounded by the grain boundary is assumed to be TiAlN crystal grains.
In more detail, proceed as follows.
First, after cutting out a longitudinal section of a hard coating layer including a TiAlN layer, a section polished to 30 nm or less is set, and an electron beam accelerated to 200 kV is equivalent to the surface of the section (that is, a hard coating layer including a TiAlN layer) Observation is performed by irradiating the surface. Next, the method for determining the analysis range of the crystal grain width, the area ratio, and the crystal orientation with respect to the tool base surface from the observation result of the longitudinal section of the hard coating layer including the TiAlN layer is as follows. Next, two points on the interface between the hard coating layer and the tool base in the observation image of the longitudinal section of the hard coating layer are arbitrarily selected. At that time, the length connecting the two points with a line segment is selected to be 1000 nm. The analysis range of the crystal orientation is 1000 nm in a direction parallel to the line segment (this direction is hereinafter defined as “lateral direction of analysis range”), and a minimum of 400 nm in the vertical direction (hereinafter this direction is referred to as “longitudinal direction of analysis range”). Defined) rectangle range. At that time, all the above ranges include only the longitudinal section of the TiAlN layer (not including the tool base and the hard coating layer other than the TiAlN layer).
An analysis method for obtaining crystal orientation map data in the measurement range is as follows. While irradiating the longitudinal section with an electron beam inclined at 0.5 to 1.0 degree with respect to the normal direction of the surface of the longitudinal section (Precession), the electron beam is irradiated at an arbitrary beam diameter and interval. Scan and continuously capture the electron diffraction pattern and analyze the crystal orientation of each measurement point. The acquisition conditions of the diffraction pattern used in this measurement are a camera length of 20 cm, a beam size of 2.2 nm, and a measurement step of 2.0 nm.
Further, the IC value and crystal orientation are obtained as follows.
The electron diffraction pattern at each measurement point is compared with the electron diffraction pattern calculated in advance for an arbitrary orientation of the cubic crystal, and the best-matched crystal orientation is adopted as the crystal orientation at that measurement point. This is a method called “Template Matching” according to EFRauch and L. Dupuy, Arch. Metall. Mater. 50 (2005) 87. An outline of the data processing expressed by the following mathematical formula is shown in FIG.
When preparing an electron diffraction pattern calculated with an angular accuracy of 1 °, for example, within a range of a stereographic projection that can represent all crystal orientations in consideration of the symmetry element of cubic crystals, approximately 3000 patterns are required. It is. Assuming that the coefficient representing this pattern type is i and the coordinate in the calculated electron beam diffraction pattern is j, the IC value at the measurement point k is

Can be shown. here
Means to adopt the maximum value of the expression in square brackets [] for all patterns,
Is the intensity of the coordinate j in the electron diffraction pattern at the measurement point k,
Represents the intensity of the coordinate j in the electron diffraction pattern calculated for the i-th crystal orientation. That is, the crystal orientation indicated by i having the maximum value represents the crystal orientation at the measurement point, and the IC (k) value at that time is the IC value at the measurement point k.
An analysis method for discriminating individual crystal grains from the obtained electron beam diffraction pattern is as follows. First, when the normal direction of the (112) plane between adjacent points of the measurement points is 5 degrees or more apart, the measurement points are determined to be grain boundaries. Next, a portion surrounded by the grain boundary is defined as a crystal grain. However, when this line segment touches the surface of the TiAlN layer, the surface where the TiAlN layer and the hard coating layer are in contact, or the surface of the tool base, the measurement points belonging to the TiAlN layer adjacent to the respective surfaces or interfaces belong to the grain boundaries. It is considered.
For each measurement point, the angle formed by the normal of the tool base surface and the normal of the (112) plane is obtained for each measurement point belonging to a TiAlN crystal grain having a certain cubic structure obtained as described above. By obtaining an average value, this value is defined as an angle formed by the normal line of the (112) plane of the cubic TiAlN crystal grains and the normal line of the tool base surface. In this manner, the angle formed by the normal of the (112) plane and the normal of the tool substrate surface with respect to all cubic TiAlN crystal grains within the measurement range is obtained. Further, with respect to the IC value, the maximum value in the crystal grain is set as the representative IC value of the crystal grain. In the number of all measurement points belonging to the crystal grains showing the representative IC value within the upper 30%, the angle formed by the normal of the (112) plane and the normal of the tool substrate surface is 20 degrees or less. By converting the number of measurement points to which the measurement points belong to a percentage, an area ratio for evaluating the characteristics of the TiAlN layer of the present invention as described below is obtained.
The theoretical maximum value 100 of the IC (k) value obtained as described above is that the crystal orientations of the basic lattice that scattered the electron beam transmitted through the sample piece at the measurement point k are perfectly aligned. Represents. Conversely, the smaller the maximum IC (k) value defining the crystal orientation, the greater the variation in the crystal orientation of the basic lattice that scattered the electron beam transmitted through the sample section.

すなわち、IC値が高い立方晶構造のTiAlN結晶粒とは、TiAlN層の縦断面を透過型電子顕微鏡に付属する結晶方位解析装置を用いて解析し、前記で特定された立方晶構造のTiAlN結晶粒について、それぞれの結晶粒内の各測定点で取得されるIC値を求め、各結晶粒で求めたIC値の最大値を当該結晶粒の代表IC値とし、それぞれの結晶粒の代表IC値を比較し、上位30%以内の代表IC値を示す結晶方位の揃った立方晶構造のTiAlN結晶粒をいう。   That is, the cubic structure TiAlN crystal grains having a high IC value are obtained by analyzing the longitudinal section of the TiAlN layer using a crystal orientation analyzer attached to a transmission electron microscope, and identifying the TiAlN crystal having the cubic structure specified above. For each grain, an IC value obtained at each measurement point in each crystal grain is obtained, and the maximum IC value obtained for each crystal grain is taken as the representative IC value of the crystal grain, and the representative IC value of each crystal grain And a TiAlN crystal grain having a cubic crystal structure with a representative crystal value within the top 30%.

ついで、上位30%以内の代表IC値を示す前記立方晶構造のTiAlN結晶粒について、透過型電子顕微鏡に付属する結晶方位解析装置を用いて、前記各結晶粒の(112)面の法線方向と工具基体表面の法線方向とのなす角度を測定し、前記なす角度が20度以下であるTiAlN結晶粒を特定するとともに、前記なす角度が20度以下である結晶粒の占める面積割合を、前記上位30%以内の代表IC値を示すTiAlN結晶粒の全面積の30%以上とすることによって、TiAlN層は、すぐれた耐摩耗性とすぐれた耐チッピング性を発揮することができる。
なお、上位30%以内の代表IC値を示すTiAlN結晶粒の(112)面の法線方向と工具基体表面の法線方向とのなす角度が20度以下であるTiAlN結晶粒の面積、また、上位30%以内の代表IC値を示すTiAlN結晶粒の全面積は、それぞれの測定点の数に比例するといえるから、それぞれに該当する測定点の割合によって、上位30%以内の代表IC値を示すTiAlN結晶粒の(112)面の法線方向と工具基体表面の法線方向とのなす角度が20度以下であるTiAlN結晶粒の占める面積割合を算出することができる。
Next, with respect to the cubic structure TiAlN crystal grains showing representative IC values within the top 30%, the normal direction of the (112) plane of each crystal grain using a crystal orientation analyzer attached to the transmission electron microscope And the angle formed by the normal direction of the tool substrate surface, the TiAlN crystal grains that the angle formed is 20 degrees or less is specified, and the area ratio of the crystal grains that the angle formed is 20 degrees or less, By making it 30% or more of the total area of the TiAlN crystal grains showing the representative IC value within the upper 30%, the TiAlN layer can exhibit excellent wear resistance and excellent chipping resistance.
The area of the TiAlN crystal grains in which the angle formed by the normal direction of the (112) plane of the TiAlN crystal grains showing the representative IC value within the top 30% and the normal direction of the tool base surface is 20 degrees or less, Since it can be said that the total area of the TiAlN crystal grains showing the representative IC value within the top 30% is proportional to the number of the respective measurement points, the representative IC value within the top 30% is indicated by the ratio of the corresponding measurement points. It is possible to calculate the area ratio of the TiAlN crystal grains whose angle between the normal direction of the (112) plane of the TiAlN crystal grains and the normal direction of the tool base surface is 20 degrees or less.

本発明のTiAlN層の成膜法:
本発明のTiAlN層は、例えば、アンバランスドマグネトロンスパッタリング装置とアークイオンプレーティング装置を併設した物理蒸着装置(以下、「UBMS/AIP装置」という)を用いたアンバランスドマグネトロンスパッタリング(以下、単に「UBMS」という)とアークイオンプレーティング(以下、単に「AIP」という)による同時蒸着によって成膜することができる。
本発明のTiAlN層を成膜するための、UBMS/AIP装置の概略平面図を図1Aに示し、同概略正面図を図1Bに示す。
図1A、図1Bに示すUBMS/AIP装置において、工具基体を保持部材のほぼ中央部分で自転可能に保持するとともに、保持部材の下端または両端を、UBMS/AIP装置の上方及び下方に設けた支持部材で支持し、UBMS/AIP装置の側壁にはTi−Al合金からなるAIP用カソード電極(ターゲット)を配置し、また、これに近接する装置の側壁には、金属TiからなるUBMS用カソード電極(ターゲット)を配置する。
TiAlN層の成膜にあたっては、工具基体を所定の温度範囲に加熱し、反応ガスを装置内に導入し、前記AIP用カソード電極(ターゲット)とUBMS用カソード電極(ターゲット)を同時放電させて、両カソード電極(ターゲット)によって形成されるプラズマ領域が重なるような位置に工具基体を位置させ、工具基体を自転させつつ蒸着を行うことによって、本発明のTiAlN層を形成することができる。
Film formation method of TiAlN layer of the present invention:
The TiAlN layer of the present invention is formed by, for example, unbalanced magnetron sputtering (hereinafter simply referred to as “UBMS / AIP device”) using a physical vapor deposition device (hereinafter referred to as “UBMS / AIP device”) provided with an unbalanced magnetron sputtering device and an arc ion plating device. The film can be formed by simultaneous vapor deposition using “UBMS” and arc ion plating (hereinafter simply referred to as “AIP”).
A schematic plan view of a UBMS / AIP apparatus for forming a TiAlN layer of the present invention is shown in FIG. 1A and a schematic front view thereof is shown in FIG. 1B.
In the UBMS / AIP apparatus shown in FIGS. 1A and 1B, the tool base is held so as to be able to rotate at the substantially central portion of the holding member, and the lower end or both ends of the holding member are provided above and below the UBMS / AIP apparatus. The AIP cathode electrode (target) made of Ti-Al alloy is arranged on the side wall of the UBMS / AIP device supported by the member, and the cathode electrode for UBMS made of metal Ti is placed on the side wall of the device adjacent thereto. (Target) is placed.
In forming the TiAlN layer, the tool base is heated to a predetermined temperature range, a reaction gas is introduced into the apparatus, and the cathode electrode for AIP (target) and the cathode electrode for UBMS (target) are discharged simultaneously, The TiAlN layer of the present invention can be formed by positioning the tool base at a position where the plasma regions formed by both cathode electrodes (targets) overlap and performing deposition while rotating the tool base.

本発明の被覆工具は、硬質被覆層を前記TiAlN層の単層として形成することができるが、2層以上の積層構造として構成された硬質被覆層のうちの少なくとも一つの層を、前記TiAlN層により構成しても良い。 In the coated tool of the present invention, the hard coating layer can be formed as a single layer of the TiAlN layer, but at least one of the hard coating layers configured as a laminated structure of two or more layers is formed as the TiAlN layer. You may comprise by.

本発明の硬質被覆層は少なくともTiAlN層を含み、前記TiAlN層は、少なくとも立方晶構造のTiAlN結晶粒を含み、前記TiAlN結晶粒のうちの代表IC値が高いTiAlN結晶粒について、各結晶粒の(112)面の法線方向と工具基体表面の法線方向とのなす角度を測定した場合、前記なす角度が20度以下であるTiAlN結晶粒が、前記代表IC値が高いTiAlN結晶粒の全面積の30%以上の面積割合を占めるため、結晶性に優れたTiAlN結晶粒の(112)配向性が高められている。
したがって、このようなTiAlN層を含む硬質被覆層を被覆形成した本発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼等の高速断続切削加工条件下で、すぐれた耐摩耗性とすぐれた耐チッピング性を両立することができる。
The hard coating layer of the present invention includes at least a TiAlN layer, and the TiAlN layer includes at least cubic TiAlN crystal grains, and TiAlN crystal grains having a high representative IC value among the TiAlN crystal grains are provided for each crystal grain. When the angle formed between the normal direction of the (112) plane and the normal direction of the tool substrate surface is measured, the TiAlN crystal grains whose angle is 20 degrees or less are all TiAlN crystal grains having a high representative IC value. Since it occupies an area ratio of 30% or more of the area, the (112) orientation of TiAlN crystal grains excellent in crystallinity is enhanced.
Therefore, the coated tool of the present invention in which a hard coating layer including such a TiAlN layer is formed is accompanied by high heat generation, and alloy steel or the like in which a shocking and intermittent high load acts on the cutting blade. It is possible to achieve both excellent wear resistance and excellent chipping resistance under high-speed interrupted cutting conditions.

本発明被覆工具のTiAlN層を成膜するのに用いるアンバランスドマグネトロンスパッタリング装置とアークイオンプレーティング装置を併設した物理蒸着装置(UBMS/AIP装置)の概略平面図を示す。1 shows a schematic plan view of a physical vapor deposition apparatus (UBMS / AIP apparatus) provided with an unbalanced magnetron sputtering apparatus and an arc ion plating apparatus used for forming a TiAlN layer of a coated tool of the present invention. FIG. 本発明被覆工具のTiAlN層を成膜するのに用いるアンバランスドマグネトロンスパッタリング装置とアークイオンプレーティング装置を併設した物理蒸着装置(UBMS/AIP装置)の概略正面図を示す。1 shows a schematic front view of a physical vapor deposition apparatus (UBMS / AIP apparatus) provided with an unbalanced magnetron sputtering apparatus and an arc ion plating apparatus used for forming a TiAlN layer of a coated tool of the present invention. FIG. IC値を求めるための概略説明図であり、回折強度が高い位置を黒く表した電子線回折パターンに対し、あらかじめ立方晶の対称要素を考慮し全ての結晶方位を表現できるステレオ投影図の一部の範囲において計算した電子線回折パターンを用いて、IC値を計算し、その値が最大となる結晶方位を、その測定点での結晶方位として決定する。It is a schematic explanatory diagram for obtaining an IC value, and a part of a stereo projection diagram that can express all crystal orientations in advance by taking into consideration a symmetric element of a cubic crystal with respect to an electron beam diffraction pattern in which a position where the diffraction intensity is high is represented in black The IC value is calculated using the electron diffraction pattern calculated in the range (1), and the crystal orientation at which the value is maximized is determined as the crystal orientation at the measurement point.

つぎに、この発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、WC基超硬合金を工具基体とする被覆工具について説明するが、TiCN基サーメットあるいは立方晶窒化硼素焼結体を工具基体とする被覆工具についても同様である。
また、硬質被覆層の構造としては、TiAlN層の単層の場合について説明するが、TiAlN層が2層以上の積層構造のうちの少なくとも一つの層を構成する複層構造の場合であっても、複層構造におけるTiAlN層は、単層のTiAlN層と同様な作用効果を奏する。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As a specific description, a coated tool using a WC-based cemented carbide as a tool base will be described, but the same applies to a coated tool using a TiCN-based cermet or a cubic boron nitride sintered body as a tool base.
The structure of the hard coating layer will be described in the case of a single layer of TiAlN layer. However, even if the TiAlN layer has a multilayer structure in which at least one layer of two or more layers is formed. In addition, the TiAlN layer in the multilayer structure has the same effects as the single-layer TiAlN layer.

原料粉末として、いずれも0.5〜5μmの平均粒径を有する、Co粉末、TaC粉末、NbC粉末、TiC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥し後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFENのインサート形状をもったWC基超硬合金工具基体1、2を製造した。 As raw material powders, Co powder, TaC powder, NbC powder, TiC powder, Cr 3 C 2 powder and WC powder, all having an average particle diameter of 0.5 to 5 μm, were prepared. Blended into the composition shown, further added with wax, wet mixed in a ball mill for 72 hours, dried under reduced pressure, press-molded at a pressure of 100 MPa, and sintered these compacts to a predetermined size. The WC-based cemented carbide tool bases 1 and 2 having an ISO standard SEEN1203AFEN insert shape were manufactured.

上記の工具基体1、2のそれぞれを、アセトン中で超音波洗浄し、乾燥した後、UBMS用金属Tiカソード電極(ターゲット)とAIP用の所定組成のTi−Al合金カソード電極(ターゲット)が設けられた図1A、図1Bに示すUBMS/AIP装置内に配置し、かつ、その配置位置は、工具基体を自転可能に保持する保持部材のほぼ中央部であって、Ti−Al合金カソード電極(ターゲット)と金属Tiカソード電極(ターゲット)からほぼ等距離であり、両カソード電極(ターゲット)によって形成されるプラズマ領域が重なるような位置(例えば、図1(a)に示す4箇所)に配置した。
UBMS/AIP装置内には、装置内を排気して真空に保持しながら、ヒータで工具基体を400℃に加熱した後、前記保持部材に保持されて自転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、Ti−Al合金カソード電極(ターゲット)に100Aのアーク電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄した。
ついで、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素圧にすると共に、前記自転する工具基体の温度を表2に示す温度範囲に加熱維持し、表2に示すバイアス電圧を工具基体に印加し、表2に示す所定組成のTi−Al合金カソード電極(ターゲット)に表2に示すアーク電流を流してアーク放電を発生させ、アークイオンプレーティングを行った。
さらに、前記アークイオンプレーティングと同時に、工具基体と金属Tiカソード電極(ターゲット)に表2に示すバイアスを印加するとともに、金属Tiカソード電極(ターゲット)に表2に示す電圧を印加することにより、アンバランスドマグネトロンスパッタリングを行った。
上記の工程で、アンバランスドマグネトロンスパッタリングとアークイオンプレーティングを同時に行うことにより、本発明のTiAlN層を成膜した表4に示す本発明被覆工具1〜10(以下、本発明工具1〜10という)を製造した。
Each of the tool bases 1 and 2 is ultrasonically cleaned in acetone and dried, and then provided with a metal Ti cathode electrode (target) for UBMS and a Ti-Al alloy cathode electrode (target) having a predetermined composition for AIP. 1A and 1B, and the arrangement position is substantially the center of a holding member that holds the tool base in a rotatable manner, and is a Ti-Al alloy cathode electrode ( The target is approximately equidistant from the metal Ti cathode electrode (target), and the plasma regions formed by the two cathode electrodes (target) overlap each other (for example, four locations shown in FIG. 1A). .
In the UBMS / AIP apparatus, the tool base is heated to 400 ° C. with a heater while the inside of the apparatus is evacuated and held in vacuum, and then the DC bias voltage of −1000 V is applied to the tool base that is held by the holding member and rotates. Was applied, and an arc current of 100 A was applied to the Ti—Al alloy cathode electrode (target) to generate an arc discharge, whereby the tool base surface was bombarded.
Next, nitrogen gas is introduced as a reaction gas into the apparatus to obtain the nitrogen pressure shown in Table 2, and the temperature of the rotating tool base is maintained within the temperature range shown in Table 2, and the bias voltage shown in Table 2 is set. Arc ion plating was performed by applying the arc current shown in Table 2 to a Ti—Al alloy cathode electrode (target) having a predetermined composition shown in Table 2 to generate an arc discharge.
Furthermore, simultaneously with the arc ion plating, by applying the bias shown in Table 2 to the tool base and the metal Ti cathode electrode (target), and applying the voltage shown in Table 2 to the metal Ti cathode electrode (target), Unbalanced magnetron sputtering was performed.
In the above process, the unbalanced magnetron sputtering and arc ion plating are simultaneously performed to form the TiAlN layer of the present invention, and the present coated tools 1 to 10 shown in Table 4 (hereinafter referred to as the present invention tools 1 to 10). Manufactured).

比較の目的で、図1に示すUBMS/AIP装置を用いて、工具基体1、2のそれぞれに、本発明工具1〜10の場合と同様な条件でボンバード洗浄を施したのち、表3に示すアークイオンプレーティング条件のみでTiAlN層を形成することにより、表5に示す比較例被覆工具1〜5(以下、比較例工具1〜5という)をそれぞれ製造した。   For comparison purposes, each of the tool bases 1 and 2 is subjected to bombard cleaning under the same conditions as in the case of the inventive tools 1 to 10 using the UBMS / AIP apparatus shown in FIG. By forming the TiAlN layer only under arc ion plating conditions, comparative example coated tools 1 to 5 (hereinafter referred to as comparative example tools 1 to 5) shown in Table 5 were produced.

上記で作製した本発明工具1〜10および比較例工具1〜5のTiAlN層について、走査型電子顕微鏡を用いて断面測定し、5ヶ所の測定値の平均値から、平均層厚を算出した。
また、本発明工具1〜10、比較例工具1〜5のTiAlN層におけるAl成分の組成を、走査型電子顕微鏡(SEM)とエネルギー分散型X線分光法(EDS)を用いて、層厚方向に0.4μm以上、基体表面に平行な方向に0.4μm以上の視野範囲で測定し、3箇所の測定値の平均値を、TiAlN層のAl成分の平均組成xとして求めた。
表4、表5に、それぞれの値を示す。
About TiAlN layer of this invention tool 1-10 produced above and comparative example tools 1-5, a cross section was measured using the scanning electron microscope, and average layer thickness was computed from the average value of five measured values.
Further, the composition of the Al component in the TiAlN layers of the inventive tools 1 to 10 and the comparative tools 1 to 5 is measured in the layer thickness direction using a scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). In the direction parallel to the substrate surface, the average value of three measured values was obtained as the average composition x of the Al component of the TiAlN layer.
Tables 4 and 5 show the respective values.

また、本発明工具1〜10のTiAlN層および比較例工具1〜5のTiAlN層の縦断面の400nm×1000nmの測定領域について、透過型電子顕微鏡(TEM)に付属する結晶方位解析装置を用いて、測定範囲内の各測定点(2.0nmピッチ間隔)における(112)面の法線方向が、工具基体表面の法線方向に対する傾斜角度を測定するとともに、隣接する測定点における傾斜角度の差を求め、該角度差が5度以上の場合に、隣接する測定点の間にTiAlN結晶粒の粒界が存在するとして粒界の位置を定め、さらに、粒界によって囲まれた領域をTiAlN結晶粒であるとして定めた。
ついで、TiAlN層の縦断面を透過型電子顕微鏡に付属する結晶方位解析装置を用いて解析し、前記で定めた立方晶構造のTiAlN結晶粒のそれぞれについて、各結晶粒内の各測定点におけるIC値を測定するとともに、それぞれの結晶粒内の各測定点で取得されたIC値の最大値を求め、この値を、それぞれの結晶粒の代表IC値とした。
ついで、前記代表IC値をそれぞれの結晶粒について比較し、代表IC値の大きい順に並べ、その上位30%以内の代表IC値を示す結晶粒を選定し、これらの選定した結晶粒について、透過型電子顕微鏡に付属する結晶方位解析装置を用いて、それぞれの結晶粒の(112)面の法線方向と工具基体表面の法線方向とのなす角度が20度以下であるTiAlN結晶粒を特定するとともに、該特定された結晶粒が占める面積sを求めるとともに、前記上位30%以内の代表IC値を示すTiAlN結晶粒の全面積Sを測定した。
(s/S)×100の値を算出することによって、上位30%以内の代表IC値を示す結晶粒のうちの、(112)面の法線方向と工具基体表面の法線方向とのなす角度が20度以下であるTiAlN結晶粒が、前記上位30%以内の代表IC値を示した結晶粒の全面積に占める面積割合を求めた。
表4、表5に、それぞれの値を示す。
Moreover, about the measurement area | region of 400 nm x 1000 nm of the longitudinal cross-section of the TiAlN layer of this invention tool 1-10 and the TiAlN layer of comparative example tools 1-5, using the crystal orientation analyzer attached to a transmission electron microscope (TEM). The normal direction of the (112) plane at each measurement point (2.0 nm pitch interval) within the measurement range measures the inclination angle with respect to the normal direction of the tool base surface, and the difference in inclination angle between adjacent measurement points When the angle difference is 5 degrees or more, the position of the grain boundary is determined on the assumption that there is a TiAlN crystal grain boundary between adjacent measurement points, and the region surrounded by the grain boundary is further defined as TiAlN crystal. Determined to be grains.
Next, the longitudinal section of the TiAlN layer is analyzed using a crystal orientation analyzer attached to a transmission electron microscope, and the IC at each measurement point in each crystal grain is determined for each of the TiAlN crystal grains having the cubic structure defined above. While measuring the value, the maximum value of the IC values obtained at each measurement point in each crystal grain was determined, and this value was taken as the representative IC value of each crystal grain.
Next, the representative IC values are compared for the respective crystal grains, arranged in descending order of the representative IC values, and crystal grains showing the representative IC values within the top 30% are selected. Using a crystal orientation analyzer attached to the electron microscope, TiAlN crystal grains whose angle between the normal direction of the (112) plane of each crystal grain and the normal direction of the tool substrate surface is 20 degrees or less are specified. At the same time, the area s occupied by the identified crystal grains was determined, and the total area S of TiAlN crystal grains showing the representative IC values within the upper 30% was measured.
By calculating the value of (s / S) × 100, the normal direction of the (112) plane and the normal direction of the tool base surface among the crystal grains showing the representative IC values within the top 30% are formed. The area ratio of the TiAlN crystal grains having an angle of 20 degrees or less to the total area of the crystal grains showing the representative IC values within the upper 30% was determined.
Tables 4 and 5 show the respective values.

次いで、本発明工具1〜10および比較例工具1〜5について、以下の条件で、高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験:乾式高速正面フライス、センターカット切削加工、
カッタ径: 125 mm、
被削材: JIS・SCM445 幅100mm、長さ365mmのブロック材、
切削速度: 365 m/min、
切り込み: 2.1 mm、
一刃送り量: 0.21 mm/刃、
切削時間: 7.5 分、
表6に、試験結果を示す。
Next, with respect to the inventive tools 1 to 10 and the comparative tools 1 to 5, a dry high-speed face milling, which is a kind of high-speed interrupted cutting, and a center-cut cutting test are performed under the following conditions, and the flank wear width of the cutting edge Was measured.
Cutting test: dry high-speed face milling, center cutting,
Cutter diameter: 125 mm,
Work material: JIS / SCM445 Block material with a width of 100 mm and a length of 365 mm,
Cutting speed: 365 m / min,
Cutting depth: 2.1 mm,
Single blade feed amount: 0.21 mm / tooth,
Cutting time: 7.5 minutes,
Table 6 shows the test results.

表6に示される結果から、本発明のTiAlN層は、代表IC値が高い結晶性に優れた立方晶のTiAlN結晶粒の(112)配向性を高めているため、本発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼等の高速断続切削加工条件下で、すぐれた耐チッピング性と耐摩耗性を両立することができる。
これに対して、本発明で規定するTiAlN層を具備しない比較例工具は、チッピングの発生あるいは耐摩耗性の低下によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 6, since the TiAlN layer of the present invention has improved (112) orientation of cubic TiAlN crystal grains having a high representative IC value and excellent crystallinity, the coated tool of the present invention is Excellent chipping resistance and wear resistance can be achieved under high-speed interrupted cutting conditions such as alloy steel, which is accompanied by high heat generation and impact and intermittent high load acts on the cutting edge. .
On the other hand, it is apparent that the comparative tool that does not have the TiAlN layer defined in the present invention reaches the service life in a relatively short time due to the occurrence of chipping or a decrease in wear resistance.

この発明の被覆工具は、高熱発生を伴い、しかも、切刃に対して衝撃的・断続的な高負荷が作用する合金鋼などの高速断続切削加工に供した場合に、すぐれた耐チッピング性とともに長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
The coated tool of the present invention has excellent chipping resistance when it is subjected to high-speed intermittent cutting such as alloy steel that is accompanied by high heat generation and impact and intermittent high load acts on the cutting edge. Since it exhibits excellent wear resistance over a long period of use, it can satisfactorily respond to the FA of the cutting device, the labor saving and energy saving of the cutting, and the cost reduction.

Claims (3)

WC基超硬合金、TiCN基サーメットおよび立方晶窒化硼素焼結体のいずれかからなる工具基体表面に、0.5〜10.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、
(a)前記TiとAlの複合窒化物層は、その組成を、
組成式:(Ti1−xAl)N
で表した場合、0.65≦x≦0.9(ただし、xは原子比)を満足する平均組成を有し、
(b)前記TiとAlの複合窒化物層は、少なくとも立方晶構造のTiとAlの複合窒化物からなる結晶粒を含み、
(c)前記TiとAlの複合窒化物層の縦断面を透過型電子顕微鏡に付属する結晶方位解析装置を用いて解析し、立方晶構造のTiとAlの複合窒化物からなる各結晶粒について、それぞれの結晶粒内の各測定点で取得されるIC値の最大値を当該結晶粒の代表IC値として求め、結晶粒毎の代表IC値を比較して、上位30%以内の代表IC値を示した結晶粒について、それぞれの結晶粒の(112)面の法線と工具基体表面の法線とのなす角度を測定したとき、前記なす角度が20度以下である結晶粒が、前記上位30%以内の代表IC値を示した結晶粒の全面積に占める面積割合は30%以上であることを特徴とする表面被覆切削工具。
At least a composite nitride layer of Ti and Al having an average layer thickness of 0.5 to 10.0 μm is included on the surface of a tool base made of any one of a WC-based cemented carbide, a TiCN-based cermet, and a cubic boron nitride sintered body. In surface-coated cutting tools provided with a hard coating layer,
(A) The composite nitride layer of Ti and Al has the composition
Composition formula: (Ti 1-x Al x ) N
In this case, it has an average composition satisfying 0.65 ≦ x ≦ 0.9 (where x is an atomic ratio),
(B) The Ti and Al composite nitride layer includes crystal grains composed of at least a cubic Ti and Al composite nitride,
(C) A longitudinal section of the Ti and Al composite nitride layer is analyzed using a crystal orientation analyzer attached to a transmission electron microscope, and each crystal grain made of a Ti and Al composite nitride having a cubic structure is analyzed. The maximum IC value obtained at each measurement point in each crystal grain is obtained as the representative IC value of the crystal grain, and the representative IC value for each crystal grain is compared, and the representative IC value within the top 30% is compared. When the angle formed between the normal of the (112) plane of each crystal grain and the normal of the tool substrate surface is measured, the crystal grain having the angle of 20 degrees or less is A surface-coated cutting tool characterized in that an area ratio in a total area of crystal grains exhibiting a representative IC value within 30% is 30% or more.
前記硬質被覆層は、前記TiとAlの複合窒化物層の単層により構成されていることを特徴とする請求項1に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein the hard coating layer is constituted by a single layer of the composite nitride layer of Ti and Al. 前記硬質被覆層は、2層以上の積層構造として構成され、該積層構造のうちの少なくとも一つの層は、前記TiとAlの複合窒化物層により構成されていることを特徴とする請求項1に記載の表面被覆切削工具。








2. The hard coating layer is configured as a stacked structure of two or more layers, and at least one of the stacked structures is configured of a composite nitride layer of Ti and Al. The surface-coated cutting tool according to 1.








JP2017062963A 2017-03-28 2017-03-28 Surface coating cutting tool Active JP6850996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062963A JP6850996B2 (en) 2017-03-28 2017-03-28 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062963A JP6850996B2 (en) 2017-03-28 2017-03-28 Surface coating cutting tool

Publications (2)

Publication Number Publication Date
JP2018164963A true JP2018164963A (en) 2018-10-25
JP6850996B2 JP6850996B2 (en) 2021-03-31

Family

ID=63922455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062963A Active JP6850996B2 (en) 2017-03-28 2017-03-28 Surface coating cutting tool

Country Status (1)

Country Link
JP (1) JP6850996B2 (en)

Also Published As

Publication number Publication date
JP6850996B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
CN105073313B (en) Surface-coated cutting tool
CN106457413B (en) Hard coating layer plays the surface-coated cutting tool of excellent chipping resistance
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6481897B2 (en) Surface coated cutting tool
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6784928B2 (en) Cover cutting tool
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5962846B2 (en) Coated cutting tool
CN107073590A (en) Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP7068646B2 (en) Surface coating cutting tool
CN104789938A (en) Surface coating cutting tool hard coating layer of which gives play to excellent anti-tipping performance
CN104726848B (en) Surface-coated cutting tool
CN105764638B (en) Coated tool
CN107073593A (en) Surface-coated cutting tool
JP2018161736A (en) Surface-coated cutting tool
JP6850995B2 (en) Surface coating cutting tool
JP7205709B2 (en) surface coated cutting tools
CN107000069A (en) Surface-coated cutting tool
CN104508185B (en) Coated cutting insert
JP7453616B2 (en) surface coated cutting tools
JP2018051705A (en) Surface-coated cutting tool
JP6850996B2 (en) Surface coating cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6850996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150