JP2018163069A - EPMA quantitative analysis method - Google Patents

EPMA quantitative analysis method Download PDF

Info

Publication number
JP2018163069A
JP2018163069A JP2017060943A JP2017060943A JP2018163069A JP 2018163069 A JP2018163069 A JP 2018163069A JP 2017060943 A JP2017060943 A JP 2017060943A JP 2017060943 A JP2017060943 A JP 2017060943A JP 2018163069 A JP2018163069 A JP 2018163069A
Authority
JP
Japan
Prior art keywords
analysis
sample
semi
average count
count number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017060943A
Other languages
Japanese (ja)
Inventor
井川 大輔
Daisuke Igawa
大輔 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017060943A priority Critical patent/JP2018163069A/en
Publication of JP2018163069A publication Critical patent/JP2018163069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EPMA quantitative analysis method capable of securing analysis accuracy while operation time is short, regardless of the skill level of analyzer.SOLUTION: An EPMA quantitative analysis method comprises: a point analysis step of performing a qualitative analysis of an analysis sample by a point analysis under a basic condition; a step of outputting a mass concentration of an analysis objected element obtained by the point analysis as a semi-quantitative value; a standard sample selection step of selecting at least three standard samples for an analytical curve according to the semi-quantitative value; a plane analysis step of performing a plane analysis of the selected standard samples and the analysis sample under a prescribed condition set according to the semi-quantitative value; an average count number outputting step of outputting an average count number of the objected element in an analytical area for each of the standard samples and the analysis sample on the basis of the result of the plane analysis; a regression equation output step of creating the analytical curve based on the average count number of the standard samples to output a regression equation; and a mass concentration calculation step of substituting the average count number of the analysis sample for the regression equation to calculate a mass concentration.SELECTED DRAWING: None

Description

本発明は、電子線マイクロアナライザー(Electron probe microanalyser; 以下「EPMA」と称する)によりSi元素の定量分析を行うEPMA定量分析方法に関する。   The present invention relates to an EPMA quantitative analysis method for performing quantitative analysis of Si element using an electron probe microanalyzer (hereinafter referred to as “EPMA”).

合金等の試料中のある特定元素の含有量を定量分析する手段として、電子線マイクロアナライザー(EPMA)が用いられている。EPMAによる分析においては、測定対象元素の含有量は濃度等の値として直接には測定されず、当該対象元素のX線強度(カウント)として測定される。そして、この測定されたX線強度を元素含有量に換算する必要がある。EPMAでは、点分析、線分析、面分析が可能である。点分析による定量分析においては、X線強度を濃度等の含有量に変換する方法として検量線法とZAF法とが知られている(例えば、特許文献1参照)。検量線法は、標準試料から対象元素の検量線を作成し、分析試料の取得データを検量線に当てはめて濃度を算出する方法である。検量線法は精度の高い定量分析が可能であるが、未知試料組成に近く、表面状態が同じである複数の標準試料が必要であり、任意の元素を定量分析する際には標準試料の準備が困難となる場合がある。また、点分析の分析径は最大直径で200μm程度であるため、試料中に対象元素が偏析している場合では、ばらつきが大きくなるという問題がある。ZAF法は、1点の標準試料との比較により濃度を求める方法であるが、ピーク強度比での算出となるため、分析値の精度が低いという問題がある。   An electron beam microanalyzer (EPMA) is used as a means for quantitatively analyzing the content of a specific element in a sample such as an alloy. In the analysis by EPMA, the content of a measurement target element is not directly measured as a value such as a concentration, but is measured as an X-ray intensity (count) of the target element. And it is necessary to convert this measured X-ray intensity into element content. In EPMA, point analysis, line analysis, and surface analysis are possible. In quantitative analysis by point analysis, a calibration curve method and a ZAF method are known as methods for converting X-ray intensity into a content such as a concentration (see, for example, Patent Document 1). The calibration curve method is a method in which a calibration curve of a target element is created from a standard sample, and the concentration is calculated by applying the acquired data of the analysis sample to the calibration curve. The calibration curve method enables highly accurate quantitative analysis, but it requires multiple standard samples that are close to the unknown sample composition and have the same surface state. May be difficult. Further, since the analysis diameter of the point analysis is about 200 μm at the maximum diameter, there is a problem that the variation becomes large when the target element is segregated in the sample. The ZAF method is a method for obtaining the concentration by comparison with a single standard sample, but has a problem that the accuracy of the analysis value is low because the calculation is based on the peak intensity ratio.

一方、試料中に対象元素が偏析しているような場合の分析には、EPMAによらず、分析試料中の対象元素以外を溶解させ、残った対象元素の重量を測定して、重量比率から濃度を算出する「重量法」と呼ばれる湿式分析方法もある。しかし、この方法では、分析試料を酸等で溶解させた後に、ろ過、灰化、重量測定との手順が必要であり、分析に要する作業時間が非常に長くなるという問題がある。また、分析者の習熟度も必要である。   On the other hand, in the case where the target element is segregated in the sample, regardless of the EPMA, other than the target element in the analytical sample is dissolved and the weight of the remaining target element is measured. There is also a wet analysis method called “gravimetric method” for calculating the concentration. However, this method requires a procedure of filtration, ashing, and weight measurement after the analysis sample is dissolved with acid or the like, and there is a problem that the working time required for the analysis becomes very long. In addition, the proficiency level of the analyst is also necessary.

特開2001−305081号公報JP 2001-305081 A

本発明は上記問題点を解決するものであり、作業時間が短く、分析者の習熟も不要でありながら、分析精度の確保が可能となるEPMA定量分析方法を提供することを目的とする。   An object of the present invention is to provide an EPMA quantitative analysis method capable of ensuring analysis accuracy while the work time is short and the skill of an analyst is not required.

上記目的を達成するために、本発明のEPMA定量分析方法は、分析試料の定性分析を基本条件の点分析で行う点分析工程と、前記点分析によって得られた分析対象元素の質量濃度を半定量値で出力する工程と、前記半定量値に応じて、検量線作成用の標準試料を少なくとも3点選定する、標準試料選定工程と、前記選定された標準試料と前記分析試料とを、前記半定量値に応じて設定された所定条件で面分析を行う面分析工程と、前記面分析の結果から、対象元素の分析面積内の平均カウント数を、前記標準試料と前記分析試料との各々とについて出力する平均カウント数出力工程と、前記標準試料の前記平均カウント数から検量線を作成して回帰式を出力する、回帰式出力工程と、前記回帰式に前記分析試料の前記平均カウント数を代入して、質量濃度を算出する質量濃度算出工程とを備えることを特徴とする。   In order to achieve the above object, the EPMA quantitative analysis method of the present invention comprises a point analysis step in which a qualitative analysis of an analysis sample is performed by point analysis under basic conditions, and a mass concentration of an analysis target element obtained by the point analysis is reduced by half. A step of outputting a quantitative value; a standard sample selection step of selecting at least three standard samples for preparing a calibration curve according to the semi-quantitative value; and the selected standard sample and the analysis sample, A surface analysis step for performing surface analysis under a predetermined condition set in accordance with a semi-quantitative value, and from the results of the surface analysis, an average count number within the analysis area of the target element is determined for each of the standard sample and the analysis sample. An average count number output step for outputting and a regression equation output step of generating a calibration curve from the average count number of the standard sample and outputting a regression equation, and the average count number of the analysis sample in the regression equation Assign Te, characterized in that it comprises a mass concentration calculating step of calculating the mass concentration.

本発明によれば、作業時間が短く、分析者の習熟も不要でありながら、分析精度の確保が可能となるEPMA定量分析方法を提供することができる。   According to the present invention, it is possible to provide an EPMA quantitative analysis method capable of ensuring analysis accuracy while the work time is short and the skill of an analyst is not required.

以下、この発明の実施の形態を、詳細に説明する。ただし、本発明は、以下の例に限定および制限されない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited or limited to the following examples.

本発明のEPMA定量分析方法は、検量線法を面分析に適用することで、例えば合金の材質判定が可能となるような高精度の定量分析を可能とするものである。まず、標準試料を用いない半定量分析を行い、得られた半定量値に応じて複数種類の標準試料を選定し、前記複数種類の標準試料から面分析での検量線を作成して回帰式を得る。この回帰式を用いて分析対象である試料の定量分析を行う。半定量分析は、高い分析精度は期待できないものの、元素組成比の目安を得るためには有効な方法である。   The EPMA quantitative analysis method of the present invention enables high-accuracy quantitative analysis that makes it possible to determine the material of an alloy, for example, by applying a calibration curve method to surface analysis. First, perform semi-quantitative analysis without using a standard sample, select multiple types of standard samples according to the obtained semi-quantitative values, create a calibration curve for surface analysis from the multiple types of standard samples, and use the regression equation Get. Quantitative analysis of the sample to be analyzed is performed using this regression equation. Semi-quantitative analysis is an effective method for obtaining a guide for the elemental composition ratio, although high analytical accuracy cannot be expected.

本発明のEPMA定量分析方法において、適用可能な試料としては、従来のEPMAで測定可能なものであれば特に限定されない。本発明のEPMA定量分析方法を適用するうえで好ましい試料は、測定対象となる元素が偏在して分布しているような試料である。このような試料は、従来の点分析法ではばらつきが大きくなりやすいからである。   In the EPMA quantitative analysis method of the present invention, an applicable sample is not particularly limited as long as it can be measured by a conventional EPMA. A preferable sample in applying the EPMA quantitative analysis method of the present invention is a sample in which elements to be measured are unevenly distributed. This is because such samples tend to have large variations in the conventional point analysis method.

測定対象となる元素については、特に制限されるものではなく、例えば、アルミニウム中のケイ素、マグネシウム、銅、ジルコニウム、亜鉛、リン等の元素や、鉄中のアルミニウム、硫黄等の元素をあげることができる。   The element to be measured is not particularly limited, and examples thereof include elements such as silicon, magnesium, copper, zirconium, zinc, and phosphorus in aluminum, and elements such as aluminum and sulfur in iron. it can.

以下、本発明のEPMA定量分析方法について、アルミニウム合金中のケイ素の定量分析を例示して説明する。   Hereinafter, the EPMA quantitative analysis method of the present invention will be described by exemplifying quantitative analysis of silicon in an aluminum alloy.

まず、分析対象となる試料(分析試料)の定性分析(点分析)を次の分析条件(基本条件)で行い(ステップ1)、Si濃度を半定量値(mass%)で出力する(ステップ2)。なお、分析試料の分析面は、自動研磨機で鏡面研磨まで仕上げ、金蒸着を実施したものを用いた。
(基本条件)
加速電圧 15kV
ビーム径 100μm
照射電流 0.2μA
分析点数 n=3
First, qualitative analysis (point analysis) of a sample to be analyzed (analysis sample) is performed under the following analysis conditions (basic conditions) (step 1), and the Si concentration is output as a semi-quantitative value (mass%) (step 2). ). In addition, the analysis surface of the analysis sample was finished up to mirror polishing with an automatic polishing machine and subjected to gold vapor deposition.
(Basic conditions)
Accelerating voltage 15kV
Beam diameter 100μm
Irradiation current 0.2μA
Number of analysis points n = 3

出力したSi濃度の半定量値(mass%)が、下記Aグループ、Bグループのいずれに入るかを判定し、検量線作成に使用する標準試料(Si濃度既知)を、表1に示す該当するグループの中から選定する(ステップ3)。ここで、半定量値が各グループで重複する範囲の値(5.77〜7.07mass%)である場合には、サンプルNo.A2、A3、B1、B2を検量線作成の標準試料として使用する。
Aグループ 4.09〜7.07mass%
Bグループ 5.77〜8.13mass%
It is determined whether the semi-quantitative value (mass%) of the output Si concentration falls into any of the following A group or B group, and the standard samples (Si concentration known) used for preparing the calibration curve are shown in Table 1 Select from the group (step 3). Here, when the semi-quantitative value is a value in a range (5.77 to 7.07 mass%) overlapping in each group, the sample No. A2, A3, B1, and B2 are used as standard samples for preparing a calibration curve.
Group A 4.09-7.07 mass%
Group B 5.77-8.13 mass%

Figure 2018163069
Figure 2018163069

前記ステップ3においては、標準試料を少なくとも3点選定するが、4点以上選定すれば、より分析精度を向上させることができる。   In step 3, at least three standard samples are selected, but if four or more standard samples are selected, the analysis accuracy can be further improved.

ついで、前記において選定された標準試料と分析試料とを、前記グループに応じて、表2に示す分析条件でEPMA面分析を行う(ステップ4)。半定量値が4.09〜5.77mass%の範囲ではAグループ条件での測定、半定量値が7.07〜8.13mass%の範囲ではBグループ条件での測定とすることが、分析精度向上の点から望ましい。半定量値が各グループで重複する範囲の値(5.77〜7.07mass%)である場合には、A、Bいずれのグループの分析条件を用いても構わない。   Next, the standard sample and the analysis sample selected above are subjected to EPMA surface analysis under the analysis conditions shown in Table 2 according to the group (step 4). When the semi-quantitative value is in the range of 4.09 to 5.77 mass%, measurement under the A group condition, and when the semi-quantitative value is in the range of 7.07 to 8.13 mass%, the measurement is to be performed under the B group condition. It is desirable from the point of improvement. When the semi-quantitative value is a value in a range that overlaps in each group (5.77 to 7.07 mass%), the analysis conditions of either group A or B may be used.

Figure 2018163069
Figure 2018163069

以下、分析試料の測定結果の一例を参照しつつ、本発明の測定方法のステップを説明する。   Hereinafter, steps of the measurement method of the present invention will be described with reference to an example of the measurement result of the analysis sample.

分析試料について、定性分析(点分析)を上記基本条件で行った(ステップ1)。この分析試料のSi濃度の半定量値は、5.64mass%であった(ステップ2)。   The analysis sample was subjected to qualitative analysis (point analysis) under the above basic conditions (step 1). The semi-quantitative value of the Si concentration of this analytical sample was 5.64 mass% (Step 2).

この分析試料は、Aグループに該当すると判定されるので、標準試料として、表1に示すA1(Si量4.09mass%)、A2(Si量5.25mass%)、A3(Si量5.77mass%)を選定した(ステップ3)。前記3種類の標準試料と分析試料とを、上記表2におけるAグループ条件でEPMA面分析を行い(ステップ4)、分析面積内のSi平均カウント数を得た(ステップ5)。結果を表3に示す。   Since this analysis sample is determined to fall under the A group, A1 (Si content: 4.09 mass%), A2 (Si content: 5.25 mass%), and A3 (Si content: 5.77 mass) shown in Table 1 are used as standard samples. %) Was selected (step 3). The three types of standard samples and analysis samples were subjected to EPMA surface analysis under the group A conditions in Table 2 above (step 4), and an average Si count within the analysis area was obtained (step 5). The results are shown in Table 3.

Figure 2018163069
Figure 2018163069

得られたSiの平均カウント数データから、検量線を作成する。横軸をSi既知濃度、縦軸をSiカウント数として、検量線は線形近似とすると、y=13.36x+3.49の回帰式が得られた(ステップ6)。   A calibration curve is created from the obtained Si average count data. When the horizontal axis is Si known concentration, the vertical axis is Si count, and the calibration curve is linear approximation, a regression equation of y = 13.36x + 3.49 was obtained (step 6).

得られた回帰式に分析試料の平均カウント数を代入して、質量濃度を算出する(ステップ7)。ここでは、回帰式y=13.36x+3.49にy=74を代入すると、x(Si濃度)は5.28mass%と算出された。   The mass concentration is calculated by substituting the average count number of the analysis sample into the obtained regression equation (step 7). Here, when y = 74 was substituted into the regression equation y = 13.36x + 3.49, x (Si concentration) was calculated to be 5.28 mass%.

本実施形態では、標準試料の数は3であり、回帰式を線形近似で出力したが、本発明は線形回帰に限定されず、非線形回帰を用いてもよい。   In this embodiment, the number of standard samples is 3, and the regression equation is output by linear approximation. However, the present invention is not limited to linear regression, and nonlinear regression may be used.

以上、本発明の実施形態を、アルミニウム合金中のケイ素の定量分析を行う場合について説明したが、本発明はこれに限定されず、EPMAで分析可能な他の対象物についても適用可能である。通常は、EPMAの定量分析は均質材料に適用されるが、本発明によれば、特に、分析対象物が偏析しているような不均質な材料についても、容易に精度の高い分析を行うことができる。したがって、繰り返し分析時の再現性も高くなる。本発明の分析方法を用いることで、例えば、既存の分析条件での分析結果からでは不可能であった、アルミニウム合金の材質判定も可能とすることができる。
As mentioned above, although embodiment of this invention was described about the case where the quantitative analysis of the silicon in an aluminum alloy is performed, this invention is not limited to this, It can apply also to the other target object which can be analyzed by EPMA. Usually, quantitative analysis of EPMA is applied to homogeneous materials. However, according to the present invention, it is possible to easily perform highly accurate analysis even for heterogeneous materials in which the analyte is segregated. Can do. Therefore, reproducibility at the time of repeated analysis is also improved. By using the analysis method of the present invention, for example, it is possible to determine the material of an aluminum alloy, which is impossible from the analysis results under existing analysis conditions.

Claims (1)

分析試料の定性分析を基本条件の点分析で行う点分析工程と、
前記点分析によって得られた分析対象元素の質量濃度を半定量値で出力する工程と、
前記半定量値に応じて、検量線作成用の標準試料を少なくとも3点選定する、標準試料選定工程と、
前記選定された標準試料と前記分析試料とを、前記半定量値に応じて設定された所定条件で面分析を行う面分析工程と、
前記面分析の結果から、対象元素の分析面積内の平均カウント数を、前記標準試料と前記分析試料との各々とについて出力する平均カウント数出力工程と、
前記標準試料の前記平均カウント数から検量線を作成して回帰式を出力する、回帰式出力工程と、
前記回帰式に前記分析試料の前記平均カウント数を代入して、質量濃度を算出する質量濃度算出工程と
を備えることを特徴とするEPMA定量分析方法。
A point analysis process for performing qualitative analysis of analysis samples by basic point analysis;
Outputting the mass concentration of the element to be analyzed obtained by the point analysis as a semi-quantitative value;
A standard sample selection step of selecting at least three standard samples for preparing a calibration curve according to the semi-quantitative value;
A surface analysis step of performing a surface analysis on the selected standard sample and the analysis sample under a predetermined condition set according to the semi-quantitative value;
From the result of the surface analysis, an average count number output step for outputting the average count number within the analysis area of the target element for each of the standard sample and the analysis sample;
A regression equation output step of creating a calibration curve from the average count of the standard sample and outputting a regression equation;
A mass concentration calculation step of calculating a mass concentration by substituting the average count number of the analysis sample into the regression equation.
JP2017060943A 2017-03-27 2017-03-27 EPMA quantitative analysis method Pending JP2018163069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060943A JP2018163069A (en) 2017-03-27 2017-03-27 EPMA quantitative analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060943A JP2018163069A (en) 2017-03-27 2017-03-27 EPMA quantitative analysis method

Publications (1)

Publication Number Publication Date
JP2018163069A true JP2018163069A (en) 2018-10-18

Family

ID=63860115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060943A Pending JP2018163069A (en) 2017-03-27 2017-03-27 EPMA quantitative analysis method

Country Status (1)

Country Link
JP (1) JP2018163069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763806A (en) * 2019-10-25 2020-02-07 三只松鼠股份有限公司 Method for evaluating spicy grade of duck neck
CN112748142A (en) * 2020-12-25 2021-05-04 核工业北京地质研究院 Method for quantitatively analyzing beryllium content in-situ micro-area
CN113447512A (en) * 2021-03-16 2021-09-28 首钢集团有限公司 Quantitative evaluation method for hypoeutectoid steel strip-shaped structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763806A (en) * 2019-10-25 2020-02-07 三只松鼠股份有限公司 Method for evaluating spicy grade of duck neck
CN112748142A (en) * 2020-12-25 2021-05-04 核工业北京地质研究院 Method for quantitatively analyzing beryllium content in-situ micro-area
CN113447512A (en) * 2021-03-16 2021-09-28 首钢集团有限公司 Quantitative evaluation method for hypoeutectoid steel strip-shaped structure
CN113447512B (en) * 2021-03-16 2024-02-06 首钢集团有限公司 Quantitative assessment method for hypoeutectoid steel strip-shaped structure

Similar Documents

Publication Publication Date Title
JP2018163069A (en) EPMA quantitative analysis method
JP4874697B2 (en) Electron probe X-ray analyzer and operation method thereof
US20180106736A1 (en) X-ray fluorescence spectrometer
JP2018151179A (en) Analyzing apparatus and analyzing method
JP2017053639A (en) Analyzing method, and x-ray photo-electron spectroscopic instrument
JP2010223908A (en) Fluorescent x-ray analysis method
JP2008122267A (en) Sample analyzing method and sample analyzing apparatus
KR20160051644A (en) Measurement of small features using xrf
JP4499125B2 (en) Quantitative analysis method in sample analyzer
US11609191B2 (en) Analyzer
JP6851283B2 (en) Image processing equipment, analyzers, and image processing methods
JP4930874B2 (en) Energy dispersive radiation detection system and target element content measurement method
JP2012154688A (en) Structural analysis method
CN105938113B (en) Quantitative X-ray analysis-multi-light path instrument
US6845147B2 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP2023541112A (en) Computer-aided method for determining the elemental fraction, in particular the Li fraction, of identified elements with low atomic numbers and corresponding devices for processing the data
JP2013205080A (en) Fluorescent x-ray analyzer
JP7153324B2 (en) Elemental analysis method
JP6713110B2 (en) Background removal method and X-ray fluorescence analyzer
Kellner et al. Quantitative analysis of Mo–Si–B alloy phases with wavelength dispersive spectroscopy (WDS–SEM)
JP2006308347A (en) Inclusion composition quantitative analysis method by emission spectral analysis
JP3950626B2 (en) Quantitative analysis method in sample analyzer
JP4560503B2 (en) Measuring time setting method and fluorescent X-ray analyzer in multi-condition fluorescent X-ray analysis
Karpov et al. Solved and Unsolved Problems of the Metrology of Chemical Analysis
JP4458985B2 (en) X-ray analyzer and X-ray analysis method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180509