JP2018161675A - Manufacturing method of different thickness plate material and difference thick plate material - Google Patents

Manufacturing method of different thickness plate material and difference thick plate material Download PDF

Info

Publication number
JP2018161675A
JP2018161675A JP2017060979A JP2017060979A JP2018161675A JP 2018161675 A JP2018161675 A JP 2018161675A JP 2017060979 A JP2017060979 A JP 2017060979A JP 2017060979 A JP2017060979 A JP 2017060979A JP 2018161675 A JP2018161675 A JP 2018161675A
Authority
JP
Japan
Prior art keywords
plate
thickness
thin
thin portion
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017060979A
Other languages
Japanese (ja)
Other versions
JP6805925B2 (en
Inventor
龍次 浜田
Ryuji Hamada
龍次 浜田
仁之 二階堂
Hitoshi Nikaido
仁之 二階堂
智史 広瀬
Tomohito Hirose
智史 広瀬
靖典 澤
Yasunori Sawa
靖典 澤
亮 米林
Toru Yonebayashi
亮 米林
浩史 竹林
Hiroshi Takebayashi
浩史 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017060979A priority Critical patent/JP6805925B2/en
Publication of JP2018161675A publication Critical patent/JP2018161675A/en
Application granted granted Critical
Publication of JP6805925B2 publication Critical patent/JP6805925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve quality by reducing defective flatness in a different thickness plate material.SOLUTION: There is provided a manufacturing method of a different thickness plate material for manufacturing the different thickness plate material having the plate thickness distribution in the plate width direction by executing caliber rolling using a caliber work roll having a diametrical difference in the body length direction to a plate material composed of a metallic material, wherein, assuming a thickness of a thin part of the different thickness plate material as t1, and a width in the plate width direction of the thin part of the different thickness plate material as W1, the thickness t1 of the thin part and the width W1 in the plate width direction of the thin part satisfy W1/t1≥15, and a bending part formed by bending the thin part in the plate thickness direction is provided in a partial area of at least the thin part.SELECTED DRAWING: Figure 4

Description

本発明は、板幅方向に板厚分布を有する差厚板材、及び当該差厚板材の製造方法に関する。   The present invention relates to a differential thickness plate having a thickness distribution in the plate width direction, and a method for manufacturing the differential thickness plate.

近年、自動車においては、燃費の向上のために、軽量化が推進されている。軽量化のための1つの方法として、面内において板厚分布を有する鋼板(差厚鋼板)を用いる方法が検討されている。差厚鋼板を用いて、部品の強度が必要な部位についてのみ板厚を厚くすることにより、剛性や衝突時の安全性等を確保しつつ、当該部品の軽量化を図ることが可能となる。   In recent years, weight reduction has been promoted in automobiles in order to improve fuel efficiency. As one method for reducing the weight, a method using a steel plate having a thickness distribution in a plane (differential thickness steel plate) has been studied. By using the differential thickness steel plate, the thickness of the part is increased only for a portion where the strength of the part is required, so that it is possible to reduce the weight of the part while ensuring the rigidity and safety at the time of collision.

差厚鋼板を製造する方法としては、圧延による方法、又は複数枚の板材を重ね合わせて接合する方法等が考えられている。しかしながら、複数枚の板材を接合する方法では、これら複数枚の板材をそれぞれ作製する工程、及びそれらを貼り合わせる工程等、数多くの工程が必要となるため、生産性を増加させることが難しく、製造コストが増加する恐れがある。また、当該方法によって製造された板材では、多大な荷重が負荷された際に、板材が剥離してしまい、高い強度を得られない場合が生じ得る。そこで、信頼性向上、及び生産性向上等の観点から、差厚鋼板を製造する方法としては、圧延により一体的な部材として当該差厚鋼板を製造する方法が注目されている。   As a method of manufacturing the differential thickness steel plate, a method by rolling, a method of overlapping and joining a plurality of plate materials, or the like is considered. However, in the method of joining a plurality of plate materials, it is difficult to increase productivity because a number of steps such as a step of producing each of the plurality of plate materials and a step of bonding them are necessary, and manufacturing is difficult. Costs may increase. Moreover, in the board | plate material manufactured by the said method, when a great load is applied, the board | plate material will peel and the case where a high intensity | strength cannot be obtained may arise. Therefore, from the viewpoint of improving reliability, improving productivity, etc., as a method of manufacturing the differential thickness steel plate, a method of manufacturing the differential thickness steel plate as an integral member by rolling is drawing attention.

圧延により差厚鋼板を製造する方法としては、様々な方法が提案されている。例えば、特許文献1には、圧下量を変更しながら圧延を行うことにより、長手方向に差厚を有する差厚鋼板を製造する方法が開示されている。   Various methods have been proposed as a method for producing a differential thickness steel sheet by rolling. For example, Patent Document 1 discloses a method of manufacturing a differential steel sheet having a differential thickness in the longitudinal direction by rolling while changing the amount of reduction.

しかしながら、特許文献1に記載の方法では、ワークロールの圧下位置を短い時間間隔で頻繁に変更することは難しいため、板厚の薄い部分(薄肉部)と板厚の厚い部分(厚肉部)の長手方向の長さを所定の長さ以上短くすることが困難である。また、圧下位置を変更している間にも鋼板は長手方向に送られるため、薄肉部と厚肉部との境界では、階段状に急峻に板厚が変化するのではなく、当該境界には、板厚が徐々に変化する所定の長さを有する領域が形成されることとなる。このように、特許文献1に記載の方法では、薄肉部と厚肉部を短いピッチで形成することが困難である。部品によっては、薄肉部と厚肉部が短ピッチで設けられた差厚鋼板が求められることもあるため、特許文献1に記載の技術では、多様な部品に対応することができない恐れがある。   However, in the method described in Patent Document 1, since it is difficult to frequently change the reduction position of the work roll at short time intervals, a thin part (thin part) and a thick part (thick part). It is difficult to shorten the length in the longitudinal direction by a predetermined length or more. In addition, since the steel plate is sent in the longitudinal direction even while the reduction position is changed, the thickness does not change steeply at the boundary between the thin portion and the thick portion, but at the boundary. Thus, a region having a predetermined length in which the plate thickness gradually changes is formed. As described above, in the method described in Patent Document 1, it is difficult to form the thin portion and the thick portion with a short pitch. Depending on the parts, there may be a need for a differential thickness steel plate in which a thin part and a thick part are provided at a short pitch. Therefore, the technique described in Patent Document 1 may not be able to handle various parts.

そこで、圧延によって差厚鋼板を製造する他の方法として、特許文献2、3に記載の方法が提案されている。具体的には、特許文献2、3には、熱間タンデム圧延機の最終スタンドにおいて、胴長方向に径差を有するワークロール(孔型ワークロール)を用いて圧延を行うことにより、板幅方向に差厚を有する差厚鋼板を製造する方法が開示されている。なお、板幅方向に差厚を有する差厚鋼板は、縦縞鋼板とも呼ばれる。また、孔型ワークロールを用いた圧延は、孔型圧延とも呼ばれる。   Then, the method of patent document 2, 3 is proposed as another method of manufacturing a difference-thickness steel plate by rolling. Specifically, in Patent Documents 2 and 3, in the final stand of a hot tandem rolling mill, rolling is performed using a work roll having a diameter difference in the body length direction (hole work roll), thereby obtaining a plate width. A method for manufacturing a differential thickness steel sheet having a differential thickness in directions is disclosed. In addition, the difference thickness steel plate which has a difference thickness in a plate width direction is also called a vertical stripe steel plate. In addition, rolling using a hole work roll is also referred to as hole rolling.

特開平3−281010号公報JP-A-3-281010 特許第5076707号公報Japanese Patent No. 5076707 特開2014−180676号公報JP 2014-180676 A

ここで、本発明者らが、特許文献2、3に記載の方法と同様に孔型圧延を行い、その製造された差厚鋼板について詳細に検討を行った結果、差厚鋼板の形状によっては、薄肉部に波打ちが生じ得ることが判明した。しかしながら、特許文献2、3では、このような薄肉部における平坦度不良については言及されていない。つまり、特許文献2、3に記載の方法では、差厚鋼板の形状によっては、高品質な差厚鋼板を製造することが困難となる恐れがあった。ここでは、一例として、鋼板について説明したが、他の金属材料からなる板材についても、板幅方向に板厚分布を有する差厚板材を孔型圧延によって製造する場合には、同様の問題が生じ得る。   Here, as a result of performing hole rolling in the same manner as the methods described in Patent Documents 2 and 3 and examining the manufactured differential thickness steel plate in detail, the present inventors, depending on the shape of the differential thickness steel plate. It has been found that undulation can occur in the thin-walled portion. However, Patent Documents 2 and 3 do not mention such poor flatness in the thin portion. That is, according to the methods described in Patent Documents 2 and 3, depending on the shape of the differential thickness steel plate, it may be difficult to manufacture a high quality differential thickness steel plate. Here, a steel plate has been described as an example, but the same problem arises when a plate made of another metal material is manufactured by hole-type rolling with a differential thickness plate having a plate thickness distribution in the plate width direction. obtain.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、平坦度不良を低減させることにより品質をより向上させることが可能な、新規かつ改良された差厚板材の製造方法、及び差厚板材を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a new and improved difference capable of further improving quality by reducing poor flatness. It is in providing the manufacturing method of a thick board | plate material, and a differential thickness board | plate material.

上記課題を解決するために、本発明のある観点によれば、金属材料からなる板材に対して胴長方向に径差を有する孔型ワークロールを用いた孔型圧延を行うことにより、板幅方向に板厚分布を有する差厚板材を製造する、差厚板材の製造方法であって、前記差厚板材の薄肉部の厚みをt1、前記差厚板材の薄肉部の板幅方向の幅をW1とした場合に、前記薄肉部の厚みt1、及び前記薄肉部の板幅方向の幅W1が、W1/t1≧15を満たし、少なくとも前記薄肉部の一部領域に、前記薄肉部が板厚方向に屈曲されて形成される屈曲部が設けられる、差厚板材の製造方法が提供される。   In order to solve the above-described problems, according to one aspect of the present invention, by performing perforation rolling using a perforated work roll having a diameter difference in the body length direction on a plate material made of a metal material, A method for producing a differential thickness plate material having a thickness distribution in a direction, wherein the thickness of the thin portion of the differential thickness plate material is t1, and the width of the thin portion of the differential thickness plate material is the width in the plate width direction. When W1, the thickness t1 of the thin portion and the width W1 of the thin portion in the plate width direction satisfy W1 / t1 ≧ 15, and the thin portion has a plate thickness at least in a partial region of the thin portion. Provided is a method for manufacturing a differential thickness plate material, in which a bent portion formed by bending in a direction is provided.

また、当該差厚板材の製造方法においては、前記屈曲部を形成する条件は、前記薄肉部における平坦度不良の発生を抑制可能なように決定されてもよい。   Moreover, in the manufacturing method of the said difference thickness board | plate material, the conditions which form the said bending part may be determined so that generation | occurrence | production of the flatness defect in the said thin part can be suppressed.

また、当該差厚板材の製造方法においては、前記孔型圧延を行った後に、前記屈曲部を板幅方向に延ばし、薄肉部を略平坦な形状に変形させる工程が行われてもよい。   Moreover, in the manufacturing method of the said difference thickness board | plate material, after performing the said perforation rolling, the process of extending the said bending part to a board width direction and deform | transforming a thin part into a substantially flat shape may be performed.

また、上記課題を解決するために、本発明の別の観点によれば、板幅方向に板厚分布を有する、金属材料からなる差厚板材であって、前記差厚板材の薄肉部の厚みをt1、前記差厚板材の薄肉部の板幅方向の幅をW1とした場合に、前記薄肉部の厚みt1、及び前記薄肉部の板幅方向の幅W1が、W1/t1≧15を満たし、少なくとも前記薄肉部の一部領域に、前記薄肉部が板厚方向に屈曲されて形成される屈曲部が設けられる、差厚板材が提供される。   In order to solve the above-mentioned problem, according to another aspect of the present invention, there is provided a differential thickness plate material made of a metal material having a thickness distribution in the plate width direction, and the thickness of the thin portion of the differential thickness plate material. T1 and the width of the thin portion of the differential thickness plate material in the plate width direction is W1, the thickness t1 of the thin portion and the width W1 of the thin portion in the plate width direction satisfy W1 / t1 ≧ 15. There is provided a differential thickness plate material, wherein at least a partial region of the thin portion is provided with a bent portion formed by bending the thin portion in the plate thickness direction.

以上説明したように本発明によれば、差厚板材において、平坦度不良を低減させることにより品質をより向上させることが可能になる。   As described above, according to the present invention, it is possible to further improve the quality of the differential thickness plate material by reducing the flatness defect.

孔型圧延による差厚鋼板の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the difference thickness steel plate by a hole rolling. 差厚鋼板の形状を表すパラメータについて説明するための図である。It is a figure for demonstrating the parameter showing the shape of a difference thickness steel plate. 薄肉部の平坦度不良と、薄肉部厚t1及び薄肉部幅W1と、の関係を示すグラフ図である。It is a graph which shows the relationship between the flatness defect of a thin part, thin part thickness t1, and thin part width W1. 本実施形態に係る差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate which concerns on this embodiment. 薄肉部に屈曲部が設けられない差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which a bending part is not provided in a thin part. 薄肉部に屈曲部が設けられない差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which a bending part is not provided in a thin part. 薄肉部に屈曲部が設けられた差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which the bending part was provided in the thin part. 薄肉部に屈曲部が設けられた差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which the bending part was provided in the thin part. 薄肉部に屈曲部が設けられた差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which the bending part was provided in the thin part. 薄肉部に屈曲部が設けられた差厚鋼板の板幅方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the board width direction of the difference thickness steel plate in which the bending part was provided in the thin part.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

なお、以下では、製造する対象である差厚板材が鋼板である場合を例に挙げて説明を行う。ただし、本発明はかかる例に限定されず、本発明は、他の金属材料の差厚板材の製造にも好適に適用可能である。   In addition, below, it demonstrates taking the case where the difference thickness board | plate material which is the object to manufacture is a steel plate as an example. However, the present invention is not limited to such an example, and the present invention can also be suitably applied to the manufacture of differential thickness plate materials of other metal materials.

(1.本発明に想到した背景)
本発明の一実施形態について詳細に説明するに先立ち、本発明をより明確なものとするために、本発明者らが本発明に想到した背景について説明する。
(1. Background to the present invention)
Prior to describing one embodiment of the present invention in detail, the background that the inventors have conceived of the present invention will be described in order to clarify the present invention.

(1−1.孔型圧延による差厚鋼板(縦縞鋼板)の製造方法について)
上述したように、差厚鋼板の製造方法としては、従来、孔型圧延を行うことにより、板幅方向に板厚差を付与する方法が提案されている。図1は、孔型圧延による差厚鋼板の製造方法について説明するための図である。図1に示すように、当該製造方法では、一対のワークロール101、102(上ワークロール101、下ワークロール102)を用いて鋼板201を圧延する際に、上ワークロール101として、孔型ワークロールが用いられる。孔型ワークロールは、図示するように、その胴長方向に径差を有するロールである。かかる孔型ワークロールを用いて圧延を行うことにより、鋼板201には、その板幅方向に板厚差が付与されることとなる。つまり、板幅方向に厚肉部203と薄肉部205が分布する差厚鋼板201が形成され得る。
(1-1. Manufacturing method of differential thickness steel plate (vertical striped steel plate) by hole rolling)
As described above, as a manufacturing method of the differential thickness steel plate, a method of imparting a plate thickness difference in the plate width direction by performing hole rolling has been conventionally proposed. FIG. 1 is a diagram for explaining a method of manufacturing a differential thickness steel plate by hole rolling. As shown in FIG. 1, in the manufacturing method, when a steel plate 201 is rolled using a pair of work rolls 101 and 102 (upper work roll 101 and lower work roll 102), a perforated work is used as the upper work roll 101. A roll is used. As shown in the figure, the perforated work roll is a roll having a diameter difference in the body length direction. By rolling using such a perforated work roll, a plate thickness difference is given to the steel plate 201 in the plate width direction. That is, the differential thickness steel plate 201 in which the thick portion 203 and the thin portion 205 are distributed in the plate width direction can be formed.

なお、図示する例では、上ワークロール101として孔型ワークロールが用いられているが、差厚鋼板の製造方法はかかる例に限定されない。差厚鋼板の製造方法としては、下ワークロール102として孔型ワークロールが用いられてもよいし、上ワークロール101及び下ワークロール102の双方が孔型ワークロールであってもよい。下ワークロール102としてのみ孔型ワークロールが用いられる場合には、厚肉部203及び薄肉部205の凹凸形状が、図示する差厚鋼板201とは逆に、差厚鋼板の下面に形成されることとなる。あるいは、上ワークロール101及び下ワークロール102の双方が孔型ワークロールである場合には、上面及び下面の双方に、厚肉部203及び薄肉部205の凹凸形状が形成されることとなる。また、孔型圧延は、通常、熱間圧延で行われるが、冷間圧延であってもよい。   In the illustrated example, a hole work roll is used as the upper work roll 101, but the manufacturing method of the differential thickness steel plate is not limited to such an example. As a manufacturing method of the differential thickness steel plate, a hole work roll may be used as the lower work roll 102, and both the upper work roll 101 and the lower work roll 102 may be hole work rolls. When a hole-type work roll is used only as the lower work roll 102, the uneven shape of the thick portion 203 and the thin portion 205 is formed on the lower surface of the differential thickness steel plate, contrary to the differential thickness steel plate 201 illustrated. It will be. Or when both the upper work roll 101 and the lower work roll 102 are hole type work rolls, the uneven | corrugated shape of the thick part 203 and the thin part 205 will be formed in both an upper surface and a lower surface. Further, the hole rolling is usually performed by hot rolling, but may be cold rolling.

ここで、図2は、差厚鋼板201の形状を表すパラメータについて説明するための図である。図2では、差厚鋼板201の板幅方向における断面の形状を概略的に示している。本明細書では、図2に示すように、差厚鋼板201の形状を表すパラメータを以下のように定義する。なお、P=W1+W2である。   Here, FIG. 2 is a diagram for explaining parameters representing the shape of the differential thickness steel plate 201. In FIG. 2, the shape of the cross section in the plate | board width direction of the difference thickness steel plate 201 is shown roughly. In this specification, as shown in FIG. 2, parameters representing the shape of the differential thickness steel plate 201 are defined as follows. Note that P = W1 + W2.

薄肉部厚t1:薄肉部205の板厚
厚肉部厚t2:厚肉部203の板厚
差厚h:厚肉部203の板厚と薄肉部205の板厚との差厚
薄肉部幅W1:薄肉部205の板幅方向における長さ
厚肉部幅W2:厚肉部203の板幅方向における長さ
厚肉部ピッチP:厚肉部203のピッチ(厚肉部203の板幅方向の中心から、隣り合う厚肉部203の板幅方向の中心までの長さ)
板厚変化部角度θ:板厚変化部(薄肉部205及び厚肉部203と薄肉部205との境界)における水平方向に対する角度
Thin portion thickness t1: Plate thickness of thin portion 205 Thick portion thickness t2: Plate thickness of thick portion 203 Difference thickness h: Difference thickness between plate thickness of thick portion 203 and thin portion 205 Thin portion width W1 : Length in the plate width direction of the thin portion 205 thick portion width W2: length in the plate width direction of the thick portion 203 thick portion pitch P: pitch of the thick portion 203 (in the plate width direction of the thick portion 203) The length from the center to the center in the plate width direction of the adjacent thick portion 203)
Plate thickness changing portion angle θ: angle with respect to the horizontal direction at the plate thickness changing portion (thin portion 205 and the boundary between thick portion 203 and thin portion 205).

(1−2.薄肉部における平坦度不良についての検討)
ここで、例えば特許文献2に係る技術では、建材用の鋼柱管用の差厚鋼板201の製造を目的としており、当該差厚鋼板201の薄肉部厚t1は9mm〜22mm程度、厚肉部ピッチPは30mm〜40mm程度である。一方、自動車用の部材においては、高い強度と軽量化をともに実現するために、例えば鋼板をハット状に曲げ加工した場合における角部や、鋼板から角型鋼管を形成した場合における稜線(角部)等のみを厚肉化し、その他の部分をより薄くしたいという要望があると考えられる。このような部材を差厚鋼板201で形成しようとする場合には、例えば薄肉部厚t1が約0.8mm〜約4.0mm、及び厚肉部ピッチPが約50mm以上の、薄肉部厚t1がより薄く、厚肉部ピッチPがより長い差厚鋼板201(以下、便宜的に、薄肉長ピッチの差厚鋼板201とも呼称する)を製造する必要が生じる。
(1-2. Examination of poor flatness in thin parts)
Here, for example, in the technique according to Patent Document 2, the purpose is to manufacture a differential thickness steel plate 201 for a steel column pipe for building materials, and the thin portion thickness t1 of the differential thickness steel plate 201 is about 9 mm to 22 mm, and the thick portion pitch. P is about 30 mm to 40 mm. On the other hand, in automotive parts, in order to achieve both high strength and light weight, for example, corners when a steel plate is bent into a hat shape, or ridge lines (corner portions when a square steel pipe is formed from a steel plate) ) Etc., it is thought that there is a demand to increase the thickness of the other parts and make the other parts thinner. When such a member is to be formed of the differential thickness steel plate 201, for example, the thin portion thickness t1 having a thin portion thickness t1 of about 0.8 mm to about 4.0 mm and a thick portion portion pitch P of about 50 mm or more. However, it is necessary to manufacture a differential thickness steel plate 201 that is thinner and has a longer thick part pitch P (hereinafter, also referred to as a differential thickness steel plate 201 with a thin and long pitch for convenience).

そこで、本発明者らは、上述したような孔型圧延を用いて、このような薄肉長ピッチの差厚鋼板201を製造することを試みた。その結果、薄肉長ピッチの差厚鋼板201においては、薄肉部205に波打ち(すなわち、平坦度不良)が発生する場合があることが判明した。かかる平坦度不良は、特許文献2に係る技術で対象としているような、薄肉部厚t1が比較的厚く、厚肉部ピッチPが比較的短い差厚鋼板201ではほとんど発生しておらず、今回、本発明者らが新たに発見した現象である。なお、本明細書において、単に「平坦度不良」と記載した場合には、特に断りがない限り、かかる差厚鋼板201における薄肉部の平坦度不良のことを指すこととする。   Therefore, the present inventors tried to manufacture such a thin steel plate 201 having a thin and long pitch by using the above-described hole rolling. As a result, in the differential thickness steel plate 201 with a thin long pitch, it has been found that undulation (that is, poor flatness) may occur in the thin portion 205. Such flatness defects hardly occur in the differential thickness steel plate 201 having a relatively thin thickness t1 and a relatively short thickness P, which is the subject of the technique according to Patent Document 2, and this time. This is a phenomenon newly discovered by the present inventors. In the present specification, when simply described as “unsatisfactory flatness”, unless otherwise specified, it refers to a poorness in flatness of the thin portion in the differential thickness steel plate 201.

本発明者らは、このような平坦度不良が発生する理由及び条件について、有限要素法(FEM:Finite Element Method)を用いて解析を行った。当該有限要素法では、3次元の計算モデルを用いて、孔型圧延を行った際の鋼板の変形の様子、並びに孔型圧延を行った際に鋼板に生じる応力及びひずみを解析した。このとき、鋼板は弾塑性体として扱い、孔型ワークロールは剛体として扱った。また、孔型圧延については、熱間圧延で想定される物性値(例えば、材料の変形抵抗、流動応力及びヤング率、並びにロールと材料との間の摩擦抵抗等)を用いて計算を行うことで、当該孔型圧延を熱間圧延として扱った。様々な形状の差厚鋼板に対する孔型圧延を模擬して、鋼板の板厚及び孔型ワークロールの形状を様々に変更しながら、解析を繰り返し行った結果、以下の事実が判明した。   The present inventors have analyzed the reason and conditions for the occurrence of such poor flatness using a finite element method (FEM). In the finite element method, a three-dimensional calculation model was used to analyze the deformation state of the steel sheet when the hole rolling was performed, and the stress and strain generated in the steel sheet when the hole rolling was performed. At this time, the steel plate was handled as an elasto-plastic body, and the hole work roll was handled as a rigid body. In addition, for hole rolling, calculation is performed using physical property values assumed in hot rolling (for example, material deformation resistance, flow stress and Young's modulus, and friction resistance between roll and material). Then, the perforated rolling was handled as hot rolling. The following facts were found as a result of repeated analysis while simulating hole rolling on different thickness steel plates of various shapes and changing the thickness of the steel plate and the shape of the hole work roll.

孔型圧延においては、薄肉部205については、圧下率が大きいため、圧延後の差厚鋼板201において長手方向に大きな伸びひずみが生じる。一方、厚肉部203については、圧下率が小さいため、圧延後の差厚鋼板201において長手方向の伸びひずみは小さい。このように、差厚鋼板201では、厚肉部203と薄肉部205との長手方向の伸びひずみの差が大きい。従って、薄肉部205には、長手方向に大きな圧縮応力が生じることとなり、例えば薄肉部厚t1が薄い場合等、薄肉部205の強度が不足する場合には、当該薄肉部205が座屈変形し、平坦度不良が生じるのだと考えられる。   In the hole rolling, the thin portion 205 has a large rolling reduction, so that a large elongation strain occurs in the longitudinal direction in the differential thickness steel plate 201 after rolling. On the other hand, since the rolling reduction of the thick portion 203 is small, the elongation strain in the longitudinal direction is small in the differential thickness steel plate 201 after rolling. Thus, in the difference thickness steel plate 201, the difference of the elongation strain of the thick part 203 and the thin part 205 of the longitudinal direction is large. Therefore, a large compressive stress is generated in the thin portion 205 in the longitudinal direction. For example, when the strength of the thin portion 205 is insufficient, such as when the thin portion thickness t1 is thin, the thin portion 205 is buckled and deformed. It is thought that poor flatness occurs.

また、薄肉部205における塑性ひずみについて詳細に解析したところ、板幅方向の塑性ひずみについては、厚肉部203との境界近傍においては大きな塑性ひずみが生じており、当該境界から板幅方向に遠ざかるにつれて、当該塑性ひずみの値が小さくなることが分かった。また、薄肉部205における長手方向の塑性ひずみは、厚肉部203との境界から板幅方向に遠ざかるにつれて大きくなっていることが分かった。その結果、厚肉部203と薄肉部205との長手方向の塑性ひずみの差も、当該境界から板幅方向に遠ざかるにつれて大きくなる。   Further, when the plastic strain in the thin portion 205 is analyzed in detail, the plastic strain in the plate width direction has a large plastic strain in the vicinity of the boundary with the thick portion 203 and moves away from the boundary in the plate width direction. It was found that the value of the plastic strain becomes smaller as the time elapses. Moreover, it turned out that the plastic strain of the longitudinal direction in the thin part 205 becomes large as it distances from the boundary with the thick part 203 to the board width direction. As a result, the difference in the plastic strain in the longitudinal direction between the thick portion 203 and the thin portion 205 also increases as the distance from the boundary increases in the plate width direction.

薄肉部205において厚肉部203との境界近傍において板幅方向の塑性ひずみが大きいことは、当該境界近傍において、薄肉部205から厚肉部203へのメタルフローが好適に生じていることを意味している。かかるメタルフローによって厚肉部203にメタルが充満されることにより、厚肉部203と薄肉部205の差厚が形成され得る。   A large plastic strain in the plate width direction in the vicinity of the boundary between the thin portion 205 and the thick portion 203 means that a metal flow from the thin portion 205 to the thick portion 203 is preferably generated in the vicinity of the boundary. doing. By filling the thick portion 203 with metal by such a metal flow, a difference thickness between the thick portion 203 and the thin portion 205 can be formed.

一方、当該境界から板幅方向に遠ざかるにつれて薄肉部205の板幅方向の塑性ひずみが小さくなることは、当該境界から板幅方向に遠ざかるにつれて薄肉部205から厚肉部203へのメタルフローが生じ難くなることを意味している。そのために、薄肉部205における長手方向の塑性ひずみも、当該境界から板幅方向に遠ざかるにつれて大きくなると考えられる。つまり、薄肉部幅W1が大きいほど、薄肉部205において長手方向の塑性ひずみが大きい領域が存在する可能性が高まる。   On the other hand, the plastic strain in the plate width direction of the thin portion 205 decreases as the distance from the boundary increases in the plate width direction. The metal flow from the thin portion 205 to the thick portion 203 occurs as the distance from the boundary increases in the plate width direction. It means that it becomes difficult. For this reason, it is considered that the plastic strain in the longitudinal direction of the thin portion 205 also increases as the distance from the boundary in the plate width direction increases. That is, as the thin portion width W1 is larger, the possibility that there is a region where the plastic strain in the longitudinal direction is large in the thin portion 205 is increased.

また、本発明者らによる解析の結果、薄肉部205の板幅方向において、当該薄肉部205から厚肉部203に向かってメタルフローが生じる範囲は、薄肉部厚t1でほぼ決定され、薄肉部幅W1にかかわらず一定であることが分かっている。薄肉部厚t1が薄い場合には、薄肉部205の板幅方向において、厚肉部203に向かってメタルフローが生じる範囲は小さい。つまり、薄肉部厚t1が薄いほど、薄肉部205において長手方向の塑性ひずみが大きい領域が存在する可能性が高まる。   Further, as a result of the analysis by the present inventors, the range in which metal flow occurs from the thin portion 205 toward the thick portion 203 in the plate width direction of the thin portion 205 is almost determined by the thin portion thickness t1, and the thin portion It has been found that it is constant regardless of the width W1. When the thin portion thickness t1 is small, the range in which the metal flow occurs toward the thick portion 203 in the plate width direction of the thin portion 205 is small. That is, the thinner the thin portion thickness t1, the higher the possibility that there is a region where the plastic strain in the longitudinal direction is large in the thin portion 205.

このように、薄肉部幅W1が大きいほど、及び薄肉部厚t1が薄いほど、薄肉部205において、厚肉部203へのメタルフローが生じ難く長手方向の塑性ひずみが大きい領域(すなわち、厚肉部203と薄肉部205との長手方向の伸びひずみの差が大きい領域)が生じやすくなる。従って、薄肉長ピッチの差厚鋼板201においては、平坦度不良が生じやすくなるのだと考えられる。   Thus, as the thin portion width W1 is larger and the thin portion thickness t1 is thinner, the metal flow to the thick portion 203 is less likely to occur in the thin portion 205, and the plastic strain in the longitudinal direction is large (that is, thick wall portion). Region where the difference in elongation strain between the portion 203 and the thin portion 205 in the longitudinal direction is large). Accordingly, it is considered that flatness defects are likely to occur in the differential thickness steel plate 201 with a thin long pitch.

まとめると、本発明者らによる解析の結果、薄肉長ピッチの差厚鋼板201において薄肉部205に平坦度不良が発生する原因は、圧下率の違いによる厚肉部203と薄肉部205との長手方向の伸びひずみの差によって、当該薄肉部205が座屈変形を起こすことであることが判明した。薄肉部厚t1が小さい場合には、薄肉部205の強度が小さくなること、及び、薄肉部205から厚肉部203へのメタルフローが生じ難くなり厚肉部203と薄肉部205との長手方向の伸びひずみの差が大きくなること等の理由により、座屈変形が生じやすくなり、平坦度不良が生じやすくなる。また、厚肉部ピッチPが大きい場合には、例えば薄肉部幅W1と厚肉部幅W2が同程度であるとすれば、当該薄肉部幅W1も大きくなる。従って、薄肉部205においては、厚肉部203との境界から離れた部位に、厚肉部203との長手方向の伸びひずみの差が大きい領域が存在する可能性が高まり、平坦度不良が生じやすくなる。よって、薄肉長ピッチの差厚鋼板201においては、薄肉部205に平坦度不良が発生しやすくなるのだと考えられる。   In summary, as a result of analysis by the present inventors, the cause of the occurrence of poor flatness in the thin portion 205 in the differential thickness steel plate 201 with a thin long pitch is the longitudinal length between the thick portion 203 and the thin portion 205 due to the difference in rolling reduction. It has been found that the thin-walled portion 205 causes buckling deformation due to the difference in elongation strain in the direction. When the thin-walled portion thickness t1 is small, the strength of the thin-walled portion 205 becomes small, and the metal flow from the thin-walled portion 205 to the thick-walled portion 203 hardly occurs, and the longitudinal direction between the thick-walled portion 203 and the thin-walled portion 205 For example, the difference in elongation strain between the two tends to be buckled and the flatness is likely to be poor. Further, when the thick part pitch P is large, for example, if the thin part width W1 and the thick part width W2 are approximately the same, the thin part width W1 also becomes large. Therefore, in the thin portion 205, there is an increased possibility that a region having a large difference in elongation strain in the longitudinal direction from the thick portion 203 is present in a portion away from the boundary with the thick portion 203, resulting in poor flatness. It becomes easy. Therefore, in the differential thickness steel plate 201 having a thin long pitch, it is considered that flatness defects are likely to occur in the thin portion 205.

上記のように、本発明者らによる解析の結果、薄肉部205の平坦度不良は、薄肉部厚t1が小さく、厚肉部ピッチPが大きい場合(すなわち、薄肉部幅W1が大きい場合)に顕著に生じ得ることが確認された。そこで、本発明者らは、当該平坦度不良の発生有無を、薄肉部厚t1及び薄肉部幅W1をパラメータとして整理し、当該平坦度不良が生じる具体的な条件について検討した。結果を図3に示す。図3は、薄肉部205の平坦度不良と、薄肉部厚t1及び薄肉部幅W1と、の関係を示すグラフ図である。   As described above, as a result of the analysis by the present inventors, the flatness failure of the thin portion 205 is caused when the thin portion thickness t1 is small and the thick portion pitch P is large (that is, when the thin portion width W1 is large). It was confirmed that this could occur significantly. Therefore, the present inventors arranged whether or not the flatness defect occurred, using the thin part thickness t1 and the thin part width W1 as parameters, and examined specific conditions for the flatness defect. The results are shown in FIG. FIG. 3 is a graph showing the relationship between the flatness failure of the thin portion 205 and the thin portion thickness t1 and thin portion width W1.

図3では、横軸に薄肉部幅W1を取り、縦軸に薄肉部厚t1を取り、FEM計算を行った差厚鋼板201の形状に対応する点に、マーカーをプロットしている。白抜きのマーカーは平坦度不良が発生しなかったことを示しており、塗り潰しているマーカーは平坦度不良が発生したことを示している。平坦度不良の発生を判断する基準(例えば急峻度λのしきい値)は製品によって異なるが、ここでは、薄肉部205の急峻度λがλ>2%の場合に平坦度不良が発生していると判断した。なお、図3に示すデータは、いずれも、板厚比t2/t1=2.0であり、W1=W2で厚肉部203と薄肉部205が板幅方向に規則的に並んでいる差厚鋼板201についてFEM計算を行った結果である。   In FIG. 3, a marker is plotted at a point corresponding to the shape of the differential thickness steel plate 201 on which the thin wall width W1 is taken on the horizontal axis, and the thin wall thickness t1 is taken on the vertical axis. A white marker indicates that no flatness failure has occurred, and a filled marker indicates that a flatness failure has occurred. The criterion for determining the occurrence of poor flatness (for example, the threshold value of the steepness λ) differs depending on the product, but here, when the steepness λ of the thin portion 205 is λ> 2%, the flatness failure occurs. It was judged that Note that all the data shown in FIG. 3 are the thickness ratio t2 / t1 = 2.0, and the difference thickness in which the thick portion 203 and the thin portion 205 are regularly arranged in the plate width direction when W1 = W2. It is the result of having performed FEM calculation about the steel plate 201. FIG.

図3を参照すると、平坦度不良の発生有無を示す境界が、直線Tで表されることが分かる。当該直線Tの傾きを具体的に計算したところ、W1/t1=約15であった。また、板厚比t2/t1が異なる差厚鋼板201についても、同様に、薄肉部厚t1及び薄肉部幅W1を変更しながらFEM計算を行い、平坦度不良の発生有無を示す境界について考察したところ、同様の結果が得られた。   Referring to FIG. 3, it can be seen that a boundary indicating whether or not the flatness failure occurs is represented by a straight line T. When the slope of the straight line T was specifically calculated, W1 / t1 = about 15. Similarly, for the difference thickness steel plate 201 having a different thickness ratio t2 / t1, FEM calculation was performed while changing the thin part thickness t1 and the thin part width W1, and the boundary indicating whether or not the flatness defect occurred was considered. However, similar results were obtained.

このように、本発明者らは、平坦度不良が発生する条件について検討した結果、少なくとも厚肉部203と薄肉部205が板幅方向に所定のピッチで規則的に並んだ差厚鋼板201においては、W1/t1≧約15の場合に、薄肉部205において平坦度不良が顕在化し得るという知見を得た。縦縞鋼板である差厚鋼板201において、平坦度不良が発生する条件については、これまで十分に検討されておらず、上記のように平坦度不良が発生する条件を具体的に数値によって規定することは、今回本発明者らが新たになしえたことである。   As described above, the present inventors have studied the conditions under which flatness defects occur, and as a result, in the differential thickness steel plate 201 in which at least the thick portion 203 and the thin portion 205 are regularly arranged at a predetermined pitch in the plate width direction. Obtained the knowledge that the flatness failure can be manifested in the thin portion 205 when W1 / t1 ≧ about 15. In the differential thickness steel plate 201, which is a vertically striped steel plate, the conditions under which flatness failure occurs have not been sufficiently studied so far, and the conditions under which flatness failure occurs are specifically defined by numerical values. This is what the present inventors have made anew this time.

上記条件から、平坦度不良を発生させないためには、差厚鋼板201の形状がW1/t1<約15を満たせばよいこととなる。従って、例えば、薄肉部厚t1が2mmであれば、平坦度不良を発生させずに圧延可能な薄肉部幅W1の最大値は30mm程度ということになる。このように、孔型圧延における差厚鋼板の製造の自由度は小さい。つまり、何ら対策を講じなければ、上述したような薄肉長ピッチの差厚鋼板201を、孔型圧延によって、平坦度不良を発生させることなく製造しようとすることは、困難であると言える。   From the above conditions, in order not to cause flatness defects, the shape of the differential thickness steel plate 201 only needs to satisfy W1 / t1 <about 15. Therefore, for example, if the thin-walled portion thickness t1 is 2 mm, the maximum value of the thin-walled portion width W1 that can be rolled without causing poor flatness is about 30 mm. Thus, the freedom degree of manufacture of the difference thickness steel plate in a hole type rolling is small. In other words, if no measures are taken, it can be said that it is difficult to produce the above-described differential thickness steel plate 201 having a thin and long pitch without causing flatness defects by hole rolling.

(1−3.平坦度不良に対する対策)
そこで、本発明者らは、W1/t1≧約15を満たすような、平坦度不良が顕在化し得る薄肉長ピッチの差厚鋼板201について、当該平坦度不良を改善し得る対策について検討を行った。
(1-3. Countermeasures for poor flatness)
Therefore, the present inventors have examined a countermeasure that can improve the flatness defect with respect to the thin steel plate 201 having a thin and long pitch in which the flatness defect can be manifested so as to satisfy W1 / t1 ≧ about 15. .

上述したように、薄肉部205における平坦度不良は、厚肉部203と薄肉部205との長手方向の伸びひずみの差によって生じると考えられる。従って、平坦度不良の発生を抑制するためには、当該長手方向の伸びひずみの差をより小さくするように、孔型圧延を行えばよい。そのためには、薄肉部205から厚肉部203へのメタルフローを促進することが有効である。薄肉部205から厚肉部203へのメタルフローが促進されれば、薄肉部205における板幅方向の塑性ひずみが増加するため、当該薄肉部205における長手方向の塑性ひずみは減少することとなり、結果的に、上記長手方向の伸びひずみの差をより小さくすることが可能になる。   As described above, it is considered that the flatness failure in the thin portion 205 is caused by the difference in elongation strain between the thick portion 203 and the thin portion 205 in the longitudinal direction. Therefore, in order to suppress the occurrence of poor flatness, hole rolling may be performed so as to further reduce the difference in elongation strain in the longitudinal direction. For this purpose, it is effective to promote the metal flow from the thin portion 205 to the thick portion 203. If the metal flow from the thin wall portion 205 to the thick wall portion 203 is promoted, the plastic strain in the plate width direction in the thin wall portion 205 increases, so that the plastic strain in the longitudinal direction in the thin wall portion 205 decreases. In particular, the difference in elongation strain in the longitudinal direction can be further reduced.

薄肉部205から厚肉部203へのメタルフローを促進するためには、具体的には、ワークロールを大径化し、鋼板201とワークロール101、102との接触長さをより長くすることや、鋼板201とワークロール101、102との間の摩擦係数を大きくして鋼板201の伸びを拘束することが、有効な手段となる。しかし、ワークロール101、102を大径化したり、摩擦係数を増大させたりした場合には、圧延荷重が増加することとなる。従って、設備上、平坦度不良の改善代には限界があり、上記の手段は根本的な解決策とはなり得ない。また、上述したように、薄肉部厚t1が薄くなるほど、及び薄肉部幅W1が大きくなるほど、薄肉部205から厚肉部203へのメタルフローは生じ難くなる。従って、メタルフローを促進することにより上記長手方向の伸びひずみの差を小さくする方法には、そもそも限界があると考えられる。   In order to promote the metal flow from the thin portion 205 to the thick portion 203, specifically, the diameter of the work roll is increased, and the contact length between the steel plate 201 and the work rolls 101 and 102 is increased. Increasing the coefficient of friction between the steel plate 201 and the work rolls 101 and 102 to restrain the elongation of the steel plate 201 is an effective means. However, when the diameter of the work rolls 101 and 102 is increased or the friction coefficient is increased, the rolling load increases. Therefore, there is a limit to the cost of improving the flatness failure in terms of equipment, and the above means cannot be a fundamental solution. Further, as described above, the metal flow from the thin portion 205 to the thick portion 203 is less likely to occur as the thin portion thickness t1 is reduced and the thin portion width W1 is increased. Therefore, it can be considered that there is a limit in the first place in the method of reducing the difference in elongation strain in the longitudinal direction by promoting metal flow.

また、平坦度不良の発生を抑制するための他の方法として、同一あるいは形状を変化させた孔型ワークロールで複数パスの孔型圧延を行い、平坦度不良が顕在化しない条件で少しずつ鋼板201に圧下変形を加える方法が考えられる。しかしながら、同じく複数パスの孔型圧延によって製造される形鋼や軌条と比べて、鋼板201のようないわゆる薄板は、薄物であり、かつその板厚差(差厚h)が小さく、寸法精度も厳しい。薄板である差厚鋼板201を複数パスの孔型圧延によって製造する場合には、鋼板201の幅方向への動きを拘束することが難しく、鋼板201の蛇行等による板幅方向の位置ずれや、噛み出しの発生等が予想されるため、安定製造、寸法精度の確保が困難であると考えられる。   In addition, as another method for suppressing the occurrence of poor flatness, steel sheets are gradually formed under the condition that multi-pass hole rolling is performed with a hole work roll having the same or changed shape, and flatness defects are not manifested. A method of applying a rolling deformation to 201 can be considered. However, compared to a shape steel or rail that is also manufactured by multi-pass perforation rolling, a so-called thin plate such as a steel plate 201 is a thin object, and its thickness difference (difference thickness h) is small, and dimensional accuracy is also high. Strict. When manufacturing the differential thickness steel plate 201, which is a thin plate, by multi-pass perforation rolling, it is difficult to restrain the movement of the steel plate 201 in the width direction, the position shift in the plate width direction due to the meandering of the steel plate 201, Since the occurrence of biting is expected, it is considered difficult to ensure stable production and dimensional accuracy.

以上説明したように、W1/t1≧約15を満たすような、平坦度不良が顕在化し得る薄肉長ピッチの差厚鋼板201については、これまで、その好適な製造方法が確立されていなかったと言える。本発明者らは、このような薄肉長ピッチの差厚鋼板201において、平坦度不良をより低減し得る製造方法について鋭意検討した結果、本発明に想到した。本発明によれば、W1/t1≧約15を満たすような薄肉長ピッチの差厚鋼板201においても、平坦度不良が低減されたより高品質な差厚鋼板201を製造することが可能になる。以下、本発明者らが想到した本発明の好適な一実施形態について、詳細に説明する。   As described above, it can be said that a suitable manufacturing method has not been established so far for the differential thickness steel plate 201 having a thin and long pitch that satisfies the W1 / t1 ≧ about 15 and can cause poor flatness. . The inventors of the present invention have come up with the present invention as a result of earnestly studying a manufacturing method capable of further reducing the flatness failure in the thin steel plate 201 having such a thin and long pitch. According to the present invention, it is possible to manufacture a high-quality differential thickness steel plate 201 with reduced flatness defects even in the differential thickness steel plate 201 with a thin and long pitch that satisfies W1 / t1 ≧ about 15. Hereinafter, a preferred embodiment of the present invention conceived by the present inventors will be described in detail.

(2.本実施形態に係る差厚鋼板)
本実施形態では、図1を参照して説明した方法と同様に、孔型圧延によって差厚鋼板を製造する。このとき、差厚鋼板の板幅方向における断面の形状を工夫することにより(すなわち、孔型ワークロールの形状を工夫することにより)、薄肉部における平坦度不良の発生を抑制する。
(2. Differential thickness steel sheet according to this embodiment)
In the present embodiment, similarly to the method described with reference to FIG. 1, the differential thickness steel plate is manufactured by punch rolling. At this time, by devising the shape of the cross section in the plate width direction of the differential thickness steel plate (that is, by devising the shape of the hole work roll), the occurrence of poor flatness in the thin wall portion is suppressed.

図4を参照して、本実施形態に係る差厚鋼板の形状について説明する。図4は、本実施形態に係る差厚鋼板の板幅方向の断面形状を示す図である。   With reference to FIG. 4, the shape of the differential thickness steel plate according to the present embodiment will be described. FIG. 4 is a diagram showing a cross-sectional shape in the plate width direction of the differential thickness steel plate according to the present embodiment.

図4を参照すると、本実施形態に係る差厚鋼板210の板幅方向における断面は、厚肉部203と薄肉部205とが板幅方向に分布するとともに、薄肉部205の一部領域に、当該薄肉部205が板厚方向に屈曲した屈曲部207が存在する形状を有する。つまり、差厚鋼板210は、例えば図1に示すような一般的な差厚鋼板201に対して、その薄肉部205に屈曲部207が設けられた構成を有する。   Referring to FIG. 4, in the cross-section in the plate width direction of the differential thickness steel plate 210 according to the present embodiment, the thick portion 203 and the thin portion 205 are distributed in the plate width direction, and in a partial region of the thin portion 205, The thin portion 205 has a shape in which a bent portion 207 is bent in the thickness direction. That is, the differential thickness steel plate 210 has a configuration in which a bent portion 207 is provided in a thin portion 205 of a general differential thickness steel plate 201 as shown in FIG.

なお、厚肉部203、薄肉部205及び板厚変化部の形状は、差厚鋼板210の用途に応じて(すなわち、差厚鋼板210によって最終的に製造される部品に応じて)、適宜決定され得る。例えば、板厚変化部角度θは、約30°≦θ<90°程度であり得る。また、図示する例では、板厚変化部の角部は直線によって構成されているが、応力集中を避けるために、当該角部は曲線によって構成されてもよい。   The shapes of the thick wall portion 203, the thin wall portion 205, and the plate thickness changing portion are appropriately determined according to the application of the differential thickness steel plate 210 (that is, according to the part finally manufactured by the differential thickness steel plate 210). Can be done. For example, the plate thickness changing portion angle θ may be about 30 ° ≦ θ <90 °. In the example shown in the figure, the corner of the plate thickness changing portion is configured by a straight line. However, in order to avoid stress concentration, the corner may be configured by a curve.

屈曲部207は、薄肉部205が板厚方向に折り曲げられたハット形状209が、1つ又は複数連なって形成されることにより、構成される。図示する例では、2つのハット形状209が連なって形成されることにより、屈曲部207が構成されている。   The bent portion 207 is configured by forming one or a plurality of hat shapes 209 in which the thin portion 205 is bent in the plate thickness direction. In the example shown in the drawing, the bent portion 207 is formed by forming two hat shapes 209 in a row.

屈曲部207を有する差厚鋼板210は、上ワークロール及び下ワークロールの両方に、厚肉部203、薄肉部205、及び屈曲部207(すなわち、屈曲部207を構成するハット形状209)を形成し得るような孔型ワークロールを用いて孔型圧延を行うことにより、形成され得る。屈曲部207における板厚は、薄肉部厚t1と略同一であってよい。   The differential thickness steel plate 210 having the bent portion 207 forms the thick portion 203, the thin portion 205, and the bent portion 207 (that is, the hat shape 209 constituting the bent portion 207) on both the upper work roll and the lower work roll. It can be formed by perforating rolling using such perforated work rolls. The plate thickness in the bent portion 207 may be substantially the same as the thin portion thickness t1.

なお、本明細書では、屈曲部207の形状について、屈曲部207のハット形状209の下部(幅広の部位)の板幅方向における長さを、ハット形状下部幅d1とも記載する。また、ハット形状209の上部(幅狭の部位)の板幅方向における長さを、ハット形状上部幅d2とも記載する。また、ハット形状209の板厚方向に延伸する部位の水平方向からの傾斜角度をハット形状角度αとも記載する。また、ハット形状209のピッチ、すなわちハット形状209の板幅方向の中心から、隣り合うハット形状209の板幅方向の中心までの長さを、ハット形状ピッチQとも記載する。また、ハット形状209の高さを、ハット形状高さgとも記載する。なお、ハット形状高さgは、薄肉部205の表面からのハット形状209の高さを意味する。   In the present specification, regarding the shape of the bent portion 207, the length in the plate width direction of the lower portion (wide portion) of the hat shape 209 of the bent portion 207 is also referred to as a hat-shaped lower width d1. The length in the plate width direction of the upper portion (narrow portion) of the hat shape 209 is also referred to as a hat shape upper width d2. Moreover, the inclination angle from the horizontal direction of the site | part extended in the plate | board thickness direction of the hat shape 209 is also described as the hat shape angle α. The pitch of the hat shape 209, that is, the length from the center of the hat shape 209 in the plate width direction to the center of the adjacent hat shape 209 in the plate width direction is also referred to as a hat shape pitch Q. The height of the hat shape 209 is also referred to as a hat shape height g. The hat shape height g means the height of the hat shape 209 from the surface of the thin portion 205.

ここで、差厚鋼板210の断面形状は、W1/t1≧約15を満たす。また、差厚鋼板210の薄肉部厚t1は、例えば約0.8mm〜約4.0mmである。従って、差厚鋼板210においては、何ら対策を講じなければ、上述した差厚鋼板201と同様に、薄肉部205に平坦度不良が発生し得る。しかしながら、差厚鋼板210では、屈曲部207が設けられることにより、かかる平坦度不良の発生を抑制することができる。   Here, the cross-sectional shape of the differential thickness steel plate 210 satisfies W1 / t1 ≧ about 15. Moreover, the thin part thickness t1 of the differential thickness steel plate 210 is, for example, about 0.8 mm to about 4.0 mm. Therefore, in the differential thickness steel plate 210, if no countermeasure is taken, a flatness defect may occur in the thin portion 205 as in the case of the differential thickness steel plate 201 described above. However, in the differential thickness steel plate 210, the occurrence of such poor flatness can be suppressed by providing the bent portion 207.

具体的には、上述したように、薄肉部205における平坦度不良は、厚肉部203と薄肉部205との長手方向の伸びひずみの差によって生じると考えられる。これに対して、本実施形態では、薄肉部205に屈曲部207が設けられることにより、板幅方向の線長がより長くなるため、板幅方向への伸びひずみが促進されることとなり、体積一定則により、薄肉部205における長手方向への伸びひずみが抑制される。従って、厚肉部203と薄肉部205との長手方向の伸びひずみの差が低減される。また、屈曲部207が設けられることにより、薄肉部205における座屈剛性が向上する効果も得られる。このように、屈曲部207を設けることにより、厚肉部203と薄肉部205との長手方向の伸びひずみの差を低減する効果、及び薄肉部205における座屈剛性を向上させる効果が得られるため、W1/t1≧約15を満たす場合であっても、薄肉部205に平坦度不良を発生させることなく、差厚鋼板210を製造することが可能になる。   Specifically, as described above, it is considered that the flatness failure in the thin portion 205 is caused by a difference in elongation strain between the thick portion 203 and the thin portion 205 in the longitudinal direction. On the other hand, in the present embodiment, by providing the bent portion 207 in the thin wall portion 205, the line length in the plate width direction becomes longer, so that elongation strain in the plate width direction is promoted, and the volume According to a certain rule, elongation strain in the longitudinal direction in the thin portion 205 is suppressed. Therefore, the difference in elongation strain between the thick part 203 and the thin part 205 in the longitudinal direction is reduced. Further, by providing the bent portion 207, an effect of improving the buckling rigidity in the thin portion 205 can be obtained. Thus, by providing the bent portion 207, the effect of reducing the difference in elongation strain between the thick portion 203 and the thin portion 205 in the longitudinal direction and the effect of improving the buckling rigidity in the thin portion 205 can be obtained. , Even when W1 / t1 ≧ about 15, it is possible to manufacture the differential thickness steel plate 210 without causing poor flatness in the thin portion 205.

更に、孔型圧延で屈曲部207を有する差厚鋼板210を形成した後に、例えばプレス等により、当該屈曲部207を板幅方向に延ばす工程が行われてもよい。屈曲部207が略平坦な形状に変形させられることにより、図1に示すような屈曲部207を有しない差厚鋼板であって、薄肉部幅W1がより大きい差厚鋼板を得ることができる。このように屈曲部207を延ばす工程が追加的に行われる場合には、最終的に所望の薄肉部幅W1が得られるように、孔型圧延における屈曲部207の形状が設計され得る。ここで、孔型圧延のみによって薄肉部幅W1が大きい差厚鋼板を製造しようとする場合には、上述したように、薄肉部205に平坦度不良が生じやすくなってしまう。一方、本実施形態のように、孔型圧延で屈曲部207を有する差厚鋼板210を形成した後に、当該屈曲部207を板幅方向に延ばす工程を行うことにより、平坦度不良を顕在化させることなく、薄肉部幅W1がより大きい差厚鋼板を得ることが可能になる。   Further, after the differential thickness steel plate 210 having the bent portion 207 is formed by hole rolling, a step of extending the bent portion 207 in the plate width direction by, for example, a press may be performed. By deforming the bent portion 207 into a substantially flat shape, it is possible to obtain a differential thickness steel plate that does not have the bent portion 207 as shown in FIG. 1 and has a larger thin portion width W1. When the step of extending the bent portion 207 is additionally performed as described above, the shape of the bent portion 207 in the hole rolling can be designed so that a desired thin portion width W1 is finally obtained. Here, when trying to manufacture a differential thickness steel sheet having a large thin portion width W1 only by hole rolling, flatness defects are likely to occur in the thin portion 205 as described above. On the other hand, after forming the differential thickness steel plate 210 having the bent portion 207 by hole rolling as in the present embodiment, the flatness failure is made obvious by performing a process of extending the bent portion 207 in the plate width direction. Without this, it is possible to obtain a differential thickness steel sheet having a larger thin wall width W1.

ここで、図4に示す屈曲部207の形状は、あくまで一例である。例えば、屈曲部207は、1つのハット形状209によって構成されてもよい。あるいは、屈曲部207が複数のハット形状209によって構成される場合であっても、そのハット形状209の数は、図4に示す例に限定されず、適宜決定されてよい。なお、図4に示すもの以外の、屈曲部207の形状の他の例については、下記実施例で説明する。   Here, the shape of the bent portion 207 shown in FIG. 4 is merely an example. For example, the bent portion 207 may be configured by one hat shape 209. Or even if it is a case where the bending part 207 is comprised by the some hat shape 209, the number of the hat shapes 209 is not limited to the example shown in FIG. 4, and may be determined suitably. Other examples of the shape of the bent portion 207 other than those shown in FIG. 4 will be described in the following examples.

屈曲部207の形状についての条件、すなわち屈曲部207を形成する条件(例えば、ハット形状下部幅d1、ハット形状上部幅d2、ハット形状角度α、ハット形状高さピッチQ、ハット形状高さg、及び屈曲部207を構成するハット形状209の数等)は、孔型圧延の圧延条件に基づいて、薄肉部205における平坦度不良の発生を抑制し得るように(具体的には、例えば急峻度等の平坦度を示す指標が、製品として問題ない範囲内に収まるように)、適宜決定され得る。例えば、屈曲部207を形成する条件は、薄肉部205の急峻度が略2%以下となるように決定される。この際、上述したように、後に屈曲部207を板幅方向に延ばす工程が追加される場合には、当該工程の後に所望の形状が得られることも更に考慮され得る。ここで、孔型圧延の圧延条件には、入側板厚t0、孔型圧延実行後の狙い値としての差厚鋼板210の形状(薄肉部厚t1、厚肉部厚t2、薄肉部幅W1、厚肉部ピッチP(なお、薄肉部幅W1及び厚肉部ピッチPが定まれば、結果的に厚肉部幅W2も決定される)、及び板厚変化部角度θ)、並びに孔型ワークロールのワークロール径等が含まれ得る。屈曲部207を形成する条件は、例えば、有限要素法(FEM:Finite Element Method)を用いた数値解析シミュレーションや、実機を用いた実験等により、適宜決定されてよい。   Conditions for the shape of the bent portion 207, that is, conditions for forming the bent portion 207 (for example, hat shape lower width d1, hat shape upper width d2, hat shape angle α, hat shape height pitch Q, hat shape height g, And the number of hat shapes 209 constituting the bent portion 207, etc., so as to suppress the occurrence of poor flatness in the thin-walled portion 205 based on the rolling conditions of hole rolling (specifically, for example, steepness) Etc.) can be appropriately determined so that the index indicating the flatness is within a range in which there is no problem as a product. For example, the conditions for forming the bent portion 207 are determined so that the steepness of the thin portion 205 is approximately 2% or less. At this time, as described above, when a step of extending the bent portion 207 in the plate width direction is added later, it can be further considered that a desired shape is obtained after the step. Here, the rolling conditions of the hole rolling include the entry side plate thickness t0, the shape of the differential thickness steel plate 210 as a target value after the hole rolling is performed (thin wall thickness t1, thick wall thickness t2, thin wall width W1, Thick part pitch P (if the thin part width W1 and thick part pitch P are determined, the thick part width W2 is also determined as a result), the plate thickness changing part angle θ), and the hole workpiece The work roll diameter of the roll can be included. Conditions for forming the bent portion 207 may be appropriately determined by, for example, a numerical analysis simulation using a finite element method (FEM), an experiment using an actual machine, or the like.

具体的には、例えば、上述したように、屈曲部207によって薄肉部205における板幅方向への伸びひずみが促進されれば、厚肉部203と薄肉部205との長手方向の伸びひずみの差を低減することができる。薄肉部205における板幅方向への伸びひずみの量を決定する因子としては、板幅方向における屈曲部207の投影長に対する当該屈曲部207の線長の比が挙げられる。従って、かかる板幅方向における屈曲部207の投影長に対する当該屈曲部207の線長の比が、平坦度不良を抑制し得る十分な伸びひずみの量が得られるような所望の値になるように、屈曲部207を形成する条件が決定されてよい。あるいは、薄肉部205の座屈剛性を基準として、当該座屈剛性が、平坦度不良を抑制し得るような所望の値になるように、屈曲部207を形成する条件が決定されてよい。   Specifically, for example, as described above, if the bending strain 207 promotes the elongation strain in the plate width direction in the thin portion 205, the difference in the longitudinal strain between the thick portion 203 and the thin portion 205. Can be reduced. As a factor for determining the amount of elongation strain in the plate width direction in the thin portion 205, the ratio of the line length of the bent portion 207 to the projected length of the bent portion 207 in the plate width direction can be mentioned. Accordingly, the ratio of the line length of the bent portion 207 to the projected length of the bent portion 207 in the plate width direction is set to a desired value that can provide a sufficient amount of elongation strain that can suppress poor flatness. The conditions for forming the bent portion 207 may be determined. Alternatively, the conditions for forming the bent portion 207 may be determined so that the buckling stiffness has a desired value that can suppress the flatness failure, based on the buckling stiffness of the thin portion 205.

なお、図示する例では、屈曲部207は、薄肉部205が直線的に折り曲げられることによって形成されているが、本実施形態はかかる例に限定されない。屈曲部207は、薄肉部205が曲線的に折り曲げられることによって形成されてもよい。屈曲部207を曲線状に形成した場合であっても、屈曲部207を含む薄肉部205の板厚方向の中心線の板幅方向における長さが同等であれば、屈曲部207を直線状に形成した場合と同様の、平坦度不良の発生を抑制する効果を得ることができる。   In the illustrated example, the bent portion 207 is formed by linearly bending the thin portion 205, but the present embodiment is not limited to this example. The bent portion 207 may be formed by bending the thin portion 205 in a curved manner. Even when the bent portion 207 is formed in a curved shape, if the length in the plate width direction of the center line in the plate thickness direction of the thin portion 205 including the bent portion 207 is equal, the bent portion 207 is linearly formed. The effect of suppressing the occurrence of poor flatness can be obtained as in the case of formation.

本発明の効果について確認するために、本発明者らが行った数値解析シミュレーションの結果について説明する。当該数値解析シミュレーションでは、上記で説明した本実施形態に係る差厚鋼板210(すなわち、薄肉部205に屈曲部207が設けられた差厚鋼板210)を製造するための孔型圧延を模擬したFEM計算を実行した。そして、孔型圧延実行後の差厚鋼板210について、その薄肉部205における平坦度不良の発生有無を調査した。また、比較のため、図1に示すような薄肉部205に屈曲部207が設けられない差厚鋼板201についても、同様のFEM計算を実行し、薄肉部205における平坦度不良の発生有無を調査した。   In order to confirm the effect of the present invention, the results of a numerical analysis simulation performed by the present inventors will be described. In the numerical analysis simulation, FEM simulating hole rolling for manufacturing the differential thickness steel plate 210 according to the present embodiment described above (that is, the differential thickness steel plate 210 in which the bent portion 207 is provided in the thin portion 205). Calculated. And about the difference thickness steel plate 210 after hole rolling, the presence or absence of the flatness defect in the thin part 205 was investigated. For comparison, the same FEM calculation is performed on the differential thickness steel plate 201 in which the bent portion 207 is not provided in the thin portion 205 as shown in FIG. did.

本実施例では、互いに形状の異なる複数の差厚鋼板210、201について、FEM計算を行った。FEM計算を行った差厚鋼板の形状を、図5〜図10に示す。図5及び図6は、薄肉部205に屈曲部207が設けられない差厚鋼板201a、201bの板幅方向の断面形状を示す図である。図7〜図10は、薄肉部205に屈曲部207が設けられた差厚鋼板210a〜210cの板幅方向の断面形状を示す図である。なお、図5〜図10では、形状の違いに応じて各差厚鋼板を区別するために、便宜的に異なる符号を付している。符号「201a」及び符号「201b」は、薄肉部205に屈曲部207が設けられない差厚鋼板201であることを示しており、符号「210a」、符号「210b」、符号「210c」及び符号「210d」は、薄肉部205に屈曲部207が設けられた差厚鋼板210であることを示している。   In this example, FEM calculation was performed for a plurality of differential thickness steel plates 210 and 201 having different shapes. The shape of the difference thickness steel plate which performed FEM calculation is shown in FIGS. 5 and 6 are diagrams showing the cross-sectional shapes in the plate width direction of the differential thickness steel plates 201a and 201b in which the bent portion 207 is not provided in the thin portion 205. FIG. 7-10 is a figure which shows the cross-sectional shape of the plate | board width direction of the difference thickness steel plates 210a-210c by which the bending part 207 was provided in the thin part 205. FIG. In FIGS. 5 to 10, different reference numerals are given for the sake of convenience in order to distinguish the different thickness steel plates according to the difference in shape. Reference numerals “201a” and “201b” indicate that the steel plate 201 is the difference thickness steel plate 201 in which the bent portion 207 is not provided in the thin portion 205. Reference numerals “210a”, “210b”, “210c”, and “210d” indicates that the steel plate 210 is the differential thickness steel plate 210 in which the bent portion 207 is provided in the thin portion 205.

図5〜図10に示す差厚鋼板201a、201b、210a〜210dの形状、及び孔型圧延後における平坦度不良の発生有無を、下記表1〜表6にまとめる。なお、いずれの差厚鋼板201a、201b、210a〜210dについてのFEM計算においても、入側板厚t0はt0=3.56mmとし、ワークロール径はφ600mmとし、圧延温度は850℃とした。   Tables 1 to 6 below summarize the shapes of the differential thickness steel plates 201a, 201b, 210a to 210d shown in FIGS. 5 to 10 and the occurrence of flatness defects after punch rolling. In the FEM calculation for any of the differential thickness steel plates 201a, 201b, 210a to 210d, the entry side plate thickness t0 was t0 = 3.56 mm, the work roll diameter was φ600 mm, and the rolling temperature was 850 ° C.

Figure 2018161675
Figure 2018161675

Figure 2018161675
Figure 2018161675

Figure 2018161675
Figure 2018161675

Figure 2018161675
Figure 2018161675

Figure 2018161675
Figure 2018161675

Figure 2018161675
Figure 2018161675

ここで、差厚鋼板201a、201bは、いずれも屈曲部207が設けられない差厚鋼板であるが、板幅方向の形状(薄肉部幅W1、厚肉部幅W2及び厚肉部ピッチP)が互いに異なり、その他の形状は同様の差厚鋼板である。従って、差厚鋼板201a、201bについての結果を比較することにより、薄肉部幅W1が平坦度不良に与える影響を確認することができる。また、差厚鋼板210a〜210dは、屈曲部207が設けられること以外は、差厚鋼板201bと同様の形状を有する。従って、差厚鋼板201b、210a〜210dについての結果を比較することにより、屈曲部207の有無、及び屈曲部207の形状が平坦度不良に与える影響を確認することができる。以下、順に考察する。   Here, each of the differential thickness steel plates 201a and 201b is a differential thickness steel plate in which the bent portion 207 is not provided, but the shape in the plate width direction (the thin portion width W1, the thick portion width W2 and the thick portion pitch P). Are different from each other, and the other shapes are the same differential thickness steel plates. Therefore, by comparing the results for the differential thickness steel plates 201a and 201b, it is possible to confirm the influence of the thin wall width W1 on the flatness failure. Further, the differential thickness steel plates 210a to 210d have the same shape as the differential thickness steel plate 201b except that the bent portion 207 is provided. Therefore, by comparing the results of the differential thickness steel plates 201b and 210a to 210d, it is possible to confirm the influence of the presence or absence of the bent portion 207 and the shape of the bent portion 207 on the flatness failure. The following are considered in order.

まず、差厚鋼板201a、201bの結果について考察する。孔型圧延実行後における差厚鋼板201a、201bの平坦度について調べた結果、表1及び表2に示すように、差厚鋼板201aでは平坦度不良が発生しなかったが、差厚鋼板201bでは平坦度不良が発生した。これは、差厚鋼板201aでは、薄肉部幅W1が比較的小さいために、W1/t1=12.5であり、上述した平坦度不良が顕在化し得る条件である「W1/t1≧15」を満たさない一方、差厚鋼板201bでは、薄肉部幅W1が比較的大きいために、W1/t1=31.25であり、当該条件「W1/t1≧15」を満たすからであると考えられる。つまり、差厚鋼板201a、201bについての上記結果は、薄肉部幅W1が大きく「W1/t1≧15」を満たす場合には平坦度不良が顕在化し得るという、本発明者らが得た知見が正しいことを示すものである。   First, the results of the differential thickness steel plates 201a and 201b will be considered. As a result of investigating the flatness of the differential thickness steel plates 201a and 201b after performing the hole rolling, as shown in Tables 1 and 2, no flatness failure occurred in the differential thickness steel plate 201a, but in the differential thickness steel plate 201b, A flatness defect occurred. This is because, in the differential thickness steel plate 201a, since the thin portion width W1 is relatively small, W1 / t1 = 12.5, and “W1 / t1 ≧ 15”, which is a condition that the above-described flatness failure can be manifested. On the other hand, in the differential thickness steel plate 201b, since the thin portion width W1 is relatively large, W1 / t1 = 31.25, which is considered to satisfy the condition “W1 / t1 ≧ 15”. That is, the above results for the differential thickness steel plates 201a and 201b are based on the knowledge obtained by the present inventors that a flatness defect can be manifested when the thin portion width W1 is large and satisfies “W1 / t1 ≧ 15”. It indicates the right thing.

次に、差厚鋼板201b、210a〜210dについての結果について考察する。なお、差厚鋼板201b、210a〜210dは、上述したように、屈曲部207が設けられること以外は同様の形状を有するものであるため、いずれも、「W1/t1≧15」を満たす。すなわち、差厚鋼板201b、210a〜210dは、いずれも、屈曲部207が存在しなければ平坦度不良が生じ得る形状を有している。   Next, the results of the differential thickness steel plates 201b and 210a to 210d will be considered. In addition, since the difference thickness steel plates 201b and 210a to 210d have the same shape except that the bent portion 207 is provided as described above, all satisfy “W1 / t1 ≧ 15”. That is, each of the differential thickness steel plates 201b and 210a to 210d has a shape that can cause a flatness failure unless the bent portion 207 exists.

孔型圧延実行後における差厚鋼板201b、210a〜210dの平坦度について調べた結果、表1、及び表3〜表6に示すように、差厚鋼板201b、210dでは、平坦度不良が発生した。一方、差厚鋼板210a〜210cについては、平坦度不良が発生しなかった。   As a result of investigating the flatness of the differential thickness steel plates 201b and 210a to 210d after the hole rolling, as shown in Tables 1 and 3 to 6, the flatness defects occurred in the differential thickness steel plates 201b and 210d. . On the other hand, no flatness failure occurred in the difference thickness steel plates 210a to 210c.

差厚鋼板201bにおいて平坦度不良が発生し、差厚鋼板210a〜210cにおいて平坦度不良が発生しなかったという上記結果は、薄肉部205に屈曲部207を設けることにより、当該薄肉部205における平坦度不良の発生が確かに抑制され得ることを示している。つまり、当該結果から、屈曲部207によって平坦度不良の発生が抑制され得るという、本発明の効果が確認できた。   The flatness failure occurs in the differential thickness steel plate 201b and the flatness failure does not occur in the differential thickness steel plates 210a to 210c. The result is that the flat portion in the thin portion 205 is formed by providing the thin portion 205 with the bent portion 207. This shows that the occurrence of poorness can surely be suppressed. That is, from the result, the effect of the present invention that the occurrence of poor flatness can be suppressed by the bent portion 207 was confirmed.

一方、差厚鋼板210dでは、屈曲部207を設けたにもかかわらず、平坦度不良が発生した。ここで、図8、図10、表4及び表6に示すように、差厚鋼板210dは、差厚鋼板210bに対して、ハット形状高さgの値が異なるだけで、他の形状は同様の差厚鋼板である。これら2つの差厚鋼板210b、210dについての結果を比較すると、ハット形状高さg=1.6(mm)である差厚鋼板210dについては、平坦度不良が発生した一方、ハット形状高さg=3.2(mm)である差厚鋼板210bについては、平坦度不良が発生しなかったことになる。これは、差厚鋼板210bでは、ハット形状高さgが大きいために、板幅方向における屈曲部207の投影長に対する当該屈曲部207の線長の比が大きくなり、薄肉部205における板幅方向への伸びひずみがより促進されるとともに、薄肉部205における座屈剛性がより増加されるためであると考えられる。   On the other hand, in the difference thickness steel plate 210d, the flatness defect occurred despite the provision of the bent portion 207. Here, as shown in FIG. 8, FIG. 10, Table 4, and Table 6, the difference thickness steel plate 210d differs from the difference thickness steel plate 210b only in the value of the hat shape height g, and the other shapes are the same. The difference thickness steel plate. Comparing the results of these two differential thickness steel plates 210b and 210d, the flatness failure occurred in the differential thickness steel plate 210d having the hat shape height g = 1.6 (mm), while the hat shape height g For the differential thickness steel plate 210b with = 3.2 (mm), no flatness failure occurred. This is because, in the differential thickness steel plate 210b, the hat shape height g is large, so that the ratio of the line length of the bent portion 207 to the projected length of the bent portion 207 in the plate width direction becomes large, and the plate width direction in the thin portion 205 This is considered to be due to the fact that the elongation strain is further promoted and the buckling rigidity in the thin portion 205 is further increased.

差厚鋼板210b、210dについての結果から、薄肉部205における平坦度不良の発生を抑制するためには、屈曲部207の形状を適切に決定する必要があることが確認できた。具体的には、板幅方向における屈曲部207の投影長に対する当該屈曲部207の線長の比がより大きくなるように、及び/又は薄肉部205における座屈剛性がより大きくなるように、屈曲部207を形成することにより、薄肉部205における平坦度不良の発生を効果的に抑制することが可能になる。   From the results of the differential thickness steel plates 210b and 210d, it was confirmed that the shape of the bent portion 207 needs to be appropriately determined in order to suppress the occurrence of poor flatness in the thin portion 205. Specifically, the bending is performed so that the ratio of the line length of the bent portion 207 to the projected length of the bent portion 207 in the plate width direction is larger and / or the buckling rigidity of the thin-walled portion 205 is larger. By forming the portion 207, occurrence of poor flatness in the thin portion 205 can be effectively suppressed.

(3.補足)
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
(3. Supplement)
The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記実施形態では、差厚鋼板201において平坦度不良が顕在化する条件を「W1/T1≧15」としていたが、当該条件は、薄肉部205における急峻度λがλ>2%のときに平坦度不良が発生していると判断する場合において得られた条件である。平坦度不良が発生していると判断するための急峻度λのしきい値は、製品によって異なるため、本発明が適用され得る製品に応じて、当該しきい値は変更されてよく、それに伴い上記条件も変更され得る。あるいは、急峻度λ以外の他の指標によって平坦度不良の発生が判断され、その結果に応じて上記条件が求められてもよい。   For example, in the above-described embodiment, the condition that the flatness failure becomes obvious in the differential thickness steel plate 201 is “W1 / T1 ≧ 15”. However, the condition is that when the steepness λ in the thin portion 205 is λ> 2%. This is a condition obtained when it is determined that a flatness failure has occurred. Since the threshold value of the steepness λ for determining that the flatness defect has occurred differs depending on the product, the threshold value may be changed according to the product to which the present invention can be applied. The above conditions can also be changed. Alternatively, the occurrence of flatness failure may be determined based on an index other than the steepness λ, and the above condition may be obtained according to the result.

また、上記実施形態では、製造する対象である差厚板材が鋼板である場合を例に挙げて説明を行ったが、本発明はかかる例に限定されない。厚肉部と薄肉部との長手方向の伸びひずみの差によって当該薄肉部に平坦度不良が生じ得るという原理は、鋼以外の金属材料でも同様であるため、本発明は、他の金属材料からなる差厚板材の製造にも好適に適用可能である。ただし、上記実施形態における平坦度不良が顕在化する条件である「W1/T1≧15」は、鋼、及び鋼と同等の縦弾性係数(ヤング率)を有する金属材料において成り立つ条件であり、ヤング率が異なる他の金属材料では、平坦度不良が顕在化する条件は異なる。σ=Eε(σ:応力、ε:ひずみ、E:ヤング率)の関係からも明らかなように、厚肉部と薄肉部との長手方向の伸びひずみの差が同じであっても、それによって生じる長手方向の応力はヤング率によって異なるため、薄肉部における座屈(すなわち、平坦度不良)が顕在化する条件も異なるからである。具体的には、一般的な金属材料(例えば、アルミニウム、チタン、マグネシウム、ニッケル、及び銅等)では、鋼よりもヤング率が低いため、平坦度不良はより発生しやすくなると考えられ、平坦度不良が顕在化するW1/T1のしきい値は、上記実施形態における「15」よりも小さくなることが予想される。本発明を、鋼、及び鋼と同等のヤング率を有する金属材料以外の金属材料からなる差厚板材に適用する場合には、その金属材料におけるヤング率を考慮して、平坦度不良が顕在化する条件を適宜決定すればよい。   Moreover, in the said embodiment, although the case where the difference thickness board | plate material which is the object to manufacture was a steel plate was demonstrated as an example, this invention is not limited to this example. The principle that flatness failure may occur in the thin wall portion due to the difference in the elongation strain in the longitudinal direction between the thick wall portion and the thin wall portion is the same in a metal material other than steel. It can apply suitably also to manufacture of the difference thickness board material which becomes. However, “W1 / T1 ≧ 15”, which is a condition that causes a flatness failure in the above-described embodiment, is a condition that holds in steel and a metal material having a longitudinal elastic modulus (Young's modulus) equivalent to that of steel. In other metal materials having different rates, the conditions under which flatness defects are manifested are different. As is clear from the relationship of σ = Eε (σ: stress, ε: strain, E: Young's modulus), even if the difference in longitudinal strain between the thick and thin portions is the same, This is because the stress in the longitudinal direction varies depending on the Young's modulus, and the conditions under which buckling (that is, poor flatness) in the thin portion becomes obvious are also different. Specifically, in general metal materials (for example, aluminum, titanium, magnesium, nickel, copper, etc.), the Young's modulus is lower than that of steel, so flatness defects are more likely to occur. The threshold value of W1 / T1 at which the defect becomes apparent is expected to be smaller than “15” in the above embodiment. When the present invention is applied to steel and a differential thickness plate made of a metal material other than a metal material having a Young's modulus equivalent to that of steel, the flatness failure becomes obvious in consideration of the Young's modulus in the metal material. What is necessary is just to determine the conditions to perform suitably.

101 上ワークロール
102 下ワークロール
201 差厚鋼板(鋼板)
203 厚肉部
205 薄肉部
207 屈曲部
209 ハット形状
210 差厚鋼板
101 Upper work roll 102 Lower work roll 201 Differential thickness steel plate (steel plate)
203 Thick part 205 Thin part 207 Bending part 209 Hat shape 210 Differential thickness steel plate

Claims (4)

金属材料からなる板材に対して胴長方向に径差を有する孔型ワークロールを用いた孔型圧延を行うことにより、板幅方向に板厚分布を有する差厚板材を製造する、差厚板材の製造方法であって、
前記差厚板材の薄肉部の厚みをt1、前記差厚板材の薄肉部の板幅方向の幅をW1とした場合に、前記薄肉部の厚みt1、及び前記薄肉部の板幅方向の幅W1が、W1/t1≧15を満たし、
少なくとも前記薄肉部の一部領域に、前記薄肉部が板厚方向に屈曲されて形成される屈曲部が設けられる、
差厚板材の製造方法。
A differential thickness plate material for manufacturing a differential thickness plate material having a thickness distribution in the plate width direction by performing hole rolling using a hole work roll having a diameter difference in the body length direction on a plate material made of a metal material. A manufacturing method of
When the thickness of the thin portion of the differential thickness plate material is t1, and the width of the thin portion of the differential thickness plate material is W1, the thickness t1 of the thin portion and the width W1 of the thin portion in the plate width direction. Satisfies W1 / t1 ≧ 15,
At least a partial region of the thin portion is provided with a bent portion formed by bending the thin portion in the plate thickness direction.
A manufacturing method of the differential thickness plate material.
前記屈曲部を形成する条件は、前記薄肉部における平坦度不良の発生を抑制可能なように決定される、
請求項1に記載の差厚板材の製造方法。
The condition for forming the bent portion is determined so as to suppress the occurrence of poor flatness in the thin portion,
The manufacturing method of the difference thickness board | plate material of Claim 1.
前記孔型圧延を行った後に、前記屈曲部を板幅方向に延ばし、薄肉部を略平坦な形状に変形させる工程が行われる、
請求項1又は2に記載の差厚板材の製造方法。
After the hole rolling, the step of extending the bent portion in the plate width direction and deforming the thin portion into a substantially flat shape is performed.
The manufacturing method of the difference thickness board | plate material of Claim 1 or 2.
板幅方向に板厚分布を有する、金属材料からなる差厚板材であって、
前記差厚板材の薄肉部の厚みをt1、前記差厚板材の薄肉部の板幅方向の幅をW1とした場合に、前記薄肉部の厚みt1、及び前記薄肉部の板幅方向の幅W1が、W1/t1≧15を満たし、
少なくとも前記薄肉部の一部領域に、前記薄肉部が板厚方向に屈曲されて形成される屈曲部が設けられる、
差厚板材。
A differential thickness plate made of a metal material having a plate thickness distribution in the plate width direction,
When the thickness of the thin portion of the differential thickness plate material is t1, and the width of the thin portion of the differential thickness plate material is W1, the thickness t1 of the thin portion and the width W1 of the thin portion in the plate width direction. Satisfies W1 / t1 ≧ 15,
At least a partial region of the thin portion is provided with a bent portion formed by bending the thin portion in the plate thickness direction.
Differential plate material.
JP2017060979A 2017-03-27 2017-03-27 Manufacturing method of differential plate material and differential thickness plate material Active JP6805925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060979A JP6805925B2 (en) 2017-03-27 2017-03-27 Manufacturing method of differential plate material and differential thickness plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060979A JP6805925B2 (en) 2017-03-27 2017-03-27 Manufacturing method of differential plate material and differential thickness plate material

Publications (2)

Publication Number Publication Date
JP2018161675A true JP2018161675A (en) 2018-10-18
JP6805925B2 JP6805925B2 (en) 2020-12-23

Family

ID=63860710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060979A Active JP6805925B2 (en) 2017-03-27 2017-03-27 Manufacturing method of differential plate material and differential thickness plate material

Country Status (1)

Country Link
JP (1) JP6805925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922078A (en) * 2020-08-12 2020-11-13 宝武集团鄂城钢铁有限公司 Production method of high-strength thick steel plate with yield strength of more than or equal to 370MPa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922078A (en) * 2020-08-12 2020-11-13 宝武集团鄂城钢铁有限公司 Production method of high-strength thick steel plate with yield strength of more than or equal to 370MPa

Also Published As

Publication number Publication date
JP6805925B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
US11590591B2 (en) Press die designing method using an index value obtained from two stress gradients in sheet thickness direction and gradient of surface stress distribution in direction
US11609166B2 (en) Deformation limit evaluation method for sheared surface of metal sheet, crack prediction method, and press die designing method
CN101354731B (en) Method for establishing and using difference thick laser assembly solder plate forming limit picture
KR101563830B1 (en) Raw plate material for heat exchanging plate, and heat exchanging plate using same
EP2565575B1 (en) Original plate material for heat-exchanging plate, and method for fabricating original plate material for heat-exchanging plate
JP2006015404A (en) Bending method and forming die used for the method
CN104010745A (en) Method for designing die for press forming, and die for press forming
JP2008018442A (en) Multistage press forming method excellent in shape freezability
Abbasi et al. Analytical method for prediction of weld line movement during stretch forming of tailor-welded blanks
JP4987362B2 (en) Hat-type metal parts and manufacturing method thereof
JP2018161675A (en) Manufacturing method of different thickness plate material and difference thick plate material
CN109791098B (en) Fracture determination device, fracture determination program, and method thereof
JP6809332B2 (en) Manufacturing method of differential plate material and differential thickness plate material
JP6007777B2 (en) ERW steel pipe manufacturing method
US10220428B2 (en) Press forming method, and method for manufacturing press-formed part
JP2004337980A (en) Channel part and method for deciding shape of the step
JP6870674B2 (en) Press molding method
EP3909697A1 (en) Press-molding method, blank member of plate-shaped material, intermediate molded article, method for manufacturing press-molded article, and press-molded article
JP2022102813A (en) Molding method of embossed half-cylindrical molding and embossed half-cylindrical molding
JP7288212B2 (en) Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
JP2012011458A (en) Crack determination method in press forming simulation, and method of manufacturing press formed component using the same
JP2020093303A (en) Method of manufacturing press component, and design method for lower die
JP2018158383A (en) Method for manufacturing differential thickness plate material, tandem rolling machine, and rolling facility
JP5794166B2 (en) UOE steel pipe manufacturing method
JP2018118260A (en) Method for production of molded article, and molded article

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R151 Written notification of patent or utility model registration

Ref document number: 6805925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151