JP2018160995A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2018160995A
JP2018160995A JP2017057418A JP2017057418A JP2018160995A JP 2018160995 A JP2018160995 A JP 2018160995A JP 2017057418 A JP2017057418 A JP 2017057418A JP 2017057418 A JP2017057418 A JP 2017057418A JP 2018160995 A JP2018160995 A JP 2018160995A
Authority
JP
Japan
Prior art keywords
bus bar
unit
capacitor
terminal
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017057418A
Other languages
English (en)
Inventor
崇 鷲見
Takashi Sumi
崇 鷲見
哲也 百武
Tetsuya Momotake
哲也 百武
直起 丸川
Naoki Marukawa
直起 丸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2017057418A priority Critical patent/JP2018160995A/ja
Publication of JP2018160995A publication Critical patent/JP2018160995A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】本明細書は、コンデンサと半導体モジュールを接続するバスバに生じる応力を低減する電力変換装置を提供する。
【解決手段】電力変換装置10は、積層ユニットとコンデンサと正極バスバ31を備えている。正極バスバ31は、コンデンサと夫々の半導体モジュールの端子22を電気的に接続する導体である。正極バスバ31は、コンデンサに接続されているとともにXY平面に平行に拡がっているベース板31aと、ベース板31aの積層ユニット側の縁から延びているとともにX方向に並んでいる複数の枝部31bと、夫々の枝部31bの先端からZ方向に延びているとともに端子22に向かって延びており、先端が端子22に接続されている複数の先端部31cを備えている。枝部31bの剛性が、ベース板31aの剛性よりも低く、かつ、先端部31cの剛性よりも低い。枝部31bの剛性を低くすることで、枝部31bに生じる応力が緩和される。
【選択図】図5

Description

本明細書が開示する技術は、車両に搭載されており、電源電力を走行用のモータの駆動電力に変換する電力変換装置に関する。
電源電力を走行用のモータの駆動電力に変換する電力変換装置は、電力変換用の半導体素子を収容した複数の半導体モジュールを備えていることが多い。半導体素子は、典型的には、電圧コンバータ回路やインバータ回路に用いられるスイッチング素子である。走行用のモータの駆動電力が流れる半導体モジュールは発熱量が大きい。複数の半導体モジュールを効果的に冷却する構造が例えば特許文献1に開示されている。特許文献1の電力変換装置は、複数の半導体モジュールと複数の冷却器を積層した構造を採用している。以下では、説明の便宜上、複数の半導体モジュールと複数の冷却器を積層したデバイスを積層ユニットと称する。
一方、電力変換装置は、直流電源から供給される電力を平滑化するコンデンサを備えている。平滑用のコンデンサはインバータ回路の前段に挿入されるため、コンデンサとインバータ回路の複数の半導体素子が電気的に接続されることになる。すなわち、積層ユニットの複数の半導体モジュールの端子とコンデンサが電気的に接続されることになる。
特許文献1に開示されている電力変換装置では、細長い形状を有するコンデンサは、その長手方向を積層ユニットの積層方向に一致させて、積層ユニットに隣接して配置されている。コンデンサはバスバによって、積層ユニットの中の複数の半導体モジュールの夫々の端子と電気的に接続されている。なお、「バスバ」とは、大電力を低損失で伝送するための細長い金属板(あるいは金属棒)である。
以下では、説明の便宜上、ケースに収容された積層ユニットにおける半導体モジュールと冷却器の積層方向をX方向とする直交XYZ座標系を定義する。積層ユニットとコンデンサの並び方向をY方向とする。直交XYZ座標系を用いると特許文献1の電力変換装置のコンデンサと積層ユニットとバスバの関係は次の通りである。積層ユニットとコンデンサはY方向で並んでいる。半導体モジュールの端子はZ方向に延びている。バスバは、連続した一枚の板材で作られているが、説明の都合上、ベース板と、複数の枝部と、複数の先端部に分けて説明する。ベース板は、コンデンサに接続されているとともにXY平面に平行に拡がっている部分である。複数の枝部は、ベース板の積層ユニットの縁から延びているとともにX方向に並んでいる。複数の先端部のそれぞれは、夫々の枝部の先端からZ方向に延びているとともに半導体モジュールの端子に向かって延びており、先端が半導体モジュールの端子に接続されている。
特開2015−154558号公報
ところで、走行用のモータに駆動電力を供給する電力変換装置は車に搭載されるため、走行中に振動を受ける。さらに、例えば、電力変換装置はモータを収容するハウジングの上に支持されることがあるが、その場合、モータの振動も加わるため、電力変換装置は相当の振動を受けることになる。
一方、コンデンサと積層ユニットは夫々個別に電力変換装置のケースに固定されている。バスバは、コンデンサと積層ユニットをつないでおり、コンデンサと積層ユニットが個別に振動すると、バスバが変形して歪み(応力)が生じる。先に述べたように、バスバは、ベース板がコンデンサに連結され、複数の先端部の夫々が夫々の半導体モジュールの端子に接続され、ベース板の縁と先端部の間を枝部が連結する構造である。バスバの歪み(応力)は枝部に集中し、枝部がダメージを受けるおそれがある。本明細書は、上記したバスバを有する電力変換装置について、バスバの枝部に発生する応力を緩和する技術を提供する。
本明細書が開示する電力変換装置は、先に述べたように、コンデンサと積層ユニットとバスバを備える。コンデンサと積層ユニットとバスバは、電力変換装置のケースに収容されている。積層ユニットは、複数の半導体モジュールと複数の冷却器が積層されたデバイスである。コンデンサは、複数の半導体モジュールと複数の冷却器の積層方向と交差する方向で積層ユニットに並んでいる。バスバは、コンデンサと夫々の半導体モジュールの端子を接続する導体である。先に述べたように、説明の便宜上、複数の半導体モジュールと複数の冷却器の積層方向をX方向とし、積層ユニットとコンデンサの並び方向をY方向とする直交座標系を定義する。夫々の半導体モジュールの端子はZ方向に延びている。バスバは、一枚の連続した板で作られているが、説明の便宜上、ベース板と複数の枝部と複数の先端部に分けて説明する。ベース板は、コンデンサに接続されているとともに、コンデンサと積層ユニットの間でXY平面に平行に拡がっている。複数の枝部は、ベース板の積層ユニット側の縁から延びているとともに、X方向で並んでいる。複数の先端部の夫々は、夫々の枝部の先端からZ方向に延びているとともに半導体モジュールの端子に向かって延びており、先端が端子に接続されている。本明細書が開示する電力変換装置では、枝部の剛性が、ベース板の剛性よりも低く、かつ、先端部の剛性よりも低くなっている。枝部の剛性を下げることで、枝部に発生する応力を抑制することができる。本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例の電力変換装置を含むハイブリッド車のエンジンコンパートメントの斜視図である。 実施例の電力変換装置を含むハイブリッド車の駆動系のブロック図である。 電力変換装置の内部の部品レイアウトを示す平面図である。 積層ユニットとコンデンサとバスバのアセンブリの斜視図である。 バスバの斜視図である。 バスバの展開図である。 第1変形例のバスバの展開図である。 第2変形例のバスバの展開図である。 バスバの振動を抑制する構造を説明するケース断面図である。 バスバの振動を抑制する別の構造を説明するケース断面図である。
図面を参照して実施例の電力変換装置を説明する。実施例の電力変換装置10は、走行用の2個のモータ92a、92bとエンジン98の双方を備えたハイブリッド車100に搭載されている。図1に、ハイブリッド車100のエンジンコンパートメント90におけるデバイスの配置を示す。図1は、エンジンコンパートメント90を斜め上方からみた斜視図である。ハイブリッド車100のエンジンコンパートメント90は、車両前部に位置する。なお、図中の座標系は、X軸が車両前方を示しており、Z軸が車両上方を示しており、Y軸は車幅方向(車両の側方)を示している。後述するが、座標系のX軸は、電力変換装置10のケース内の半導体モジュールと冷却器の積層方向に相当する。また、Y方向は、半導体モジュールと冷却器の積層体(積層ユニット)とコンデンサの並び方向に相当する。Z軸は、半導体モジュールの端子の延設方向に相当する。
エンジンコンパートメント90には、エンジン98、電力変換装置10、トランスアクスル91などが配置されている。エンジンコンパートメント90には他にも様々なデバイスが配置されているが、それらの説明は省略する。図1ではトランスアクスル91やエンジン98などは模式化して描いてある。
トランスアクスル91は、走行用の2個のモータ92a、92bと、動力分配機構93とデファレンシャルギア94をまとめたデバイスである。動力分配機構93は、エンジン98の出力トルクとモータ92a、92bの出力トルクを合成/分配するギアセットである。動力分配機構93は、高トルクが要求されたときには、エンジン98の出力トルクとモータ92a、92bの出力トルクを合成してデファレンシャルギア94へ伝達する。また、動力分配機構93は、状況に応じて、エンジン98の出力トルクを分割してデファレンシャルギア94と一方のモータ92aへ伝達する。その場合、ハイブリッド車100は、エンジントルクで走行しながらモータ92aで発電する。なお、トランスアクスル91は、走行用の2個のモータ92a、92bを含んでいるので、その筐体はモータハウジングと呼んでもよい。
エンジン98とトランスアクスル91は、車幅方向で隣り合うように連結されている。エンジン98とトランスアクスル91は、車両の構造強度を担保する2本のサイドメンバ97に懸架されている。なお、図1では、一方のサイドメンバは見えていない。
電力変換装置10は、2個のモータ92a、92bに駆動電力を供給するデバイスである。より詳しくは、電力変換装置10は、不図示の高電圧バッテリの電力を昇圧した後、交流に変換してモータ92a、92bへ供給する。また、電力変換装置10は、モータ92a又は92bが発電した交流電力を直流電力に変換し、さらに降圧することもある。降圧された電力によって高電圧バッテリが充電される。
電力変換装置10は、トランスアクスル91の上面との間に隙間を有して支持される。電力変換装置10は、その前側がフロントブラケット96によって支持されており、後側がリアブラケット95によって支持されている。
電力変換装置10をトランスアクスル91の上方に配置するのは次の2つの利点を得るためである。一つは、電力変換装置10からモータ92a、92bへ電力を供給するパワーケーブルを短くできることである。もう一つは、前方衝突に対して電力変換装置10を保護するためである。トランスアクスル91の筐体は強度が高く、また体格が大きい。それゆえ、トランスアクスル91の上方の空間は、衝突に対して比較的に安全性が高い。
ただし、トランスアクスル91の上部に支持されているデバイスには、車両の走行振動に加え、トランスアクスル91に内蔵されているモータ92a、92bの振動と、トランスアクスル91と連結されているエンジン98の振動が加わる。電力変換装置10に伝わる振動を低減するため、フロントブラケット96と電力変換装置10の間、及び、リアブラケット95と電力変換装置10の間には、防振ブッシュが挟まれている。防振ブッシュを採用しているが、トランスアクスル91を介して電力変換装置10に伝わる震動は完全には抑えられない。電力変換装置10は、振動によってそのケースに収容された部品、特に、後述するバスバに生じる応力を低減する構造を有している。バスバの耐振動構造については後に説明する。
次に、電力変換装置10を含むハイブリッド車100の電力系について説明する。図2に実施例の電力変換装置10を含むハイブリッド車100の電力系のブロック図を示す。電力変換装置10は、バッテリ81の直流電力を、走行用のモータ92a、92bの駆動電力に変換するデバイスである。ハイブリッド車100は、2個の走行用のモータ92a、92bを備えるため、電力変換装置10は、2組のインバータ回路13a、13bを備える。
電力変換装置10は、バッテリ81の電圧を昇圧する電圧コンバータ回路12と、昇圧後の直流電力を交流に変換する2組のインバータ回路13a、13bを備えている。
電圧コンバータ回路12は、一方の端子に印加された電圧を昇圧して他方の端子に出力する昇圧動作と、他方の端子に印加された電圧を降圧して一方の端子に出力する降圧動作の双方を行うことが可能である。そのような電圧コンバータ回路は、双方向DC−DCコンバータ回路と呼ばれる。説明の便宜上、以下では、低電圧側(バッテリ側)の端子を入力端18と称し、高電圧側(インバータ回路側)の端子を出力端19と称する。また、入力端18の正極と負極を夫々、入力正極端18aと入力負極端18bと称する。出力端19の正極と負極を夫々、出力正極端19aと出力負極端19bと称する。「入力端18」、「出力端19」との表記は説明の便宜を図るためのものであり、先に述べたように、電圧コンバータ回路12は双方向DC−DCコンバータであるので、出力端19から入力端18へ電力が流れる場合がある。
電圧コンバータ回路12は、4個のトランジスタ6a、6b、7a、7b、リアクトル4、フィルタコンデンサ3、各トランジスタに逆並列に接続されているダイオードで構成されている。2個のトランジスタ6a、7aは直列に接続されており、残りの2個のトランジスタ6b、7bも直列に接続されている。以下では、2個のトランジスタが直列に接続された回路を単に「直列接続回路」と称する場合がある。また、以下では、直列接続回路の高電位側のトランジスタ6a、6bを上アームトランジスタと称し、低電位側のトランジスタ7a、7bを下アームトランジスタと称することがある。
2組の直列接続回路は並列に接続されている。2組の直列接続回路の高電位側は出力正極端19aに接続されており、低電位側は出力負極端19bに接続されている。リアクトル4の一端が入力正極端18aに接続されており、他端は2組の直列接続回路のそれぞれの中点Qa、Qbに接続されている。フィルタコンデンサ3は、入力正極端18aと入力負極端18bの間に接続されている。入力負極端18bは、出力負極端19bと直接に接続されている。
4個のトランジスタ6a、6b、7a、7bは、不図示の回路基板に実装された駆動回路で駆動される。駆動回路は、2個の上アームトランジスタ6a、6bに対して、同じタイミングでオンオフさせる上アームスイッチング指令信号を供給する。また、駆動回路は、2個の下アームトランジスタ7a、7bに対して、同じタイミングでオンオフさせる下アームスイッチング指令信号を供給する。即ち、2個の上アームトランジスタ6a、6bは同じタイミングで同じ動作をするように駆動され、2個の下アームトランジスタ7a、7bも同じタイミングで同じ動作をするように駆動される。同じタイミングで同じ動作をすることを並列動作と称する。並列に接続された2組の直列接続回路を並列動作させることで、2組の直列接続回路はあたかも一つの直列接続回路のように動作するとともに、1個当たりのトランジスタの負荷を低減することができる。
図2において、符号8aが示す破線矩形の範囲の回路が、後述する半導体モジュール8aにて実現される。符号8bが示す破線矩形の範囲の回路が、後述する半導体モジュール8bにて実現される。半導体モジュールは、2個のトランジスタの直列接続回路と、各トランジスタに逆並列に接続されているダイオードを収容したパッケージである。半導体モジュール8aは、2個のトランジスタ6a、7aの直列接続回路と、各トランジスタに逆並列に接続されたダイオードを収容している。半導体モジュール8bは、2個のトランジスタ6b、7bの直列接続回路と、各トランジスタに逆並列に接続されたダイオードを収容している。
次に、インバータ回路13a、13bについて概説する。なお、図2では、インバータ回路13a、13bの具体的な回路構成の図示は省略しており、半導体モジュール8c−8h(後述)を破線矩形で模式的に表すだけにとどめている。半導体モジュール8c−8hの各々が、一つの直列接続回路に対応する。
インバータ回路13aは、2個のトランジスタの直列接続回路を3組備えている。各トランジスタにはダイオードが逆並列に接続されている。半導体モジュール8c、8d、8eが3組の直列接続回路に対応する。それゆえ、以下では、半導体モジュール8c−8eを用いてインバータ回路13aを説明する。3個の半導体モジュール8c−8eは並列に接続されている。3個の半導体モジュール8c−8eの高電位側と低電位側は、夫々、電圧コンバータ回路12の出力正極端19aと出力負極端19bに接続されている。夫々の半導体モジュールの中点から交流が出力される。
インバータ回路13bはインバータ回路13aと同じ構成を備えている。即ちインバータ回路13bは、3個の半導体モジュール8f、8g、8hを備えており、半導体モジュール8f、8g、8hの夫々が直列接続回路に相当する。夫々の直列接続回路の中点から交流が出力される。インバータ回路13a、13bの夫々の交流出力は、モータ92a、92bに供給される。なお、電圧コンバータ回路12の出力正極端19aと出力負極端19bの間には、平滑コンデンサ5が接続されている。インバータ回路13a、13bの半導体モジュール8c−8hは、電圧コンバータ回路12の半導体モジュール8a、8bと同じ構造である。
インバータ回路13a、13bの合計6個の半導体モジュール8c−8hと、電圧コンバータ回路12の2個の半導体モジュール8a、8bは、平滑コンデンサ5と並列に接続されている。より具体的には、合計8個の半導体モジュール8a−8hに収容された直列接続回路の高電位側と低電位側が平滑コンデンサ5と接続される。合計8個の半導体モジュール8a−8hと平滑コンデンサ5は、バスバと呼ばれる金属部材により接続される。次に、バスバを含む、電力変換装置10のハードウエア構造について説明する。
図3は、電力変換装置10の平面図である。図3は、カバーを外した電力変換装置10の平面図であり、ケース40の内部に収容された部品のレイアウトが示されている。ケース40の中には、フィルタコンデンサユニット103、リアクトルユニット104、積層ユニット20、平滑コンデンサユニット105などが収容されている。
フィルタコンデンサユニット103の中に、図2で示したフィルタコンデンサ3に相当するコンデンサ素子が収容されている。リアクトルユニット104の中に、図2で示したリアクトル4に相当するリアクトルデバイスが収容されている。平滑コンデンサユニット105の中に、図2で説明した平滑コンデンサ5に相当するコンデンサ素子が収容されている。フィルタコンデンサ3、平滑コンデンサ5、リアクトル4には大電流が流れるため、それらに対応するハードウエアは体格が大きい。
平滑コンデンサユニット105に隣接して積層ユニット20が配置されている。積層ユニット20は、複数の半導体モジュール8a−8hと複数の冷却器44が積層されたユニットである。図3では右端の2個の冷却器だけに符号44を付しており、残りの冷却器の符号は省略している。半導体モジュール8a−8hの夫々は、先に述べたように、2個のトランジスタの直列接続回路と各トランジスタに逆並列に接続されたダイオードを収容したパッケージである。複数の半導体モジュール8a−8hと複数の冷却器44は、一つずつ交互に積層されている。半導体モジュール8a−8hのそれぞれは、トランジスタの直列接続回路の高電位側と接続している正極端子22、低電位側と接続している負極端子23、中点と接続している中点端子24を備えている。図3では、左端の半導体モジュール8aと右端の半導体モジュール8hにのみ、正極端子、負極端子、中点端子を示す符号22、23、24を付しており、他の半導体モジュール8b−8gには、それらの符号を省略した。
説明の便宜上、複数の半導体モジュール8a−8hと複数の冷却器44の積層方向をX軸とし、積層ユニット20と平滑コンデンサユニット105の並び方向をY軸とする直交座標系を定義する。半導体モジュール8a−8hの端子22、23、24は、Z方向に延びている。
積層ユニット20は、ケース40に設けられた支持壁43と、2本の支持柱45の間に挿入されている。図示を省略しているが、支持柱45と積層ユニット20の間には板バネが挿入されており、その板バネにより、積層ユニット20はその積層方向に加圧されつつ、ケース40に支持されている。積層方向の加圧によって半導体モジュール8a−8hと冷却器44の密着性が高まり、冷却性能が向上する。また、積層ユニット20の一端には冷媒供給管41と冷媒排出管42が接続されており、それらの管はケース40を貫通している。冷媒供給管41から供給された冷媒は各冷却器44に分配される。冷媒は各冷却器44の内部を通過する間に隣接する半導体モジュール8a−8hから熱を吸収する。冷却器44を通過した冷媒は、冷媒排出管42を通じて電力変換装置10の外へと排出される。
図2の回路図を参照して説明したように、全ての半導体モジュール8a−8hの高電位側(正極端子22)が互いに接続されるとともに、低電位側(負極端子23)が互いに接続される。そして、全ての半導体モジュール8a−8hの高電位側(正極端子22)と低電位側(負極端子23)の間に平滑コンデンサ5(平滑コンデンサユニット105)が並列に接続される。全ての半導体モジュール8a−8hの正極端子22は、正極バスバ31によって相互に接続されるとともに、平滑コンデンサユニット105の一方の電極に接続される。全ての半導体モジュール8a−8hの負極端子23は負極バスバ32によって相互に接続されるとともに、平滑コンデンサユニット105の他方の電極に接続される。なお、バスバとは、小さい内部抵抗で電力を伝える金属板(又は金属棒)を意味する。
半導体モジュール8c−8hはインバータ回路に用いられ、それらの中点端子24から交流が出力される。半導体モジュール8c−8hの中点端子24は、出力用バスバ33に接続されており、出力用バスバ33の一端は、電力変換装置10の出力端子46を構成している。
図2の回路図を参照して説明したように、半導体モジュール8a、8bは並列に接続され、電圧コンバータ回路12で用いられる。半導体モジュール8a、8bの正極端子22は正極バスバ31によって相互に接続されるとともに、他の半導体モジュール8c−8hと同様に平滑コンデンサユニット105の一方の電極に接続される。半導体モジュール8a、8bの負極端子23は、負極バスバ32によって相互に接続されるとともに、他の半導体モジュール8c−8hと同様に平滑コンデンサユニット105の他方の電極に接続される。
半導体モジュール8a、8bの中点端子24は、中点接続バスバ34によって相互に接続されるとともに、リアクトルユニット104の一方の端子に接続される。こうして、半導体モジュール8a、8bの正極端子22同士、負極端子23同士、中点端子24同士が接続される。リアクトルユニット104の他方の端子は、バスバ35により、フィルタコンデンサユニット103の一方の電極に接続される。バスバ35の一方の端は、電力変換装置10の入力端47(正極端)を構成している。フィルタコンデンサユニット103の他方の電極にはバスバ36が接続されており、そのバスバ36に一方の端が、入力端47(負極端)を構成している。
図4−図6を参照して平滑コンデンサユニット105と積層ユニット20と正極バスバ31の関係を説明する。なお、図4は、電力変換装置10において、平滑コンデンサユニット105と積層ユニット20と正極バスバ31のみを取り出した斜視図である。なお、図4では、負極バスバ32の図示は省略した。図5に、平滑コンデンサユニット105から露出している部分の正極バスバ31の斜視図を示す。正極バスバ31は、一枚の金属板から形成されている。図6に、平滑コンデンサユニット105から露出している部分の正極バスバ31の展開図を示す。図4では、半導体モジュール8a−8hを半導体モジュール8と表記する。図4では、左端の半導体モジュールと冷却器にのみ、符号8、44を付し、他の半導体モジュールと冷却器には符号を省略した。また、左端の半導体モジュール8にのみ、夫々の端子を示す符号22、23、24を付し、他の半導体モジュールの端子には符号を省略した。図2以降の図では、座標系のX方向が、半導体モジュール8a−8hと冷却器44の積層方向を示している。
説明の都合上、正極バスバ31を、ベース板31aと複数の枝部31bと複数の先端部31cに分ける。図4では、枝部31bは隠れて見えない。ベース板31aは、平滑コンデンサユニット105から積層ユニット20へ向けて延びており、XY平面に広がっている板部材である。複数の枝部31bは、ベース板31aの積層ユニット20に近い端から延びている。複数の枝部31bは、X方向に並んでいる。なお、図5と図6において符号31dが示す破線が、「ベース板31aの積層ユニット20に近い側の端」を示している。複数の枝部31bの夫々に、先端部31cが続いている。先端部31cは、枝部31bの先端から図中の座標系のZ方向に直角に折れ曲がって延びているとともに、半導体モジュール8の正極端子22へ向かって延びている。そして、複数の先端部31cの夫々が複数の半導体モジュール8の夫々の正極端子22に接合されている。先端部31cと正極端子22は、ハンダで接合されている。
枝部31bは、ベース板31aと先端部31cをつなぐ部分である。枝部31bは、その剛性が、ベース板31aの剛性よりも低く、かつ、先端部31cの剛性よりも低い。ここでの剛性は、Z軸方向の曲げ剛性、X軸回りの捩り剛性、Y軸回りの捩り剛性を意味する。図6に示すように、正極バスバ31では、展開図における枝部31bの幅が小さく、これによって、曲げ剛性に関係する断面二次モーメント、及び、捩り剛性に関係する断面積が小さくなる。断面二次モーメントと断面積が小さいので、曲げ剛性、捩り剛性が共に小さくなる。
正極バスバ31は、ベース板31aが平滑コンデンサユニット105に拘束され、複数の先端部31cが積層ユニット20に拘束される。電力変換装置10は、モータ92a、92bを収容したトランスアクスル91の上に固定されており、様々なモードの振動を受ける。平滑コンデンサユニット105と積層ユニット20が振動すると、両者に拘束されている正極バスバ31も様々なモードで変形する。変形箇所に応力が生じる。特に、ベース板31aと先端部31cをつないでいる枝部31bに応力が集中し易い。実施例の電力変換装置10では、正極バスバ31の枝部31bの剛性を低く抑えることで、枝部31bに発生する応力を抑制している。
図7と図8を参照して、正極バスバの変形例を説明する。図7は、第1変形例のバスバ131の展開図である。正極バスバ131は、X軸の正方向の端が、ケース40の内部でケースの中央付近に位置する(図3を参照)。ケースの中央付近は、正極バスバ131のZ軸方向の振動の腹に相当する。変形例の正極バスバ131では、X軸の正方向における端に近い枝部131b1、131b2、131b3が、この順序で順番に長くなっている。振動の腹に近い枝部131b1、131b2、131b3の長さを長くすることで、断面二次モーメントが小さくなり、Z軸方向の曲げ剛性がより一層小さくなる。変形例の正極バスバ131は、Z軸方向の振動の腹に相当する部分の枝部131b1、131b2、131b3の曲げ剛性を他の位置の枝部131bよりも小さくし、枝部への応力集中を効果的に緩和する。
図8は、第2変形例の正極バスバ231の展開図である。正極バスバ231では、夫々の枝部231bとベース板31aとの境界付近に貫通孔231eを設けている。貫通孔231eを設けることで、枝部231bの断面二次モーメントと断面積が小さくなる。その結果、枝部231bの曲げ剛性と捩り剛性が小さくなる。
上記の実施例では、正極バスバについて詳しく説明した。負極バスバについても同様の構造により、枝部の剛性が低くなっている。
次に、電力変換装置のケース内の部品を活用してバスバの振動(バスバに発生する応力)を抑える技術について説明する。図9は、電力変換装置10aのケース140の断面図である。図9では、ケース140には断面を示すハッチングを施したが、他の部品(リアクトルユニット104と積層ユニット20)には断面を示すハッチングを省略した。この例では、ケース140は、上ケース141と下ケース142に分かれており、ケース140の内部空間を中板140cが上空間と下空間に区画している。リアクトルユニット104と積層ユニット20と平滑コンデンサユニット105とフィルタコンデンサユニット103(図9では不図示)が上空間に配置されている。正極バスバ31と、図示を省略しているが負極バスバも上空間に収容される。下空間には、説明を省略した電圧コンバータユニット等が収容される。
電力変換装置10aでは、リアクトルユニット104は、締結箇所104cにて上ケース141の天板141aに締結されているとともに、締結箇所104a、104bの二カ所で中板140cに締結されている。リアクトルユニット104と積層ユニット20と平滑コンデンサユニット105とフィルタコンデンサユニット103(不図示)を収容しているケース140の天板141aと中板140cがリアクトルユニット104を介して相互に締結されることで、ケース140(上ケース141)の剛性が高まり、正極バスバ31(及び負極バスバ)の振動が抑えられる。
図10は、電力変換装置10bのケース240の断面図である。図10では、ケース240には断面を示すハッチングを施したが、他の部品(平滑コンデンサユニット105と積層ユニット20)には断面を示すハッチングを省略した。この例では、ケース240は、上ケース241と下ケース242に分かれており、ケース240の内部空間を中板240cが上空間と下空間に区画している。平滑コンデンサユニット105と積層ユニット20とリアクトルユニット104(図10では不図示)とフィルタコンデンサユニット103(図10では不図示)が上空間に配置されている。正極バスバ31と、図示を省略しているが負極バスバも上空間に収容される。下空間には、説明を省略した電圧コンバータユニットなどが収容される。
電力変換装置10bでは、平滑コンデンサユニット105の上下に突起105a、105bが設けられている。下の突起105aは中板240cに設けられた溝に嵌合しており、上の突起105bは上ケース241の天板241aに設けられた溝に嵌合している。リアクトルユニット104(不図示)と積層ユニット20と平滑コンデンサユニット105とフィルタコンデンサユニット103(不図示)を収容しているケース240の天板241aと中板240cが平滑コンデンサユニット105を介して相互に連結されることで、ケース240(上ケース241)の剛性が高くなり、正極バスバ31(及び負極バスバ)の振動が抑えられる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
3:フィルタコンデンサ
4:リアクトル
5:平滑コンデンサ
6a、6b、7a、7b:トランジスタ
8a−8h:半導体モジュール
10、10a、10b:電力変換装置
12:電圧コンバータ回路
13a、13b:インバータ回路
20:積層ユニット
22:正極端子
23:負極端子
24:中点端子
31、131、231:正極バスバ
31a:ベース板
31b、131b、131b1、131b2、131b3、231b:枝部
31c:先端部
32:負極バスバ
40、140、240:ケース
41:冷媒供給管
42:冷媒排出管
43:支持壁
44:冷却器
45:支持柱
81:バッテリ
90:エンジンコンパートメント
91:トランスアクスル
92a、92b:モータ
93:動力分配機構
94:デファレンシャルギア
95:リアブラケット
96:フロントブラケット
97:サイドメンバ
98:エンジン
100:ハイブリッド車
103:フィルタコンデンサユニット
104:リアクトルユニット
104a、104b、104c:締結箇所
105:平滑コンデンサユニット
105a、105b:突起
140c、240c:中板
141、241:上ケース
141a、241a:天板
142、242:下ケース
231e:貫通孔

Claims (1)

  1. 車両に搭載されており、電源電力を走行用のモータの駆動電力に変換する電力変換装置であり、
    前記電力変換装置のケースに収容されており、複数の半導体モジュールと複数の冷却器が積層されている積層ユニットと、
    前記ケース内で、前記複数の半導体モジュールと前記複数の冷却器の積層方向と交差する方向で前記積層ユニットと並んでいるコンデンサと、
    夫々の前記半導体モジュールの端子と前記コンデンサを電気的に接続しているバスバと、を備えており、
    前記積層方向をX方向とし、前記積層ユニットと前記コンデンサの並び方向をY方向とする直交座標系を定義したときに、
    前記半導体モジュールの前記端子はZ方向に延びており、
    前記バスバは、前記コンデンサに接続されているとともにXY平面に平行に拡がるベース板と、当該ベース板の前記積層ユニット側の縁から延びているとともにX方向に並んでいる複数の枝部と、夫々の前記枝部の先端からZ方向に延びているとともに前記端子に向かって延びており先端が前記端子に接続されている先端部と、
    を備えており、
    前記枝部の剛性が、前記ベース板の剛性よりも低く、かつ、前記先端部の剛性よりも低い、電力変換装置。
JP2017057418A 2017-03-23 2017-03-23 電力変換装置 Pending JP2018160995A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057418A JP2018160995A (ja) 2017-03-23 2017-03-23 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057418A JP2018160995A (ja) 2017-03-23 2017-03-23 電力変換装置

Publications (1)

Publication Number Publication Date
JP2018160995A true JP2018160995A (ja) 2018-10-11

Family

ID=63795811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057418A Pending JP2018160995A (ja) 2017-03-23 2017-03-23 電力変換装置

Country Status (1)

Country Link
JP (1) JP2018160995A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108250A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 電力変換装置
CN113678362A (zh) * 2019-04-05 2021-11-19 株式会社电装 电力转换装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261100A (ja) * 2005-02-17 2006-09-28 Toyota Motor Corp バスバー、電気回路システム
JP2009261139A (ja) * 2008-04-17 2009-11-05 Hitachi Ltd 電力変換装置
JP2017050486A (ja) * 2015-09-04 2017-03-09 トヨタ自動車株式会社 電力制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261100A (ja) * 2005-02-17 2006-09-28 Toyota Motor Corp バスバー、電気回路システム
JP2009261139A (ja) * 2008-04-17 2009-11-05 Hitachi Ltd 電力変換装置
JP2017050486A (ja) * 2015-09-04 2017-03-09 トヨタ自動車株式会社 電力制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108250A (ja) * 2018-12-27 2020-07-09 株式会社デンソー 電力変換装置
CN111404397A (zh) * 2018-12-27 2020-07-10 株式会社电装 电力转换装置
JP7263766B2 (ja) 2018-12-27 2023-04-25 株式会社デンソー 電力変換装置
CN111404397B (zh) * 2018-12-27 2023-12-22 株式会社电装 电力转换装置
CN113678362A (zh) * 2019-04-05 2021-11-19 株式会社电装 电力转换装置
CN113678362B (zh) * 2019-04-05 2023-10-24 株式会社电装 电力转换装置

Similar Documents

Publication Publication Date Title
JP5700022B2 (ja) 電力変換装置
JP7056450B2 (ja) 電気機器とその製造方法
CN109889066B (zh) 电设备及其制造方法
CN109873567B (zh) 电力变换装置
JP2015139299A (ja) 電力変換器
JP7035845B2 (ja) 電力変換装置
JP2015136223A (ja) 電力変換器
JP6690478B2 (ja) 電力変換装置
JP2015035862A (ja) 電力変換装置
JP6354712B2 (ja) 電力制御装置
JP2017099140A (ja) 電力変換装置
JP6409737B2 (ja) 電力変換装置
JP6758571B2 (ja) 電力変換装置
JP2018160995A (ja) 電力変換装置
JP2013074722A (ja) 電力変換装置
JP6458529B2 (ja) 電力変換装置
JP5964715B2 (ja) 電気機器ケース及びパワーコントロールユニット
JP6693349B2 (ja) 電力変換装置
JP2014060865A (ja) 電力変換装置
JP6827519B1 (ja) 電力変換装置
JP2019068638A (ja) 電力変換器の車載構造
JP2018042309A (ja) 電力変換装置
JP7035543B2 (ja) 電力変換器
WO2021044490A1 (ja) 電力変換器
JP2015136225A (ja) 電力変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105