JP2018159691A - Method for evaluating fiber zigzag state of fiber-reinforced composite material - Google Patents

Method for evaluating fiber zigzag state of fiber-reinforced composite material Download PDF

Info

Publication number
JP2018159691A
JP2018159691A JP2017058505A JP2017058505A JP2018159691A JP 2018159691 A JP2018159691 A JP 2018159691A JP 2017058505 A JP2017058505 A JP 2017058505A JP 2017058505 A JP2017058505 A JP 2017058505A JP 2018159691 A JP2018159691 A JP 2018159691A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
reinforced composite
fiber
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017058505A
Other languages
Japanese (ja)
Inventor
孝明 鈴木
Takaaki Suzuki
孝明 鈴木
康雄 高木
Yasuo Takagi
康雄 高木
貴幸 小林
Takayuki Kobayashi
貴幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017058505A priority Critical patent/JP2018159691A/en
Publication of JP2018159691A publication Critical patent/JP2018159691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantification method capable of quantitatively evaluating the zigzag state of a fiber-reinforced composite material.SOLUTION: A quantification method of the zigzag of carbon fibers in a carbon fiber-reinforced composite material includes steps 1 to 6. Step 1: measure, by X-ray CT, positions of the carbon fibers in the carbon fiber-reinforced composite material. Step 2: apply a binarization process to an observation image, and separate data on the carbon fibers from that on a matrix resin to extract the data on the carbon fibers. Step 3: remove carbon fibers considered to have caused abnormal values. Step 4: calculate the shortest distance d to a Z axis of the carbon fibers. Step 5: calculate a quantified value C. Step 6: calculate quantified values C for all the carbon fibers in a measurement range and figure an average value of the quantified values C.SELECTED DRAWING: Figure 1

Description

本発明は繊維強化複合材料の繊維蛇行状態を算出する手法に関する。   The present invention relates to a method for calculating a fiber meandering state of a fiber-reinforced composite material.

炭素繊維等の強化繊維を用いて樹脂強度を向上させた繊維強化複合材料は軽量、高強度といった特性を有するため自動車や航空機等の産業用途へ普及が進んでいる。この繊維強化複合材料は繊維の方向や状態によって強度が大きく変動する。そのため、用途に合わせて繊維の方向をそろえて作製している。しかしながら繊維充填量が60%を超えるような繊維強化複合材料では繊維同士が干渉し合っていることもあり、樹脂を含浸させる工程等の作製工程で繊維の移動がある。そのため、繊維を完全に一方向にそろえることは困難であり、樹脂中で繊維がうねるように蛇行している。特にフィラメントワインディング法、引抜成形法の樹脂含浸時に繊維が動くような工程では、大きく蛇行する可能性がある。
繊維強化複合材料では繊維が最も伸びて引っ張られた時に最も効率よく繊維の強度が働くため、蛇行は少ない方がより高強度に繋がる。これまで、特許文献1のように繊維強化複合材料の断面画像を取出し、その画像解析から繊維角度を測定する方法が提案されている。また、特許文献2のようにX線回折を用いて繊維強化複合材料の繊維配向を評価する方法が提案されている。
A fiber reinforced composite material whose resin strength is improved using a reinforcing fiber such as carbon fiber has characteristics such as light weight and high strength, and is therefore widely used in industrial applications such as automobiles and aircrafts. The strength of this fiber-reinforced composite material varies greatly depending on the direction and state of the fiber. For this reason, the fiber direction is aligned according to the application. However, in a fiber reinforced composite material in which the fiber filling amount exceeds 60%, the fibers may interfere with each other, and there is a movement of fibers in a production process such as a process of impregnating a resin. Therefore, it is difficult to align the fibers completely in one direction, and the fibers meander so that the fibers undulate in the resin. In particular, in a process in which the fiber moves during the resin impregnation of the filament winding method or the pultrusion method, there is a possibility of large meandering.
In the fiber reinforced composite material, the strength of the fiber works most efficiently when the fiber is most stretched and pulled. Therefore, the smaller the meander, the higher the strength. Until now, as in Patent Document 1, a method has been proposed in which a cross-sectional image of a fiber-reinforced composite material is taken out and a fiber angle is measured from the image analysis. Further, a method for evaluating fiber orientation of a fiber-reinforced composite material using X-ray diffraction as in Patent Document 2 has been proposed.

しかしながら、特許文献1に示すような方法では繊維強化複合材料の一断面の繊維角度を評価することは可能であったが、蛇行状態を評価することができなかった。また、特許文献2に示すような方法では繊維強化複合材料の繊維配向度を評価することは可能であったが、蛇行状態を評価することはできなかった。そのため、これらの方法では繊維強化複合材料の繊維配向を評価することを目的としたものであり、本手法が目的とする繊維の蛇行状態の評価には有用ではない。   However, with the method shown in Patent Document 1, it was possible to evaluate the fiber angle of one section of the fiber-reinforced composite material, but it was not possible to evaluate the meandering state. Moreover, although the method as shown in patent document 2 was able to evaluate the fiber orientation degree of a fiber reinforced composite material, it could not evaluate the meandering state. Therefore, these methods are intended to evaluate the fiber orientation of the fiber-reinforced composite material, and are not useful for evaluating the meandering state of the fiber intended by this method.

[特許文献1] 特開2013−178234号報
[特許文献2] 特開2016−90259号報
[Patent Document 1] JP 2013-178234 A
[Patent Document 2] Japanese Patent Application Laid-Open No. 2006-90259

本発明の目的は、繊維強化複合材料中の繊維蛇行状態を評価するもので、繊維強化複合材料の強度予測、及び繊維強化複合材料の製造条件の最適化に有用な評価手法が求められていた。   An object of the present invention is to evaluate a fiber meandering state in a fiber reinforced composite material, and an evaluation technique useful for predicting the strength of the fiber reinforced composite material and optimizing the manufacturing conditions of the fiber reinforced composite material has been demanded. .

本発明の要旨は、以下の(1)〜(9)に存する。
(1) 手法1から手法6を有する炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法1:X線CTでZ軸を設定して炭素繊維強化複合材料中の炭素繊維の位置を測定する。
手法2:観察画像を二値化処理し、炭素繊維とマトリクス樹脂のデータを切り分け、炭素繊維の実際の長さl、炭素繊維の始点(X1、Y1、Z1)、炭素繊維の終点の位置(X2、Y2.Z2)、前記始点から前記終点へのXY面から見た角度φ、Z軸とのなす角度θを抽出する。
手法3:Z軸とのなす角θが明らかに異常値と考えられる炭素繊維を除去する。
手法4:炭素繊維がZ軸に対して最も短い距離となるdを算出する。
手法5:Z軸方向に対して最も力が働く時の炭素繊維の長さに対する実際の炭素繊維の長さの比を計算し、定量化値Cを算出する。
手法6:測定範囲に存在する全ての炭素繊維に対して定量化値Cを算出し、定量化値Cの平均値 を求める。
The gist of the present invention resides in the following (1) to (9).
(1) A method for quantifying the meandering of carbon fibers in a carbon fiber reinforced composite material having methods 1 to 6.
Method 1: The Z-axis is set by X-ray CT, and the position of the carbon fiber in the carbon fiber-reinforced composite material is measured.
Method 2: The observation image is binarized to separate the data of the carbon fiber and the matrix resin, the actual length l of the carbon fiber, the start point of the carbon fiber (X1, Y1, Z1), the position of the end point of the carbon fiber ( X2, Y2.Z2), an angle φ viewed from the XY plane from the start point to the end point, and an angle θ formed with the Z axis are extracted.
Method 3: Remove carbon fibers in which the angle θ formed with the Z-axis is clearly considered an abnormal value.
Method 4: Calculate d where the carbon fiber is the shortest distance from the Z-axis.
Method 5: The ratio of the actual carbon fiber length to the carbon fiber length when the force is most exerted in the Z-axis direction is calculated, and the quantified value C is calculated.
Method 6: Calculate the quantification value C for all the carbon fibers existing in the measurement range, and obtain the average value of the quantification values C.

(2) 前記手法6の後に下記手法7を設けた、上記(1)に記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法7:X線CT画像を2分割以上に分けて手法1から6を実施し、その最小値を求める。
(3) 前記手法5と手法6の間に、下記手法8を設け、手法6における定量化値Cに変えて定量化値C’を用いる、上記(1)に記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法8:測定した炭素繊維の長さによって定量化値Cに重みづけを実施して、定量化値C’を算出する。
(2) The method for quantifying the meandering of carbon fibers in the carbon fiber-reinforced composite material according to (1), wherein the following method 7 is provided after the method 6.
Method 7: The X-ray CT image is divided into two or more parts, and methods 1 to 6 are performed, and the minimum value is obtained.
(3) In the carbon fiber reinforced composite material according to the above (1), the following method 8 is provided between the method 5 and the method 6, and the quantified value C ′ is used instead of the quantified value C in the method 6. Of quantifying the meandering of carbon fiber.
Method 8: The quantification value C is weighted according to the measured length of the carbon fiber to calculate the quantification value C ′.

(4) 手法1において、炭素繊維強化複合材料の評価したい引張方向をZ軸に設定する、上記(1)から(3)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
(5) 手法3における「明らかに異常値と考えられる炭素繊維」が、θが30°より大きい炭素繊維である、上記(1)から(4)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
(6) 手法4におけるdの算出が以下の計算式で行われる、上記(1)から(5)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
始点終点の距離L=√((X2−X1)+(Y2−Y1)2+(Z2−Z1)
d=L・cosθ
(4) In Method 1, the tensile direction to be evaluated of the carbon fiber reinforced composite material is set to the Z axis, and the meandering of the carbon fiber in the carbon fiber reinforced composite material according to any one of (1) to (3) above Quantification method.
(5) In the carbon fiber reinforced composite material according to any one of the above (1) to (4), the “carbon fiber that is clearly considered to be an abnormal value” in Method 3 is a carbon fiber having θ greater than 30 °. Of quantifying the meandering of carbon fiber.
(6) The method for quantifying the meandering of carbon fibers in the carbon fiber reinforced composite material according to any one of (1) to (5), wherein d in Method 4 is calculated by the following formula.
Start point / end point distance L = √ ((X2−X1) 2 + (Y2−Y1) 2+ (Z2−Z1) 2 )
d = L · cos θ

(7) 手法5における定量化値Cの算出が以下の計算式で行われる、上記(1)から(6)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
定量化値C=l/d
(8) 手法8における定量化値Cに重みづけが、以下の式で行われる、上記(1)から(7)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
重みづけ係数α=(定量化するCFのZ軸方向の距離)/(全CFのZ軸方向の距離の平均値)
重みづけ後の定量化値=α・C
(9) 手法7におけるX線CT画像の分割が4分割以上である、上記(1)から(8)のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
(7) The method for quantifying the meandering of the carbon fiber in the carbon fiber reinforced composite material according to any one of (1) to (6), wherein the quantified value C in Method 5 is calculated by the following formula: .
Quantification value C = l / d
(8) The quantification of the meandering of the carbon fiber in the carbon fiber reinforced composite material according to any one of (1) to (7), wherein the quantification value C in the method 8 is weighted by the following formula: Method.
Weighting coefficient α = (distance of CF to be quantified in Z-axis direction) / (average value of distance of all CFs in Z-axis direction)
Quantified value after weighting = α · C
(9) The method for quantifying the meandering of carbon fibers in the carbon fiber reinforced composite material according to any one of (1) to (8), wherein the X-ray CT image is divided into four or more in Method 7.

本発明により、繊維強化複合材料の蛇行状態を定量的に評価することが可能になる。また、定量的に評価することで製造条件の最適化、及び適した樹脂、及び繊維の選出が可能になる。   According to the present invention, the meandering state of the fiber reinforced composite material can be quantitatively evaluated. In addition, quantitative evaluation enables optimization of manufacturing conditions and selection of suitable resins and fibers.

測定エリアから算出される繊維の位置情報のイメージ図である。It is an image figure of the positional information on the fiber calculated from a measurement area. 引抜成形法のフロー図である。It is a flowchart of a pultrusion method. サンプルAのX線CTの断面画像(XZ面)の図である。It is a figure of the cross-sectional image (XZ plane) of X-ray CT of sample A. サンプルBのX線CTの断面画像(XZ面)の図である。It is a figure of the cross-sectional image (XZ surface) of X-ray CT of sample B. サンプルCのX線CTの断面画像(XZ面)の図である。It is a figure of the cross-sectional image (XZ surface) of X-ray CT of the sample C. FIG. 解析を実施するエリア(XY面)の図である。It is a figure of the area (XY surface) which implements analysis. 分割して画像解析を実施するエリア(XY面)の図である。It is a figure of the area (XY surface) which divides | segments and performs image analysis. 引張強度と蛇行量の関係図である。It is a related figure of tensile strength and meandering amount.

本発明の評価方法は、繊維強化複合材料の繊維の蛇行状態を評価する方法である。評価する繊維強化複合材料としては、特に制限はないが、例えば引き抜き成型法にて得られる炭素繊維複合材料、等が挙げられる。
本発明の評価方法は評価対象となる繊維強化複合材料をX線CT測定等によって繊維の位置情報を抽出し、繊維の蛇行状態を定量的に評価するものである。X線CTで算出した三次元画像情報から、繊維と樹脂を切り分ける処理として二値化処理を行う。二値化処理によって得られた繊維情報から蛇行状態を定量的に評価するものである。
The evaluation method of the present invention is a method for evaluating the meandering state of the fibers of the fiber-reinforced composite material. The fiber reinforced composite material to be evaluated is not particularly limited, and examples thereof include a carbon fiber composite material obtained by a pultrusion molding method.
The evaluation method of the present invention is to quantitatively evaluate the meandering state of the fiber by extracting the positional information of the fiber reinforced composite material to be evaluated by X-ray CT measurement or the like. A binarization process is performed as a process for separating fibers and resin from the three-dimensional image information calculated by X-ray CT. The meandering state is quantitatively evaluated from the fiber information obtained by the binarization process.

本発明の評価方法を以下に示す。
繊維強化複合材料中の繊維の位置情報を抽出するため、例えばX線CTにて内部の観察を実施し3次元画像を導く方法がある。また、繊維の位置情報を抽出する方法は、繊維強化複合材料の断面観察、研磨、断面観察を繰り返して算出してもよい。この時、繊維強化複合材料の引張強度等の強度を測定する軸、等の蛇行を評価する方向をZ軸にすると計算が簡便になる。蛇行する方向がZ軸と異なる場合、補正する必要がある。
The evaluation method of the present invention is shown below.
In order to extract the positional information of the fiber in the fiber reinforced composite material, there is a method of conducting an internal observation by, for example, X-ray CT to derive a three-dimensional image. Further, the method for extracting the positional information of the fiber may be calculated by repeating cross-sectional observation, polishing, and cross-sectional observation of the fiber reinforced composite material. At this time, if the axis for measuring the strength such as the tensile strength of the fiber reinforced composite material and the direction for evaluating meandering such as the Z-axis are used, the calculation is simplified. If the meandering direction is different from the Z axis, correction is necessary.

X線CTを用いて得られた3次元画像から繊維の位置情報を抽出するため、二値化処理を実施する。この時、繊維と樹脂の画像を鮮明にするため画像処理を実施する。得られた画像は輝度分布が広い可能性があるため、輝度分布をヒストグラムで表示してその度数が0.01%以下となる輝度を一定の輝度として上限値、下限値を決める。また、ノイズ除去としてフィルター処理を行う。フィルター処理は繊維と樹脂の境目が鮮明にするためにmedian処理の方が好ましい。二値化は閾値によって結果が変動する懸念があるため二値化処理を実施する閾値は固定させる必要がある。二値化処理は輝度分布をヒストグラムで表示し、最も分布が大きい輝度と上限値の輝度の差の10%を最も分布が大きい輝度に加えた値を閾値とする。   In order to extract fiber position information from a three-dimensional image obtained using X-ray CT, a binarization process is performed. At this time, image processing is performed in order to clarify the image of the fiber and the resin. Since the obtained image may have a wide luminance distribution, the luminance distribution is displayed as a histogram, and the upper limit value and the lower limit value are determined by setting the luminance at which the frequency is 0.01% or less as a constant luminance. Also, filter processing is performed as noise removal. The filter treatment is preferably median treatment in order to make the boundary between the fiber and the resin clear. Since there is a concern that the result of binarization varies depending on the threshold value, the threshold value for performing the binarization process needs to be fixed. In the binarization process, the luminance distribution is displayed as a histogram, and a value obtained by adding 10% of the difference between the luminance with the largest distribution and the luminance with the upper limit value to the luminance with the largest distribution is used as a threshold value.

二値化処理によって繊維と樹脂を切り分けた後、画像処理によってノイズと考えられる小さい粒子形状を除去する。その後、図1に示すような繊維の位置情報を算出する。各位置情報は以下に示す通りになる。
始点(X1、Y1、Z1)、
終点(X2、Y2、Z2)、
l:繊維の長さ、
θ:繊維のZ軸とのなす角、
φ:始点(X1、Y1、Z1)から終点(X2、Y2、Z2)へのXY面から見た角度
After separating the fiber and the resin by binarization processing, small particle shapes that are considered to be noise are removed by image processing. Thereafter, fiber position information as shown in FIG. 1 is calculated. Each position information is as follows.
Starting point (X1, Y1, Z1),
End point (X2, Y2, Z2),
l: fiber length,
θ: Angle formed by the Z axis of the fiber,
φ: Angle viewed from the XY plane from the start point (X1, Y1, Z1) to the end point (X2, Y2, Z2)

ここでのZ軸は引張試験方向等の蛇行を評価する方向にする。
次にθが繊維強化複合材料を作製する工程から、明らかに存在するとは考えにくいθとなる繊維は画像処理上のノイズと判断できるため、そのデータを除去する。例えば一方向に繊維を並べた一方向材や引抜成形品等で繊維配向方向の角度をθとして、θ=0°で作製しているサンプルではθが0°から大きく変動する可能性は考えにくいため、θ>30°のデータは除去する。また、一方向に並べた繊維シートを複数積層させた繊維強化複合材料を測定する場合、蛇行を評価したい層以外のθと考えられる繊維のデータを除去する。
Here, the Z axis is a direction for evaluating meandering such as a tensile test direction.
Next, from the step of producing the fiber reinforced composite material, since the fiber whose θ is clearly not considered to exist can be determined as noise in image processing, the data is removed. For example, it is difficult to think of the possibility that θ greatly varies from 0 ° in a sample produced by θ = 0 ° where θ is the angle in the fiber orientation direction in a unidirectional material or pultruded product in which fibers are arranged in one direction. Therefore, data with θ> 30 ° is removed. Further, when measuring a fiber reinforced composite material in which a plurality of fiber sheets arranged in one direction are stacked, data on fibers considered to be θ other than the layer for which meandering is to be evaluated is removed.

次に以下の式から、始点と終点の距離Lを計算し、蛇行を評価する方向に対する繊維の最短距離dを算出する。
始点終点の距離L=√((X2−X1)+(Y2−Y1)2+(Z2−Z1)
d=L・cosθ
ここでのdはZ軸に引張強度測定等の強度を測定する際に繊維に最も力が働く長さになる。
その後、以下の計算から蛇行状態を定量化する。
定量化値C=l/d
Next, the distance L between the start point and the end point is calculated from the following equation, and the shortest distance d of the fiber with respect to the direction in which the meander is evaluated is calculated.
Start point / end point distance L = √ ((X2−X1) 2 + (Y2−Y1) 2+ (Z2−Z1) 2 )
d = L · cos θ
Here, d is a length that exerts the most force on the fiber when measuring the strength such as tensile strength measurement on the Z axis.
Then, the meandering state is quantified from the following calculation.
Quantification value C = l / d

定量化値Cは引張方向に対して最も力が働く時の繊維の長さに対する実際の繊維の長さの比になる。蛇行が全くなければCは1になり、蛇行が大きければ1よりも大きくなる。
全ての繊維で定量化を実施し、平均する。この結果が評価するエリアの蛇行の定量化値になる。この時、長い繊維と短い繊維が混在している。長い繊維の方が強度への寄与は大きいため、それぞれの繊維に重みづけをして補正を実施する。
The quantified value C is the ratio of the actual fiber length to the fiber length when the force is most exerted in the tensile direction. C is 1 if there is no meandering, and greater than 1 if the meandering is large.
Quantification is performed on all fibers and averaged. This result is the quantified value of the meander of the area to be evaluated. At this time, long fibers and short fibers are mixed. Since longer fibers have a greater contribution to strength, each fiber is weighted and corrected.

補正は以下の式で実施する。
重みづけ係数α=定量化するCFのZ軸方向の距離/全CFのZ軸方向の距離の平均値
重みづけ後の定量化値=α・C
The correction is performed using the following formula.
Weighting coefficient α = Z-axis distance of CF to be quantified / Average value of distances of all CFs in Z-axis direction Quantified value after weighting = α · C

重みづけを実施した繊維の定量化値を全ての繊維で計算し、平均する。その結果を蛇行の定量化とする。   The weighted fiber quantification value is calculated for all fibers and averaged. The result is quantified meandering.

蛇行の定量化は広いエリアで実施するよりも2分割以上の複数のエリアに分割し、その最小値を用いた方がいい。これは、繊維強化複合材料は最も弱い個所から破壊が起こるため、最も蛇行が大きい場所から破壊すると考えられる。複数に分割した方が蛇行量と機械的特性に相関が得られる。   For quantification of meandering, it is better to divide into multiple areas of 2 or more and use the minimum value rather than to perform in a wide area. This is presumably because the fiber reinforced composite material breaks from the weakest part, and therefore breaks from the place where the meandering is the largest. If the number is divided into a plurality, a correlation is obtained between the meandering amount and the mechanical characteristics.

続いて蛇行の評価を実際のサンプルについて行った。
サンプルは蛇行、及び引張強度の異なるサンプルA、B、Cを用いて行った。
サンプル作製方法
Subsequently, meandering evaluation was performed on actual samples.
Samples used were samples A, B, and C having different meandering and tensile strengths.
Sample preparation method

評価には炭素繊維TR50S−12L(三菱レイヨン(株)製)、を引抜成形で作製したサンプルを用いた。引き抜き成形の樹脂はjER828(三菱化学(株)製)100質量部に、硬化剤LS−81K(Lindau Chemicals,Inc製)100質量部を均一に混合したものを用いた。引抜成形は次の手順で行った。図2に引き抜き成形のフローを示す。ボビンから取り出した炭素繊維を樹脂含浸浴を通過させて樹脂を含浸させ、続いて170℃に熱した金型(幅15mm×厚み4mm×長さ50mm)を通過させて硬化する(引抜速度0.2m/min)。サンプルは炭素繊維の体積含有率Vf=70%となるように作製した。   For the evaluation, a sample prepared by drawing a carbon fiber TR50S-12L (manufactured by Mitsubishi Rayon Co., Ltd.) was used. The resin for pultrusion molding was obtained by uniformly mixing 100 parts by mass of jER828 (manufactured by Mitsubishi Chemical Corporation) with 100 parts by mass of a curing agent LS-81K (manufactured by Lindau Chemicals, Inc.). The pultrusion was performed according to the following procedure. FIG. 2 shows a pultrusion flow. The carbon fiber taken out from the bobbin is passed through a resin impregnation bath to impregnate the resin, and then passed through a mold heated to 170 ° C. (width 15 mm × thickness 4 mm × length 50 mm) and cured (drawing speed 0. 2 m / min). The sample was prepared so that the volume content Vf of the carbon fiber was 70%.

以上のような作製方法でサンプルAは引抜張力を600kgf/m、サンプルBは300kgf/m、サンプルCは100kgf/mで引抜成形品を作製した。
サンプルは260mmの長さで切り出し、両端にタブを取り付けて引張強度を測定した。各サンプルの引張強度はサンプルA:2600MPa、サンプルB:2400MPa、サンプルC:2000MPaとなった。
With the manufacturing method as described above, a pultruded molded product was prepared with a pulling tension of 600 kgf / m for sample A, 300 kgf / m for sample B, and 100 kgf / m for sample C.
Samples were cut out to a length of 260 mm, and tabs were attached to both ends to measure the tensile strength. The tensile strength of each sample was sample A: 2600 MPa, sample B: 2400 MPa, and sample C: 2000 MPa.

サンプルをX線CT(TDM1000H−Sμ:ヤマト科学株式会社製)を用いて次の条件(測定積算時間:電流100μA、電圧30V、拡大軸10mm、積分時間1,000秒、高精度モード100分、)で観察し、3次元画像を抽出した。得られたXZ面の断面画像は図3〜5に示す通りとなった。   The sample was subjected to the following conditions using X-ray CT (TDM1000H-Sμ: manufactured by Yamato Scientific Co., Ltd.) (measurement integration time: current 100 μA, voltage 30 V, expansion axis 10 mm, integration time 1,000 seconds, high accuracy mode 100 minutes, ) And a three-dimensional image was extracted. The obtained cross-sectional images of the XZ plane were as shown in FIGS.

以下を判断基準としてX線CTの断面画像から蛇行の目視評価を行った。
◎:繊維はほとんど直線で配向している。
○:繊維がやや直線から曲がった状態で配向している。
×:繊維が直線から大きく外れて配向している
蛇行の目視評価の結果サンフ゜ルA:◎、サンプルB:○、サンプルC:○となった。
Visual evaluation of meandering was performed from a cross-sectional image of the X-ray CT based on the following criteria.
A: The fibers are almost linearly oriented.
○: The fibers are oriented in a state bent slightly from a straight line.
X: The fiber is greatly deviated from the straight line. As a result of visual evaluation of meandering, sample A: ◎, sample B: ◯, sample C: ○.

実施例1
X線CTの画像を画像ソフト(TRI/3D−VOL64:ラトックシステムエンジニアリング株式会社製)を用いて画像処理を実施し、各繊維のデータ(炭素繊維の実際の長さl、炭素繊維の始点(X1、Y1、Z1)、炭素繊維の終点の位置(X2、Y2.Z2)、前記始点から前記終点へのXY面から見た角度φ、Z軸とのなす角度θ)を算出する。画像処理は以下の手順で行う。
Example 1
The X-ray CT image is processed using image software (TRI / 3D-VOL64: manufactured by Ratok System Engineering Co., Ltd.), and data of each fiber (actual length l of carbon fiber, start point of carbon fiber ( X1, Y1, Z1), the end point position of the carbon fiber (X2, Y2.Z2), the angle φ viewed from the XY plane from the start point to the end point, and the angle θ formed with the Z axis. Image processing is performed according to the following procedure.

1.画像解析ソフトを起動
2.3Dトリミングを開いてX線CTで測定したデータを選択し全画像を選択する。輝度分布の範囲は、輝度分布をヒストブラムで表示し、0.01%以下の度数となる結果を一定の値として上限値、下限値となるように定める。
1. Start image analysis software 2. Open 3D trimming, select data measured by X-ray CT, and select all images. The range of the luminance distribution is determined so that the luminance distribution is displayed as a histogram, and the upper limit value and the lower limit value are set with a constant value as a result of a frequency of 0.01% or less.

3.解析前処理のウィンドウを開き、取り出した画像から解析するエリア(Z軸方向は画像の端から端まで、XY面は図4に示すよう正方形で最も広いサイズ)を選択してトリミングを実施する。この時、繊維と樹脂を明確にするためmedianのチェックを入れて実施した。
4.解析を実施するエリアを選択した後、画像上途切れ途切れになっている繊維を繋がっている状態にするためFLATTEN、2D、細硬軟混在の条件でフィルター補正を実施。
3. A window for pre-analysis processing is opened, and an area to be analyzed from the extracted image (Z-axis direction from the end of the image to the end, and the XY plane is a square and widest as shown in FIG. 4) is trimmed. At this time, in order to clarify the fiber and the resin, the median was checked.
4). After selecting the area to be analyzed, filter correction is performed under the conditions of FLATTEN, 2D, and fine, soft and soft in order to connect the fibers that are interrupted on the image.

5.Maskas imageと繊維詳細ウィンドウを開き、先ほどの1〜55までで補正した画像を用いて二値化処理を行う。二値化はMask imageウィンドウのBimarizeタブ、L−Wを選択して輝度分布のヒストグラムで最も分布が大きい輝度と上限値の輝度の差の10%を最も分布が大きい輝度に加えた値を閾値として二値化を実施。
6.その後ノイズを除去するため、Mask imageウィンドウのBinaryタブ、Ers Smlを選択し、粒子サイズ:5と入力して実行。
5. A mask image and a fiber detail window are opened, and binarization processing is performed using the image corrected in the previous 1 to 55. For binarization, select the Bimarize tab of the Mask image window, L-W, and add 10% of the difference between the luminance with the highest distribution and the luminance of the upper limit value to the luminance with the highest distribution in the luminance distribution histogram. Binarization is implemented.
6). Then, to remove noise, select the Binary tab of the Mask image window, Ers Sml, and enter the particle size: 5.

7.さらにノイズを除去するため、Mask imageウィンドウの3Dタブ、3D Labelingを選択し、微小粒子除去20voxelと入力して実行。
8.1〜7のノイズを除去した画像を用いて繊維詳細ウィンドウの繊維OKを出力先を指定して実行。
7). To further remove noise, select 3D tab and 3D Labeling in the Mask image window, enter fine particle removal 20 voxel, and execute.
8. Executing fiber OK in the fiber detail window by specifying an output destination using an image from which noises of 1 to 7 are removed.

以上の処理を行い、炭素繊維の情報(始点(X1、Y1、Z1)、終点(X2、Y2、Z2)、l:繊維の長さ、θ:繊維のZ軸とのなす角、φ:始点(X1、Y1、Z1)から終点(X2、Y2、Z2)へのXY面から見た角度)を抽出。得られた情報から、蛇行の定量化を行う。   Performing the above processing, carbon fiber information (start point (X1, Y1, Z1), end point (X2, Y2, Z2), l: length of fiber, θ: angle formed with Z axis of fiber, φ: start point (An angle viewed from the XY plane from the X1, Y1, Z1) to the end point (X2, Y2, Z2) is extracted. The meandering is quantified from the obtained information.

以下の計算式から始点と終点の距離L、蛇行を評価する方向に対する繊維の最短距離dを算出し、蛇行量を定量化する。
L=√((X2−X1)+(Y2−Y1)2+(Z2−Z1)
d=L・cos
定量化値C=l/d
同様に全ての繊維で計算を実施し、平均する。
これらの計算をサンプルB、Cも同様に実施する。
From the following calculation formula, the distance L between the start point and the end point and the shortest distance d of the fiber with respect to the direction in which the meander is evaluated are calculated, and the amount of meander is quantified.
L = √ ((X2−X1) 2 + (Y2−Y1) 2+ (Z2−Z1) 2 )
d = L · cos
Quantification value C = l / d
Similarly, calculations are performed on all fibers and averaged.
These calculations are similarly performed for samples B and C.

実施例2
実施例1の計算結果を用いて、以下の計算を実施し、定量化した結果の重みづけを行う。
重みづけ係数α=定量化するCFのZ軸方向の距離/全CFのZ軸方向の距離の平均値
重みづけ後の定量化値=α・C
同様に全ての繊維で計算を実施し、平均する。
これらの計算をサンプルB、Cも同様に実施する。
Example 2
The following calculation is performed using the calculation result of Example 1, and the quantified result is weighted.
Weighting coefficient α = Z-axis distance of CF to be quantified / Average value of distances of all CFs in Z-axis direction Quantified value after weighting = α · C
Similarly, calculations are performed on all fibers and averaged.
These calculations are similarly performed for samples B and C.

実施例3
実施例2と同様の手順で解析するエリアを図7に示すように4分割し、同様の計算を分割された各エリアで実施する。算出された4つのエリアの結果から最小値を求める。これらの計算をサンプルB、Cも同様に実施する。
実施例1〜3の結果を表1にまとめる。また、蛇行量と引張強度のグラフを図8に示す。
Example 3
The area to be analyzed in the same procedure as in the second embodiment is divided into four as shown in FIG. 7, and the same calculation is performed in each divided area. The minimum value is obtained from the calculated results of the four areas. These calculations are similarly performed for samples B and C.
The results of Examples 1 to 3 are summarized in Table 1. A graph of the meandering amount and the tensile strength is shown in FIG.

比較例
比較例1ではサンプルAの断面を切り出し研磨後にその断面画像を観察するという行為を複数回試し、繊維の位置情報を抽出する方法を試みた。しかし、以下に示す問題点から測定困難として断念した。
・繊維の位置情報の精度を上げるためには研磨観察作業を複数回実施する必要があるが、1サンプル当り数時間以上の時間を要するため現実的ではない。
・繊維数が数千から数万本あるため各繊維の特定が困難。
・繊維の観察には研磨作業が必要になるが、その場合、研磨量を特定することが困難のため、観察における研磨面の深さ方向の位置の特定が困難となる。特に研磨を複数回重ねる必要があるため、より位置の特定が不明確になる。
Comparative Example In Comparative Example 1, the act of cutting out the cross section of Sample A and observing the cross sectional image after polishing was tried a plurality of times, and a method of extracting fiber position information was attempted. However, it was abandoned as a measurement difficulty due to the following problems.
In order to increase the accuracy of the position information of the fiber, it is necessary to carry out the polishing observation work a plurality of times. However, since it takes several hours per sample, it is not realistic.
-Since there are thousands to tens of thousands of fibers, it is difficult to specify each fiber.
A polishing operation is required for observing the fiber. In that case, it is difficult to specify the amount of polishing, and thus it is difficult to specify the position of the polished surface in the depth direction during observation. In particular, since the polishing needs to be repeated a plurality of times, the position specification becomes more unclear.

1.繊維
2.繊維のZ軸とのなす角θ
3.評価する繊維をXY面から見た角度φ
4.Z軸方向の繊維の距離d
5.ボビン
6.炭素繊維
7.樹脂
8.樹脂含浸浴
9.金型
10.キャタピラ(ライン駆動装置)
11.蛇行量評価エリア
1. Fiber 2. Angle θ with the Z axis of the fiber
3. Angle φ of the fiber to be evaluated viewed from the XY plane
4). Fiber distance d in the Z-axis direction
5. Bobbin Carbon fiber 7. Resin 8. Resin impregnation bath 9. Mold 10. Caterpillar (line drive)
11. Meander amount evaluation area

Claims (9)

手法1から手法6を有する炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法1:X線CTでZ軸を設定して炭素繊維強化複合材料中の炭素繊維の位置を測定する。
手法2:観察画像を二値化処理し、炭素繊維とマトリクス樹脂のデータを切り分け、炭素繊維の実際の長さl、炭素繊維の始点(X1、Y1、Z1)、炭素繊維の終点の位置(X2、Y2.Z2)、前記始点から前記終点へのXY面から見た角度φ、Z軸とのなす角度θを抽出する。
手法3:Z軸とのなす角θが明らかに異常値と考えられる炭素繊維を除去する。
手法4:炭素繊維がZ軸に対して最も短い距離となるdを算出する。
手法5:Z軸方向に対して最も力が働く時の炭素繊維の長さに対する実際の炭素繊維の長さの比を計算し、定量化値Cを算出する。
手法6:測定範囲に存在する全ての炭素繊維に対して定量化値Cを算出し、定量化値Cの平均値を求める。
A method for quantifying the meandering of carbon fibers in a carbon fiber reinforced composite material having methods 1 to 6.
Method 1: The Z-axis is set by X-ray CT, and the position of the carbon fiber in the carbon fiber-reinforced composite material is measured.
Method 2: The observation image is binarized to separate the data of the carbon fiber and the matrix resin, the actual length l of the carbon fiber, the start point of the carbon fiber (X1, Y1, Z1), the position of the end point of the carbon fiber ( X2, Y2.Z2), an angle φ viewed from the XY plane from the start point to the end point, and an angle θ formed with the Z axis are extracted.
Method 3: Remove carbon fibers in which the angle θ formed with the Z-axis is clearly considered an abnormal value.
Method 4: Calculate d where the carbon fiber is the shortest distance from the Z-axis.
Method 5: The ratio of the actual carbon fiber length to the carbon fiber length when the force is most exerted in the Z-axis direction is calculated, and the quantified value C is calculated.
Method 6: The quantified value C is calculated for all the carbon fibers existing in the measurement range, and the average value of the quantified values C is obtained.
前記手法6の後に下記手法7を設けた、請求項1に記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法7:X線CT画像を2分割以上に分けて手法1から6を実施し、その最小値を求める。
The method for quantifying the meandering of carbon fibers in the carbon fiber reinforced composite material according to claim 1, wherein the following method 7 is provided after the method 6.
Method 7: The X-ray CT image is divided into two or more parts, and methods 1 to 6 are performed, and the minimum value is obtained.
前記手法5と手法6の間に、下記手法8を設け、手法6における定量化値Cに変えて定量化値C’を用いる、請求項1に記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
手法8:測定した炭素繊維の長さによって定量化値Cに重みづけを実施して、定量化値C’を算出する。
The following method 8 is provided between the method 5 and the method 6, and the quantified value C ′ is used instead of the quantified value C in the method 6, and the carbon fiber in the carbon fiber reinforced composite material according to claim 1 is used. A method for quantifying meandering.
Method 8: The quantification value C is weighted according to the measured length of the carbon fiber to calculate the quantification value C ′.
手法1において、炭素繊維強化複合材料の評価したい引張方向をZ軸に設定する、請求項1から3のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。   The method of quantifying the meandering of carbon fibers in the carbon fiber reinforced composite material according to any one of claims 1 to 3, wherein, in Method 1, a tensile direction to be evaluated of the carbon fiber reinforced composite material is set on the Z axis. 手法3における「明らかに異常値と考えられる炭素繊維」が、θが30°より大きい炭素繊維である、請求項1から4のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。   The meandering of the carbon fiber in the carbon fiber reinforced composite material according to any one of claims 1 to 4, wherein the "carbon fiber that is clearly considered to be an abnormal value" in Method 3 is a carbon fiber having θ greater than 30 °. Quantification method. 手法4におけるdの算出が以下の計算式で行われる、請求項1から5のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
始点終点の距離L=√((X2−X1)+(Y2−Y1)2+(Z2−Z1)
d=L・cosθ
The method for quantifying the meandering of carbon fibers in a carbon fiber reinforced composite material according to any one of claims 1 to 5, wherein d in Method 4 is calculated by the following formula.
Start point / end point distance L = √ ((X2−X1) 2 + (Y2−Y1) 2+ (Z2−Z1) 2 )
d = L · cos θ
手法5における定量化値Cの算出が以下の計算式で行われる、請求項1から6のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
定量化値C=1/d
The method for quantifying the meandering of carbon fibers in the carbon fiber reinforced composite material according to any one of claims 1 to 6, wherein the quantified value C in the method 5 is calculated by the following formula.
Quantification value C = 1 / d
手法8における定量化値Cに重みづけが、以下の式で行われる、請求項1から7のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。
重みづけ係数α=(定量化するCFのZ軸方向の距離)/(全CFのZ軸方向の距離の平均値)
重みづけ後の定量化値=α・C
The method for quantifying the meandering of the carbon fibers in the carbon fiber reinforced composite material according to any one of claims 1 to 7, wherein the quantification value C in the method 8 is weighted by the following equation.
Weighting coefficient α = (distance of CF to be quantified in Z-axis direction) / (average value of distance of all CFs in Z-axis direction)
Quantified value after weighting = α · C
手法7におけるX線CT画像の分割が4分割以上である、請求項1から8のいずれかに記載の炭素繊維強化複合材料中の炭素繊維の蛇行の定量化方法。   The method for quantifying the meandering of carbon fibers in a carbon fiber reinforced composite material according to any one of claims 1 to 8, wherein the X-ray CT image is divided into four or more in Method 7.
JP2017058505A 2017-03-24 2017-03-24 Method for evaluating fiber zigzag state of fiber-reinforced composite material Pending JP2018159691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058505A JP2018159691A (en) 2017-03-24 2017-03-24 Method for evaluating fiber zigzag state of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058505A JP2018159691A (en) 2017-03-24 2017-03-24 Method for evaluating fiber zigzag state of fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2018159691A true JP2018159691A (en) 2018-10-11

Family

ID=63795612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058505A Pending JP2018159691A (en) 2017-03-24 2017-03-24 Method for evaluating fiber zigzag state of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2018159691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196855A1 (en) 2019-03-27 2020-10-01 株式会社Ihi Device for evaluating illumination, and method for evaluating illumination
WO2024024797A1 (en) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 Image management system, image management device, image management method, and image management program
WO2024024796A1 (en) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 Image management system, sample selection method, image management device, image display device, and program
US12050188B2 (en) 2019-03-27 2024-07-30 Ihi Corporation Strength evaluation device and strength evaluation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196855A1 (en) 2019-03-27 2020-10-01 株式会社Ihi Device for evaluating illumination, and method for evaluating illumination
US12050188B2 (en) 2019-03-27 2024-07-30 Ihi Corporation Strength evaluation device and strength evaluation method
WO2024024797A1 (en) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 Image management system, image management device, image management method, and image management program
WO2024024796A1 (en) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 Image management system, sample selection method, image management device, image display device, and program

Similar Documents

Publication Publication Date Title
JP2018159691A (en) Method for evaluating fiber zigzag state of fiber-reinforced composite material
Salaberger et al. Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution
Baran et al. X-ray computed tomography characterization of manufacturing induced defects in a glass/polyester pultruded profile
Heieck et al. Influence of the cover factor of 2D biaxial and triaxial braided carbon composites on their in-plane mechanical properties
Schladitz et al. Non-destructive characterization of fiber orientation in reinforced SMC as input for simulation based design
JP6681221B2 (en) Structure analysis device, structure analysis method, and three-dimensional woven fiber material manufacturing method
Wendt et al. Preliminary design and analysis of tensile test samples developed by Additive Manufacturing
WO2015024580A1 (en) Computer implemented method to obtain the orientations of fibres inside composite materials using computed tomography scan
Soete et al. Defect detection in 3D printed carbon fibre composites using X-ray Computed Tomography
CN111557018A (en) Method for estimating the adhesion fraction between a rubber composition and a reinforcing ply representing a test specimen of a tyre to be characterized
Deng et al. Rule of mixtures model to determine elastic modulus and tensile strength of 3D printed carbon fiber reinforced nylon
Plank et al. Evaluation and visualisation of shape factors in dependence of the void content within CFRP by means of X-ray computed tomography
Sommer et al. Fatigue behaviour of thermoplastic glass/polypropylene composite cross-ply laminates: An experimental study with in-situ damage observations and numerical validation
Tabiai et al. In-situ full field out of plane displacement and strain measurements at the micro-scale in single reinforcement composites under transverse load
WO2024009566A1 (en) Method and device for obtaining forming limit of metal sheet
KR102074330B1 (en) Particle analysis method for composite, particle dispersion analysis method for composite and particle dispersion analysis system for composite
KR102251914B1 (en) Polymer material simulation method
Pan et al. Classifying character focuses for fracture process zone description in mounted carbon or epoxy covers with a convolutional neural system
KR102482506B1 (en) Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
Rosemeier et al. Determination of as-built properties of fiber reinforced polymers in a wind turbine blade using scanning electron and high-resolution X-ray microscopy
Provatidis et al. On the performance of the geometrical models of fabrics for use in computational mechanical analysis
Oberpeilsteiner et al. Coupling of in-situ-CT with virtual testing by FEM of short fiber reinforced materials
Katayama et al. The evaluation of fibre filamentisation in the LFRTP moulding
Straumit et al. Quantification of micro-CT images of textile reinforcements
CN110926982B (en) Method for approximately obtaining metal elastic-plastic parameters based on Vickers indenter indentation method