JP2018159233A - Cross section evaluation method of floor slab connecting joint - Google Patents

Cross section evaluation method of floor slab connecting joint Download PDF

Info

Publication number
JP2018159233A
JP2018159233A JP2017057047A JP2017057047A JP2018159233A JP 2018159233 A JP2018159233 A JP 2018159233A JP 2017057047 A JP2017057047 A JP 2017057047A JP 2017057047 A JP2017057047 A JP 2017057047A JP 2018159233 A JP2018159233 A JP 2018159233A
Authority
JP
Japan
Prior art keywords
engagement
cross
engaging
floor slab
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017057047A
Other languages
Japanese (ja)
Other versions
JP6833581B2 (en
Inventor
輝康 渡邊
Teruyasu Watanabe
輝康 渡邊
明夫 正司
Akio Shoji
明夫 正司
博 渡瀬
Hiroshi Watase
博 渡瀬
恭輔 浅見
Kyosuke Asami
恭輔 浅見
芳徳 高松
Yoshinori Takamatsu
芳徳 高松
友彰 小野
Tomoaki Ono
友彰 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Geostr Corp
Oriental Shiraishi Corp
Gaeart Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Geostr Corp
Oriental Shiraishi Corp
Gaeart Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Geostr Corp, Oriental Shiraishi Corp, Gaeart Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2017057047A priority Critical patent/JP6833581B2/en
Publication of JP2018159233A publication Critical patent/JP2018159233A/en
Application granted granted Critical
Publication of JP6833581B2 publication Critical patent/JP6833581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cross section evaluation method of a floor slab connecting joint with which it is possible to evaluate a cross section inexpensively, quickly, safely, and without waste when determining cross sections for each part of a floor slab connecting joint.SOLUTION: In a floor slab connection structure with which a floor slab and an adjacent floor slab are connected to each other by: arranging end faces of adjacent floor slabs so as to be adjacent to each other via gaps serving as joints; engaging a pair of engagement parts of connection members in each engagement recess by inserting a connecting part of the connection member from above into an opening between right and left engaging walls on each engagement receiving part disposed on the end sides of the adjacent floor slabs; fixing the engagement parts engaged with the engagement recesses to the engagement recesses with fixing means; and filling a filler to the joint between the end faces of the adjacent floor slabs and over a receiving member and the connection member, a cross section 8A of the connecting part can be evaluated by regarding the cross section 8A of the connecting part of the connection member positioned to cross the joint as a plurality of steps of divided reinforcing bars and then calculating the stress of the cross section 8A.SELECTED DRAWING: Figure 5

Description

本発明は、床版接続用継手の各部分の断面を決定する際の断面評価方法に関する。   The present invention relates to a method for evaluating a cross section when determining a cross section of each part of a joint for connecting floor slabs.

橋軸直角方向(橋幅方向)に並設された複数の主桁上に橋梁用コンクリートプレキャスト製の床版を架け渡し、橋軸方向に沿って隣り合う床版同士をコッター式継手と呼ばれる床版接続用継手を用いて接続する床版接続工法が知られている(特許文献1参照)。   Floors made of concrete precast for bridges are bridged on multiple main girders arranged side by side in the direction perpendicular to the bridge axis (bridge width direction), and the floor slabs adjacent to each other along the bridge axis direction are called cotter-type joints. A floor slab connection method for connecting using a plate connection joint is known (see Patent Document 1).

特許第5787965号公報Japanese Patent No. 5787965

従来、床版接続用継手の断面形状は、試験を行って決定したり、経験的に決定していた。試験を行って断面形状を決定する場合、床版の版厚が変わる毎に試験を行う必要があり、費用及び期間がかかるという課題があった。また、経験的に断面形状を決定する場合、安全性の面で課題があった。
本発明は、床版接続用継手の各部分の断面を決定する際において、安価かつ迅速に、安全かつ無駄の無い断面評価を行えるようにした床版接続用継手の断面評価方法を提供する。
Conventionally, the cross-sectional shape of the joint for connecting floor slabs has been determined through testing or empirically. When the cross-sectional shape is determined by performing a test, it is necessary to perform the test every time the plate thickness of the floor slab changes, and there is a problem that costs and time are required. Further, when the cross-sectional shape is determined empirically, there is a problem in terms of safety.
The present invention provides a method for evaluating the cross section of a joint for connecting floor slabs, in which a cross section evaluation of each part of the joint for connecting floor slabs can be carried out inexpensively, quickly, and safely and without waste.

本発明に係る床版接続用継手の断面評価方法は、隣り合う各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の断面評価方法であって、受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方に充填材を充填することにより、隣り合う床版と床版とが連結された床版接続構造において、目地を横切るように位置される繋ぎ部材の連結部の断面を分割された複数段の鉄筋と見做して当該断面の応力を計算することにより、当該連結部の断面を評価することを特徴とするので、連結部の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い断面評価を行えるようになった。
また、上述した床版接続構造において、係合受部に、係合部との係合による引張力と、曲げ力とが作用すると想定し、かつ、係合部の側壁の断面を分割された複数段の鉄筋と見做して応力を計算することにより、当該側壁の断面を評価することを特徴とするので、側壁の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い断面評価を行えるようになった。
さらに、上述した床版接続構造において、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合による引張力と、曲げ力とが作用すると想定して、当該定着部の断面の応力を計算することにより、当該定着部の断面を評価することを特徴とするので、定着部の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い断面評価を行えるようになった。
また、上述した床版接続構造において、目地を横切るように位置される繋ぎ部材の連結部の断面を分割された複数段の鉄筋と見做して当該断面の応力を計算し、係合受部に、係合部との係合による引張力と、曲げ力とが作用すると想定し、かつ、係合部の側壁の断面を分割された複数段の鉄筋と見做して応力を計算し、係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合による引張力と、曲げ力とが作用すると想定して、当該定着部の断面の応力を計算することにより、床版接続用継手の断面を評価することを特徴とするので、床版接続用継手の断面の形状を決定するに際して、安価かつ迅速に、安全かつ無駄の無い断面評価を行えるようになった。
The cross-section evaluation method for a floor slab connection joint according to the present invention includes a receiving member installed on each end side of each adjacent floor slab, and a receiving member installed on each end side of each adjacent floor slab. A cross-section evaluation method for a floor slab connection joint in a floor slab connection structure that connects floor slabs adjacent to each other using a floor slab connection joint provided with a connecting member. An engagement receiving portion having an engagement recess with which an engagement portion provided on the member engages, and a fixing portion fixed to the concrete of the floor slab, the engagement receiving portion rising from the bottom plate and the bottom plate The wive wall provided in this way, the left and right side walls that extend from both the left and right sides of the wive wall, and the left and right side walls that extend from the extension end of the left and right side walls, and extend from the bottom plate Left and right engagement walls provided, and the engagement recess The upper part surrounded by the plate, the end wall, the left and right side walls, and the left and right engaging walls, and a recess formed between the left and right engaging walls are formed. Each of the engagement receiving portions embedded in each of the engagement receiving portions, and a connecting portion connecting the pair of engagement portions. Each of the adjacent floor slabs is arranged so that the end faces of the adjacent floor slabs are adjacent to each other through a gap serving as a joint, and the connecting portions of the connecting members are adjacent to each other. The engagement recesses are inserted from above into the openings between the left and right engagement walls of each engagement receiving portion installed on the end side of the engagement member, and the pair of engagement portions of the connecting member are engaged with the respective engagement recesses. The engaging portion and the engaging recess that are engaged with each other are fixed by a fixing means, and a filler is filled above the joint between the end surfaces of the adjacent floor slabs and the receiving member and the connecting member. In the floor slab connection structure in which adjacent floor slabs are connected to each other, the cross section of the connecting portion of the connecting member positioned so as to cross the joint is regarded as a plurality of rebars divided. Since the cross section of the connecting portion is evaluated by calculating the stress of the cross section, when determining the shape of the cross section of the connecting portion, the cross section can be evaluated inexpensively, quickly, safely and without waste. It became so.
Further, in the above-described floor slab connection structure, it is assumed that a tensile force and a bending force due to the engagement with the engagement portion act on the engagement receiving portion, and the cross section of the side wall of the engagement portion is divided. It is characterized by evaluating the cross section of the side wall by calculating the stress as if it is a multi-stage reinforcing bar. Therefore, when determining the shape of the cross section of the side wall, it is cheap, quick, safe and wasteful. Cross-section evaluation can be performed.
Furthermore, in the floor slab connection structure described above, the tensile force and the bending force due to the engagement between the engagement receiving portion and the engaging portion are present on the cross section of the fixing portion in the vicinity of the boundary position between the engagement receiving portion and the fixing portion. Since it is characterized by evaluating the cross section of the fixing unit by calculating the stress of the cross section of the fixing unit, assuming that it acts, when determining the shape of the cross section of the fixing unit, inexpensively and quickly, Now it is possible to evaluate the cross section safely and without waste.
Further, in the above-described floor slab connection structure, the cross section of the connecting portion of the connecting member positioned so as to cross the joint is regarded as a plurality of divided reinforcing bars, the stress of the cross section is calculated, and the engagement receiving portion In addition, it is assumed that a tensile force and a bending force due to the engagement with the engaging portion are applied, and the stress is calculated by assuming that the cross section of the side wall of the engaging portion is a divided multi-stage reinforcing bar, Assuming that a tensile force and a bending force due to the engagement between the engagement receiving portion and the engagement portion act on the cross section of the fixing portion in the vicinity of the boundary position between the engagement receiving portion and the fixing portion, It is characterized by evaluating the cross section of the joint for floor slab connection by calculating the stress of the cross section. Therefore, when determining the shape of the cross section of the joint for floor slab connection, it is cheap, quick, safe and wasteless. Cross-section evaluation can be performed.

床版接続構造を上方から見た図。The figure which looked at the floor slab connection structure from the upper part. 図1のA−A断面図。AA sectional drawing of FIG. 受部材と繋ぎ部材とを示す斜視図。The perspective view which shows a receiving member and a connection member. 各受部材の係合凹部に繋ぎ部材の一対の係合部を嵌め込んだ状態を示す斜視図。The perspective view which shows the state which fitted the pair of engaging part of the connecting member to the engaging recessed part of each receiving member. 断面の評価方法の説明図。Explanatory drawing of the evaluation method of a cross section. 断面評価の結果を示すグラフ。The graph which shows the result of cross-sectional evaluation. 断面の評価方法の説明図。Explanatory drawing of the evaluation method of a cross section. 断面の評価方法の説明図。Explanatory drawing of the evaluation method of a cross section. 断面評価の結果を示すグラフ。The graph which shows the result of cross-sectional evaluation. 断面評価の結果を示すグラフ。The graph which shows the result of cross-sectional evaluation. 断面の評価方法の説明図。Explanatory drawing of the evaluation method of a cross section. 断面の評価方法の説明図。Explanatory drawing of the evaluation method of a cross section. 断面評価の結果を示すグラフ。The graph which shows the result of cross-sectional evaluation. 従来方法において断面を決定する際に用いる試験装置を示す図。The figure which shows the test apparatus used when determining a cross section in the conventional method. 従来方法において使用する回転ばね係数を説明するための図。The figure for demonstrating the rotation spring coefficient used in a conventional method.

図1に示すように、橋軸直角方向(橋幅方向)Yに並設された図外の複数の主桁上に架け渡されて橋軸方向Xに沿って隣り合う床版10,10同士を連結する継手である床版接続用継手1は、橋軸方向Xに沿って隣り合う各床版10,10の端部11側にそれぞれ設置された受部材2と、橋軸方向Xに沿って隣り合う各床版10,10の端部11側にそれぞれ設置された受部材2を繋ぐ繋ぎ部材3とを備え、ボルト12などの固定手段により繋ぎ部材3と受部材2とが固定されることによって、橋軸方向Xに沿って隣り合う床版10と床版10とを連結する継手である。当該床版接続用継手1は、例えば、型枠に鋳鉄を流し込んで成型される。   As shown in FIG. 1, floor slabs 10, 10 adjacent to each other along a bridge axis direction X are bridged on a plurality of main girders outside the figure arranged side by side in a direction perpendicular to the bridge axis (bridge width direction) Y. The floor slab connecting joint 1, which is a joint for connecting the two, is provided along the bridge axis direction X with the receiving member 2 installed on the end 11 side of each floor slab 10, 10 adjacent along the bridge axis direction X. And connecting members 3 that connect the receiving members 2 installed on the end portions 11 of the adjacent floor slabs 10 and 10, and the connecting members 3 and the receiving members 2 are fixed by fixing means such as bolts 12. This is a joint that connects the floor slab 10 adjacent to each other along the bridge axis direction X. The floor slab connecting joint 1 is molded, for example, by pouring cast iron into a mold.

図3に示すように、受部材2は、繋ぎ部材3に設けられた係合部7が係合する係合凹部4を備えた係合受部5と、床版10のコンクリートに定着される例えば定着筋等の鋼材により形成された定着部6とを備える。
繋ぎ部材3は、互いに隣り合う各床版10の各端部11にそれぞれ設置された受部材2の各係合凹部4,4に係合する一対の係合部7,7と、一対の係合部7,7を繋ぐ連結部8とを備える。
As shown in FIG. 3, the receiving member 2 is fixed to the engagement receiving portion 5 provided with the engaging recess 4 with which the engaging portion 7 provided in the connecting member 3 is engaged, and the concrete of the floor slab 10. For example, it includes a fixing unit 6 formed of a steel material such as fixing bars.
The connecting member 3 includes a pair of engaging portions 7 and 7 that engage with the engaging recesses 4 and 4 of the receiving member 2 that are respectively installed at the end portions 11 of the floor slabs 10 adjacent to each other, and a pair of engaging members. And a connecting portion 8 connecting the joint portions 7 and 7.

受部材2の係合受部5は、底版51と妻壁52と側壁53と係合壁54とを備え、これら底版51と妻壁52と側壁53と係合壁54とで囲まれた係合凹部4を備える。即ち、係合受部5は、底版51と、底版51より立ち上がるように設けられた妻壁52と、妻壁52の左右両側より延長するとともに底版51より立ち上がるように設けられた左右の側壁53,53と、左右の側壁53,53の延長端53e,53eより互いに近づく方向に延長するともに底版51より立ち上がるように設けられた左右の係合壁54,54とを備える。
尚、側壁53の外周面には、せん断抵抗を大きくするとともに床版のコンクリートとの付着力を大きくするために、凹凸部59が形成されている。
The engagement receiving portion 5 of the receiving member 2 includes a bottom plate 51, a wife wall 52, a side wall 53, and an engagement wall 54, and the engagement is surrounded by the bottom plate 51, the wife wall 52, the side wall 53, and the engagement wall 54. A mating recess 4 is provided. That is, the engagement receiving portion 5 includes a bottom plate 51, a wife wall 52 provided so as to rise from the bottom plate 51, and left and right side walls 53 provided so as to extend from both the left and right sides of the wife wall 52 and rise from the bottom plate 51. , 53 and left and right engaging walls 54, 54 provided so as to extend from the extended ends 53 e, 53 e of the left and right side walls 53, 53 toward each other and to rise from the bottom plate 51.
An uneven portion 59 is formed on the outer peripheral surface of the side wall 53 in order to increase the shear resistance and increase the adhesion force with the concrete of the floor slab.

係合凹部4は、底版51と対向する上部開口であって係合部7を係合凹部4に挿入するための挿入口となる係合部挿入用開口41と、妻壁52と対向する開口であって連結部8を挿入するための挿入溝となる連結部挿入用開口42とを備える。
係合部挿入用開口41は、妻壁52の上端と左右の側壁53,53の上端と左右の係合壁54,54の上端とで囲まれた開口であって、上方から繋ぎ部材3の係合部7を係合凹部4に挿入可能な開口により形成される。
連結部挿入用開口42は、左の係合壁54と右の係合壁54との間の間隔により形成されて係合部挿入用開口41から連続して底版51まで到達する溝であって、上方から繋ぎ部材3の連結部8を挿入可能な間隔の溝幅に形成される。
The engaging recess 4 is an upper opening facing the bottom plate 51, an engaging portion insertion opening 41 serving as an insertion port for inserting the engaging portion 7 into the engaging recess 4, and an opening facing the end wall 52. And a connecting portion insertion opening 42 serving as an insertion groove for inserting the connecting portion 8.
The engaging portion insertion opening 41 is an opening surrounded by the upper end of the end wall 52, the upper ends of the left and right side walls 53, 53, and the upper ends of the left and right engaging walls 54, 54. It is formed by an opening through which the engaging portion 7 can be inserted into the engaging recess 4.
The connecting portion insertion opening 42 is a groove formed by a gap between the left engagement wall 54 and the right engagement wall 54 and continuously reaching the bottom plate 51 from the engagement portion insertion opening 41. Further, the groove 8 is formed to have a groove width at an interval where the connecting portion 8 of the connecting member 3 can be inserted from above.

受部材2は、係合凹部4の係合部挿入用開口41及び連結部挿入用開口42を外部に露出させた状態で係合受部5が床版10の端部11に埋め込まれ、妻壁52から床版10の中央側に延長するように設けられた定着部6が床版10に埋め込まれている。
即ち、受部材2の係合凹部4の係合部挿入用開口41及び連結部挿入用開口42が外部に露出して他の部分が床版10のコンクリートに埋設されるように受部材2を型枠に設置した後に型枠内にコンクリートを流し込んで硬化させることで、端部11側に受部材2が設置された床版10が形成される。
尚、受部材2は、床版10の橋軸直角方向Yに沿って延長する端部11において橋軸直角方向Yに沿って所定の間隔を隔てて複数個埋設されている。
In the receiving member 2, the engaging receiving portion 5 is embedded in the end portion 11 of the floor slab 10 with the engaging portion inserting opening 41 and the connecting portion inserting opening 42 of the engaging recessed portion 4 exposed to the outside. A fixing unit 6 provided so as to extend from the wall 52 to the center side of the floor slab 10 is embedded in the floor slab 10.
That is, the receiving member 2 is placed so that the engaging portion insertion opening 41 and the connecting portion insertion opening 42 of the engaging recess 4 of the receiving member 2 are exposed to the outside and the other portions are embedded in the concrete of the floor slab 10. The floor slab 10 in which the receiving member 2 is installed on the end portion 11 side is formed by pouring concrete into the mold after being installed in the mold and curing it.
Note that a plurality of receiving members 2 are embedded at predetermined intervals along the bridge axis perpendicular direction Y at the end portion 11 extending along the bridge axis perpendicular direction Y of the floor slab 10.

繋ぎ部材3の係合部7は、係合凹部4の内周壁に対向する外周壁を備えた構成であり、妻壁52の内壁面と左右の側壁53,53の内壁面とに対向する外壁面71を備えた固定部72と、左右の係合壁54,54の内壁面55,55に対向する係合壁面73を備えた係合壁部74とを備える。
固定部72には、当該固定部72を上下に貫通するボルト挿入孔75が形成されている。
尚、係合受部5の左右の係合壁54,54の内壁面55,55は、底版51の板面と直交する面により形成された左右の係合壁54,54の外壁面56,56に対して傾斜する傾斜面に形成されている。この傾斜面は、上部の係合部挿入用開口41側から底版51に近付くほど係合壁54の外壁面56との間の距離が漸次大きくなるような傾斜面に形成されている。そして、一対の係合部7,7の各係合壁面73,73は、繋ぎ部材3の上下方向に延長する中心線31を基準として各係合壁面73,73間の距離が上端から下端に近付くにつれて漸次大きくなるように形成されている。
The engaging portion 7 of the connecting member 3 has an outer peripheral wall that faces the inner peripheral wall of the engaging recess 4, and is an outer surface that faces the inner wall surface of the end wall 52 and the inner wall surfaces of the left and right side walls 53, 53. The fixing part 72 provided with the wall surface 71 and the engaging wall part 74 provided with the engaging wall surface 73 which opposes the inner wall surfaces 55 and 55 of the left and right engaging walls 54 and 54 are provided.
The fixing portion 72 is formed with a bolt insertion hole 75 that penetrates the fixing portion 72 up and down.
Note that the inner wall surfaces 55, 55 of the left and right engagement walls 54, 54 of the engagement receiving portion 5 are outer wall surfaces 56, 56 of the left and right engagement walls 54, 54 formed by a surface orthogonal to the plate surface of the bottom plate 51. 56 is formed on an inclined surface inclined with respect to 56. The inclined surface is formed in such an inclined surface that the distance from the outer wall surface 56 of the engaging wall 54 gradually increases as it approaches the bottom plate 51 from the upper engaging portion insertion opening 41 side. And as for each engagement wall surface 73 of the pair of engaging parts 7 and 7, the distance between each engagement wall surface 73 and 73 is based on the centerline 31 extended to the up-down direction of the connecting member 3 from an upper end to a lower end. It is formed so as to gradually increase as it approaches.

従って、橋軸方向Xに沿って隣り合う各床版10,10の端部11,11にそれぞれ埋設された各係合受部5,5の各係合凹部4,4の上方から繋ぎ部材3の各係合部7,7を各係合凹部4,4の上部の係合部挿入用開口41を介して各係合凹部4,4内に挿入するとともに、繋ぎ部材3の連結部8を各係合凹部4,4の連結部挿入用開口42に挿入していくことで、一対の係合部7,7の各係合壁面73,73が左右の係合壁54,54の内壁面55,55にガイドされながら一対の係合部7,7がそれぞれ係合凹部4,4内に嵌め込まれることになる(図2,図4参照)。
即ち、各係合受部5の左右の係合壁54,54が楔となって繋ぎ部材3の一対の係合部7,7間に嵌まり込むコッター式継手が構成されることになる。
そして、図2に示すように、係合凹部4内に嵌め込まれた係合部7の固定部に形成されたボルト挿入孔75に固定手段としてのボルト12を挿入し、底版51に形成されたねじ孔58にボルト12を締結することによって、繋ぎ部材3と係合受部5とが固定される。
Therefore, the connecting member 3 from above the engagement recesses 4 and 4 of the engagement receiving portions 5 and 5 embedded in the end portions 11 and 11 of the floor slabs 10 and 10 adjacent along the bridge axis direction X, respectively. The engaging portions 7 and 7 are inserted into the engaging concave portions 4 and 4 through the engaging portion insertion openings 41 on the upper portions of the engaging concave portions 4 and 4, and the connecting portion 8 of the connecting member 3 is inserted. The engagement wall surfaces 73 and 73 of the pair of engagement portions 7 and 7 are inserted into the connection portion insertion openings 42 of the engagement recesses 4 and 4, so that the inner wall surfaces of the left and right engagement walls 54 and 54. The pair of engaging portions 7 and 7 are fitted into the engaging recesses 4 and 4 while being guided by 55 and 55 (see FIGS. 2 and 4).
That is, a cotter-type joint is formed in which the left and right engagement walls 54, 54 of each engagement receiving portion 5 become wedges and are fitted between the pair of engagement portions 7, 7 of the connecting member 3.
Then, as shown in FIG. 2, the bolt 12 as the fixing means is inserted into the bolt insertion hole 75 formed in the fixing portion of the engaging portion 7 fitted in the engaging recess 4, and the bottom plate 51 is formed. By fastening the bolt 12 to the screw hole 58, the connecting member 3 and the engagement receiving portion 5 are fixed.

橋軸方向Xに沿って隣り合う床版10,10同士が床版接続用継手1で接続された後、固定された繋ぎ部材3と係合受部5との上方にモルタル等の充填材16を充填するとともに、隣り合う床版10,10の端面18,18間の隙間である目地15に充填材16を充填することにより、互いに隣り合う床版10,10同士の接合が完了する。   After the floor slabs 10, 10 adjacent to each other along the bridge axis direction X are connected by the floor slab connection joint 1, a filler 16 such as mortar is disposed above the fixed connecting member 3 and the engagement receiving portion 5. And filling the filling material 16 into the joint 15 which is a gap between the end faces 18 and 18 of the adjacent floor slabs 10 and 10 completes the joining of the floor slabs 10 and 10 adjacent to each other.

即ち、隣り合う各床版10,10の端面18,18同士を目地15となる隙間を介して互いに隣り合うように配置して、繋ぎ部材3の連結部8を隣り合う各床版10,10の端部11,11側に設置された各係合受部5,5の左右の係合壁54,54間の開口である連結部挿入用開口42に上方から挿入することで繋ぎ部材3の一対の係合部7,7を各係合凹部4,4に係合させて、係合凹部4に係合された係合部7と係合凹部4とをボルト12等の固定手段で固定するとともに、隣り合う各床版10,10の端面18,18間の目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填することにより、橋軸方向Xに沿って隣り合う床版10と床版10とが連結された床版接続構造が構成される。この場合、係合部7と係合凹部4とをボルト12等の固定手段で固定した後に目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填してもよいし、目地15及び受部材2と繋ぎ部材3との上方に充填材16を充填した後に係合部7と係合凹部4とをボルト12等の固定手段で固定するようにしてもよい。
尚、係合受部5の係合凹部4を上から見た形状が「C」状に似ていることから、受部材2の係合受部5はC型金物と呼ばれる場合がある。また、繋ぎ部材3の係合壁部74と連結部8とを上から見た形状が「H」状に似ていることから、繋ぎ部材3はH型金物と呼ばれる場合がある。
That is, the end surfaces 18 and 18 of the adjacent floor slabs 10 and 10 are arranged so as to be adjacent to each other with a gap serving as a joint 15, and the connecting portion 8 of the connecting member 3 is adjacent to each of the adjacent floor slabs 10 and 10. The connecting member 3 is inserted into the connecting portion insertion opening 42, which is an opening between the left and right engaging walls 54, 54 of the engaging receiving portions 5, 5 installed on the end portions 11, 11 side of the connecting member 3 from above. A pair of engaging portions 7 and 7 are engaged with the engaging concave portions 4 and 4, and the engaging portion 7 engaged with the engaging concave portion 4 and the engaging concave portion 4 are fixed by a fixing means such as a bolt 12. At the same time, the filler 15 is filled along the bridge axis direction X by filling the joint 15 between the end faces 18 and 18 of the adjacent floor slabs 10 and 10 and the receiving member 2 and the connecting member 3. A floor slab connection structure in which the floor slab 10 and the floor slab 10 are connected is configured. In this case, after the engaging portion 7 and the engaging recess 4 are fixed by a fixing means such as a bolt 12, the filler 16 may be filled above the joint 15, the receiving member 2, and the connecting member 3. 15 and the engaging member 7 and the engaging recess 4 may be fixed by a fixing means such as a bolt 12 after the filler 16 is filled above the receiving member 2 and the connecting member 3.
In addition, since the shape which looked at the engagement recessed part 4 of the engagement receiving part 5 from the top resembles "C" shape, the engagement receiving part 5 of the receiving member 2 may be called a C-type metal fitting. Moreover, since the shape which looked at the engaging wall part 74 and the connection part 8 of the connection member 3 from the top resembles "H" shape, the connection member 3 may be called an H-type metal fitting.

実施形態では、橋軸方向Xに沿って隣り合うRC構造(鉄筋コンクリート構造)の各床版10,10の端部11,11側にそれぞれ受部材2,2が組み込まれていて、これら受部材2,2を目地部分において繋ぎ部材3で連結しているので、当該目地部分は各床版10,10のRC構造の挙動に連動すると考え、当該繋ぎ部材3が位置される目地部分を平面保持(平面を形成していた任意位置の切断面は変形後も平面を保持する)の仮定が成立するRC構造と見做して当該目地部分の応力を計算することで、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状を評価するようにした。
具体的には、上述した床版接続構造において、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状を決定する際に、目地に充填された充填材16を圧縮材と見做すとともに、当該繋ぎ部材3の連結部8の断面8Aを、分割された複数段の鉄筋と見做して、断面8Aの応力を計算することにより、断面8Aの経済性、安全性を評価するようにした。
In the embodiment, receiving members 2 and 2 are incorporated in the end portions 11 and 11 of the floor slabs 10 and 10 of RC structures (reinforced concrete structures) adjacent to each other along the bridge axis direction X, respectively. , 2 are connected to each other by the connecting member 3 at the joint portion, so that the joint portion is considered to be linked to the behavior of the RC structure of each floor slab 10, 10 and the joint portion where the connecting member 3 is located is held flat ( The cutting plane at an arbitrary position that forms a plane retains the plane even after deformation) and is calculated so as to cross the joint 15 by calculating the stress of the joint portion assuming that the assumption is true. The shape of the cross section 8A of the connecting portion 8 of the connecting member 3 to be performed was evaluated.
Specifically, in the above-described floor slab connection structure, when the shape of the cross section 8A of the connecting portion 8 of the connecting member 3 positioned so as to cross the joint 15 is determined, the filler 16 filled in the joint is compressed. By considering the cross section 8A of the connecting portion 8 of the connecting member 3 as a plurality of divided reinforcing bars, and calculating the stress of the cross section 8A, the cost and safety of the cross section 8A are considered. The sex was evaluated.

RC構造と見做した当該目地部分において、曲げモーメントに対するコンクリートの応力σc、圧縮側及引張側の鉄筋の応力σsiを求める。σcは以下の数式1により求まる。σsiは以下の数式2により求まる。
ここで、xは中立軸の位置であり、実施形態では、目地部分に位置される繋ぎ部材3の連結部8の断面8Aを分割された複数段の鉄筋(複層鉄筋)と見做すので、以下の数式3により求める。
また、Iiは断面二次モーメントであり、以下の数式4により求まる。また、nはヤング係数比である。Mは曲げモーメントである。
また、図5に示すように、Aiは断面8Aを分割した各分割部分の断面積、bは断面8Aの断面幅、diは床版10の上面10tから各分割部分の中心位置(便宜上、各分割部分の断面の真ん中に鉄筋があると仮定する)までの距離である。
In the joint portion regarded as an RC structure, the stress σc of the concrete with respect to the bending moment and the stress σsi of the reinforcing bar on the compression side and the tension side are obtained. σc is obtained by the following formula 1. σsi is obtained by the following formula 2.
Here, x is the position of the neutral axis, and in the embodiment, the cross section 8A of the connecting portion 8 of the connecting member 3 positioned at the joint portion is regarded as a divided multi-stage reinforcing bar (multi-layered reinforcing bar). The following equation 3 is used.
In addition, Ii is a cross-sectional second moment and is obtained by the following mathematical formula 4. N is a Young's modulus ratio. M is a bending moment.
Further, as shown in FIG. 5, Ai is a cross-sectional area of each divided portion obtained by dividing the cross section 8A, b is a cross-sectional width of the cross section 8A, di is a center position of each divided portion from the upper surface 10t of the floor slab 10 (Assuming that there is a reinforcing bar in the middle of the cross section of the divided portion).

数式1Formula 1

Figure 2018159233
Figure 2018159233

数式2Formula 2

Figure 2018159233
Figure 2018159233

数式3Formula 3

Figure 2018159233
Figure 2018159233

数式4Formula 4

Figure 2018159233
Figure 2018159233

従って、数式3により、RC構造と見做した目地部分の中立軸の位置xを求めるとともに、数式4により連結部8の断面8Aを分割した複数段の各鉄筋の部分の各断面二次モーメントIiを求め、これらを数式1,2に代入して、コンクリートの応力σc、連結部8の断面8Aを分割した複数段の各鉄筋の位置での応力σsiを求める。   Accordingly, the position x of the neutral axis of the joint portion regarded as the RC structure is obtained by Expression 3, and the secondary moments Ii of the respective sections of the reinforcing bars in the plurality of stages obtained by dividing the cross section 8A of the connecting portion 8 by Expression 4. These are substituted into Equations 1 and 2 to determine the stress σc of the concrete and the stress σsi at the position of each of the rebars in the plurality of stages obtained by dividing the cross section 8A of the connecting portion 8.

実施形態のように、連結部8の断面8Aを分割された複数段の鉄筋と見做すようにした理由は、RC構造と見做した目地部分の1か所に鉄筋があると見做した場合には、断面二次モーメントが小さく計算されて、応力が大きくなり、無駄に大きな断面を設計してしまうことになり、合理的な設計ができないからである。一方、実施形態のように、連結部8の断面8Aを分割された複数段の鉄筋と見做すようにすれば、実現象に合った合理的な設計が可能となる。また、目地部分を平面保持の仮定が成立するRC構造と見做すので、分割数iは多くても良く、また、任意の断面形状であっても評価できるようになる。例えば、1つの分割区域は、10mm〜15mmの範囲で区切るようにすればよい。   The reason why the cross section 8A of the connecting portion 8 is regarded as a divided multi-level reinforcing bar as in the embodiment is that the reinforcing bar is considered to be in one place of the joint portion considered as the RC structure. In this case, the second moment of the cross section is calculated to be small, the stress becomes large, and a large cross section is designed unnecessarily, and a rational design cannot be performed. On the other hand, if the cross section 8A of the connecting portion 8 is regarded as a plurality of divided reinforcing bars as in the embodiment, a rational design that matches the actual phenomenon is possible. In addition, since the joint portion is regarded as an RC structure in which the assumption of plane maintenance is established, the number of divisions i may be large, and even an arbitrary cross-sectional shape can be evaluated. For example, one divided area may be divided within a range of 10 mm to 15 mm.

また、隣り合う各床版10,10の端部11,11側に設置された各係合受部5,5の左右の側壁53,53及び底版51の断面を評価する際に、係合受部5に、図7に示すような、係合部7との係合による引張力T1と、曲げモーメントM1とが作用すると想定し、かつ、図8に示すように、側壁53の断面53Aを分割された複数段の鉄筋と見做して応力を計算することにより、断面53Aの経済性、安全性を評価するようにした。
曲げモーメントM1が作用する際の断面53Aの応力は、断面53Aを分割された複数段の鉄筋と見做すため、上述した連結部8の断面8Aの応力を求めた方法と同様の方法で算出する。
また、引張力T1が作用する際の断面53Aの応力は、既知の構造計算により、係合部7が係合する係合壁54の上端と下端の応力を求め、当該係合壁54の上端と下端にかけての三角形応力分布から、断面54Aを分割した複数段の各鉄筋の位置での応力を求める。
そして、断面54Aを分割した複数段の各鉄筋の位置毎に、曲げモーメントM1に対する応力と引張力T1に対する応力とを足した合成応力を求めて、断面53Aの経済性、安全性を評価するようにした。
Further, when evaluating the cross sections of the left and right side walls 53, 53 and the bottom slab 51 of the respective engagement receiving portions 5, 5 installed on the end portions 11, 11 side of the adjacent floor slabs 10, 10, the engagement receiving portions are evaluated. It is assumed that a tensile force T1 due to the engagement with the engaging portion 7 and a bending moment M1 as shown in FIG. 7 act on the portion 5, and as shown in FIG. The economics and safety of the cross section 53A are evaluated by calculating the stress by considering it as a divided multi-stage reinforcing bar.
The stress of the cross section 53A when the bending moment M1 acts is calculated by the same method as the method for obtaining the stress of the cross section 8A of the connecting portion 8 described above in order to regard the cross section 53A as a multi-stage reinforcing bar. To do.
The stress of the cross section 53A when the tensile force T1 is applied is obtained by calculating the stress at the upper end and the lower end of the engaging wall 54 with which the engaging portion 7 is engaged by known structural calculation. And the stress at the position of each of the rebars in a plurality of stages obtained by dividing the cross section 54A from the triangular stress distribution toward the lower end.
Then, the composite stress obtained by adding the stress for the bending moment M1 and the stress for the tensile force T1 is obtained for each position of each of the rebars divided from the cross section 54A to evaluate the economy and safety of the cross section 53A. I made it.

また、係合受部5と定着部6との境界位置近傍における定着筋などの定着部6の断面6Aを評価する際に、図12に示す断面6Aに、図11に示すような、係合受部5と係合部7との係合による引張力T1と、曲げM2とが作用すると想定して、当該断面6Aの応力を計算することにより、断面6Aの経済性、安全性を評価するようにした。
曲げモーメントM2が作用する際の断面6Aの応力は、上述した式(2)により求める。尚、図12において60は上筋、61は下筋である。この上筋60の断面、定着部6の断面6A、下筋61の断面を、複数鉄筋として、これら断面の応力を上述した式(2)により求めても良い。
また、引張力T1が作用する際の断面6Aの応力は、既知の構造計算に基づいて求める。
そして、曲げモーメントM2に対する応力と引張力T1に対する応力とを足した合成応力を求めて、断面6Aの経済性、安全性を評価するようにした。
Further, when evaluating the cross section 6A of the fixing unit 6 such as the fixing streak in the vicinity of the boundary position between the engagement receiving unit 5 and the fixing unit 6, the cross section 6A shown in FIG. Assuming that the tensile force T1 due to the engagement between the receiving part 5 and the engaging part 7 and the bending M2 act, the stress and the safety of the cross section 6A are evaluated by calculating the stress of the cross section 6A. I did it.
The stress of the cross section 6A when the bending moment M2 acts is obtained by the above-described equation (2). In FIG. 12, reference numeral 60 denotes an upper line, and 61 denotes a lower line. The cross section of the upper bar 60, the cross section 6A of the fixing unit 6 and the cross section of the lower bar 61 may be a plurality of reinforcing bars, and the stress of these cross sections may be obtained by the above-described equation (2).
Further, the stress of the cross section 6A when the tensile force T1 acts is obtained based on a known structural calculation.
And the synthetic stress which added the stress with respect to the bending moment M2 and the stress with respect to the tensile force T1 was calculated | required, and it was made to evaluate the economical efficiency and safety | security of the cross section 6A.

実施形態による断面評価方法により製作した床版接続用継手1の実際の挙動が計算値(理論値)に対応しているかどうかを検証した。   It was verified whether or not the actual behavior of the floor slab connection joint 1 manufactured by the cross-section evaluation method according to the embodiment corresponds to the calculated value (theoretical value).

図6は、実施形態による断面評価方法により製作した床版接続用継手1における断面8Aの位置での曲げ−応力の関係を示す図である。
尚、図6において、計測値とは、実施形態の断面評価方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面8Aの応力を、図5に示す断面8Aの位置における6つの計測点Gに歪ゲージを取付けて計測した歪に基づいて求めた値である。尚、応力は、図5に示す断面8Aの位置における6つの計測点Gで計測した歪値の最大値を、応力−歪曲線に照合して求めた。図6の継手1は一方の床版接続用継手1の断面8Aでの計測値、継手2は他方の床版接続用継手1の断面8Aでの計測値である。
また、図6において、計算値とは、実施形態の断面評価方法で製作した床版接続用継手1の断面8Aの曲げモーメントMに対する応力を計算した値(理論値)である。尚、計算値は、断面8Aに最初からひび割れが起きているとの前提での計算値である。
図6からわかるように、計測値は、断面8Aにひび割れが生じるまでは全断面有効の勾配に沿った値を示し、曲げモーメント44kNm程度で断面8Aにひび割れが生じた後は、徐々に計算値に近付いていくことが分かった。即ち、計測値の応力は、計算値の応力よりも小さく、かつ、断面8Aにひび割れが生じた後は、徐々に計算値に近付いていくことから、実施形態による断面評価方法により製作した床版接続用継手1では、計算値よりも安全で、かつ、無駄の無い断面8Aを設計できたことがわかる。即ち、断面8Aの設計を合理的に行えることが実証できた。
FIG. 6 is a diagram showing a bending-stress relationship at the position of the cross section 8A in the floor slab connection joint 1 manufactured by the cross section evaluation method according to the embodiment.
In FIG. 6, the measured value refers to a test body in which two floor slabs having a size of 1000 mm × 1450 mm are connected using the two floor slab connecting joints 1 manufactured by the cross-sectional evaluation method of the embodiment. FIG. 5 shows the stress of the cross section 8A with respect to the bending moment M when the test specimen is loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connection joint 1. It is a value obtained based on the strain measured by attaching strain gauges to the six measurement points G at the position of the cross section 8A shown. The stress was obtained by collating the maximum value of the strain values measured at the six measurement points G at the position of the cross section 8A shown in FIG. 5 with the stress-strain curve. The joint 1 in FIG. 6 is a measured value at the cross section 8A of one floor slab connecting joint 1, and the joint 2 is a measured value at the cross section 8A of the other floor slab connecting joint 1.
In FIG. 6, the calculated value is a value (theoretical value) obtained by calculating the stress with respect to the bending moment M of the cross section 8 </ b> A of the floor slab connection joint 1 manufactured by the cross section evaluation method of the embodiment. The calculated value is a calculated value on the assumption that a crack has occurred in the cross section 8A from the beginning.
As can be seen from FIG. 6, the measured value shows a value along the effective gradient of the entire cross section until a crack occurs in the cross section 8A, and gradually increases after the crack occurs in the cross section 8A at a bending moment of about 44 kNm. I found out that I was approaching. That is, the stress of the measured value is smaller than the calculated value of stress, and after the crack is generated in the cross section 8A, it gradually approaches the calculated value. Therefore, the floor slab manufactured by the cross section evaluation method according to the embodiment is used. It can be seen that the connecting joint 1 was able to design a cross section 8A that is safer and less wasteful than the calculated value. That is, it was proved that the design of the cross section 8A can be rationally performed.

従来、目地15を横切るように位置される繋ぎ部材3の連結部8の断面8Aの形状は、図14に示すような実験装置を用いて、図15に示すθ及びθを計測し、以下の数式5に基づいて回転角θを算出し、かつ、以下の数式6に基づいて算出した回転ばね係数Kθを用いて、構造計算を行うことにより、決定するようにしていた。尚、図14の実験装置において、10Sは床版の試験体、80はジャッキ、81はロードセル、82は載荷板、83は反力板、84は支持脚、85変位計である。 Conventionally, the shape of the cross section 8A of the connecting portion 8 of the connecting member 3 positioned so as to cross the joint 15 is measured by using an experimental apparatus as shown in FIG. 14 and θ 1 and θ 2 shown in FIG. The rotation angle θ is calculated based on the following formula 5 and is determined by performing structural calculation using the rotation spring coefficient K θ calculated based on the following formula 6. 14, 10S is a floor slab specimen, 80 is a jack, 81 is a load cell, 82 is a loading plate, 83 is a reaction plate, 84 is a support leg, and 85 displacement meter.

数式5Formula 5

Figure 2018159233
Figure 2018159233

数式6Formula 6

Figure 2018159233
Figure 2018159233

しかしながら、床版支間長等の条件により、発生する断面力が異なってくるため、従来のように実験によって断面8Aの形状を設計する場合、条件が変わる毎に実験を行う必要があり、費用及び期間がかかっていた。
実施形態によれば、条件が変わる毎に実験を行う必要がなくなり、条件が変わる毎に計算により断面8Aの形状を容易且つ合理的に設計することができるようになる。
However, since the generated cross-sectional force varies depending on conditions such as the length of the slab span, when designing the shape of the cross section 8A by experiment as in the prior art, it is necessary to perform an experiment each time the condition changes, and the cost and It took a long time.
According to the embodiment, it is not necessary to perform an experiment every time the condition changes, and the shape of the cross section 8A can be easily and rationally designed by calculation every time the condition changes.

図9は、実施形態による断面評価方法により製作した床版接続用継手1の断面53Aの位置における各計測点Gでの降伏時の応力分布を示した図である。
図10は、実施形態による断面評価方法により製作した床版接続用継手1の断面53Aの位置における最大応力発生位置(図8に示す上下方向の下から2番目の計測点)での曲げ−応力の関係を示す図である。
図9の計測値とは、上述したように、実施形態の断面評価方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面53Aの応力を、図8に示す断面53A位置における6つの計測点Gに歪ゲージを取付けて計測した歪値に基づいて求めた値である。図10の計測値とは、図8に示す上下方向の下から2番目の計測点Gで計測した歪に基づいて求めた値である。尚、応力は、図8に示す上下方向での3つの計測点Gに位置する左右一対の計測点Gで計測された歪の平均値を、応力−歪曲線に照合して求めた。
また、図9での計算値とは、実施形態の断面評価方法で製作した床版接続用継手1の断面53Aの位置における各計測点での終局時の応力分布を計算した値(理論値)である。
また、図10での計算値とは、実施形態の断面評価方法で製作した床版接続用継手1の断面53Aの曲げモーメントM1、引張力T1に対する合成応力を計算した値(理論値)である。
図9からわかるように、計測値による応力分布は、計算値(理論値)に近くなることがわかった。また、図10からわかるように、計測値による応力は、計算値(理論値)に近くなることがわかった。
即ち、実施形態による断面評価方法により製作した断面53Aを備えた床版接続用継手1では、安全で、かつ、無駄の無い断面53Aを設計できたことがわかる。即ち、断面53Aの設計を合理的に行えることが実証できた。
FIG. 9 is a diagram showing the stress distribution at the time of yielding at each measurement point G at the position of the cross section 53A of the floor slab connection joint 1 manufactured by the cross section evaluation method according to the embodiment.
FIG. 10 shows the bending stress at the maximum stress generation position (second measurement point from the bottom in the vertical direction shown in FIG. 8) at the position of the cross section 53A of the floor slab connection joint 1 manufactured by the cross section evaluation method according to the embodiment. It is a figure which shows the relationship.
The measured value in FIG. 9 is a test body in which two floor slabs having a size of 1000 mm × 1450 mm are connected using the two floor slab connecting joints 1 manufactured by the cross-sectional evaluation method of the embodiment as described above. The stress of the cross-section 53A with respect to the bending moment M when the specimen is loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connection joint 1 is shown in FIG. 8 is a value obtained based on strain values measured by attaching strain gauges to six measurement points G at the position of the cross section 53A shown in FIG. The measured value in FIG. 10 is a value obtained based on the strain measured at the second measurement point G from the bottom in the vertical direction shown in FIG. In addition, the stress was calculated | required by collating the average value of the strain measured by the left-right paired measurement point G located in the three measurement points G in the up-down direction shown in FIG. 8 with the stress-strain curve.
Moreover, the calculated value in FIG. 9 is a value (theoretical value) calculated from the stress distribution at the time of measurement at each measurement point at the position of the cross section 53A of the floor slab connection joint 1 manufactured by the cross section evaluation method of the embodiment. It is.
Further, the calculated values in FIG. 10 are values (theoretical values) obtained by calculating the combined stress with respect to the bending moment M1 and tensile force T1 of the cross section 53A of the floor slab connection joint 1 manufactured by the cross section evaluation method of the embodiment. .
As can be seen from FIG. 9, it was found that the stress distribution by the measured value is close to the calculated value (theoretical value). Further, as can be seen from FIG. 10, it was found that the stress due to the measured value is close to the calculated value (theoretical value).
That is, it can be seen that the floor slab connecting joint 1 provided with the cross-section 53A manufactured by the cross-section evaluation method according to the embodiment can design a safe and lean cross-section 53A. That is, it was proved that the design of the cross section 53A can be rationally performed.

従来、側壁53の断面53Aの形状は、経験的に、上述した連結部8の断面8Aよりも大きな断面とするようにしていただけであるので、安全性に問題があったが、実施形態によれば、側壁53の断面53Aの応力を上記のように計算して断面53Aを評価するようにしたので、側壁53の断面53Aの形状を決定するに際して、安全で、かつ、無駄の無い合理的な設計を行えるようになった。   Conventionally, since the shape of the cross section 53A of the side wall 53 is empirically set to be larger than the cross section 8A of the connecting portion 8 described above, there has been a problem in safety. For example, the stress of the cross section 53A of the side wall 53 is calculated as described above to evaluate the cross section 53A. Therefore, when determining the shape of the cross section 53A of the side wall 53, it is safe and reasonable. Now you can design.

図13は、実施形態による断面評価方法により製作した床版接続用継手1における断面6Aの位置での曲げ−引張力の関係を示す図である。
図13において、計測値とは、上述したように、実施形態の断面評価方法によって製作した2つの床版接続用継手1を用いて、1000mm×1450mmの大きさの2つの床版を接続した試験体を作製し、この試験体において各床版接続用継手1の受部材2と定着部6との境界線に沿った2つの載荷位置に載荷した際の曲げモーメントMに対する断面6Aの引張力を、図11に示す係合受部5と定着部6との境界位置での定着部(定着筋)6の上下側の2つの計測点Gに歪ゲージを取付けて計測した際の計測値(歪値)に基づいて求めた値である。即ち、当該引張力は、図11に示す2つの計測点Gで計測された歪値の平均値にヤング係数比nを乗じて断面6Aの応力σsを求め、さらに当該応力σsに断面6Aの断面積を乗じて求めた値である。
また、計算値とは、実施形態の断面評価方法で製作した床版接続用継手1の断面6Aの曲げモーメントMに対する引張力を計算した値(理論値)である。
また、従来の計算値とは、断面6Aに係合受部5と係合部7との係合による引張力T1のみが作用すると想定した従来の手法による引張力を計算した値(理論値)である。
尚、図13中の不連続部分は、曲げによるひび割れが生じたことを示している。
図13からわかるように、実施形態による断面評価方法により製作した断面6Aを備えた床版接続用継手1では、計測値による引張力が、計算値(理論値)に近くなることがわかった。
FIG. 13 is a diagram illustrating a relationship between the bending force and the tensile force at the position of the cross section 6A in the floor slab connecting joint 1 manufactured by the cross section evaluation method according to the embodiment.
In FIG. 13, as described above, the measured value is a test in which two floor slabs having a size of 1000 mm × 1450 mm are connected using the two joints for floor slab connection 1 manufactured by the cross-sectional evaluation method of the embodiment. The tensile force of the section 6A with respect to the bending moment M when the test body is loaded at two loading positions along the boundary line between the receiving member 2 and the fixing portion 6 of each floor slab connection joint 1 is prepared. 11, measured values (strains) when strain gauges are attached to two measurement points G on the upper and lower sides of the fixing portion (fixing muscle) 6 at the boundary position between the engagement receiving portion 5 and the fixing portion 6 shown in FIG. Value). That is, the tensile force is obtained by multiplying the average value of the strain values measured at the two measurement points G shown in FIG. 11 by the Young's modulus ratio n to obtain the stress σs of the cross section 6A, and further, the stress σs is obtained by breaking the cross section 6A. The value obtained by multiplying the area.
The calculated value is a value (theoretical value) obtained by calculating the tensile force with respect to the bending moment M of the cross section 6A of the floor slab connection joint 1 manufactured by the cross section evaluation method of the embodiment.
Further, the conventional calculation value is a value (theoretical value) calculated by a conventional method assuming that only the tensile force T1 due to the engagement between the engagement receiving portion 5 and the engagement portion 7 acts on the cross section 6A. It is.
In addition, the discontinuous part in FIG. 13 has shown that the crack by bending produced.
As can be seen from FIG. 13, in the floor slab connecting joint 1 having the cross section 6A manufactured by the cross section evaluation method according to the embodiment, it was found that the tensile force based on the measured value is close to the calculated value (theoretical value).

即ち、従来は、係合受部5と係合部7との係合による引張力T1のみが作用すると想定した応力のみを考慮していたため、断面力を過小評価してしまう虞があって安全性に問題があったが、実施形態によれば、定着部6の断面6Aの応力を上記のように計算して断面6Aを評価するようにしたので、定着部6の断面6Aの形状を決定するに際して、安全で、かつ、無駄の無い断面6Aを設計できたことがわかる。即ち、断面6Aの設計を合理的に行えることが実証できた。   That is, in the prior art, only the stress assumed that only the tensile force T1 due to the engagement between the engagement receiving portion 5 and the engagement portion 7 acts is taken into consideration, so there is a risk that the cross-sectional force may be underestimated. However, according to the embodiment, since the stress of the cross section 6A of the fixing unit 6 is calculated as described above and the cross section 6A is evaluated, the shape of the cross section 6A of the fixing unit 6 is determined. It can be seen that the cross section 6A can be designed safely and without waste. That is, it was proved that the design of the cross section 6A can be rationally performed.

以上のように、本願発明によれば、床版接続用継手1の各部分の断面の評価を上述したように行うことで、床版接続用継手1の各部分の断面を決定するに際して、安価かつ迅速に、安全かつ無駄の無い断面評価、即ち、合理的な設計を行えるようになった。   As described above, according to the present invention, the evaluation of the cross section of each part of the floor slab connection joint 1 is performed as described above. In addition, the cross-section evaluation, that is, a reasonable design can be performed quickly and safely.

尚、受部材2を、床版10の橋軸方向Xに沿って延長する端部において橋軸方向Xに沿って所定の間隔を隔てて複数個埋設して、橋軸直角方向(橋幅方向)Yに沿って隣り合う床版10,10同士を連結するように構成された床版接続用継手1の断面評価も同様に行える。
即ち、本願発明の床版接続用継手の断面評価方法は、床版接続用継手1は、橋軸直角方向(橋幅方向)Yに沿って隣り合う各床版10,10の端部側にそれぞれ設置された受部材2と、橋軸直角方向Yに沿って隣り合う各床版10,10の端部側にそれぞれ設置された受部材2を繋ぐ繋ぎ部材3とを備え、ボルト12などの固定手段により繋ぎ部材3と受部材2とが固定されることによって、橋軸直角方向Yに沿って隣り合う床版10と床版10とを連結する床版接続用継手1の断面評価も同様に行える。
A plurality of receiving members 2 are embedded at predetermined intervals along the bridge axis direction X at the end portion extending along the bridge axis direction X of the floor slab 10 so as to be perpendicular to the bridge axis (bridge width direction). ) The cross-sectional evaluation of the floor slab connecting joint 1 configured to connect the floor slabs 10 adjacent to each other along Y can be performed in the same manner.
That is, according to the method for evaluating the cross section of a floor slab connection joint according to the present invention, the floor slab connection joint 1 is disposed on the end side of each floor slab 10, 10 adjacent along the bridge axis perpendicular direction (bridge width direction) Y. A receiving member 2 installed on each side, and a connecting member 3 connecting the receiving members 2 installed on the end sides of the floor slabs 10 and 10 adjacent to each other along the direction Y perpendicular to the bridge axis. The cross-sectional evaluation of the floor slab connecting joint 1 that connects the floor slabs 10 adjacent to each other along the direction Y perpendicular to the bridge axis by fixing the connecting member 3 and the receiving member 2 by the fixing means is also the same. It can be done.

また、上記では、繋ぎ部材3と受部材2とがボルト12で固定されることで係合受部4の左右の係合壁54,54と繋ぎ部材3の係合壁面73とが係合するように構成された床版接続用継手1を例示したが、受部材2の妻壁52の内壁面と繋ぎ部材3の外壁面71との間に間隙を形成して、当該間隙に上方から楔を嵌入して繋ぎ部材3と受部材2と固定することで、当該楔を介して係合受部4の左右の係合壁54,54と繋ぎ部材3の係合壁面73とが係合するように構成された床版接続用継手1であってもよい。   Further, in the above, the connecting member 3 and the receiving member 2 are fixed by the bolt 12, whereby the left and right engaging walls 54, 54 of the engaging receiving portion 4 and the engaging wall surface 73 of the connecting member 3 are engaged. The floor connection joint 1 configured as described above is illustrated, but a gap is formed between the inner wall surface of the end wall 52 of the receiving member 2 and the outer wall surface 71 of the connecting member 3, and the wedge is wedged into the gap from above. Is inserted and fixed to the connecting member 3 and the receiving member 2, so that the left and right engaging walls 54, 54 of the engagement receiving portion 4 and the engaging wall surface 73 of the connecting member 3 are engaged via the wedge. The floor slab connecting joint 1 configured as described above may be used.

尚、上記では、橋脚用の床版を接続する床版接続用継手1の断面評価方法を例に説明したが、本願の床版接続用継手の断面評価方法は、道路用の床版を接続する床版接続用継手の断面評価、あるいは、空港用の床版を接続する床版接続用継手の断面評価にも使用可能である。   In the above description, the cross-sectional evaluation method of the floor slab connection joint 1 for connecting the slabs for piers has been described as an example. However, the cross-section evaluation method for the floor slab connection joint of the present application is to connect a road slab. It can also be used for cross-sectional evaluation of floor slab connection joints, or for cross-section evaluation of floor slab connection joints that connect airport floor slabs.

1 床版接続用継手、2 受部材、3 繋ぎ部材、4 係合凹部、5 係合受部、
6 定着部、6A 定着部の断面、7 係合部、8 連結部、8A 連結部の断面、
10 床版、11 床版の端部、12 ボルト(固定手段)、15 目地、
16 充填材、41 係合部挿入用開口(開口)、42 連結部挿入用開口(開口)、
51 底版、52 妻壁、53 側壁、53A 側壁の断面、54 係合壁、
73 係合壁面。
1 Joint for floor slab connection, 2 receiving member, 3 connecting member, 4 engaging recess, 5 engaging receiving portion,
6 fixing section, 6A cross section of fixing section, 7 engaging section, 8 connecting section, 8A cross section of connecting section,
10 floor slab, 11 edge of floor slab, 12 bolt (fixing means), 15 joint,
16 filler, 41 engaging part insertion opening (opening), 42 connecting part insertion opening (opening),
51 bottom plate, 52 end wall, 53 side wall, 53A side wall cross section, 54 engagement wall,
73 Engagement wall surface.

Claims (4)

隣り合う各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の断面評価方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方に充填材を充填することにより、隣り合う床版と床版とが連結された床版接続構造において、
目地を横切るように位置される繋ぎ部材の連結部の断面を分割された複数段の鉄筋と見做して当該断面の応力を計算することにより、当該連結部の断面を評価することを特徴とする床版接続用継手の断面評価方法。
Using a floor slab connection joint comprising a receiving member installed on each end side of each adjacent floor slab and a connecting member connecting each receiving member installed on each end side of each adjacent floor slab , A method for evaluating the cross section of a joint for connecting floor slabs in a floor slab connection structure that connects adjacent floor slabs,
The receiving member includes an engagement receiving portion provided with an engaging concave portion with which an engaging portion provided on the connecting member engages, and a fixing portion fixed to the concrete of the floor slab,
The engagement receiving portion includes a bottom plate, a wife wall provided so as to rise from the bottom plate, left and right side walls extending from both the left and right sides of the wife wall and standing up from the bottom plate, and extended ends of the left and right side walls. The left and right engagement walls provided to extend from the bottom plate and extend in the direction approaching each other,
The engagement recess is formed by an upper portion surrounded by a bottom plate, a wife wall, left and right side walls, and left and right engagement walls and a recess that is opened between the left and right engagement walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each adjacent floor slab, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages the left and right engaging walls of the engaging receiving portion,
The end surfaces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is installed on the end side of each adjacent floor slab. Inserting from above into the opening between the left and right engagement walls and engaging the pair of engagement portions of the connecting member with each engagement recess, the engagement portion engaged with the engagement recess and the engagement recess A floor slab connection in which the adjacent floor slabs are connected to each other by filling with fillers above the joints between the end faces of the adjacent floor slabs and the receiving members and the connecting members while being fixed by the fixing means. In structure
It is characterized by evaluating the cross section of the connecting portion by calculating the stress of the cross section considering the cross section of the connecting portion of the connecting member positioned so as to cross the joint as a plurality of divided reinforcing bars. Section evaluation method for joints for floor slab connection.
隣り合う各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の断面評価方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方に充填材を充填することにより、隣り合う床版と床版とが連結された床版接続構造において、
係合受部に、係合部との係合による引張力と、曲げ力とが作用すると想定し、かつ、係合部の側壁の断面を分割された複数段の鉄筋と見做して応力を計算することにより、当該側壁の断面を評価することを特徴とする床版接続用継手の断面評価方法。
Using a floor slab connection joint comprising a receiving member installed on each end side of each adjacent floor slab and a connecting member connecting each receiving member installed on each end side of each adjacent floor slab , A method for evaluating the cross section of a joint for connecting floor slabs in a floor slab connection structure that connects adjacent floor slabs,
The receiving member includes an engagement receiving portion provided with an engaging concave portion with which an engaging portion provided on the connecting member engages, and a fixing portion fixed to the concrete of the floor slab,
The engagement receiving portion includes a bottom plate, a wife wall provided so as to rise from the bottom plate, left and right side walls extending from both the left and right sides of the wife wall and standing up from the bottom plate, and extended ends of the left and right side walls. The left and right engagement walls provided to extend from the bottom plate and extend in the direction approaching each other,
The engagement recess is formed by an upper portion surrounded by a bottom plate, a wife wall, left and right side walls, and left and right engagement walls and a recess that is opened between the left and right engagement walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each adjacent floor slab, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages the left and right engaging walls of the engaging receiving portion,
The end surfaces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is installed on the end side of each adjacent floor slab. Inserting from above into the opening between the left and right engagement walls and engaging the pair of engagement portions of the connecting member with each engagement recess, the engagement portion engaged with the engagement recess and the engagement recess A floor slab connection in which the adjacent floor slabs are connected to each other by filling with fillers above the joints between the end faces of the adjacent floor slabs and the receiving members and the connecting members while being fixed by the fixing means. In structure
Assuming that tensile force and bending force due to engagement with the engagement portion act on the engagement receiving portion, and considering the cross section of the side wall of the engagement portion as a multi-stage reinforcing bar, stress The cross-section evaluation method of the joint for floor slab connection characterized by evaluating the cross section of the said side wall by calculating.
隣り合う各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の断面評価方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方に充填材を充填することにより、隣り合う床版と床版とが連結された床版接続構造において、
係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合による引張力と、曲げ力とが作用すると想定して、当該定着部の断面の応力を計算することにより、当該定着部の断面を評価することを特徴とする床版接続用継手の断面評価方法。
Using a floor slab connection joint comprising a receiving member installed on each end side of each adjacent floor slab and a connecting member connecting each receiving member installed on each end side of each adjacent floor slab , A method for evaluating the cross section of a joint for connecting floor slabs in a floor slab connection structure that connects adjacent floor slabs,
The receiving member includes an engagement receiving portion provided with an engaging concave portion with which an engaging portion provided on the connecting member engages, and a fixing portion fixed to the concrete of the floor slab,
The engagement receiving portion includes a bottom plate, a wife wall provided so as to rise from the bottom plate, left and right side walls extending from both the left and right sides of the wife wall and standing up from the bottom plate, and extended ends of the left and right side walls. The left and right engagement walls provided to extend from the bottom plate and extend in the direction approaching each other,
The engagement recess is formed by an upper portion surrounded by a bottom plate, a wife wall, left and right side walls, and left and right engagement walls and a recess that is opened between the left and right engagement walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each adjacent floor slab, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages the left and right engaging walls of the engaging receiving portion,
The end surfaces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is installed on the end side of each adjacent floor slab. Inserting from above into the opening between the left and right engagement walls and engaging the pair of engagement portions of the connecting member with each engagement recess, the engagement portion engaged with the engagement recess and the engagement recess A floor slab connection in which the adjacent floor slabs are connected to each other by filling with fillers above the joints between the end faces of the adjacent floor slabs and the receiving members and the connecting members while being fixed by the fixing means. In structure
Assuming that a tensile force and a bending force due to the engagement between the engagement receiving portion and the engagement portion act on the cross section of the fixing portion in the vicinity of the boundary position between the engagement receiving portion and the fixing portion, A method for evaluating a cross section of a joint for connecting floor slabs, wherein the cross section of the fixing portion is evaluated by calculating a stress of the cross section.
隣り合う各床版の端部側にそれぞれ設置された受部材と、隣り合う各床版の端部側にそれぞれ設置された受部材を繋ぐ繋ぎ部材とを備えた床版接続用継手を用いて、隣り合う床版と床版とを接続する床版接続構造における床版接続用継手の断面評価方法であって、
受部材は、繋ぎ部材に設けられた係合部が係合する係合凹部を備えた係合受部と、床版のコンクリートに定着される定着部とを備え、
係合受部は、底版と、底版より立ち上がるように設けられた妻壁と、妻壁の左右両側より延長するとともに底版より立ち上がるように設けられた左右の側壁と、左右の側壁の延長端より互いに近づく方向に延長するともに底版より立ち上がるように設けられた左右の係合壁とを備え、
係合凹部は、底版と妻壁と左右の側壁と左右の係合壁とで囲まれた上部及び左右の係合壁間が開口された凹部により形成され、
繋ぎ部材は、互いに隣り合う各床版の各端部にそれぞれ埋設された各係合受部の各係合凹部に係合する一対の係合部と、一対の係合部を繋ぐ連結部とを備え、
係合部は、係合受部の左右の係合壁に係合する係合壁面を備え、
隣り合う各床版の端面同士を目地となる隙間を介して互いに隣り合うように配置して、繋ぎ部材の連結部を隣り合う各床版の端部側に設置された各係合受部の左右の係合壁間の開口に上方から挿入して繋ぎ部材の一対の係合部を各係合凹部に係合させて、係合凹部に係合された係合部と係合凹部とを固定手段で固定するとともに、隣り合う各床版の端面間の目地及び受部材と繋ぎ部材との上方に充填材を充填することにより、隣り合う床版と床版とが連結された床版接続構造において、
目地を横切るように位置される繋ぎ部材の連結部の断面を分割された複数段の鉄筋と見做して当該断面の応力を計算し、
係合受部に、係合部との係合による引張力と、曲げ力とが作用すると想定し、かつ、係合部の側壁の断面を分割された複数段の鉄筋と見做して応力を計算し、
係合受部と定着部との境界位置近傍における定着部の断面に、係合受部と係合部との係合による引張力と、曲げ力とが作用すると想定して、当該定着部の断面の応力を計算することにより、床版接続用継手の断面を評価することを特徴とする床版接続用継手の断面評価方法。
Using a floor slab connection joint comprising a receiving member installed on each end side of each adjacent floor slab and a connecting member connecting each receiving member installed on each end side of each adjacent floor slab , A method for evaluating the cross section of a joint for connecting floor slabs in a floor slab connection structure that connects adjacent floor slabs,
The receiving member includes an engagement receiving portion provided with an engaging concave portion with which an engaging portion provided on the connecting member engages, and a fixing portion fixed to the concrete of the floor slab,
The engagement receiving portion includes a bottom plate, a wife wall provided so as to rise from the bottom plate, left and right side walls extending from both the left and right sides of the wife wall and standing up from the bottom plate, and extended ends of the left and right side walls. The left and right engagement walls provided to extend from the bottom plate and extend in the direction approaching each other,
The engagement recess is formed by an upper portion surrounded by a bottom plate, a wife wall, left and right side walls, and left and right engagement walls and a recess that is opened between the left and right engagement walls.
The connecting member includes a pair of engaging portions that engage with each engaging recess of each engaging receiving portion embedded in each end of each adjacent floor slab, and a connecting portion that connects the pair of engaging portions. With
The engaging portion includes an engaging wall surface that engages the left and right engaging walls of the engaging receiving portion,
The end surfaces of the adjacent floor slabs are arranged so as to be adjacent to each other through a gap serving as a joint, and the connecting portion of the connecting member is installed on the end side of each adjacent floor slab. Inserting from above into the opening between the left and right engagement walls and engaging the pair of engagement portions of the connecting member with each engagement recess, the engagement portion engaged with the engagement recess and the engagement recess A floor slab connection in which the adjacent floor slabs are connected to each other by filling with fillers above the joints between the end faces of the adjacent floor slabs and the receiving members and the connecting members while being fixed by the fixing means. In structure
Calculate the stress of the cross section considering the cross section of the connecting part of the connecting member positioned so as to cross the joint as a multi-stage rebar divided into parts,
Assuming that tensile force and bending force due to engagement with the engagement portion act on the engagement receiving portion, and considering the cross section of the side wall of the engagement portion as a multi-stage reinforcing bar, stress Calculate
Assuming that a tensile force and a bending force due to the engagement between the engagement receiving portion and the engagement portion act on the cross section of the fixing portion in the vicinity of the boundary position between the engagement receiving portion and the fixing portion, A cross-section evaluation method for a joint for floor slab connection, wherein the cross-section of the joint for floor slab connection is evaluated by calculating a stress of the cross section.
JP2017057047A 2017-03-23 2017-03-23 How to design joints for floor slab connection Active JP6833581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057047A JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057047A JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Publications (2)

Publication Number Publication Date
JP2018159233A true JP2018159233A (en) 2018-10-11
JP6833581B2 JP6833581B2 (en) 2021-02-24

Family

ID=63795504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057047A Active JP6833581B2 (en) 2017-03-23 2017-03-23 How to design joints for floor slab connection

Country Status (1)

Country Link
JP (1) JP6833581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522071B2 (en) 2021-04-22 2024-07-24 株式会社熊谷組 Inspection device for deck joints

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972537A (en) * 1989-06-05 1990-11-27 Slaw Sr Robert A Orthogonally composite prefabricated structural slabs
JPH09132997A (en) * 1995-11-08 1997-05-20 Daiho Constr Co Ltd High rigid coupling of segment
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP2014177767A (en) * 2013-03-13 2014-09-25 Kumagai Gumi Co Ltd Stepwise construction method of concrete precast floor slab for bridge
JP2014177766A (en) * 2013-03-13 2014-09-25 Kumagai Gumi Co Ltd Method for constructing concrete precast floor slab for bridge
JP5787965B2 (en) * 2013-11-21 2015-09-30 オリエンタル白石株式会社 Fittings for bridge decks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972537A (en) * 1989-06-05 1990-11-27 Slaw Sr Robert A Orthogonally composite prefabricated structural slabs
JPH09132997A (en) * 1995-11-08 1997-05-20 Daiho Constr Co Ltd High rigid coupling of segment
JP2005258569A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Strength evaluation method for rc made underground hollow structure
JP2014177767A (en) * 2013-03-13 2014-09-25 Kumagai Gumi Co Ltd Stepwise construction method of concrete precast floor slab for bridge
JP2014177766A (en) * 2013-03-13 2014-09-25 Kumagai Gumi Co Ltd Method for constructing concrete precast floor slab for bridge
JP5787965B2 (en) * 2013-11-21 2015-09-30 オリエンタル白石株式会社 Fittings for bridge decks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
コンクリート標準示方書 設計編, vol. 平成8年制定、第1版・第7刷発行, JPN6020031374, November 1998 (1998-11-01), pages 152 - 153, ISSN: 0004332813 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7522071B2 (en) 2021-04-22 2024-07-24 株式会社熊谷組 Inspection device for deck joints

Also Published As

Publication number Publication date
JP6833581B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
Gilbert et al. Effects of shrinkage on the long-term stresses and deformations of composite concrete slabs
JP7430155B2 (en) Method for constructing a connection structure between precast structural members and time-cured materials
Prakash et al. Modified push-out tests for determining shear strength and stiffness of HSS stud connector-experimental study
Abdul-Razzaq et al. Corbel strut and tie modeling–Experimental verification
CN110990922B (en) Bending-resistant bearing capacity calculation method for section beam under hogging moment effect
Lee et al. Structural performance of prestressed composite girders with corrugated steel plate webs
Kong et al. Experimental study on behavior of corrugated steel-concrete composite bridge decks with MCL shape composite dowels
Singhal et al. Cyclic behaviour of precast reinforced concrete beam-columns connected with headed bars
Kim et al. Structural details of steel girder–abutment joints in integral bridges: An experimental study
Bank et al. Pultruded FRP plank as formwork and reinforcement for concrete members
Kanchanadevi et al. Shear resistance of embedded connection of composite girder with corrugated steel web
Fang et al. Shear-friction behaviour on smooth interface between high-strength and lightweight concrete
Duchesneau et al. Monolithic and hybrid precast bridge parapets in high and ultra-high performance fibre reinforced concretes
Elliott et al. Can precast concrete structures be designed as semi-rigid frames
KR100635137B1 (en) Bridge slab construction method and lattice bar deck-shaped precast concrete plate applied therein
JP2018159233A (en) Cross section evaluation method of floor slab connecting joint
Rezaeian et al. In-plane behaviour of composite floor slab diaphragm interfaces under high shear demand
JP6423202B2 (en) Seismic reinforcement method for concrete structure and seismic reinforcement structure for concrete structure
Yuan et al. Testing of composite steel top-and-seat-and-web angle joints at ambient and elevated temperatures, Part 1: Ambient tests
Seo et al. Evaluation of prism and diagonal tension strength of masonry form-block walls reinforced with steel fibers
Lee et al. Tensile performance of cast-in headed studs in thin concrete panels with void formers
Grilli et al. Tensile strength of embedded anchor groups: tests and strength models
Morcous et al. Precast concrete deck-to-girder mechanical connection for accelerated bridge construction.
Khan et al. Shear capacity assessment of reinforced concrete beams using swimmer bars as shear reinforcement
Chin Standardization and testing of embedded plates for design, fabrication, and construction economy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6833581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350