JP2018150478A - Oxide eutectic material crystal for phosphor, and production method thereof - Google Patents

Oxide eutectic material crystal for phosphor, and production method thereof Download PDF

Info

Publication number
JP2018150478A
JP2018150478A JP2017048784A JP2017048784A JP2018150478A JP 2018150478 A JP2018150478 A JP 2018150478A JP 2017048784 A JP2017048784 A JP 2017048784A JP 2017048784 A JP2017048784 A JP 2017048784A JP 2018150478 A JP2018150478 A JP 2018150478A
Authority
JP
Japan
Prior art keywords
crystal
crucible
eutectic
phosphor
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017048784A
Other languages
Japanese (ja)
Inventor
承生 福田
Tsuguo Fukuda
承生 福田
裕児 白石
Yuji Shiraishi
裕児 白石
宏孝 安藤
Hirotaka Ando
宏孝 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Crystal Laboratory
Original Assignee
Fukuda Crystal Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Crystal Laboratory filed Critical Fukuda Crystal Laboratory
Priority to JP2017048784A priority Critical patent/JP2018150478A/en
Publication of JP2018150478A publication Critical patent/JP2018150478A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor capable of improving characteristics or durability of fluorescence output at a high temperature, and aiming at adjustment of color tone, and using Gd as an additive; and to provide a production method thereof.SOLUTION: Concerning an oxide eutectic material crystal for a phosphor, and a production method thereof, there is provided YAG/Al2O3 eutectic material containing Ce, in which Ce is distributed uniformly, and Gd is added as much as 15 at% or less to Y for color tone adjustment, or LuAG/AlOeutectic material containing Ce, in which Ce is distributed uniformly, and Gd is added as much as 45 at% or less to Lu for color tone adjustment.SELECTED DRAWING: Figure 1

Description

本発明は蛍光体用酸化物共晶体結晶及びその製造方法に係り、詳細には蛍光体用酸化物共晶体結晶におけるGd添加による色調調整及びその製造方法に関するものである。 The present invention relates to an oxide eutectic crystal for phosphor and a method for producing the same, and more particularly to a color tone adjustment by adding Gd in an oxide eutectic crystal for phosphor and a method for producing the same.

LD励起光源レーザー照明として、蛍光体にYAG結晶若しくはLuAg等の酸化物系の結晶が使用されていたが、励起光の出力をあげた際に蛍光体が発熱し、効率の低下や、蛍光体の破損が遠方照明等による出力を上げる際に弊害となっており、温度による効率の低下や蛍光体の破損を改善する酸化物共晶体を使用が注目されている。本発明は酸化物共晶体結晶にGdを添加する事で色調を調整し、高温時の蛍光出力の特性や耐久性を維持出来る蛍光体の製造方法を提供する事を目的とする。   As an LD excitation light source laser illumination, an oxide-based crystal such as a YAG crystal or LuAg was used for the phosphor, but when the output of the excitation light was increased, the phosphor generated heat, and the efficiency decreased. The use of oxide eutectics that reduce the efficiency drop due to temperature and the phosphor damage has been attracting attention. An object of the present invention is to provide a method for producing a phosphor capable of adjusting the color tone by adding Gd to an oxide eutectic crystal and maintaining the characteristics and durability of fluorescence output at high temperatures.

特願2015−243341号Japanese Patent Application No. 2015-243341

上述した通り、現在、蛍光体としてCe:YAGが用いられているが、結晶性を高めた酸化物共晶体結晶であっても不純物等により色調を調整した際、励起光の出力をあげた時に蛍光体が発熱し、効率の低下や、蛍光体の破損が遠方照明等による出力を上げる際に弊害となっていた。   As described above, Ce: YAG is currently used as a phosphor. However, when the color tone of an oxide eutectic crystal with improved crystallinity is adjusted with impurities, the excitation light output is increased. The phosphors generate heat, and the decrease in efficiency and the damage of the phosphors are harmful when increasing the output due to distant illumination.

本発明は、LD励起光源レーザー照明での蛍光体として、GdとCe不純物を添加し、色調を調整した酸化物系共晶体を使用する事で、高温時の蛍光出力の特性や耐久においての影響の少ない製造方法を提供することを目的とする。   The present invention uses an oxide-based eutectic that is adjusted in color tone by adding Gd and Ce impurities as a phosphor in the LD excitation light source laser illumination, thereby affecting the fluorescence output characteristics and durability at high temperatures. It aims at providing a manufacturing method with few.

請求項1に係る発明は、Ceを含み、Ceが均一に分布しているYAG/Al共晶体であり、色調調整用にYに対してGdを15at%以下で添加したことを特徴とする蛍光体用酸化物共晶体結晶である。
請求項2に係る発明は、Ceを含み、Ceが均一に分布しているLuAG/Al共晶体であり、色調調整用にLuに対してGdを45at%以下で添加したことを特徴とする蛍光体用酸化物共晶体結晶である。
請求項3に係る発明は、Ceを0.05at%以上含み、且つGdを5.0at%以上含むことを特徴とする請求項1又は2に記載の蛍光体用酸化物共晶体結晶である。
請求項4に係る発明は、請求項1乃至3のいずれか1項に記載の蛍光体用酸化物共晶体結晶の製造方法である。
The invention according to claim 1 is a YAG / Al 2 O 3 eutectic containing Ce and having Ce uniformly distributed, and Gd is added at 15 at% or less with respect to Y for color tone adjustment. An oxide eutectic crystal for phosphor.
The invention according to claim 2 is a LuAG / Al 2 O 3 eutectic containing Ce and having Ce uniformly distributed, and Gd is added at 45 at% or less with respect to Lu for color tone adjustment. An oxide eutectic crystal for phosphor.
The invention according to claim 3 is the oxide eutectic crystal for phosphor according to claim 1 or 2, characterized by containing Ce at 0.05 at% or more and Gd at 5.0 at% or more.
The invention according to claim 4 is the method for producing an oxide eutectic crystal for phosphor according to any one of claims 1 to 3.

発明の効果を、発明をなすに際して得た知見と共に説明する。
本発明者は、高出力でありかつ温度特性に優れた酸化物共晶体にCeとGdの添加量を調整したYAG/Al共晶体、およびLuAG/Al共晶体の作製を試みた。
The effects of the invention will be described together with the knowledge obtained in making the invention.
The present inventor has prepared a YAG / Al 2 O 3 eutectic and a LuAG / Al 2 O 3 eutectic in which the addition amounts of Ce and Gd are adjusted to an oxide eutectic having high output and excellent temperature characteristics. Tried.

その結果、以下の事が確認された。
YAG/Al共晶体ではGd添加量を融液内のYに対して5.0at%〜15.0at%となる様に増やす事で色度のxが0.40から0.41 yが0.56から0.54へ多少黄色側にシフトした。その際、温度特性や出力に影響は見られなかった。
LuAG/Al共晶体ではGd添加量を融液内のLuに対して5.0at%〜45.0at%となる様に増やす事で色度のxが0.30から0.43 yが0.56から0.52へと大きく緑側から黄色側にシフトした。その際、温度特性や出力に影響は見られなかった。
As a result, the following was confirmed.
In the YAG / Al 2 O 3 eutectic, the chromaticity x is increased from 0.40 to 0.41 y by increasing the amount of Gd to be 5.0 at% to 15.0 at% with respect to Y in the melt. Slightly shifted from 0.56 to 0.54 on the yellow side. At that time, the temperature characteristics and output were not affected.
In the LuAG / Al 2 O 3 eutectic, the chromaticity x is increased from 0.30 to 0.43 y by increasing the amount of Gd to be 5.0 at% to 45.0 at% with respect to Lu in the melt. Greatly shifted from 0.56 to 0.52 from the green side to the yellow side. At that time, the temperature characteristics and output were not affected.

また、Gdの添加量を前記より多く添加すると温度特性、出力は著しく低下がみられた。
上記内容から蛍光体用酸化物共晶体結晶において上記範囲でGdの添加量を調整することで温度特性や出力が低下せずに色調調整が可能と確認され、Ceの添加量を0.05〜1.5at%とGdと共に変化させた際にも色調の多少の調整は確認出来た。
Further, when the addition amount of Gd was increased more than the above, the temperature characteristics and output were remarkably lowered.
From the above contents, it was confirmed that adjusting the amount of Gd added within the above range in the oxide eutectic crystal for phosphor allows color tone adjustment without deterioration in temperature characteristics and output, and the amount of Ce added is 0.05 to Some adjustment of the color tone could be confirmed even when changing with 1.5 at% and Gd.

本発明を実施するための単結晶育成装置を示す概念図である。It is a conceptual diagram which shows the single crystal growth apparatus for implementing this invention.

以下、本発明の最良形態について説明する。   The best mode of the present invention will be described below.

酸化物共晶体結晶の特徴である蛍光特性を向上させる散乱体を有する要因としてはルツボ底部細孔からの融液の引き出し速度を上げる事で、より微細化する事が分かっている。
引き出し速度を上げるには坩堝底部細孔部と坩堝以下の温度勾配を急峻とする必要がある。
As a factor of having a scatterer that improves the fluorescence characteristics, which is a characteristic of oxide eutectic crystals, it has been found that the crystal can be made finer by increasing the speed of drawing the melt from the crucible bottom pores.
In order to increase the drawing speed, it is necessary to make the temperature gradient below the crucible bottom pore and the crucible steep.

融液の引き出し速度を3.0mm/min以上で育成を行うことにより、共晶体内の散乱体がより微細となる。Gdを添加することで融液粘度が大きく変わる為、通常の酸化物共晶体の育成方法に比べ、温度勾配多少緩くする必要もある。
実験の結果、これらの手段により、色調を調整したが蛍光特性、蛍光温度特性が優れた酸化物共晶体が得られることが分かった。
By performing growth at a melt drawing speed of 3.0 mm / min or more, the scatterer in the eutectic becomes finer. Since the melt viscosity is greatly changed by adding Gd, it is also necessary to make the temperature gradient somewhat gentler than in the usual method for growing an oxide eutectic.
As a result of experiments, it was found that an oxide eutectic having excellent fluorescence characteristics and fluorescence temperature characteristics was obtained by adjusting the color tone by these means.

(結晶製造装置)
装置には炉体内を減圧する減圧手段、減圧をモニターする圧力測定手段、炉体温度を測定する温度測定手段、炉体内に不活性ガスを供給する手段が設けられている。
酸化物共晶体を製造する際、急峻な温度勾配である事で融液の引き出し速度を高速にでき、 且つ微細な散乱体を作製する事が可能な為、加熱方式は誘導加熱方式が望ましい。抵抗加熱式では坩堝と坩堝以下での温度差が少なく、融液の引き出し速度を上げる事が難しい為である。種結晶は融点が酸化物共晶体より高い単結晶を棒状に切り出した物を使用する。
(Crystal production equipment)
The apparatus is provided with decompression means for decompressing the furnace body, pressure measurement means for monitoring decompression, temperature measurement means for measuring the furnace temperature, and means for supplying an inert gas into the furnace body.
When producing an oxide eutectic, the heating method is preferably an induction heating method because the melt drawing speed can be increased due to the steep temperature gradient and a fine scatterer can be produced. This is because the resistance heating type has a small temperature difference between the crucible and the crucible or less, and it is difficult to increase the drawing speed of the melt. As the seed crystal, a single crystal whose melting point is higher than that of the oxide eutectic is cut into a rod shape.

図1に製造装置例を示す。
種結晶保持治具は使用温度から緻密質アルミナ等の1900℃近似で影響の少ない円筒状の物が望ましい、耐火材への接触を考慮した径であれば特に指定は無い。
使用するルツボ3やアフターヒーター4は酸化物共晶体の融点が高い事から材質にIr、Mo、W等が望ましい。坩堝底部に細孔の径は酸化物共晶体の融液の粘度が低い事や坩堝との濡れ性の点からφ200〜φ400μm程度で平らな形状が望ましいと思われる。
FIG. 1 shows an example of a manufacturing apparatus.
The seed crystal holding jig is not particularly specified as long as it has a diameter in consideration of contact with a refractory material, which is preferably a cylindrical object that is less affected by approx.
The crucible 3 and the after heater 4 to be used are preferably made of Ir, Mo, W or the like because the melting point of the oxide eutectic is high. The diameter of the pores at the bottom of the crucible seems to be desirable to have a flat shape of about φ200 to φ400 μm from the viewpoint of low viscosity of the melt of the oxide eutectic and wettability with the crucible.

耐火材は保温性や使用温度から材質をZr、A1、C等を使用する事が望ましく、坩堝部とアフターヒーター4以下にかけて急峻な温度勾配とする事で融液の引き出し速度を上げる事が可能となる。
炉内雰囲気はNやAr等の不活性ガスを使用する事が望ましい。
It is desirable to use Zr, A1, C, etc. for the refractory material because of its heat retention and operating temperature, and it is possible to increase the drawing speed of the melt by making a steep temperature gradient between the crucible part and after heater 4 and below. It becomes.
It is desirable to use an inert gas such as N 2 or Ar for the furnace atmosphere.

マイクロ引き下げ(μ−PD)法は、試料を入れた坩堝を直接または間接的に加熱することにより坩堝内に対称物質の融液を得、坩堝下方に設置した種結晶を坩堝下端に空いた200〜1500μmの細穴へ接触させ、そこに固液界面を形成しつつ引き下げることにより結晶成長させる一方向凝固成長法である。   In the micro pull-down (μ-PD) method, a crucible containing a sample is directly or indirectly heated to obtain a melt of a symmetric material in the crucible, and a seed crystal placed under the crucible is emptied at the lower end of the crucible. This is a unidirectional solidification growth method in which a crystal is grown by contacting a fine hole of ˜1500 μm and pulling it down while forming a solid-liquid interface there.

成長速度は固液界面の様子をCCDカメラで観察しながらマニュアルで温度と共にコントロールする。1500℃以下の融点の物質を対象とする場合は坩堝材にPtを使用することが可能なので、大気中での結晶成長が可能であるが、1500℃を超える高融点物質を対象とする際は、坩堝材およびアフターヒーターにIrを用いるため、結晶作成はAr等の不活性ガス雰囲気下でのみ行われる。
温度勾配は10℃/mmから50℃/mmの間を高周波発生コイルの移動により選択可能であり、作成速度も0.1mm/minから30mm/minの間で選択可能である。
The growth rate is controlled with the temperature manually while observing the state of the solid-liquid interface with a CCD camera. When a substance having a melting point of 1500 ° C. or less is targeted, Pt can be used for the crucible material, so that crystal growth in the atmosphere is possible, but when a high melting point material exceeding 1500 ° C. is targeted. In addition, since Ir is used for the crucible material and the after heater, the crystal is formed only in an inert gas atmosphere such as Ar.
The temperature gradient can be selected between 10 ° C./mm and 50 ° C./mm by moving the high frequency generating coil, and the production speed can be selected between 0.1 mm / min and 30 mm / min.

(結晶製造方法)
酸化物共晶体の製造は次の様に行う。
最初に、耐火材(例えば、アルミナ製)1で囲まれた坩堝3に酸化物共品体原料を入れ、加熱用高周波コイル2で坩堝3を加熱し、原料を溶融して融液を得る。
(Crystal manufacturing method)
The production of the oxide eutectic is performed as follows.
First, an oxide common product raw material is put in a crucible 3 surrounded by a refractory material (for example, made of alumina) 1, the crucible 3 is heated by a high frequency coil 2 for heating, and the raw material is melted to obtain a melt.

原料を十分溶融したところで種結晶5を坩堝下部から徐々に近づけ、坩堝底部細孔に種結晶5を接触させる。融液が坩堝底部の細孔から出た所で種結晶を下降させ、結晶成長を開始させる。この際、炉体内に不活性ガスを供給する。
坩堝内の融液が出なくなるまで極結晶を下降させ、坩堝から種結晶が離れた後、共晶体にクラックが入らない様に冷却を行う。
When the raw material is sufficiently melted, the seed crystal 5 is gradually approached from the bottom of the crucible, and the seed crystal 5 is brought into contact with the crucible bottom pores. When the melt comes out from the pores at the bottom of the crucible, the seed crystal is lowered to start crystal growth. At this time, an inert gas is supplied into the furnace.
The polar crystal is lowered until the melt in the crucible does not come out, and after the seed crystal is separated from the crucible, cooling is performed so as not to cause cracks in the eutectic.

(実施例1)
一方向凝固成長装置を用いて融液内のLuに対してGd45at%Ce0.1at%を添加したLuAG/Al共晶体結晶を育成した。
内径20mmのIr製の坩堝に出発原料として秤量したLuAGとAlを原料として10g投入した。
添加物として融液内のLuに対してGd45.0at%Ce0.1at%となるようにした。
原料を投入した坩堝を前記育成炉に投入し、炉内の圧力を減圧雰囲気とし、Nガスをl.0L/minの流量でフローを行った。
その後、坩堝の加熱を開始しLuAG/Al共晶体結晶の融点に達するまで1時間かけて徐々に加熱した。Al単結晶を種結晶として用い、種結晶を融液近くまで上昇させた。
Example 1
Using a unidirectional solidification growth apparatus, a LuAG / Al 2 O 3 eutectic crystal in which Gd45 at% Ce 0.1 at% was added to Lu in the melt was grown.
10 g of LuAG and Al 2 O 3 weighed as starting materials were put into an Ir crucible having an inner diameter of 20 mm as starting materials.
As an additive, Gd was 45.0 at% Ce 0.1 at% with respect to Lu in the melt.
The crucible containing the raw materials was put into the growth furnace, the pressure in the furnace was reduced to a reduced pressure atmosphere, and N 2 gas was l. The flow was performed at a flow rate of 0 L / min.
Thereafter, heating of the crucible was started and gradually heated over 1 hour until reaching the melting point of the LuAG / Al 2 O 3 eutectic crystal. An Al 2 O 3 single crystal was used as a seed crystal, and the seed crystal was raised to near the melt.

種結晶の先端を坩堝底部の細孔に接触させて温度を細孔から融液が出るまで徐々に上昇させた。坩堝底部の細孔から融液が出たら種結晶を徐々に降下させながら、実行成成長3.0mm/minの速度で結晶成長を行った。実効偏析係数は0.8−1である。
その結果、5mm角、長さl00mmのAlとLuAGの共晶体結晶が得られた。
該結晶を蛍光特性、蛍光体温度特性を評価した所、蛍光体用YAG単結晶より、良好な評価が得られ、色度はおおよそx=0.43 y=0.53であった。
The tip of the seed crystal was brought into contact with the pore at the bottom of the crucible, and the temperature was gradually increased until the melt came out of the pore. When the melt came out from the pores at the bottom of the crucible, crystal growth was performed at a rate of 3.0 mm / min. The effective segregation coefficient is 0.8-1.
As a result, an eutectic crystal of Al 2 O 3 and LuAG having a size of 5 mm square and a length of 100 mm was obtained.
When the crystal was evaluated for fluorescence characteristics and phosphor temperature characteristics, good evaluation was obtained from the YAG single crystal for phosphor, and the chromaticity was approximately x = 0.43 y = 0.53.

(参考例)
一方向凝固成長装置を用いて融液内のYに対してCe0.1at%を添加したYAG/Al共晶体結晶を育成した。
内径20mmのIr製の坩堝に出発原料として秤量したYAGとAlを原料として10g投入した。
添加物として融液内のYに対してCe0.1at%となるようにした。
原料を投入した坩堝を前記育成炉に投入し、炉内の圧力を減圧雰囲気とし、Nガスをl.0L/minの流量でフローを行った。
その後、坩堝の加熱を開始しYAG/Al共晶体結晶の融点に達するまで1時間かけて徐々に加熱した。Al単結晶を種結晶として用い、種結晶を融液近くまで上昇させた。
種結晶の先端を坩堝底部の細孔に接触させて温度を細孔から融液が出るまで徐々に上昇させた。坩堝底部の細孔から融液が出たら種結晶を徐々に降下させながら、実行成成長3.0mm/minの速度で結晶成長を行った。実効偏析係数は0.8−1である。
(Reference example)
A YAG / Al 2 O 3 eutectic crystal in which Ce 0.1 at% was added to Y in the melt was grown using a unidirectional solidification growth apparatus.
10 g of YAG and Al 2 O 3 weighed as starting materials were put into an Ir crucible having an inner diameter of 20 mm as starting materials.
As an additive, Ce was 0.1 at% with respect to Y in the melt.
The crucible containing the raw materials was put into the growth furnace, the pressure in the furnace was reduced to a reduced pressure atmosphere, and N 2 gas was l. The flow was performed at a flow rate of 0 L / min.
Thereafter, heating of the crucible was started and gradually heated over 1 hour until reaching the melting point of the YAG / Al 2 O 3 eutectic crystal. An Al 2 O 3 single crystal was used as a seed crystal, and the seed crystal was raised to near the melt.
The tip of the seed crystal was brought into contact with the pore at the bottom of the crucible, and the temperature was gradually increased until the melt came out of the pore. When the melt came out from the pores at the bottom of the crucible, crystal growth was performed at a rate of 3.0 mm / min. The effective segregation coefficient is 0.8-1.

その結果、5mm角、長さl00mmのAlとYAGの共晶体結晶が得られた。
該結晶を蛍光特性、蛍光体温度特性を評価した所、蛍光体用YAG単結晶より、良好な評価が得られ、色度はおおよそx=0.36 y=0.58であった。
As a result, an eutectic crystal of Al 2 O 3 and YAG having a size of 5 mm square and a length of 100 mm was obtained.
When the crystal was evaluated for fluorescence characteristics and phosphor temperature characteristics, good evaluation was obtained from the YAG single crystal for phosphor, and the chromaticity was approximately x = 0.36 y = 0.58.

(実施例2)
一方向凝固成長装置を用いて融液内のYに対してGd15at%Ce0.1at%を添加したYAG/Al共晶体結晶を育成した。
内径20mmのIr製の坩堝に出発原料として秤量したYAGとAlを原料として10g投入した。
添加物として融液内のYに対してGd15.0at%Ce0.1at%となるようにした。
原料を投入した坩堝を前記育成炉に投入し、炉内の圧力を減圧雰囲気とし、Nガスをl.0L/minの流量でフローを行った。
その後、坩堝の加熱を開始しYAG/Al共晶体結晶の融点に達するまで1時間かけて徐々に加熱した。Al単結晶を種結晶として用い、種結晶を融液近くまで上昇させた。
(Example 2)
A YAG / Al 2 O 3 eutectic crystal in which Gd15 at% Ce 0.1 at% was added to Y in the melt was grown using a unidirectional solidification growth apparatus.
10 g of YAG and Al 2 O 3 weighed as starting materials were put into an Ir crucible having an inner diameter of 20 mm as starting materials.
Gd was 15.0 at% Ce 0.1 at% with respect to Y in the melt as an additive.
The crucible containing the raw materials was put into the growth furnace, the pressure in the furnace was reduced to a reduced pressure atmosphere, and N 2 gas was l. The flow was performed at a flow rate of 0 L / min.
Thereafter, heating of the crucible was started and gradually heated over 1 hour until reaching the melting point of the YAG / Al 2 O 3 eutectic crystal. An Al 2 O 3 single crystal was used as a seed crystal, and the seed crystal was raised to near the melt.

種結晶の先端を坩堝底部の細孔に接触させて温度を細孔から融液が出るまで徐々に上昇させた。坩堝底部の細孔から融液が出たら種結晶を徐々に降下させながら、実行成成長3.0mm/minの速度で結晶成長を行った。実効偏析係数は0.8−1である。
その結果、5mm角、長さl00mmのAlとYAGの共晶体結晶が得られた。
該結晶を蛍光特性、蛍光体温度特性を評価した所、蛍光体用YAG単結晶より、良好な評価が得られ、色度はおおよそx=0.41 y=0.54であった。
The tip of the seed crystal was brought into contact with the pore at the bottom of the crucible, and the temperature was gradually increased until the melt came out of the pore. When the melt came out from the pores at the bottom of the crucible, crystal growth was performed at a rate of 3.0 mm / min. The effective segregation coefficient is 0.8-1.
As a result, an eutectic crystal of Al 2 O 3 and YAG having a size of 5 mm square and a length of 100 mm was obtained.
When the crystal was evaluated for fluorescence characteristics and phosphor temperature characteristics, good evaluation was obtained from the YAG single crystal for phosphor, and the chromaticity was approximately x = 0.41 y = 0.54.

(実施例3)
一方向凝固成長装置を用いて融液内のLuに対してGd5at%Ce0.1at%を添加したLuAG/Al共晶体結晶を育成した。
内径20mmのIr製の坩堝に出発原料として秤量したLuAGとAlを原料として10g投入した。
添加物として融液内のLuに対してGd5.0at%Ce0.1at%となるようにした。
原料を投入した坩堝を前記育成炉に投入し、炉内の圧力を減圧雰囲気とし、Nガスをl.0L/minの流量でフローを行った。
その後、坩堝の加熱を開始しLuAG/Al共晶体結晶の融点に達するまで1時間かけて徐々に加熱した。Al単結晶を種結晶として用い、種結晶を融液近くまで上昇させた。
(Example 3)
A LuAG / Al 2 0 3 eutectic crystal in which Gd5at% Ce0.1at% was added to Lu in the melt was grown using a unidirectional solidification growth apparatus.
10 g of LuAG and Al 2 O 3 weighed as starting materials were put into an Ir crucible having an inner diameter of 20 mm as starting materials.
The additive was Gd 5.0 at% Ce 0.1 at% with respect to Lu in the melt.
The crucible containing the raw materials was put into the growth furnace, the pressure in the furnace was reduced to a reduced pressure atmosphere, and N 2 gas was l. The flow was performed at a flow rate of 0 L / min.
Thereafter, heating of the crucible was started and gradually heated over 1 hour until reaching the melting point of the LuAG / Al 2 O 3 eutectic crystal. An Al 2 O 3 single crystal was used as a seed crystal, and the seed crystal was raised to near the melt.

種結晶の先端を坩堝底部の細孔に接触させて温度を細孔から融液が出るまで徐々に上昇させた。坩堝底部の細孔から融液が出たら種結晶を徐々に降下させながら、実行成成長3.0mm/minの速度で結晶成長を行った。実効偏析係数は0.8−1である。
その結果、5mm角、長さl00mmのAlとLuAGの共晶体結晶が得られた。
該結晶を蛍光特性、蛍光体温度特性を評価した所、蛍光体用YAG単結晶より、良好な評価が得られ、色度はおおよそx=0.30 y=0.50であった。
The tip of the seed crystal was brought into contact with the pore at the bottom of the crucible, and the temperature was gradually increased until the melt came out of the pore. When the melt came out from the pores at the bottom of the crucible, crystal growth was performed at a rate of 3.0 mm / min. The effective segregation coefficient is 0.8-1.
As a result, an eutectic crystal of Al 2 O 3 and LuAG having a size of 5 mm square and a length of 100 mm was obtained.
When the crystal was evaluated for fluorescence characteristics and phosphor temperature characteristics, good evaluation was obtained from the YAG single crystal for phosphor, and the chromaticity was approximately x = 0.30 y = 0.50.

(実施例4)
一方向凝固成長装置を用いて融液内のYに対してGd5.0at%Ce0.1at%を添加したYAG/Al共晶体結晶を育成した。
内径20mmのIr製の坩堝に出発原料として秤量したYAGとAlを原料として10g投入した。
添加物として融液内のYに対してGd5.0at%Ce0.1at%となるようにした。
原料を投入した坩堝を前記育成炉に投入し、炉内の圧力を減圧雰囲気とし、Nガスをl.0L/minの流量でフローを行った。
その後、坩堝の加熱を開始しYAG/Al共晶体結晶の融点に達するまで1時間かけて徐々に加熱した。Al単結晶を種結晶として用い、種結晶を融液近くまで上昇させた。
(Example 4)
A YAG / Al 2 0 3 eutectic crystal in which Gd 5.0 at% Ce 0.1 at% was added to Y in the melt was grown using a unidirectional solidification growth apparatus.
10 g of YAG and Al 2 O 3 weighed as starting materials were put into an Ir crucible having an inner diameter of 20 mm as starting materials.
Gd was 5.0 at% and Ce 0.1 at% with respect to Y in the melt as an additive.
The crucible containing the raw materials was put into the growth furnace, the pressure in the furnace was reduced to a reduced pressure atmosphere, and N 2 gas was l. The flow was performed at a flow rate of 0 L / min.
Thereafter, heating of the crucible was started and gradually heated over 1 hour until reaching the melting point of the YAG / Al 2 O 3 eutectic crystal. An Al 2 O 3 single crystal was used as a seed crystal, and the seed crystal was raised to near the melt.

種結晶の先端を坩堝底部の細孔に接触させて温度を細孔から融液が出るまで徐々に上昇させた。坩堝底部の細孔から融液が出たら種結晶を徐々に降下させながら、実行成成長3.0mm/minの速度で結晶成長を行った。実効偏析係数は0.8−1である。
その結果、5mm角、長さl00mmのAlとYAGの共晶体結晶が得られた。
該結晶を蛍光特性、蛍光体温度特性を評価した所、蛍光体用YAG単結晶より、良好な評価が得られ、色度はおおよそx=0.36 y=0.58であった。
The tip of the seed crystal was brought into contact with the pore at the bottom of the crucible, and the temperature was gradually increased until the melt came out of the pore. When the melt came out from the pores at the bottom of the crucible, crystal growth was performed at a rate of 3.0 mm / min. The effective segregation coefficient is 0.8-1.
As a result, an eutectic crystal of Al 2 O 3 and YAG having a size of 5 mm square and a length of 100 mm was obtained.
When the crystal was evaluated for fluorescence characteristics and phosphor temperature characteristics, good evaluation was obtained from the YAG single crystal for phosphor, and the chromaticity was approximately x = 0.36 y = 0.58.

1 耐火材
2 加熱コイル
3 坩堝
4 アフターヒーター
5 種結晶
6 石英管
DESCRIPTION OF SYMBOLS 1 Refractory material 2 Heating coil 3 Crucible 4 After heater 5 Seed crystal 6 Quartz tube

Claims (4)

Ceを含み、Ceが均一に分布しているYAG/Al共晶体であり、色調調整用にYに対してGdを15at%以下で添加したことを特徴とする蛍光体用酸化物共晶体結晶。 This is a YAG / Al 2 O 3 eutectic containing Ce and having Ce uniformly distributed, wherein Gd is added at 15 at% or less with respect to Y for color tone adjustment. Crystalline crystals. Ceを含み、Ceが均一に分布しているLuAG/Al共晶体であり、色調調整用にLuに対してGdを45at%以下で添加したことを特徴とする蛍光体用酸化物共晶体結晶。 This is a LuAG / Al 2 O 3 eutectic that contains Ce and has a uniform distribution of Ce, and Gd is added at 45 at% or less to Lu for color tone adjustment. Crystalline crystals. Ceを0.05at%以上含み、且つGdを5.0at%以上含むことを特徴とする請求項1又は2に記載の蛍光体用酸化物共晶体結晶。 The phosphor eutectic eutectic crystal according to claim 1 or 2, comprising Ce at 0.05at% or more and Gd at 5.0at% or more. 請求項1乃至3のいずれか1項に記載の蛍光体用酸化物共晶体結晶の製造方法。 The manufacturing method of the oxide eutectic crystal for fluorescent substance of any one of Claims 1 thru | or 3.
JP2017048784A 2017-03-14 2017-03-14 Oxide eutectic material crystal for phosphor, and production method thereof Pending JP2018150478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048784A JP2018150478A (en) 2017-03-14 2017-03-14 Oxide eutectic material crystal for phosphor, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048784A JP2018150478A (en) 2017-03-14 2017-03-14 Oxide eutectic material crystal for phosphor, and production method thereof

Publications (1)

Publication Number Publication Date
JP2018150478A true JP2018150478A (en) 2018-09-27

Family

ID=63680890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048784A Pending JP2018150478A (en) 2017-03-14 2017-03-14 Oxide eutectic material crystal for phosphor, and production method thereof

Country Status (1)

Country Link
JP (1) JP2018150478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235629A (en) * 2020-03-09 2020-06-05 西北工业大学深圳研究院 Preparation method of alumina-YAG eutectic melt growth composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235629A (en) * 2020-03-09 2020-06-05 西北工业大学深圳研究院 Preparation method of alumina-YAG eutectic melt growth composite material

Similar Documents

Publication Publication Date Title
CN104962994B (en) The method that EFG technique grows the rear-earth-doped serial crystal containing Ga garnet of specific dimensions
WO2011001905A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
CN102586866A (en) Method for restraining bulbs in process of growing slice-shaped sapphire in guiding mold mode
CN103180492A (en) Langasite-type oxide material, production method for same, and raw material used in production method
CN104246026A (en) SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
JP2010150056A (en) Method for producing sapphire single crystal
JP4844428B2 (en) Method for producing sapphire single crystal
JP2018150478A (en) Oxide eutectic material crystal for phosphor, and production method thereof
JP2017110042A (en) Fluorescent material and method for producing the same
JP4844429B2 (en) Method for producing sapphire single crystal
JP2007186374A (en) Method for producing sic single crystal
JP4785198B2 (en) Fluoride crystal and vacuum ultraviolet light emitting device
JP2003095783A (en) Manufacturing apparatus and method for bulk of oxide eutectoid
CN108893780A (en) A kind of crystal growing apparatus and the double-doped LuAG crystal of a kind of Er, Yb and preparation method thereof
WO2004094705A1 (en) Apparatus for producing fluoride crystal
JP4738174B2 (en) Method for producing fluoride crystals
JP6232827B2 (en) Manufacturing method of ceramic composite
JP2018150204A (en) Manufacturing apparatus and manufacturing method for fiber-like plate crystal
JP6958854B2 (en) Manufacturing method of magnetostrictive material
JP2021080141A (en) Manufacturing method and manufacturing apparatus of gallium oxide single crystal
CN110284183A (en) ScAlMgO4Monocrystal substrate and its manufacturing method
KR20140024140A (en) Apparatus for growing sapphire single crystal
WO2019181618A1 (en) Phosphor and light-generating device
US20200255732A1 (en) Phosphor and light source device
JP2008019126A (en) Vacuum ultraviolet light-emitting element