JP2018148681A - Mobile power supply system - Google Patents

Mobile power supply system Download PDF

Info

Publication number
JP2018148681A
JP2018148681A JP2017041190A JP2017041190A JP2018148681A JP 2018148681 A JP2018148681 A JP 2018148681A JP 2017041190 A JP2017041190 A JP 2017041190A JP 2017041190 A JP2017041190 A JP 2017041190A JP 2018148681 A JP2018148681 A JP 2018148681A
Authority
JP
Japan
Prior art keywords
power
power transmission
mobile
plate
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017041190A
Other languages
Japanese (ja)
Other versions
JP6893683B2 (en
Inventor
粟井 郁雄
Ikuo Awai
郁雄 粟井
健太朗 川辺
Kentaro Kawabe
健太朗 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RYUTECH CO Ltd
Original Assignee
RYUTECH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RYUTECH CO Ltd filed Critical RYUTECH CO Ltd
Priority to JP2017041190A priority Critical patent/JP6893683B2/en
Publication of JP2018148681A publication Critical patent/JP2018148681A/en
Application granted granted Critical
Publication of JP6893683B2 publication Critical patent/JP6893683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mobile power supply system which has a simple configuration, does not reduce the power transmission efficiency, and does not significantly change the power transmission efficiency even when a mobile shifts in the lateral direction.SOLUTION: A mobile power supply system 1 can feed power from a power transmission device 2 on the ground side to a power receiving device 4 of a mobile 3 in a non-contact manner, and the power transmission device 2 includes a power transmission plate 21 extending along the ground surface and a power transmission resonator coil 23 having one end connected to the power transmission plate 21 via a power transmission connection line 22, and the power receiving device 4 includes a power receiving plate 41 opposed to the power transmission plate 21 and a power receiving resonator coil 43 having one end connected to the power receiving plate 41 via a power receiving connection line 42.SELECTED DRAWING: Figure 1

Description

本発明は、移動体に非接触で給電する移動体給電システムに関する。   The present invention relates to a mobile power supply system that supplies power to a mobile body in a non-contact manner.

従来より、電気自動車などの移動体に地面側から非接触で(無線で)給電する(電力を供給する)移動体給電システムが各種提案されている。電磁界は、放射電磁界(電磁波)と非放射電磁界(エバネッセント場)に分類でき、非放射電磁界を用いた非接触での給電には、電磁誘導結合方式、容量結合方式、共振器結合方式などがある。   2. Description of the Related Art Various types of mobile power feeding systems have been proposed in which a mobile body such as an electric vehicle is fed (wirelessly) fed (power is supplied) from the ground side in a non-contact manner. Electromagnetic fields can be classified into radiated electromagnetic fields (electromagnetic waves) and non-radiated electromagnetic fields (evanescent fields). For non-contact power feeding using non-radiated electromagnetic fields, electromagnetic induction coupling method, capacitive coupling method, resonator coupling There are methods.

例えば、特許文献1〜5には、電磁誘導により給電する電磁誘導結合方式の移動体給電システムが記載されている。特許文献1では、移動体にコイルが設けられ、地面側には直流送電線が設けられたものが開示されている。特許文献2では、移動体の車輪の中にコイルが設けられ、地面側には車輪の幅とほぼ同じ幅の1次側インダクタが移動体の移動路に沿って地上に敷設されたものが開示されている。特許文献3では、移動体にコイルが設けられ、地面側には多数のコイルが移動体の移動方向に沿って列設されたものが開示されている。特許文献4では、移動体にループ状のコイルが設けられ、地面側には、移動体の移動方向に沿って長いループ状をなすとともに途中で交叉したコイルが設けられたものが開示されている。特許文献5では、移動体にコイルが設けられ、地面側には、線状に形成された導体が設けられたものが開示されている。また、例えば、特許文献6には、容量により受電側と送電側が結合することで給電する容量結合方式の移動体給電システムが記載されている。特許文献6には、移動体の第1車輪と第2車輪の下方にそれぞれ、地面側の第1導体と第2導体を設置し第1導体と第2導体の間に交流電力を印加しているものが開示されている。   For example, Patent Documents 1 to 5 describe an electromagnetic induction coupling type mobile power supply system that supplies power by electromagnetic induction. Patent Document 1 discloses a moving body in which a coil is provided and a DC power transmission line is provided on the ground side. In Patent Document 2, a coil is provided in a wheel of a moving body, and a primary inductor having a width substantially the same as the width of the wheel is laid on the ground side along the moving path of the moving body. Has been. Patent Document 3 discloses a moving body provided with coils, and a plurality of coils arranged in a line along the moving direction of the moving body on the ground side. Patent Document 4 discloses a moving body provided with a loop-shaped coil, and a ground loop having a long loop shape along the moving direction of the moving body and a coil that is crossed in the middle. . In Patent Document 5, a moving body is provided with a coil, and a conductor formed in a linear shape is provided on the ground side. Further, for example, Patent Document 6 describes a capacitive coupling type mobile power feeding system that feeds power by coupling a power receiving side and a power transmission side by a capacity. In Patent Document 6, a ground-side first conductor and a second conductor are installed below the first wheel and the second wheel of a moving body, respectively, and AC power is applied between the first conductor and the second conductor. Is disclosed.

また、例えば、特許文献7〜9には、移動体側(受電側)と地面側(送電側)に共振コイルを設け、それらを共振させることで給電する共振器結合方式の移動体給電システムが記載されている。特許文献7では、移動体側の共振コイルは、車体下部又は車輪に設けられており、地面側の共振コイルは中心軸を鉛直方向にして巻かれているものが開示されている。特許文献8では、移動体側の共振コイルを車輪の中に設け、地面側のインダクタンス成分を有する直線延伸部分が車輪の位置の下になり得るようにしたものが開示されている。特許文献9では、地面側の共振コイルは移動体側の共振コイルよりもサイズを大きくしているものが開示されている。   Further, for example, Patent Documents 7 to 9 describe resonator-coupled mobile power supply systems in which resonance coils are provided on the mobile body side (power receiving side) and the ground side (power transmission side) and power is supplied by resonating them. Has been. Patent Document 7 discloses that a moving body-side resonance coil is provided in a lower part of a vehicle body or a wheel, and a ground-side resonance coil is wound with a central axis in a vertical direction. Patent Document 8 discloses a configuration in which a moving body-side resonance coil is provided in a wheel so that a linearly extending portion having a ground-side inductance component can be located below the wheel position. Patent Document 9 discloses that the ground side resonance coil is larger in size than the moving body side resonance coil.

特開平07−170612号公報Japanese Patent Application Laid-Open No. 07-170612 特開平08−126106号公報JP-A-08-126106 特開2009−71909号公報JP 2009-71909 A 特開2011−223703号公報JP 2011-223703 A 特開2013−42616号公報JP 2013-42616 A 特開2012−175869号公報JP 2012-175869 A 特開2009−106136号公報JP 2009-106136 A 特開2014−195350号公報JP 2014-195350 A 特開2011−109903号公報JP 2011-109903 A

しかし、特許文献1〜8に開示されている移動体給電システムは、移動体が横方向(移動方向に直交する方向))にずれると電力の伝送効率が大きく変わるため、移動体を正確に横方向に位置制御しなければならない。また、特許文献9に開示の移動体給電システムは、移動体の横方向のずれを考慮しているが、電流を流すことにより発生する磁気の分布が広いため、結合係数が小さいので、得られる電力の伝送効率には限界がある。   However, in the mobile power feeding systems disclosed in Patent Documents 1 to 8, when the mobile body shifts in the horizontal direction (direction orthogonal to the moving direction), the power transmission efficiency changes greatly. The position must be controlled in the direction. Moreover, although the mobile power feeding system disclosed in Patent Document 9 takes into account the lateral displacement of the mobile body, it can be obtained because the distribution of magnetism generated by passing a current is wide and the coupling coefficient is small. There is a limit to the power transmission efficiency.

本願発明者は、共振器結合方式の移動体給電システムを鋭意研究し、簡単な構成で、電力の伝送効率が小さくはならず、移動体が横方向にずれても電力の伝送効率が大きく変わることのないものを案出した。   The inventor of the present application diligently studied the resonator-coupled mobile power feeding system, and with a simple configuration, the power transmission efficiency does not become small, and the power transmission efficiency greatly changes even if the mobile body is displaced laterally. I devised something that never happened.

本発明は、係る事由に鑑みてなされたものであり、その目的は、簡単な構成で、電力の伝送効率が小さくはならず、移動体が横方向にずれても電力の伝送効率が大きく変わることのない移動体給電システムを提供することにある。   The present invention has been made in view of the above-mentioned reasons, and the object of the present invention is to have a simple configuration, the power transmission efficiency is not reduced, and the power transmission efficiency changes greatly even if the mobile body is displaced laterally. The object is to provide a mobile power supply system without any problems.

上記目的を達成するために、請求項1に記載の移動体給電システムは、地面側の送電装置から移動体の受電装置に非接触で給電し得る移動体給電システムであって、前記送電装置は、地面表面に沿って延伸する送電板と、該送電板に送電接続線を介して一端が接続される送電共振器コイルと、を備え、前記受電装置は、前記送電板に対向する受電板と、該受電板に受電接続線を介して一端が接続される受電共振器コイルと、を備えていることを特徴とする。   In order to achieve the above object, a mobile power feeding system according to claim 1 is a mobile power feeding system capable of feeding power from a power transmission device on the ground side to a power receiving device of a mobile body in a non-contact manner. A power transmission plate extending along the ground surface, and a power transmission resonator coil having one end connected to the power transmission plate via a power transmission connection line, and the power receiving device includes a power reception plate facing the power transmission plate, And a power receiving resonator coil having one end connected to the power receiving plate via a power receiving connecting line.

請求項2に記載の移動体給電システムは、請求項1に記載の移動体給電システムにおいて、前記送電板は、インダクタンス成分を有する部材で接地されていることを特徴とする。   The mobile power feeding system according to claim 2 is the mobile power feeding system according to claim 1, wherein the power transmission plate is grounded by a member having an inductance component.

本発明の移動体給電システムによれば、簡単な構成で、電力の伝送効率が小さくはならず、移動体が横方向にずれても電力の伝送効率が大きく変わることがない。   According to the mobile power feeding system of the present invention, the power transmission efficiency is not reduced with a simple configuration, and the power transmission efficiency does not change greatly even if the mobile body is displaced laterally.

本発明の実施形態に係る移動体給電システムの概略を示すものであって、(a)が平面図、(b)が側面図、(c)が斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS The outline of the mobile body electric power feeding system which concerns on embodiment of this invention is shown, Comprising: (a) is a top view, (b) is a side view, (c) is a perspective view. 同上の移動体給電システムの実験条件を示すものであって、(a)が移動体給電システムの側面図、(b)が実験で用いた受電板を拡大して示す平面図である。It shows the experimental conditions of the mobile power feeding system of the above, (a) is a side view of the mobile power feeding system, (b) is an enlarged plan view showing the power receiving plate used in the experiment. 同上の移動体給電システムの実験結果を示すグラフである。It is a graph which shows the experimental result of the mobile power feeding system same as the above. 同上の移動体給電システムの変形例を示す平面図である。It is a top view which shows the modification of a mobile body electric power feeding system same as the above.

以下、本発明を実施するための形態を説明する。本発明の実施形態に係る移動体給電システム1は、図1(a)〜(c)に示すように、地面側の送電装置2から移動体3の受電装置4に非接触で給電し得るものである。なお、地面とは、路面や床面など、移動体がそれに対して移動するもののことである。また、移動体とは、自動車等の車両や移動型ロボットなどが含まれる。   Hereinafter, modes for carrying out the present invention will be described. As shown in FIGS. 1A to 1C, the mobile power feeding system 1 according to the embodiment of the present invention can feed power from the ground-side power transmitting device 2 to the power receiving device 4 of the moving body 3 in a non-contact manner. It is. The ground means a moving body such as a road surface or a floor surface that moves relative to the ground. The moving body includes a vehicle such as an automobile and a mobile robot.

送電装置2は、送電板21と送電接続線22と送電共振器コイル23を備えている。   The power transmission device 2 includes a power transmission plate 21, a power transmission connection line 22, and a power transmission resonator coil 23.

送電板21は、地面表面に沿って延伸する。延伸する方向は、移動体3が移動する方向(以下、移動方向)である。送電板21は、横方向(移動方向に直交する方向)よりも移動方向が長くなっている。   The power transmission plate 21 extends along the ground surface. The extending direction is a direction in which the moving body 3 moves (hereinafter referred to as a moving direction). The moving direction of the power transmission plate 21 is longer than the horizontal direction (the direction orthogonal to the moving direction).

送電接続線22は、送電板21と送電共振器コイル23の一端を接続する。送電接続線22と送電板21の接続点は、送電坂21の端部又はその近傍で有れば特に制限はないが、送電坂21の上面(図1(b)参照)又は側面などが可能である。送電接続線22は、曲げることも可能である。   The power transmission connection line 22 connects one end of the power transmission plate 21 and the power transmission resonator coil 23. The connection point between the power transmission connection line 22 and the power transmission plate 21 is not particularly limited as long as it is at or near the end of the power transmission slope 21, but the upper surface (see FIG. 1B) or the side surface of the power transmission slope 21 is possible. It is. The power transmission connection line 22 can also be bent.

送電共振器コイル23は、特に位置が限定されるものではないが、例えば、送電板21の上方(図1(b)参照)に又は送電板21に水平に並べて設置することが可能である。また、送電共振器コイル23は、スパイラルコイルを用いることができる。送電共振器コイル23は、上述したように、その一端が送電接続線22を介して送電坂21に接続されているが、他端は、開放(オープン)状態(図1(a)、(c)参照)とすることができる。送電共振器コイル23は、2分の1波長共振モードで共振することになる。   The position of the power transmission resonator coil 23 is not particularly limited. For example, the power transmission resonator coil 23 can be installed above the power transmission plate 21 (see FIG. 1B) or horizontally arranged on the power transmission plate 21. The power transmission resonator coil 23 can be a spiral coil. As described above, one end of the power transmission resonator coil 23 is connected to the power transmission slope 21 via the power transmission connection line 22, but the other end is in an open state (FIGS. 1A and 1C). ))). The power transmission resonator coil 23 resonates in the half wavelength resonance mode.

詳細には、送電装置2は、更に、送電制御器24を備えている。送電制御器24は、電力用高周波電源24aと結合ループ24bとを有している。電力用高周波電源24aは、結合ループ24bを介して送電側共振器コイル23を励振する。結合ループ24bは、送電側共振器コイル23に電磁誘導結合しており、インピーダンスの整合を行う。結合ループ24bは、他の公知のインピーダンス整合手段で置き換えることも可能である。   Specifically, the power transmission device 2 further includes a power transmission controller 24. The power transmission controller 24 includes a power high-frequency power source 24a and a coupling loop 24b. The power high-frequency power source 24a excites the power transmission side resonator coil 23 via the coupling loop 24b. The coupling loop 24b is electromagnetically coupled to the power transmission side resonator coil 23 and performs impedance matching. The coupling loop 24b can be replaced with other known impedance matching means.

受電装置4は、移動体3に搭載されている。受電装置4は、受電板41と受電接続線42と受電共振器コイル43を備えている。   The power receiving device 4 is mounted on the moving body 3. The power receiving device 4 includes a power receiving plate 41, a power receiving connection line 42, and a power receiving resonator coil 43.

受電板41は、移動体3が移動するとき、送電板41に対向しながら移動する。受電板41の面積は、送電板41よりも小さい。送電板41は、平板状であれば、様々な形状が可能である(図2(b)参照)。   The power receiving plate 41 moves while facing the power transmitting plate 41 when the moving body 3 moves. The area of the power receiving plate 41 is smaller than that of the power transmitting plate 41. The power transmission plate 41 can have various shapes as long as it is flat (see FIG. 2B).

受電接続線42は、受電板41と受電共振器コイル43の一端を接続する。受電接続線42と受電板41の接続点は、受電坂41の上面(図1(b)参照)又は側面などが可能である。受電接続線42は、曲げることも可能である。   The power receiving connection line 42 connects the power receiving plate 41 and one end of the power receiving resonator coil 43. The connection point between the power receiving connection line 42 and the power receiving plate 41 can be the upper surface (see FIG. 1B) or the side surface of the power receiving slope 41. The power receiving connection line 42 can be bent.

受電共振器コイル43は、通常、受電板41の上方に設置される(図1(b)参照)が、これには限られない。また、受電共振器コイル43は、スパイラルコイルを用いることができる。受電共振器コイル43は、上述したように、その一端が受電接続線42を介して受電板41に接続されているが、他端は、開放(オープン)状態(図1(a)、(c)参照)とすることができる。受電共振器コイル43は、2分の1波長共振モードで共振することになる。   The power receiving resonator coil 43 is usually installed above the power receiving plate 41 (see FIG. 1B), but is not limited thereto. The power receiving resonator coil 43 can be a spiral coil. As described above, one end of the power receiving resonator coil 43 is connected to the power receiving plate 41 via the power receiving connection line 42, but the other end is in an open state (see FIGS. 1A and 1C). ))). The power receiving resonator coil 43 resonates in a half wavelength resonance mode.

詳細には、受電装置4は、更に、負荷制御器44を備えている。負荷制御器44は、結合ループ44aと負荷44bとを有している。結合ループ44aは、受電共振器コイル43に電磁界結合しており、インピーダンスの整合を行う。受電共振器コイル43に伝送された電力は、結合ループ44aを介して負荷44bに供給される。負荷44bは、充電回路など移動体3の所要の機能のための回路である。なお、結合ループ44aは、他の公知のインピーダンス整合手段で置き換えることも可能である。   Specifically, the power receiving device 4 further includes a load controller 44. The load controller 44 includes a coupling loop 44a and a load 44b. The coupling loop 44a is electromagnetically coupled to the power receiving resonator coil 43 and performs impedance matching. The power transmitted to the power receiving resonator coil 43 is supplied to the load 44b through the coupling loop 44a. The load 44b is a circuit for a required function of the moving body 3, such as a charging circuit. The coupling loop 44a can be replaced with other known impedance matching means.

以上説明した構成の移動体給電システム1は、送電共振器コイル23と受電共振器コイル43が共振することにより、送電装置2から移動体3の受電装置4に給電する。移動体給電システム1は、簡単な構成であり、また、後述する実験で述べるように電力の伝送効率が小さくはならない。また、移動体給電システム1では、移動体3と地面側との間は、対向する受電板41と送電板21との間の容量による結合により、電力が非接触で伝送される。従って、伝送効率は、受電板41が送電板21に重なった位置に有って重なった面積が変わらなければ、移動体3が横方向にずれても電力の伝送効率が大きく変わることがない。   The mobile power feeding system 1 configured as described above feeds power from the power transmitting device 2 to the power receiving device 4 of the moving body 3 when the power transmitting resonator coil 23 and the power receiving resonator coil 43 resonate. The mobile power feeding system 1 has a simple configuration, and the power transmission efficiency does not become small as will be described in an experiment described later. Further, in the mobile power feeding system 1, power is transmitted in a non-contact manner between the mobile body 3 and the ground side by coupling due to the capacity between the power receiving plate 41 and the power transmission plate 21 facing each other. Therefore, the transmission efficiency does not change greatly even if the movable body 3 is shifted in the lateral direction unless the area where the power receiving plate 41 is overlapped with the power transmission plate 21 and the overlapping area is changed.

なお、送電板21は、その面積が比較的大きいので、無視できない浮遊容量が寄生して電力の伝送特性に影響して来る場合がある。この場合、インダクタンス成分を有する部材(例えば、インダクタンス成分が少なくてよい場合は、所定の太さの電気導線など)で接地することでその影響を抑止することも可能である。また、移動体3は、浮遊容量を介して地面側と高周波的につながっている。   In addition, since the area of the power transmission plate 21 is relatively large, stray capacitance that cannot be ignored may be parasitic and affect the power transmission characteristics. In this case, it is also possible to suppress the influence by grounding with a member having an inductance component (for example, an electric conductor having a predetermined thickness when the inductance component may be small). Moreover, the moving body 3 is connected to the ground side in high frequency via the stray capacitance.

次に示す移動体給電システム1についての実験は、移動体3の位置が変わったときの電力の伝送特性を確認したものである。図2(a)に示す区間1〜区間6に受電板41(移動体3)を位置させた。図2(a)において、区間0が15cm、区間1〜区間6がそれぞれ30.8cmである。送電板21は、移動方向の長さが200cm、横方向の長さが25cmの銅板とした。受電板41は、図2(b)に示す形状のもので、移動方向の長さが20cm(図2(b)においてL41で示す)、横方向の最大の長さ(図2(b)においてW41で示す)が14cm、総面積が約220cmの銅板加工材を用いた。送電板21と送電共振器コイル23の間及び受電板41と受電共振器コイル43の間の間はともに、20cm離し、その間を送電接続線22、受電接続線42で接続した。送電共振器コイル23と受電共振器コイル43はともに、線径1mmの銅線を均一ピッチで15ターン巻いた直径15cmのスパイラルコイル(自己インダクタンスが11μH、線間容量が2pF)を用いた。 The following experiment on the mobile power feeding system 1 is to confirm the power transmission characteristics when the position of the mobile body 3 is changed. The power receiving plate 41 (moving body 3) was positioned in the sections 1 to 6 shown in FIG. In FIG. 2A, the section 0 is 15 cm, and the sections 1 to 6 are 30.8 cm each. The power transmission plate 21 was a copper plate having a length of 200 cm in the moving direction and a length of 25 cm in the horizontal direction. Receiving plate 41 is of a shape shown in FIG. 2 (b), the length of the moving direction 20 cm (indicated by L 41 in FIG. 2 (b)), the maximum length in the horizontal direction (see FIG. 2 (b) indicated by W 41) is 14cm, the total area was used copper workpiece about 220 cm 2 in. The power transmission plate 21 and the power transmission resonator coil 23 and the power reception plate 41 and the power reception resonator coil 43 were both separated by 20 cm, and the power transmission connection line 22 and the power reception connection line 42 were connected therebetween. Both the power transmission resonator coil 23 and the power reception resonator coil 43 were 15 cm diameter spiral coils (with a self-inductance of 11 μH and a line capacitance of 2 pF) in which a copper wire having a wire diameter of 1 mm was wound at a uniform pitch for 15 turns.

図3に、送電板21と受電板41との間の状態を変えて求めた伝送効率を示す。図3の横軸の数字は区間1〜区間6の区間番号である。曲線aと曲線bは、空気層による絶縁を模擬するため、発泡スチロールを送電板21と受電板41との間に挿入したものの伝送効率である。送電板21と受電板41との間の距離は、曲線aが2cm、曲線bが8cmである。曲線cは、送電坂21の上に厚さ6cmのコンクリートを設置し、その上に厚さ2cmの発泡スチロールを設置したものの伝送効率である。   FIG. 3 shows the transmission efficiency obtained by changing the state between the power transmission plate 21 and the power reception plate 41. The numbers on the horizontal axis in FIG. 3 are the section numbers of the sections 1 to 6. Curves a and b are transmission efficiencies of foamed polystyrene inserted between the power transmission plate 21 and the power reception plate 41 in order to simulate insulation by an air layer. The distance between the power transmission plate 21 and the power reception plate 41 is 2 cm for the curve a and 8 cm for the curve b. A curve c is a transmission efficiency of a concrete in which a 6 cm thick concrete is installed on the power transmission slope 21 and a 2 cm thick polystyrene is installed on the concrete.

曲線a、b、cについて、基本的にどの位置においても安定的に電力が伝送されており、伝送効率は、受電板41の位置(つまり移動体3位置)により大きくは変わらないことが分かる。曲線aでは、伝送効率は大体、70%〜80%前後である。曲線bと曲線cではともに、大体、50%〜60%であり、それらは同程度である。このように、電力の伝送効率は、小さくはならず、実用化可能な範囲である。なお、図2(b)に示す受電板41を底面に貼り付けた車のおもちゃを移動体3とした実験において、移動体3(受電装置4)が送電装置2から電力を受電して走行するのを確認している。   With respect to the curves a, b, and c, it is understood that basically, power is stably transmitted at any position, and the transmission efficiency does not vary greatly depending on the position of the power receiving plate 41 (that is, the position of the moving body 3). In the curve a, the transmission efficiency is about 70% to 80%. Both the curve b and the curve c are roughly 50% to 60%, which are comparable. As described above, the power transmission efficiency is not reduced and is in a practical range. Note that in an experiment in which the moving body 3 is a car toy with the power receiving plate 41 attached to the bottom surface shown in FIG. 2B, the moving body 3 (the power receiving apparatus 4) receives power from the power transmitting apparatus 2 and travels. Have confirmed.

以上、本発明の実施形態に係る移動体給電システムについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、本実施形態では、送電板21の横方向の長さが受電板41の横方向の長さよりも大きいものを説明したが、図4に示すように、受電板41の横方向の長さが送電板21の横方向の長さよりも大きいものとすることも可能である。このようにすると、受電板41の横方向の長さの余分(図4においてΔWで示す)だけ移動体3が横方向にずれたとしても、受電板41と送電板21との重なった面積が変わらず、電力の伝送効率が大きく変わることがない。また、この場合、送電板21の総面積を小さくできるので、コストが削減できるとともに送電板21に寄生する浮遊容量を小さくできる。   The mobile power feeding system according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible. For example, in the present embodiment, the description has been given of the case where the lateral length of the power transmission plate 21 is larger than the lateral length of the power reception plate 41, but the lateral length of the power reception plate 41 as shown in FIG. 4. Can be larger than the lateral length of the power transmission plate 21. In this way, even if the movable body 3 is laterally displaced by an excess of the lateral length of the power receiving plate 41 (indicated by ΔW in FIG. 4), the overlapping area of the power receiving plate 41 and the power transmitting plate 21 is reduced. The power transmission efficiency does not change significantly. In this case, since the total area of the power transmission plate 21 can be reduced, the cost can be reduced and the stray capacitance parasitic on the power transmission plate 21 can be reduced.

1 移動体給電システム
2 送電装置
21 送電板
22 送電接続線
23 送電共振器コイル
24 送電制御器
24a 電力用高周波電源
24b 結合ループ
3 移動体
4 受電装置
41 受電板
42 受電接続線
43 受電共振器コイル
44 負荷制御器
44a 結合ループ
44b 負荷
DESCRIPTION OF SYMBOLS 1 Mobile power feeding system 2 Power transmission apparatus 21 Power transmission board 22 Power transmission connection line 23 Power transmission resonator coil 24 Power transmission controller 24a High frequency power supply 24b Power coupling loop 3 Mobile body 4 Power receiving apparatus 41 Power receiving board 42 Power receiving connection line 43 Power receiving resonator coil 44 Load controller 44a Coupling loop 44b Load

Claims (2)

地面側の送電装置から移動体の受電装置に非接触で給電し得る移動体給電システムであって、
前記送電装置は、
地面表面に沿って延伸する送電板と、
該送電板に送電接続線を介して一端が接続される送電共振器コイルと、
を備え、
前記受電装置は、
前記送電板に対向する受電板と、
該受電板に受電接続線を介して一端が接続される受電共振器コイルと、
を備えていることを特徴とする移動体給電システム。
A mobile power feeding system capable of feeding power from a power transmission device on the ground side to a power receiving device of a mobile body in a non-contact manner,
The power transmission device is:
A power transmission plate extending along the ground surface;
A power transmission resonator coil having one end connected to the power transmission plate via a power transmission connection line;
With
The power receiving device is:
A power receiving plate facing the power transmitting plate;
A power receiving resonator coil having one end connected to the power receiving plate via a power receiving connecting line;
A mobile power feeding system comprising:
請求項1に記載の移動体給電システムにおいて、
前記送電板は、インダクタンス成分を有する部材で接地されていることを特徴とする移動体給電システム。
The mobile power feeding system according to claim 1,
The mobile power feeding system, wherein the power transmission plate is grounded by a member having an inductance component.
JP2017041190A 2017-03-05 2017-03-05 Mobile power supply system Active JP6893683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041190A JP6893683B2 (en) 2017-03-05 2017-03-05 Mobile power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041190A JP6893683B2 (en) 2017-03-05 2017-03-05 Mobile power supply system

Publications (2)

Publication Number Publication Date
JP2018148681A true JP2018148681A (en) 2018-09-20
JP6893683B2 JP6893683B2 (en) 2021-06-23

Family

ID=63592475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041190A Active JP6893683B2 (en) 2017-03-05 2017-03-05 Mobile power supply system

Country Status (1)

Country Link
JP (1) JP6893683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011396A (en) * 2019-04-19 2019-07-12 国电南瑞科技股份有限公司 A kind of transmission line polling robot and its charging method
WO2021070553A1 (en) * 2019-10-09 2021-04-15 国立大学法人 東京大学 Wireless power supply system, power transmission device, and power reception device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213554A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Power supply system
JP2012175869A (en) * 2011-02-23 2012-09-10 Toyota Central R&D Labs Inc Vehicle power feed device and vehicle power feed method
JP2014150648A (en) * 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Wireless power supply device for vehicle
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010213554A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Power supply system
JP2012175869A (en) * 2011-02-23 2012-09-10 Toyota Central R&D Labs Inc Vehicle power feed device and vehicle power feed method
JP2014150648A (en) * 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Wireless power supply device for vehicle
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011396A (en) * 2019-04-19 2019-07-12 国电南瑞科技股份有限公司 A kind of transmission line polling robot and its charging method
CN110011396B (en) * 2019-04-19 2022-07-08 国电南瑞科技股份有限公司 Power transmission line inspection robot and charging method thereof
WO2021070553A1 (en) * 2019-10-09 2021-04-15 国立大学法人 東京大学 Wireless power supply system, power transmission device, and power reception device

Also Published As

Publication number Publication date
JP6893683B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP7194091B2 (en) Inductive power transfer device
US10340078B2 (en) Coil topologies for inductive power transfer
JP6179826B2 (en) Charging and feeding system for vehicles
JP5641891B2 (en) Charging and feeding system for vehicles
EP3474302B1 (en) A secondary-sided arrangement of winding structures, a system for inductive power transfer and a method for inductively supplying power to a vehicle
US20120217816A1 (en) Wireless Energy Transfer Using Arrays of Resonant Objects
JP5437650B2 (en) Non-contact power feeding device
JP5786949B2 (en) Power receiving device, power transmitting device, and power transmission system
WO2014069445A1 (en) Power transmission system
WO2012128093A1 (en) Power supply system
WO2014142233A1 (en) Coil unit and non-contact power supply apparatus
JP2011130614A (en) Noncontact power supply
JPWO2015137430A1 (en) Wireless power supply device
WO2013002240A1 (en) Power feeding system design method and power feeding system
US10726991B2 (en) Coil unit for contactless power supply
CN103270671A (en) Power feed system
JPWO2013073051A1 (en) Power transmission device, power reception device, and power transmission system
JP6893683B2 (en) Mobile power supply system
US8890366B2 (en) Wireless energy transfer using array of resonant objects
WO2014136737A1 (en) Power supplying unit, power receiving unit, and power supplying system
US9893566B2 (en) Power supply system
CN103889776A (en) Electric power reception device, electric power transmission device, and electric power transfer system
US9842685B2 (en) Artificial magnetic structures for wireless power transfer
JP5725843B2 (en) Power supply system
JP2017195707A (en) Wireless power supply device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6893683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150