JP2018146391A - Surface shape measurement device and surface shape measurement method - Google Patents

Surface shape measurement device and surface shape measurement method Download PDF

Info

Publication number
JP2018146391A
JP2018146391A JP2017041711A JP2017041711A JP2018146391A JP 2018146391 A JP2018146391 A JP 2018146391A JP 2017041711 A JP2017041711 A JP 2017041711A JP 2017041711 A JP2017041711 A JP 2017041711A JP 2018146391 A JP2018146391 A JP 2018146391A
Authority
JP
Japan
Prior art keywords
measurement
light
surface shape
objective lens
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017041711A
Other languages
Japanese (ja)
Other versions
JP6820515B2 (en
Inventor
森井 秀樹
Hideki Morii
秀樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2017041711A priority Critical patent/JP6820515B2/en
Publication of JP2018146391A publication Critical patent/JP2018146391A/en
Application granted granted Critical
Publication of JP6820515B2 publication Critical patent/JP6820515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface shape measurement device and a method thereof capable of performing a surface shape measurement at a high precision due to the proper selection of an object lens and the light quantity adjustment when performing a surface shape measurement of the measured surface.SOLUTION: A surface shape measurement device includes: a stage 10 of a measurement object P; an optical part 2 of a white interferometer; in-plane direction movement means 35 of a measured surface S; general shape acquisition means for acquiring general shape information of the measured surface S; measured surface dividing means 74 for dividing the measured surface S into a plurality of measured surfaces consisting of inclined areas and flat areas on the basis of the general shape information; object lens selection means 75 for selecting object lenses 50 each different in magnification depending on the inclined areas and the flat areas and light quantity adjustment means 76 for adjusting a light quantity of a light source 40; measured surface shape measurement means 77 for individually measuring the surface shape of the plurality of measured surfaces; and data connection means 78 for connecting a plurality of measured data.SELECTED DRAWING: Figure 1

Description

本発明は、表面形状測定装置及び表面形状測定方法に係り、特に光源、複数の倍率の異なる対物レンズ、及び測定画像を取得する撮影部を少なくとも有する光学部によって測定対象物の被測定面の表面形状を測定する表面形状測定装置及び表面形状測定方法に関する。   The present invention relates to a surface shape measuring apparatus and a surface shape measuring method, and in particular, a surface of a measurement target surface of a measurement object by a light source, a plurality of objective lenses having different magnifications, and an optical unit having at least a photographing unit for acquiring a measurement image. The present invention relates to a surface shape measuring apparatus and a surface shape measuring method for measuring a shape.

表面形状測定装置は、測定対象物の被測定面の3次元形状を測定する装置であり、被測定面の表面形状を測定する光を出力する光源、光源から出力された光を被測定面に照射する対物レンズ、及び被測定面の測定画像を取得する撮影部で少なくとも構成された表面形状測定装置としては、例えば白色干渉顕微鏡(特許文献1)あるいはレーザー共焦点顕微鏡が知られている。   The surface shape measuring device is a device that measures the three-dimensional shape of the surface to be measured of the measurement object, a light source that outputs light for measuring the surface shape of the surface to be measured, and light output from the light source to the surface to be measured. For example, a white interference microscope (Patent Document 1) or a laser confocal microscope is known as a surface shape measuring device including at least an irradiation objective lens and an imaging unit that acquires a measurement image of a measurement target surface.

そして、上記構成の光学部の表面形状測定装置は、測定準備アライメントとして、異なる倍率の複数の対物レンズの中から適正な倍率の対物レンズの選択及び光源の適正な光量調整を少なくとも行う必要がある。この測定準備アライメントを適正に行うか否かによって、被測定面の表面形状の測定精度が異なる。   Then, the surface shape measuring device for the optical part having the above-described configuration needs to perform at least selection of an objective lens having an appropriate magnification and adjustment of an appropriate amount of light from a plurality of objective lenses having different magnifications as measurement preparation alignment. . The measurement accuracy of the surface shape of the surface to be measured varies depending on whether or not the measurement preparation alignment is appropriately performed.

ところで、上記光学部のように対物レンズを備えた表面形状測定装置においては、対物レンズの測定視野等の制限により、1回の測定で測定可能な被測定面の測定範囲に制限がある場合が多い。このため、測定対象物を水平移動可能なステージ上に載置し、被測定面を複数回測定し、その後でソフトウェア処理等を用いて計算することで複数枚の測定データを接続するスティッチング測定を行うことが知られている。   By the way, in the surface shape measuring apparatus provided with the objective lens as in the optical unit, the measurement range of the surface to be measured that can be measured by one measurement may be limited due to the limitation of the measurement field of view of the objective lens. Many. For this reason, the measurement object is placed on a stage that can move horizontally, the surface to be measured is measured multiple times, and then the measurement data is calculated using software processing to connect multiple measurement data. Is known to do.

したがって、スティッチング測定を高精度に行うには、複数回の測定ごとに対物レンズの倍率選択及び光量調整の測定準備アライメントを適正に行う必要がある。   Therefore, in order to perform stitching measurement with high accuracy, it is necessary to appropriately perform measurement preparation alignment of magnification selection and light amount adjustment of the objective lens for each of a plurality of measurements.

特開2016−136091号公報Japanese Patent Laying-Open No. 2006-136091

しかしながら、従来、対物レンズの選択や光源の光量調整は、操作者の経験に基づいて行っていたので、操作者の習熟度によって表面形状の測定精度にバラツキが生じるという問題があった。特にスティッチング測定においては、複数回の測定ごとの測定精度にバラツキがあると、複数枚の測定データを接続して得られる表面形状の精度が悪くなり深刻な問題であった。   However, since the selection of the objective lens and the light amount adjustment of the light source have been conventionally performed based on the experience of the operator, there has been a problem that the measurement accuracy of the surface shape varies depending on the skill level of the operator. In particular, in stitching measurement, if there are variations in the measurement accuracy for each of a plurality of measurements, the accuracy of the surface shape obtained by connecting a plurality of measurement data deteriorates, which is a serious problem.

本発明は、このような事情に鑑みてなされたもので、表面形状測定を高精度化できる表面形状測定装置及び表面形状測定方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the surface shape measuring apparatus and surface shape measuring method which can make surface shape measurement highly accurate.

本発明の一態様に係る表面形状測定装置は目的を達成するために、測定対象物を支持する支持部と、測定対象物の被測定面の表面形状を測定する光を出力する光源、光源から出力された光を被測定面に照射する複数の倍率の異なる対物レンズ、及び被測定面の測定画像を取得する撮影部を少なくとも有する光学部と、支持部を被測定面の面内方向に移動させる面内方向移動手段と、被測定面の概略形状情報を取得する概略形状取得手段と、概略形状情報に基づいて被測定面を傾斜状領域と平坦状領域とで構成される複数の測定面に分割する被測定面分割手段と、分割した傾斜状領域と平坦状領域とに光を照射したときの測定に寄与する測定寄与照射量に応じて複数の対物レンズのうち使用する倍率の対物レンズを選択する対物レンズ選択手段と、分割した傾斜状領域と平坦状領域とに光を照射したときの測定に寄与する測定寄与照射量に応じて光源の光量を調整する光量調整手段と、支持部を被測定面の面内方向に移動させることにより、分割した各測定面を選択した対物レンズ及び調整した光量に基づいて表面形状を個々に測定して複数の測定データを取得する測定面形状測定手段と、取得した複数の測定データを接続するデータ接続手段と、を備えた。光学部としては白色干渉計又はレーザー共焦点顕微鏡を適用することができる。   In order to achieve the object, a surface shape measuring apparatus according to an aspect of the present invention includes a support unit that supports a measurement object, a light source that outputs light for measuring the surface shape of a measurement target surface of the measurement object, and a light source. A plurality of objective lenses for irradiating the surface to be measured with different magnifications, an optical unit having at least a photographing unit for acquiring a measurement image of the surface to be measured, and the support unit are moved in the in-plane direction of the surface to be measured. A plurality of measurement surfaces configured by an inclined region and a flat region based on the approximate shape information; An object lens having a magnification to be used among a plurality of objective lenses according to a measurement contribution irradiation amount that contributes to measurement when light is irradiated to the divided inclined region and flat region. Objective lens selection means for selecting A light amount adjusting means for adjusting the light amount of the light source according to the measurement contribution irradiation amount contributing to the measurement when the divided inclined region and the flat region are irradiated with light, and the support portion in the in-plane direction of the surface to be measured. The measurement surface shape measuring means for individually measuring the surface shape based on the selected objective lens and the adjusted light quantity to obtain a plurality of measurement data, and the obtained plurality of measurements Data connection means for connecting data. A white interferometer or a laser confocal microscope can be applied as the optical unit.

本発明の表面形状測定装置によれば、被測定面の表面形状測定を行う際の対物レンズの選択及び光源の光量調整の測定準備アライメントを適正に行うことができるので表面形状測定を高精度化でき、特にスティッチング測定において有効である。   According to the surface shape measuring apparatus of the present invention, it is possible to appropriately perform measurement preparation alignment for selecting the objective lens and adjusting the light amount of the light source when measuring the surface shape of the surface to be measured. This is particularly effective in stitching measurement.

本発明の表面形状測定装置において、対物レンズの測定視野は測定対象物の被測定面よりも狭く、スティッチング測定により被測定面の表面形状を測定することが好ましい。スティッチング測定において本発明は特に有効だからである。   In the surface shape measuring apparatus of the present invention, it is preferable that the measurement field of the objective lens is narrower than the surface to be measured of the measurement object, and the surface shape of the surface to be measured is measured by stitching measurement. This is because the present invention is particularly effective in stitching measurement.

本発明の表面形状測定装置としては、光学部は白色干渉計を好適に使用することができる。   As the surface shape measuring apparatus of the present invention, a white interferometer can be suitably used as the optical unit.

本発明の表面形状測定装置において、対物レンズを通して被測定面に照射した光のうち対物レンズに戻り測定に寄与する照射光の測定寄与照射量Gを検出する測定寄与照射光量検出手段を設けることが好ましい。   In the surface shape measuring apparatus of the present invention, a measurement contribution irradiation light quantity detecting means for detecting a measurement contribution irradiation amount G of irradiation light that returns to the objective lens and contributes to measurement out of light irradiated to the measurement surface through the objective lens may be provided. preferable.

そして、対物レンズ選択手段は分割した傾斜状領域と平坦状領域とについて、照射した光の全照射光量Fに対する測定寄与照射量Gの割合G/Fに基づいて使用する倍率の対物レンズを選択する。これにより、傾斜状領域と平坦状領域とによって測定を高精度に行うための適正な倍率の対物レンズを選択することができる。   Then, the objective lens selection unit selects an objective lens having a magnification to be used based on the ratio G / F of the measurement contribution irradiation amount G to the total irradiation light amount F of the irradiated light for the divided inclined region and flat region. . Thereby, it is possible to select an objective lens having an appropriate magnification for performing measurement with high accuracy by using the inclined region and the flat region.

また、光量調整手段は分割した傾斜状領域及び平坦状領域について、平坦状領域を測定するときの測定寄与照射量Gを基準光量とし、傾斜状領域を測定するときの測定寄与照射量Gが基準光量になるように光源の光量を調整する。これにより、傾斜状領域と平坦状領域とによって測定を高精度に行うための適正な光源光量を調整することができる。   Further, the light amount adjusting means uses the measurement contribution irradiation amount G when measuring the flat region as the reference light amount for the divided inclined region and flat region, and the measurement contribution irradiation amount G when measuring the inclined region is the reference. Adjust the light quantity of the light source so that the light quantity is the same. Thereby, it is possible to adjust an appropriate light source amount for performing measurement with high accuracy by using the inclined region and the flat region.

本発明の表面形状測定装置において、測定対象物の被測定面の表面形状はうねり形状であることが好ましい。測定対象物の被測定面の表面形状である場合において本発明は特に有効だからである。   In the surface shape measuring apparatus of the present invention, the surface shape of the measurement target surface of the measurement object is preferably a wavy shape. This is because the present invention is particularly effective in the case of the surface shape of the surface to be measured of the measurement object.

本発明の表面形状測定装置において、概略形状取得手段は、三角測量方式のレーザー変位計、ステレオカメラ、パターン投影装置の何れかであることが好ましい。   In the surface shape measuring apparatus of the present invention, the approximate shape obtaining means is preferably any one of a triangulation laser displacement meter, a stereo camera, and a pattern projection device.

本発明の表面形状測定装置において、概略形状取得手段は、測定対象物のCADデータを保持する保持手段であることが好ましい。   In the surface shape measuring apparatus of the present invention, the approximate shape obtaining means is preferably a holding means for holding CAD data of the measurement object.

本発明の表面形状測定装置において、概略形状取得手段は、光学部の対物レンズよりも倍率の小さな低倍率レンズを用いた白色干渉計であることが好ましい。   In the surface shape measuring apparatus of the present invention, it is preferable that the approximate shape obtaining means is a white interferometer using a low-power lens having a smaller magnification than the objective lens of the optical unit.

本発明の表面形状測定装置において、被測定面分割手段で分割された複数の測定面について対物レンズ選択手段で選択した対物レンズマップを表示する表示部を有することが好ましい。   In the surface shape measuring apparatus of the present invention, it is preferable to have a display unit for displaying the objective lens map selected by the objective lens selecting unit for a plurality of measurement surfaces divided by the measured surface dividing unit.

本発明の一態様に係る表面形状測定方法は目的を達成するために、測定対象物を支持する支持部と、測定対象物の被測定面の表面形状を測定する光を出力する光源、光源からの出力された光を被測定面に照射する倍率の異なる複数の対物レンズ、及び被測定面の測定画像を取得する撮影部を少なくとも有する光学部と、を少なくとも有する表面形状測定装置を用いて被測定面の表面形状を測定する表面形状測定方法であって、被測定面の概略形状情報を取得する概略形状取得工程と、概略形状情報に基づいて被測定面を傾斜状領域と平坦状領域とで構成される複数の測定面に分割する被測定面分割工程と、分割した傾斜状領域と平坦状領域とに光を照射したときの測定に寄与する測定寄与照射量に応じて複数の対物レンズのうち使用する倍率の対物レンズを選択する対物レンズ選択工程と、分割した傾斜状領域と平坦状領域とに光を照射したときの測定に寄与する測定寄与照射量に応じて光源の光量を調整する光量調整工程と、支持部を被測定面の面内方向に移動させることにより、分割した各測定面を選択した対物レンズ及び設定した光量に基づいて表面形状を個々に測定して複数の測定データを取得する測定面形状測定工程と、取得した複数の測定データを接続するデータ接続工程と、を備えた。   In order to achieve the object, a surface shape measurement method according to an aspect of the present invention includes a support portion that supports a measurement object, a light source that outputs light for measuring the surface shape of a measurement target surface of the measurement object, and a light source. A surface shape measuring device having at least a plurality of objective lenses having different magnifications for irradiating the surface to be measured with the output light and an optical unit having at least an imaging unit for acquiring a measurement image of the surface to be measured. A surface shape measuring method for measuring a surface shape of a measurement surface, wherein a rough shape acquisition step for acquiring rough shape information of a surface to be measured, and a surface to be measured are inclined and flat regions based on the rough shape information. A plurality of objective lenses according to the measurement contribution irradiation amount that contributes to the measurement when irradiating the divided inclined region and the flat region with light; Magnification to use An objective lens selection step of selecting an objective lens, a light amount adjustment step of adjusting the light amount of the light source according to the measurement contribution irradiation amount that contributes to the measurement when the divided inclined region and the flat region are irradiated with light, Measurement surface that acquires multiple measurement data by individually measuring the surface shape based on the selected objective lens and the set light quantity by moving the support part in the in-plane direction of the measurement surface A shape measurement step and a data connection step for connecting a plurality of acquired measurement data are provided.

本発明の表面形状測定方法によれば、被測定面の表面形状測定を行う際の対物レンズの選択及び光源の光量調整の測定準備アライメントを適正に行うことができるので表面形状測定を高精度化でき、特にスティッチング測定において有効である。   According to the surface shape measuring method of the present invention, it is possible to appropriately perform measurement preparation alignment for selecting the objective lens and adjusting the light amount of the light source when measuring the surface shape of the surface to be measured. This is particularly effective in stitching measurement.

本発明の表面形状測定装置及び表面形状測定方法によれば、被測定面の表面形状測定を行う際の対物レンズの選択及び光源の光量調整の測定準備アライメントを適正に行うことができるので表面形状測定を高精度化できる。   According to the surface shape measuring apparatus and the surface shape measuring method of the present invention, it is possible to appropriately perform measurement preparation alignment for selecting the objective lens and adjusting the light amount of the light source when measuring the surface shape of the surface to be measured. The measurement can be made highly accurate.

本発明の実施の形態の表面形状測定装置の全体構成図1 is an overall configuration diagram of a surface shape measuring apparatus according to an embodiment of the present invention. 光学部の干渉部に設けられた倍率の異なる複数の種類の対物レンズの一例を示す概念図Conceptual diagram showing an example of a plurality of types of objective lenses having different magnifications provided in the interference unit of the optical unit 撮像素子の撮像面のxy座標上における干渉縞の画素配列を示した図The figure which showed the pixel arrangement | sequence of the interference fringe on the xy coordinate of the imaging surface of an image pick-up element 干渉部のz位置と輝度値との関係及び干渉縞曲線を例示した図The figure which illustrated the relationship between z position of an interference part, and a luminance value, and an interference fringe curve 被測定面の異なる点の異なるz座標値と干渉縞曲線との関係を例示した図The figure which illustrated the relationship between the different z coordinate value of the different point of a to-be-measured surface, and an interference fringe curve スティッチング測定による表面形状測定の説明図Explanatory drawing of surface shape measurement by stitching measurement うねり形状の被測定面を有する測定対象物の一例を示す斜視図The perspective view which shows an example of the measuring object which has a wave-shaped to-be-measured surface 概略形状取得手段の一態様のレーザー変位計を説明する説明図Explanatory drawing explaining the laser displacement meter of one mode of a rough shape acquisition means 概略形状取得手段の一態様のステレオカメラを説明する説明図Explanatory drawing explaining the stereo camera of the one aspect | mode of an approximate shape acquisition means 概略形状取得手段の一態様の白色干渉計を説明する説明図Explanatory drawing explaining the white interferometer of the one aspect | mode of an approximate shape acquisition means 表面形状測定装置の処理部に搭載した被測定面分割手段、対物レンズ選択手段、光量調整手段、測定面形状測定手段、データ接続手段の説明図Explanatory drawing of measured surface dividing means, objective lens selecting means, light quantity adjusting means, measuring surface shape measuring means, and data connection means mounted on the processing unit of the surface shape measuring device 段差閾値の説明図Illustration of step threshold うねり形状の被測定面を傾斜角度調整と平坦状領域との複数の測定面に分割した一例を説明する説明図Explanatory drawing explaining an example which divided | segmented the to-be-measured surface into a several measurement surface of inclination angle adjustment and a flat area | region. 対物レンズ選択手段によって傾斜状領域と平坦状領域とに倍率の異なる対物レンズを選択する一例を説明する説明図Explanatory drawing explaining an example which selects the objective lens from which magnification differs in an inclined area | region and a flat area | region by an objective lens selection means. 見込角θ1の対物レンズで傾斜角度θ2の被測定面に光を照射したときの光の挙動を説明する説明図Explanatory drawing explaining the behavior of light when irradiating light to the to-be-measured surface of inclination angle (theta) 2 with the objective lens of expectation angle (theta) 1 被測定面の傾斜角度と、全照射光量に対する測定に寄与する測定寄与照射光量の割合との関係を表したグラフA graph showing the relationship between the inclination angle of the measured surface and the ratio of the measurement contribution irradiation light amount that contributes to the measurement with respect to the total irradiation light amount 本発明の実施の形態の表面形状測定方法のフローチャートThe flowchart of the surface shape measuring method of embodiment of this invention 対物レンズマップの説明図Illustration of objective lens map

以下、添付図面にしたがって本発明の表面形状測定装置及び表面形状測定方法の好ましい実施の形態について説明する。   Hereinafter, preferred embodiments of a surface shape measuring apparatus and a surface shape measuring method of the present invention will be described with reference to the accompanying drawings.

本発明は以下の好ましい実施の形態により説明される。本発明の範囲を逸脱することなく、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。   The present invention is illustrated by the following preferred embodiments. Changes can be made by many techniques without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. Accordingly, all modifications within the scope of the present invention are included in the claims.

ここで、図中、同一の記号で示される部分は、同様の機能を有する同様の要素である。また、本明細書中で、数値範囲を“ 〜 ”を用いて表す場合は、“ 〜 ”で示される上限、下限の数値も数値範囲に含むものとする。   Here, in the drawing, portions indicated by the same symbols are similar elements having similar functions. In addition, in the present specification, when a numerical range is expressed using “˜”, upper and lower numerical values indicated by “˜” are also included in the numerical range.

[表面形状測定装置]
本実施の形態の表面形状測定装置では、測定対象物の被測定面の表面形状を測定する光を出力する光源、光源から出力された光を被測定面に照射する対物レンズ、及び被測定面の測定画像を取得する撮影部を少なくとも有する光学部として、垂直走査型の白色干渉計の例で以下に説明する。
[Surface shape measuring device]
In the surface shape measuring apparatus of the present embodiment, a light source that outputs light for measuring the surface shape of the measurement target surface of the measurement object, an objective lens that irradiates the measurement target surface with light output from the light source, and the measurement surface An example of a vertical scanning type white interferometer will be described below as an optical unit having at least an imaging unit for acquiring the measurement image.

また、対物レンズの測定視野が測定対象物の被測定面よりも小さくスティッチング測定を行う場合で説明する。   Further, a case where the measurement visual field of the objective lens is smaller than the measurement target surface of the measurement object and the stitching measurement is performed will be described.

図1は、本発明の実施の形態の表面形状測定装置の全体構成を示した構成図である。   FIG. 1 is a configuration diagram showing the overall configuration of a surface shape measuring apparatus according to an embodiment of the present invention.

図1における表面形状測定装置1は、マイケルソン型の干渉計を用いて測定対象物Pの被測定面Sの表面形状等を非接触により3次元測定する所謂、マイケルソン型の走査型白色干渉計(顕微鏡)であり、測定対象物Pの干渉縞(干渉画像)を取得する光学部2と、測定対象物Pが載置される支持部としてのステージ10と、表面形状測定装置1の各種制御や光学部2により取得された干渉縞像に基づいて各種演算処理を行うパーソナルコンピュータ等の演算処理装置からなる処理部18等を備える。   The surface shape measuring apparatus 1 in FIG. 1 uses a Michelson-type interferometer to measure the surface shape of the measurement surface S of the measurement object P three-dimensionally in a non-contact manner, so-called Michelson-type scanning white interference. An optical unit 2 that acquires an interference fringe (interference image) of the measurement object P, a stage 10 as a support unit on which the measurement object P is placed, and various types of the surface shape measurement apparatus 1 A processing unit 18 including an arithmetic processing unit such as a personal computer that performs various arithmetic processing based on the interference fringe image acquired by the control and the optical unit 2 is provided.

なお、本実施の形態では、マイケルソン型の走査型白色干渉計の例で説明するが、周知のミロー型の走査型白色干渉計であってもよい。また、測定対象物Pが配置される測定空間において、互いに直交する水平方向の2つの座標軸をx軸(紙面に平行する軸)とy軸(紙面に直交する軸)とし、x軸及びy軸に直交する鉛直方向の座標軸をz軸とする。z軸は後記する測定光軸Z−0に平行である。そして、処理部18は、被測定面S上の点をx軸のx座標、y軸のy座標、z軸のz座標で示すxyz座標をもっており、被測定面Sの3次元位置を得ることができる。   In this embodiment, an example of a Michelson-type scanning white interferometer will be described. However, a known Millo-type scanning white interferometer may be used. Further, in the measurement space in which the measurement object P is arranged, two coordinate axes in the horizontal direction orthogonal to each other are an x axis (an axis parallel to the paper surface) and a y axis (an axis orthogonal to the paper surface), and the x axis and the y axis. A vertical coordinate axis orthogonal to the z axis is defined as z-axis. The z axis is parallel to the measurement optical axis Z-0 described later. Then, the processing unit 18 has a xyz coordinate indicating a point on the measured surface S by an x coordinate of the x axis, ay coordinate of the y axis, and a z coordinate of the z axis, and obtains a three-dimensional position of the measured surface S. Can do.

ステージ10は、x軸及びy軸に略平行する平坦面であって測定対象物Pを載置するステージ面10Sを有する。また、ステージ10は、ステージ10を光学部2に対して相対的に被測定面Sの面内方向に水平移動させる面内方向移動手段35と、を備えている。   The stage 10 has a stage surface 10S on which a measurement object P is placed, which is a flat surface substantially parallel to the x-axis and the y-axis. In addition, the stage 10 includes in-plane direction moving means 35 that horizontally moves the stage 10 in the in-plane direction of the surface S to be measured relative to the optical unit 2.

面内方向移動手段35は、xアクチュエータ34とyアクチュエータ36とで構成される。そして、ステージ10は、xアクチュエータ34の駆動によりx軸方向に水平移動し、yアクチュエータ36の駆動によりy軸方向に水平移動する。このステージ10のx軸方向及びy軸方向への移動により、ステージ10に載置された測定対象物Pの被測定面Sを光学部2に対して移動させる。   The in-plane direction moving means 35 includes an x actuator 34 and a y actuator 36. Then, the stage 10 horizontally moves in the x-axis direction by driving the x actuator 34 and horizontally moves in the y-axis direction by driving the y actuator 36. By moving the stage 10 in the x-axis direction and the y-axis direction, the measurement surface S of the measurement object P placed on the stage 10 is moved with respect to the optical unit 2.

なお、xアクチュエータ34及びyアクチュエータ36のように本明細書においてアクチュエータという場合には、ピエゾアクチュエータやモータなどの任意の駆動装置を示す。   In the present specification, the term “actuator” such as the x actuator 34 and the y actuator 36 indicates an arbitrary drive device such as a piezo actuator or a motor.

また、ステージ面10Sに対向する位置、即ち、ステージ10の上側には、筐体2A(図2参照)により一体的に保持された光学部2が配置される。   The optical unit 2 that is integrally held by the housing 2A (see FIG. 2) is disposed at a position facing the stage surface 10S, that is, above the stage 10.

光学部2は、x軸に平行な光軸Z−1を有する光源部12と、z軸に平行な光軸(測定光軸Z−0)を有する干渉部14と、撮影部16とを有する。光源部12の光軸Z−1は、干渉部14及び撮影部16の測定光軸Z−0に対して直交し、干渉部14と撮影部16との間において測定光軸Z−0と交差する。なお、光軸Z−1は、必ずしもx軸と平行でなくてもよい。   The optical unit 2 includes a light source unit 12 having an optical axis Z-1 parallel to the x axis, an interference unit 14 having an optical axis (measurement optical axis Z-0) parallel to the z axis, and an imaging unit 16. . The optical axis Z-1 of the light source unit 12 is orthogonal to the measurement optical axis Z-0 of the interference unit 14 and the imaging unit 16, and intersects the measurement optical axis Z-0 between the interference unit 14 and the imaging unit 16. To do. The optical axis Z-1 does not necessarily have to be parallel to the x axis.

光源部12は、測定対象物Pを照明する照明光として波長幅が広い白色光(可干渉性の少ない低コヒーレンス光)を出射する光源40と、光源40から拡散して出射された照明光を略平行な光束に変換するコレクタレンズ42とを有する。光源40及びコレクタレンズ42の各々の中心とする軸は光源部12の光軸Z−1として同軸上に配置される。   The light source unit 12 emits white light having a wide wavelength range (low coherence light with low coherence) as illumination light for illuminating the measurement object P, and illumination light emitted after being diffused from the light source 40. And a collector lens 42 that converts the light into a substantially parallel light beam. The center axis of each of the light source 40 and the collector lens 42 is coaxially disposed as the optical axis Z-1 of the light source unit 12.

また、光源40としては、発光ダイオード、半導体レーザー、ハロゲンランプ、高輝度放電ランプなど、任意の種類の発光体を用いることができる。   Further, as the light source 40, any kind of light emitter such as a light emitting diode, a semiconductor laser, a halogen lamp, and a high-intensity discharge lamp can be used.

この光源部12から出射された照明光は、干渉部14と撮影部16との間に配置され、光軸Z−1と測定光軸Z−0とが交差する位置に配置されたハーフミラー等のビームスプリッタ44に入射する。そして、ビームスプリッタ44(ビームスプリッタ44の平坦な光分割面(反射面))で反射した照明光が光軸Z−0に沿って進行して干渉部14に入射する。   The illumination light emitted from the light source unit 12 is disposed between the interference unit 14 and the imaging unit 16, and is a half mirror disposed at a position where the optical axis Z-1 and the measurement optical axis Z-0 intersect. Is incident on the beam splitter 44. The illumination light reflected by the beam splitter 44 (the flat light splitting surface (reflecting surface) of the beam splitter 44) travels along the optical axis Z-0 and enters the interference unit 14.

干渉部14は、マイケルソン型干渉計により構成され、光源部12から入射した照明光を測定光と参照光とに分割する。そして、測定光を測定対象物Pに照射するとともに参照光を参照ミラー52に照射し、測定対象物Pから戻る測定光と参照ミラー52から戻る参照光とを干渉させた干渉光を生成する。   The interference unit 14 is configured by a Michelson interferometer, and divides illumination light incident from the light source unit 12 into measurement light and reference light. Then, the measurement light P is irradiated to the measurement object P and the reference light is irradiated to the reference mirror 52, and interference light is generated by causing the measurement light returning from the measurement object P to interfere with the reference light returning from the reference mirror 52.

干渉部14は、集光作用を有し、倍率の異なる複数の対物レンズ50と、光を反射する参照面であって平坦な反射面を有する参照ミラー52と、光を分割する平坦な光分割面を有するビームスプリッタ54を有する。対物レンズ50、参照ミラー52、及びビームスプリッタ54の各々の中心とする軸は干渉部14の測定光軸Z−0として同軸上に配置される。参照ミラー52の反射面はビームスプリッタ54の側方位置に、測定光軸Z−0と平行に配置される。   The interference unit 14 has a condensing function, a plurality of objective lenses 50 having different magnifications, a reference mirror 52 that is a reference surface that reflects light and has a flat reflection surface, and flat light division that divides light. It has a beam splitter 54 having a surface. The center axes of the objective lens 50, the reference mirror 52, and the beam splitter 54 are coaxially arranged as the measurement optical axis Z-0 of the interference unit 14. The reflection surface of the reference mirror 52 is disposed at a side position of the beam splitter 54 in parallel with the measurement optical axis Z-0.

図2は、光学部2の干渉部14に設けられた対物レンズ50を示す概念図である。   FIG. 2 is a conceptual diagram illustrating the objective lens 50 provided in the interference unit 14 of the optical unit 2.

図2に示すように、光学部2を保持する筐体2Aの被測定面S側の面にはレボルバー2Bが設けられ、レボルバー2Bには低倍率レンズ50A,中倍率レンズ50B、高倍率レンズ50Cが固定されている。そして、処理部18の指示でレボルバー2Bを回転させることにより干渉部14の測定走査に用いる対物レンズ50を選択することができる。   As shown in FIG. 2, a revolver 2B is provided on the surface to be measured S side of the housing 2A that holds the optical unit 2, and the revolver 2B has a low-power lens 50A, a medium-power lens 50B, and a high-power lens 50C. Is fixed. Then, by rotating the revolver 2B in accordance with an instruction from the processing unit 18, the objective lens 50 used for measurement scanning of the interference unit 14 can be selected.

なお、対物レンズ50は上記の3種類に限定するものではなく、低倍率レンズ50A,中倍率レンズ50B、高倍率レンズ50Cのうちの2つを組み合わせてもよく、あるいは4つ以上の対物レンズ50を設けて倍率を細かく分けてもよい。   The objective lens 50 is not limited to the above three types, and two of the low magnification lens 50A, the medium magnification lens 50B, and the high magnification lens 50C may be combined, or four or more objective lenses 50 may be combined. May be provided to finely divide the magnification.

図1に戻って、光源部12から干渉部14に入射した照明光は、対物レンズ50により集光作用を受けた後、ビームスプリッタ54に入射する。   Returning to FIG. 1, the illumination light incident on the interference unit 14 from the light source unit 12 is focused on the objective lens 50 and then enters the beam splitter 54.

ビームスプリッタ54は、例えばハーフミラーであり、ビームスプリッタ54に入射した照明光は、ビームスプリッタ54を透過する測定光と、ビームスプリッタ54の光分割面で反射する参照光とに分割される。   The beam splitter 54 is, for example, a half mirror, and the illumination light incident on the beam splitter 54 is split into measurement light that passes through the beam splitter 54 and reference light that is reflected by the light splitting surface of the beam splitter 54.

ビームスプリッタ54を透過した測定光は、測定対象物Pの被測定面Sに照射された後、被測定面Sから干渉部14へと戻り、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54を透過した測定光が対物レンズ50に入射する。   The measurement light transmitted through the beam splitter 54 is irradiated onto the measurement surface S of the measurement object P, returns from the measurement surface S to the interference unit 14, and is incident on the beam splitter 54 again. Then, the measurement light transmitted through the beam splitter 54 enters the objective lens 50.

一方、ビームスプリッタ54で反射した参照光は、参照ミラー52の光反射面で反射した後、再度、ビームスプリッタ54に入射する。そして、ビームスプリッタ54で反射した参照光が対物レンズ50に入射する。   On the other hand, the reference light reflected by the beam splitter 54 is reflected by the light reflecting surface of the reference mirror 52 and then enters the beam splitter 54 again. Then, the reference light reflected by the beam splitter 54 enters the objective lens 50.

これにより、干渉部14から測定対象物Pの被測定面Sに照射されて干渉部14に戻る測定光と、参照ミラー52で反射した参照光とが重ね合わされた干渉光が生成され、その干渉光が対物レンズ50により集光作用を受けた後、干渉部14から撮影部16に向けて出射される。   As a result, interference light is generated in which the measurement light that is irradiated from the interference unit 14 to the measurement surface S of the measurement target P and returns to the interference unit 14 and the reference light reflected by the reference mirror 52 is superimposed, and the interference is generated. After the light is focused by the objective lens 50, the light is emitted from the interference unit 14 toward the photographing unit 16.

また、照明光が測定光と参照光とに分割された後、測定光と参照光とが重ね合わされるまでの測定光と参照光の各々が通過した光路の光学的距離を、測定光の光路長及び参照光の光路長といい、それらの差を測定光と参照光の光路長差というものとする。   Further, after the illumination light is divided into the measurement light and the reference light, the optical distance of the optical path through which each of the measurement light and the reference light passes until the measurement light and the reference light are superimposed is expressed as an optical path of the measurement light. The length and the optical path length of the reference light are referred to as the difference between the optical path lengths of the measurement light and the reference light.

干渉部14を測定光の測定光軸Z−0(z軸)に沿って垂直方向に測定走査することで測定光の光路長を変化させる走査手段としての干渉部アクチュエータ56を有する。そして、干渉部アクチュエータ56の駆動により干渉部14がz軸方向(測定走査方向)に移動する。これにより、対物レンズ50の焦点面の位置(高さ)がz軸方向に移動すると共に、被測定面Sとビームスプリッタ54との距離が変化することで測定光の光路長が変化し、測定光と参照光との光路長差が変化する。   The interference unit actuator 56 is provided as scanning means for changing the optical path length of the measurement light by scanning the interference unit 14 in the vertical direction along the measurement optical axis Z-0 (z axis) of the measurement light. Then, the interference unit 14 is moved in the z-axis direction (measurement scanning direction) by driving the interference unit actuator 56. As a result, the position (height) of the focal plane of the objective lens 50 moves in the z-axis direction, and the optical path length of the measurement light changes as the distance between the measured surface S and the beam splitter 54 changes. The optical path length difference between the light and the reference light changes.

撮影部16は、測定対象物Pの被測定面Sの各点に照射された測定光と、参照光とによる干渉光の輝度情報から干渉縞を取得する干渉縞取得部であり、例えばCCD(Charge Coupled Device)カメラに相当し、CCD型の撮像素子60と、結像レンズ62とを有する。撮像素子60と結像レンズ62の各々の中心とする軸は撮影部16の測定光軸Z−0として同軸上に配置される。なお、撮像素子60は、CMOS(Complementary Metal Oxide Semiconductor)型の固体撮像素子等、任意の撮像手段を用いることができる。   The imaging unit 16 is an interference fringe acquisition unit that acquires interference fringes from luminance information of interference light by measurement light irradiated to each point of the measurement target surface S of the measurement object P and reference light. It corresponds to a Charge Coupled Device) camera and has a CCD type image pickup device 60 and an imaging lens 62. The center axes of the image sensor 60 and the imaging lens 62 are arranged coaxially as the measurement optical axis Z-0 of the imaging unit 16. The imaging device 60 can be any imaging means such as a CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device.

干渉部14から出射された干渉光は、上述のビームスプリッタ44に入射し、ビームスプリッタ44を透過した干渉光が撮影部16に入射する。   The interference light emitted from the interference unit 14 enters the beam splitter 44 described above, and the interference light transmitted through the beam splitter 44 enters the imaging unit 16.

撮影部16に入射した干渉光は、結像レンズ62により撮像素子60の撮像面60Sに干渉縞像を結像する。ここで、結像レンズ62は、測定対象物Pの被測定面Sの測定光軸Z−0周辺の領域に対する干渉縞像を高倍率に拡大して撮像素子60の撮像面60Sに結像する。   The interference light incident on the imaging unit 16 forms an interference fringe image on the imaging surface 60S of the imaging element 60 by the imaging lens 62. Here, the imaging lens 62 enlarges the interference fringe image for the area around the measurement optical axis Z-0 of the measurement target surface S of the measurement object P at a high magnification and forms an image on the imaging surface 60S of the imaging element 60. .

また、結像レンズ62は、干渉部14の対物レンズ50の焦点面上における点を、撮像素子60の撮像面上の像点として結像する。即ち、撮影部16は、対物レンズ50の焦点面の位置にピントが合うように(合焦するように)設計されている。   In addition, the imaging lens 62 images a point on the focal plane of the objective lens 50 of the interference unit 14 as an image point on the imaging surface of the imaging element 60. In other words, the photographing unit 16 is designed so that it is focused (focused) on the position of the focal plane of the objective lens 50.

撮像素子60の撮像面60Sに結像された干渉縞像は、撮像素子60により電気信号に変換されて干渉縞として取得される。そして、その干渉縞は、処理部18に与えられる。   The interference fringe image formed on the imaging surface 60S of the imaging element 60 is converted into an electrical signal by the imaging element 60 and acquired as an interference fringe. Then, the interference fringes are given to the processing unit 18.

以上のように光源部12、干渉部14、及び撮影部16等により構成される光学部2は、全体が一体的としてz軸方向に直進移動可能に設けられる。例えば、光学部2は、z軸方向に沿って立設された不図示のz軸ガイド部に直進移動可能に支持される。そして、zアクチュエータ70の駆動により光学部2全体がZ軸方向に直進移動する。これにより、干渉部14をz軸方向に移動させる場合よりも、撮影部16のピント位置をz軸方向に大きく移動させることができ、例えば、測定対象物Pの厚さ等に応じて撮影部16のピント位置を適切な位置に調整することができる。   As described above, the optical unit 2 including the light source unit 12, the interference unit 14, the imaging unit 16, and the like is provided as a whole so as to be linearly movable in the z-axis direction. For example, the optical unit 2 is supported by a z-axis guide unit (not shown) provided upright along the z-axis direction so as to be able to move straight. Then, the entire optical unit 2 moves straight in the Z-axis direction by driving the z actuator 70. Thereby, the focus position of the imaging unit 16 can be moved more in the z-axis direction than when the interference unit 14 is moved in the z-axis direction. For example, the imaging unit can be used according to the thickness of the measurement object P or the like. The 16 focus positions can be adjusted to appropriate positions.

処理部18は、測定対象物Pの被測定面Sの表面形状を測定する際に、干渉部アクチュエータ56を制御して光学部2の干渉部14をz軸方向に移動させながら撮影部16の撮像素子60から干渉縞を順次取得する。そして、取得した干渉縞に基づいて被測定面Sの3次元形状データを被測定面Sの表面形状を示すデータとして取得する。   When the processing unit 18 measures the surface shape of the measurement target surface S of the measurement object P, the processing unit 18 controls the interference unit actuator 56 to move the interference unit 14 of the optical unit 2 in the z-axis direction while moving the interference unit 14 in the z-axis direction. Interference fringes are sequentially acquired from the image sensor 60. Then, the three-dimensional shape data of the measurement surface S is acquired as data indicating the surface shape of the measurement surface S based on the acquired interference fringes.

ここで、処理部18が干渉縞に基づいて被測定面Sの3次元形状データを取得する処理について説明する。   Here, a process in which the processing unit 18 acquires the three-dimensional shape data of the measurement surface S based on the interference fringes will be described.

撮影部16の撮像素子60は、x軸及びy軸からなるxy平面(水平面)に沿って2次元的に配列された多数の受光素子(画素)から構成されている。そして、各画素において受光される干渉縞の輝度値、即ち、撮像素子60により取得される干渉縞の各画素の輝度値は、各画素に対応する被測定面Sの各点で反射した測定光と参照光との光路長差に応じた干渉光の強度(輝度情報)を示す。   The imaging element 60 of the imaging unit 16 is configured by a large number of light receiving elements (pixels) arranged two-dimensionally along an xy plane (horizontal plane) composed of an x axis and ay axis. Then, the luminance value of the interference fringe received at each pixel, that is, the luminance value of each pixel of the interference fringe acquired by the image sensor 60 is measured light reflected at each point of the measured surface S corresponding to each pixel. The intensity (intensity information) of the interference light according to the optical path length difference between the reference light and the reference light.

ここで、図3に示すように、撮像素子60の撮像面60Sのxy座標上の干渉縞におけるm列目、n行目の画素を(m,n)を表すものとする。そして、画素(m,n)のx軸方向に関する位置(以下、x軸方向に関する位置を「x位置」という)を示すx座標値をx(m,n)と表するものとする。そして、y軸方向に関する位置(以下、y軸方向に関する位置「y位置」という)を示すy座標値をy(m,n)と表すものとする。   Here, as shown in FIG. 3, the m-th and n-th pixels in the interference fringes on the xy coordinates of the imaging surface 60 </ b> S of the imaging device 60 represent (m, n). The x coordinate value indicating the position of the pixel (m, n) in the x-axis direction (hereinafter, the position in the x-axis direction is referred to as “x position”) is represented as x (m, n). A y coordinate value indicating a position in the y-axis direction (hereinafter referred to as a position “y position” in the y-axis direction) is represented as y (m, n).

また、画素(m,n)に対応する測定対象物Pの被測定面S上の点のx位置を示すx座標値をX(m,n)と表し、y位置を示すy座標値をY(m,n)と表すものとし、その点をxy座標値により(X(m,n),Y(m,n))と表すものとする。
なお、画素(m,n)に対応する被測定面S上の点とは、ピントが合っている状態において画素(m,n)の位置に像点が結像される被測定面S上の点を意味する。
Further, the x coordinate value indicating the x position of the point on the measured surface S of the measurement object P corresponding to the pixel (m, n) is represented as X (m, n), and the y coordinate value indicating the y position is represented as Y. It is assumed that (m, n) is represented, and the point is represented by (X (m, n), Y (m, n)) by xy coordinate values.
The point on the measured surface S corresponding to the pixel (m, n) is on the measured surface S where the image point is formed at the position of the pixel (m, n) in the focused state. Means a point.

このとき、撮像素子60により取得される干渉縞の画素(m,n)の輝度値は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差に応じた大きさを示す。   At this time, the luminance value of the interference fringe pixel (m, n) acquired by the image sensor 60 is a point (X (m, n), Y () on the measured surface S corresponding to the pixel (m, n). m, n)) shows the magnitude according to the optical path length difference between the measurement light and the reference light irradiated.

即ち、図1の干渉部アクチュエータ56により干渉部14をz軸方向に測定走査させて光学部2(撮影部16)に対する干渉部14の相対的なz軸方向の位置(以下、「z位置」という)を変位させると、撮影部16のピント位置(対物レンズ50の焦点面)もz軸方向に移動し、ピント位置も干渉部14と同じ変位量で変位する。また、ピント位置が変位すると、被測定面Sの各点に照射される測定光の光路長も変化する。   That is, the interference part actuator 56 of FIG. 1 is used to measure and scan the interference part 14 in the z-axis direction, and the relative position of the interference part 14 with respect to the optical part 2 (imaging part 16) (hereinafter referred to as “z position”). The focus position of the photographing unit 16 (focal plane of the objective lens 50) is also moved in the z-axis direction, and the focus position is also displaced by the same displacement amount as the interference unit 14. Further, when the focus position is displaced, the optical path length of the measurement light applied to each point of the measurement surface S also changes.

そして、干渉部14をz軸方向に移動させてピント位置を変位させながら、即ち、測定光の光路長を変化させながら、撮像素子60から干渉縞を順次取得して干渉縞の任意の画素(m,n)の輝度値を検出する。   Then, while moving the interference unit 14 in the z-axis direction and displacing the focus position, that is, while changing the optical path length of the measurement light, the interference fringes are sequentially obtained from the image sensor 60 and any pixel ( The luminance value of m, n) is detected.

ここで、処理部18は、干渉部14の所定の基準位置からの変位量(干渉部14のz位置)を、ポテンショメータやエンコーダなどの不図示の位置検出手段からの検出信号により検出することができる。または、位置検出手段を使用することなく干渉部14のz位置を制御する場合、例えば、干渉部アクチュエータ56に与える駆動信号により一定変位量ずつ干渉部14を移動させる場合には、その総変位量により検出することができる。   Here, the processing unit 18 can detect the amount of displacement of the interference unit 14 from the predetermined reference position (z position of the interference unit 14) by a detection signal from a position detection unit (not shown) such as a potentiometer or an encoder. it can. Alternatively, when the z position of the interference unit 14 is controlled without using position detection means, for example, when the interference unit 14 is moved by a certain amount of displacement by a drive signal applied to the interference unit actuator 56, the total displacement amount Can be detected.

そして、干渉部14が基準位置のときのピント位置のz位置を測定空間におけるz座標の基準位置(原点位置)として、かつ、干渉部14の基準位置からの変位量をピント位置のz座標値として取得することができる。なお、z座標値は、原点位置よりも高い位置(撮影部16に近づく位置)を正側、低い位置(ステージ面10Sに近づく位置)を負側とする。また、干渉部14の基準位置、即ち、z座標の原点位置は任意のz位置に設定、変更することができる。   Then, the z position of the focus position when the interference unit 14 is the reference position is set as the reference position (origin position) of the z coordinate in the measurement space, and the displacement amount from the reference position of the interference unit 14 is the z coordinate value of the focus position. Can be obtained as For the z coordinate value, a position higher than the origin position (position approaching the imaging unit 16) is set as a positive side, and a position lower than (position approaching the stage surface 10S) is set as a negative side. In addition, the reference position of the interference unit 14, that is, the origin position of the z coordinate can be set and changed to an arbitrary z position.

図4の(A)〜(C)は、干渉部14を測定対象物Pの被測定面Sに近接した位置からz軸方向に上昇させながら撮影部16の撮像素子60から画像を取得したときの干渉部14のz位置と輝度値との関係を示した図である。   4A to 4C, when an image is acquired from the image sensor 60 of the imaging unit 16 while raising the interference unit 14 in the z-axis direction from a position close to the measurement target surface S of the measurement object P. It is the figure which showed the relationship between z position of the interference part 14, and a luminance value.

図4の(A)のように、測定光の光路長L1が参照光の光路長L2よりも小さいと干渉は小さく、輝度値は略一定となる。そして、図4の(B)のように、測定光の光路長L1と参照光の光路長L2とが同じ、即ち光路長差が0となる場合に干渉が大きくなり、最も大きな輝度値を示す。さらに、図4の(C)のように、測定光の光路長L1が参照光の光路長L2よりも大きいと再び干渉は小さくなり、輝度値は略一定となる。これにより、図4の(D)に示す干渉縞曲線Qに沿った輝度値が得られる。   As shown in FIG. 4A, when the optical path length L1 of the measurement light is smaller than the optical path length L2 of the reference light, the interference is small and the luminance value is substantially constant. Then, as shown in FIG. 4B, when the optical path length L1 of the measurement light and the optical path length L2 of the reference light are the same, that is, when the optical path length difference is 0, the interference becomes large and shows the largest luminance value. . Further, as shown in FIG. 4C, when the optical path length L1 of the measurement light is larger than the optical path length L2 of the reference light, the interference is reduced again, and the luminance value becomes substantially constant. Thereby, the luminance value along the interference fringe curve Q shown in FIG.

即ち、任意の画素(m,n)における干渉縞曲線Qは、その画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長差が所定値より大きい場合には略一定の輝度値を示し、光路長差がその所定値より小さいときには、光路長差が減少するにつれて輝度値が振動すると共にその振幅が大きくなる。   That is, the interference fringe curve Q at an arbitrary pixel (m, n) is at a point (X (m, n), Y (m, n)) on the measured surface S corresponding to that pixel (m, n). When the optical path length difference between the irradiated measurement light and the reference light is larger than a predetermined value, it shows a substantially constant luminance value. When the optical path length difference is smaller than the predetermined value, the luminance value decreases as the optical path length difference decreases. As it vibrates, its amplitude increases.

したがって、図4(D)に示すように、干渉縞曲線Qは、測定光と参照光との光路長が一致したときに(光路長差が0のときに)、最大値を示すと共に、その干渉縞曲線Qの包絡線における最大値を示す。   Therefore, as shown in FIG. 4D, the interference fringe curve Q shows the maximum value when the optical path lengths of the measurement light and the reference light match (when the optical path length difference is 0), and The maximum value in the envelope of the interference fringe curve Q is shown.

また、被測定面S上の点(X(m,n),Y(m,n))に照射された測定光と参照光との光路長は、撮影部16のピント位置が被測定面S上の点(X(m,n),Y(m,n))のz位置に一致したときに一致する。   Further, the optical path length between the measurement light and the reference light irradiated to the point (X (m, n), Y (m, n)) on the surface S to be measured is such that the focus position of the photographing unit 16 is the surface S to be measured. When the upper point (X (m, n), Y (m, n)) coincides with the z position, it matches.

したがって、干渉縞曲線Qが最大値を示すとき(又は干渉縞曲線Qの包絡線が最大値を示すとき)のピント位置は、被測定面S上の点(X(m,n),Y(m,n))のz位置に一致しており、そのときのピント位置のz座標値は、被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。   Therefore, when the interference fringe curve Q shows the maximum value (or when the envelope of the interference fringe curve Q shows the maximum value), the focus position is a point (X (m, n), Y ( The z coordinate value of the focus position at that time is the z coordinate of the point (X (m, n), Y (m, n)) on the measured surface S. Indicates the value.

以上のことから、処理部18は、干渉部アクチュエータ56により干渉部14をz軸方向に移動させてピント位置をz軸方向に移動させながら(測定光の光路長を変化させながら)、撮像素子60から干渉縞を順次取得し、各画素(m,n)の輝度値をピント位置のz座標値に対応付けて取得する。即ち、ピント位置をz軸方向に走査しながら干渉縞の各画素(m,n)の輝度値を取得する。そして、各画素(m,n)について、図3(D)のような干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値(干渉縞位置)を、各画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値Z(m,n)として検出する。   From the above, the processing unit 18 moves the interference unit 14 in the z-axis direction by the interference unit actuator 56 and moves the focus position in the z-axis direction (while changing the optical path length of the measurement light), and the imaging device. Interference fringes are sequentially acquired from 60, and the luminance value of each pixel (m, n) is acquired in association with the z coordinate value of the focus position. That is, the luminance value of each pixel (m, n) of the interference fringe is acquired while scanning the focus position in the z-axis direction. For each pixel (m, n), the z coordinate value (interference fringe position) of the focus position when the luminance value of the interference fringe curve Q as shown in FIG. , N) is detected as the z coordinate value Z (m, n) of the point (X (m, n), Y (m, n)) on the surface S to be measured.

なお、Z(m,n)は、画素(m,n)に対応する被測定面S上の点(X(m,n),Y(m,n))のz座標値を示す。   Z (m, n) represents the z coordinate value of the point (X (m, n), Y (m, n)) on the measured surface S corresponding to the pixel (m, n).

また、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出する方法は周知であり、どのような方法を採用してもよい。例えば、ピント位置の微小間隔ごとのz座標値において干渉縞を取得することで、各画素(m,n)について、図3(D)のような干渉縞曲線Qを実際に描画することができる程度に輝度値を取得することができる。そして、取得した輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。   Also, a method of detecting the z coordinate value of the focus position when the luminance value of the interference fringe curve Q shows the maximum value is well known, and any method may be adopted. For example, the interference fringe curve Q as shown in FIG. 3D can be actually drawn for each pixel (m, n) by acquiring the interference fringe at the z coordinate value for each minute interval at the focus position. The brightness value can be acquired to the extent. Then, by detecting the z coordinate value of the focus position when the acquired luminance value shows the maximum value, the z coordinate value of the focus position when the luminance value of the interference fringe curve Q shows the maximum value can be detected. it can.

または、ピント位置の各z座標値において取得した輝度値に基づいて最小二乗法等により干渉縞曲線Qを推測し、又は、干渉縞曲線Qの包絡線を推測する。そして、その推測した干渉縞曲線Q又は包絡線に基づいて輝度値が最大値を示すときのピント位置のz座標値を検出することで、干渉縞曲線Qの輝度値が最大値を示すときのピント位置のz座標値を検出することができる。   Alternatively, the interference fringe curve Q is estimated by the least square method or the like based on the luminance value acquired at each z coordinate value of the focus position, or the envelope of the interference fringe curve Q is estimated. Then, by detecting the z-coordinate value of the focus position when the luminance value shows the maximum value based on the estimated interference fringe curve Q or envelope, the luminance value of the interference fringe curve Q shows the maximum value. The z coordinate value of the focus position can be detected.

以上のようにして、処理部18は、干渉縞(撮像素子60の撮像面60S)の各画素(m,n)に対応する被測定面S上の各点(X(m,n),Y(m,n))のz座標値Z(m,n)を検出することで、被測定面S上の各点(X(m,n),Y(m,n))の相対的な高さを検出することができる。   As described above, the processing unit 18 has each point (X (m, n), Y) on the measured surface S corresponding to each pixel (m, n) of the interference fringe (the imaging surface 60S of the imaging device 60). By detecting the z coordinate value Z (m, n) of (m, n)), the relative height of each point (X (m, n), Y (m, n)) on the surface S to be measured. Can be detected.

そして、被測定面S上の各点のx座標値X(m,n)、y座標値Y(m,n)、及びz座標値Z(m,n)を被測定面Sの3次元形状データ(表面形状を示すデータ)として取得することができる。   Then, the x coordinate value X (m, n), the y coordinate value Y (m, n), and the z coordinate value Z (m, n) of each point on the measured surface S are converted into a three-dimensional shape of the measured surface S. It can be acquired as data (data indicating the surface shape).

例えば、図5に示すようにx軸方向に並ぶ3つの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3が相違する場合に、ピント位置をz軸方向に走査しながら干渉縞のそれらの画素の輝度値を取得する。その結果、それらの画素の各々に関してピント位置がz座標値Z1、Z2、Z3のときに輝度値が最大値を示す干渉縞曲線Q1、Q2、Q3が取得される。したがって、それらの干渉縞曲線Q1、Q2、Q3の輝度値が最大値を示すときのピント位置のz座標値を検出することで、それらの画素に対応する被測定面S上の3点におけるz座標値Z1、Z2、Z3を検出することができる。このようにして、被測定面Sの3次元形状データを取得することにより、測定対象物Pの表面形状測定を行う。   For example, as shown in FIG. 5, when z coordinate values Z1, Z2, and Z3 at three points on the measured surface S corresponding to three pixels arranged in the x-axis direction are different, the focus position is scanned in the z-axis direction. While obtaining the luminance values of those pixels of the interference fringes. As a result, the interference fringe curves Q1, Q2, and Q3 having the maximum luminance value when the focus position is the z-coordinate value Z1, Z2, and Z3 for each of these pixels are acquired. Therefore, by detecting the z coordinate value of the focus position when the luminance values of the interference fringe curves Q1, Q2, and Q3 show the maximum values, z at three points on the measured surface S corresponding to those pixels is detected. Coordinate values Z1, Z2, and Z3 can be detected. In this way, the surface shape of the measurement object P is measured by acquiring the three-dimensional shape data of the measurement surface S.

上述のように光学部2として垂直走査型の白色干渉計を使用した場合、干渉部14に使用する対物レンズ50の最大撮影面積である測定視野W等の制限により、1回の測定で測定可能な被測定面Sの測定視野に制限がある場合が多い。   When a vertical scanning type white interferometer is used as the optical unit 2 as described above, measurement can be performed in one measurement due to the limitation of the measurement field of view W that is the maximum photographing area of the objective lens 50 used in the interference unit 14. In many cases, the measurement field of the measurement surface S is limited.

このため、図6に示すように、測定対象物Pをx軸方向及びy軸方向に水平移動可能なステージ10上に載置し、測定対象物Pの被測定面Sを一定の割合で測定範囲が重なるように移動させながら複数回測定する。そして、その後でソフトウェア処理等を用いて計算することで複数枚の測定データを接続することにより被測定面Sの表面形状を測定するスティッチング測定を行う。   For this reason, as shown in FIG. 6, the measuring object P is placed on a stage 10 that can be moved horizontally in the x-axis direction and the y-axis direction, and the surface S to be measured of the measuring object P is measured at a certain rate. Measure multiple times while moving so that the ranges overlap. Then, stitching measurement is performed to measure the surface shape of the measurement target surface S by connecting a plurality of measurement data by calculation using software processing or the like.

なお、本実施の形態では、被測定面Sを一定の割合で測定範囲が重なるように測定する例で説明するが、重ねない場合もありえる。図6のWは対物レンズ50の測定視野を示しているが、実際には幅がWの正方形の面積である。   In the present embodiment, an example in which the measurement surface S is measured so that the measurement ranges overlap at a constant rate will be described. 6 indicates the measurement field of view of the objective lens 50. In actuality, it is a square area having a width W.

ところで、従来技術でも述べたように、光源40、倍率の異なる複数の対物レンズ50、及び撮影部16を備えた光学部2を有する表面形状測定装置1においては、測定準備アライメントとして、干渉部14に設けられた複数の倍率の異なる対物レンズ50の選択及び光源40の光量調整を少なくとも行う必要がある。   Incidentally, as described in the prior art, in the surface shape measuring apparatus 1 including the optical unit 2 including the light source 40, the plurality of objective lenses 50 having different magnifications, and the imaging unit 16, the interference unit 14 is used as measurement preparation alignment. It is necessary to select at least a plurality of objective lenses 50 having different magnifications and to adjust the light amount of the light source 40.

この測定準備アライメントを適正に行うか否かによって、表面形状の測定精度が異なる。特に、図7に示すように、表面形状が傾斜状領域Dと平坦状領域Kを有するうねり形状の被測定面Sを複数回測定し、その後に複数枚の測定データを接続するスティッチング測定を行う場合、傾斜状領域Dと平坦状領域Kとの測定精度にバラツキが生じ易い。したがって、複数回の測定ごとに対物レンズ50の選択及び光源40の光量調整に関する測定準備アライメントを適正に行わないと、表面形状測定の精度が悪くなる。   The measurement accuracy of the surface shape differs depending on whether or not this measurement preparation alignment is properly performed. In particular, as shown in FIG. 7, stitching measurement is performed by measuring a measurement surface S having a wavy shape having a sloped region D and a flat region K a plurality of times, and then connecting a plurality of pieces of measurement data. When performing, the measurement accuracy of the inclined region D and the flat region K is likely to vary. Therefore, the accuracy of the surface shape measurement is deteriorated unless the measurement preparation alignment relating to the selection of the objective lens 50 and the light amount adjustment of the light source 40 is properly performed for each of a plurality of measurements.

そこで、本発明の実施の形態の表面形状測定装置1は、上記の基本構成に加えて、表面形状測定を高精度に行うための以下の構成を備えるようにした。   Therefore, the surface shape measuring apparatus 1 according to the embodiment of the present invention includes the following configuration for performing surface shape measurement with high accuracy in addition to the above basic configuration.

即ち、図1に示すように、主として、概略形状取得手段72と、被測定面分割手段74と、対物レンズ選択手段75と、光量調整手段76と、測定面形状測定手段77と、データ接続手段78と、を備えた。   That is, as shown in FIG. 1, mainly the approximate shape obtaining means 72, the measured surface dividing means 74, the objective lens selecting means 75, the light amount adjusting means 76, the measuring surface shape measuring means 77, and the data connecting means. 78.

(概略形状取得手段)
概略形状取得手段72は、被測定面Sの概略形状情報を取得するものであり、被測定面Sにおける傾斜状領域D(図7参照)と平坦状領域K(図7参照)とを識別できる程度の比較的低精度のものでよく、高速かつ広範囲で測定が可能であることが優先される。概略形状取得手段72としては、次の3通りのものを採用することが好ましい。
(Rough shape acquisition means)
The approximate shape acquisition means 72 acquires the approximate shape information of the measured surface S, and can identify the inclined region D (see FIG. 7) and the flat region K (see FIG. 7) on the measured surface S. Priority should be given to being able to measure at a high speed and in a wide range. As the schematic shape acquisition means 72, it is preferable to employ the following three types.

1つ目の概略形状取得手段72は、三角測量方式のレーザー変位計、ステレオカメラ、パターン投影装置、等を別途設ける場合である。図8は三角測量方式のレーザー変位計72Aを被測定面Sの面内方向に沿って移動させることにより被測定面Sの傾斜状領域Dや平坦状領域Kの概略形状を取得している概念図である。   The first schematic shape acquisition means 72 is a case where a triangulation laser displacement meter, a stereo camera, a pattern projection device, and the like are separately provided. FIG. 8 shows the concept of acquiring the approximate shape of the inclined region D and the flat region K of the measurement surface S by moving the triangulation laser displacement meter 72A along the in-plane direction of the measurement surface S. FIG.

三角測量方式のレーザー変位計72Aは、測定対象物Pの被測定面Sに照射されたレーザーの拡散反射の一部が受光レンズを通過して受光素子上にスポットを形成し、測定対象物Pまでの距離が変位すると、スポットも移動する。そのスポット位置を検出することにより被測定面Sの概略形状を測定する方法である。反射光のなかの拡散反射光を受光することにより、測定範囲を広くとることができる。   In the triangulation type laser displacement meter 72A, a part of the diffuse reflection of the laser irradiated on the surface S to be measured of the measurement object P passes through the light receiving lens to form a spot on the light receiving element. When the distance to is displaced, the spot moves. This is a method for measuring the approximate shape of the surface S to be measured by detecting the spot position. By receiving diffuse reflected light in the reflected light, the measurement range can be widened.

ステレオカメラ72Bは、測定対象物Pの被測定面Sを複数の異なる方向から同時に撮影することにより、その奥行き方向の情報も記録でき、1台で両眼視差を再現し、立体的な空間把握のできる立体写真の撮影が可能である。   The stereo camera 72B can record information on the depth direction by simultaneously photographing the measurement surface S of the measurement object P from a plurality of different directions, and can reproduce binocular parallax with one unit to grasp the three-dimensional space. It is possible to take 3D photographs.

図9は2つのカメラ73で測定対象物Pの被測定面Sを撮像している図であり、これにより被測定面Sの概略形状を取得することができる。   FIG. 9 is a diagram in which the measurement surface S of the measurement object P is imaged by the two cameras 73, whereby the schematic shape of the measurement surface S can be acquired.

図示しないが、パターン投影法は、パターン光を測定対象物Pの被測定面Sに投影し、画像に写ったパターン上の点の三次元座標を求める方法である。そして、パターン上の各点から三角測量の原理で、それらの点に対応する三次元座標で三次元形状データを取得することにより被測定面Sの概略形状を取得することができる。   Although not shown, the pattern projection method is a method in which pattern light is projected onto the measurement target surface S of the measurement object P, and three-dimensional coordinates of points on the pattern appearing in the image are obtained. Then, based on the principle of triangulation from each point on the pattern, the approximate shape of the measurement surface S can be acquired by acquiring three-dimensional shape data with the three-dimensional coordinates corresponding to those points.

これらの三角測量方式のレーザー変位計72A、ステレオカメラ72B、パターン投影装置等の概略形状取得手段72は公知のものを使用することができる。   As the triangulation-type laser displacement meter 72A, stereo camera 72B, pattern projection device, and the like, a general shape acquisition unit 72 can be used.

レーザー変位計72A、ステレオカメラ72B、パターン投影装置等の新たに設置が必要な概略形状取得手段72は、図1に示すように例えば光学部2の側方位置に配置される。また、ステージ10を光学部2の下方位置と概略形状取得手段72の下方位置とに往復移動させるステージ移動手段80が設けられる。これにより、概略形状取得手段72によりステージ10上に載置された測定対象物Pの被測定面Sの概略形状が取得されると、ステージ移動手段80によってステージ10が光学部2の下方まで移動する。なお、本実施の形態では、1つのステージ10を光学部2の下方位置と概略形状取得手段72の下方位置とで移動させるようにしたが、概略形状取得手段72のためのステージを別途設け、概略形状取得手段72による概略形状取得が終了したら、ユーザが測定対象物Pをステージ10に載せ変えるようにしてもよい。   As shown in FIG. 1, the schematic shape acquisition means 72 that needs to be newly installed, such as a laser displacement meter 72 </ b> A, a stereo camera 72 </ b> B, and a pattern projection device, is disposed at a side position of the optical unit 2. In addition, stage moving means 80 is provided for reciprocating the stage 10 to a lower position of the optical unit 2 and a lower position of the schematic shape acquiring means 72. Thereby, when the approximate shape of the measurement surface S of the measurement object P placed on the stage 10 is acquired by the approximate shape acquisition unit 72, the stage 10 is moved to below the optical unit 2 by the stage moving unit 80. To do. In the present embodiment, one stage 10 is moved between the lower position of the optical unit 2 and the lower position of the approximate shape acquisition means 72. However, a stage for the approximate shape acquisition means 72 is provided separately, When the outline shape acquisition by the outline shape acquisition unit 72 is completed, the user may place the measurement object P on the stage 10.

2つ目の概略形状取得手段72は、測定対象物PのCAD(computer-aided-design)データを保持する保持手段(図示せず)であり、処理部18の記憶手段を使用することができる。このように、測定対象物PのCADデータを保持する保持手段を概略形状取得手段72として利用すれば、1つ目の概略形状取得手段72のように、概略形状取得手段72を別途設ける必要がない。また、保持手段に保持されたCADデータは既に測定対象物Pの3次元形状データを有している。これにより、測定対象物Pの被測定面Sの概略形状を測定する必要もないので、測定の時間短縮に寄与する。   The second schematic shape acquisition unit 72 is a holding unit (not shown) that holds CAD (computer-aided-design) data of the measurement object P, and the storage unit of the processing unit 18 can be used. . Thus, if the holding means for holding the CAD data of the measurement object P is used as the approximate shape acquisition means 72, it is necessary to separately provide the approximate shape acquisition means 72 like the first approximate shape acquisition means 72. Absent. Further, the CAD data held in the holding means already has the three-dimensional shape data of the measurement object P. As a result, it is not necessary to measure the approximate shape of the measurement target surface S of the measurement object P, which contributes to shortening the measurement time.

3つ目の概略形状取得手段72は、干渉部14の対物レンズ50として広い範囲を高速で測定できる低倍率レンズを用いた白色干渉計で概略形状を事前測定する場合である。この場合は、本実施の形態の表面形状測定装置1の干渉部14に既設の対物レンズ50における低倍率レンズ50Aを使用することで構成できる。したがって、3つ目の概略形状取得手段72の場合にも、概略形状取得手段72を別途設ける必要がない。   The third approximate shape acquisition means 72 is a case where the approximate shape is pre-measured with a white interferometer using a low magnification lens capable of measuring a wide range at high speed as the objective lens 50 of the interference unit 14. In this case, it can be configured by using the low-magnification lens 50A in the existing objective lens 50 in the interference unit 14 of the surface shape measuring apparatus 1 of the present embodiment. Therefore, in the case of the third schematic shape acquisition means 72, it is not necessary to separately provide the schematic shape acquisition means 72.

そして、図10に示すように、低倍率レンズ50Aに切り替えた干渉部14により、被測定面Sの複数の特徴点近傍をサンプリング測定することで、被測定面Sの概略形状を取得することができる。特徴点は例えば被測定面Sの段差エッジ部分等である。   Then, as shown in FIG. 10, the rough shape of the measured surface S can be acquired by sampling and measuring the vicinity of a plurality of feature points on the measured surface S by the interference unit 14 switched to the low magnification lens 50 </ b> A. it can. The feature point is, for example, a step edge portion of the surface S to be measured.

これらの概略形状取得手段72で取得された被測定面Sの概略形状情報は被測定面分割手段74に送られる。   The approximate shape information of the measured surface S acquired by the approximate shape acquiring means 72 is sent to the measured surface dividing means 74.

(被測定面分割手段)
被測定面分割手段74は、概略形状取得手段72によって取得した概略形状情報に基づいて被測定面Sを傾斜状領域Dと平坦状領域Kとで構成され1つの面積が対物レンズ50の測定視野W以下の複数の測定面Nに分割するものである。
(Measuring surface division means)
The surface to be measured dividing unit 74 is configured by the surface to be measured S composed of the inclined region D and the flat region K based on the approximate shape information acquired by the approximate shape acquiring unit 72, and one area is a measurement field of view of the objective lens 50. Dividing into a plurality of measurement surfaces N of W or less.

ここで、傾斜状領域D及び平坦状領域Kとは、概略形状情報を表示部20(図1参照)に表示したときに、被測定面S全体の概観として傾斜状に見える領域と平坦状に見える領域を言い、被測定面Sの細かな凹凸を拡大したときの傾斜や平坦は含まない。   Here, the inclined region D and the flat region K are a flat region and a region that appears to be inclined as an overview of the entire measured surface S when the schematic shape information is displayed on the display unit 20 (see FIG. 1). This refers to the visible region, and does not include inclination or flatness when the fine irregularities of the measurement surface S are enlarged.

また、傾斜状領域Dとは傾斜面及びその近傍領域を言い、傾斜面が1つであることに限らず、傾斜角度の異なる傾斜面が繋がっている場合も含む。平坦状領域Kとは平坦面及びその近傍領域を言い、平坦とは略平坦であればよい。   Further, the inclined region D means an inclined surface and its vicinity region, and is not limited to a single inclined surface, but includes a case where inclined surfaces having different inclination angles are connected. The flat region K refers to a flat surface and its vicinity, and the flat region may be substantially flat.

図11は、被測定面分割手段74、及び詳細を後記する対物レンズ選択手段75、光量調整手段76、測定面形状測定手段77、データ接続手段78をパーソナルコンピュータ等の演算処理装置からなる処理部18に搭載した場合である。   FIG. 11 shows a measurement surface dividing unit 74, and an objective lens selection unit 75, a light amount adjustment unit 76, a measurement surface shape measurement unit 77, and a data connection unit 78 which will be described in detail later. 18 is mounted.

なお、被測定面分割手段74、対物レンズ選択手段75、光量調整手段76、測定面形状測定手段77、及びデータ接続手段78は、処理部18に搭載せずに専用のハードウェアとして構成することもできるが、本実施の形態では、処理部18において実行されるプログラムを用いて構築される。即ち、処理部18のCPU(Central-Processing-Unit)が演算処理装置を構成し、被測定面分割手段74、対物レンズ選択手段75、光量調整手段76、測定面形状測定手段77、データ接続手段78として機能する。   The measured surface dividing means 74, the objective lens selecting means 75, the light quantity adjusting means 76, the measuring surface shape measuring means 77, and the data connecting means 78 are configured as dedicated hardware without being mounted on the processing unit 18. However, in the present embodiment, it is constructed using a program executed in the processing unit 18. That is, a CPU (Central-Processing-Unit) of the processing unit 18 constitutes an arithmetic processing unit, and a measured surface dividing means 74, an objective lens selecting means 75, a light quantity adjusting means 76, a measuring surface shape measuring means 77, and a data connecting means. It functions as 78.

図11に示すように、処理部18は被測定面分割手段74、対物レンズ選択手段75、光量調整手段76、測定面形状測定手段77と、データ接続手段78を搭載し、概略形状取得手段72からの概略形状情報が被測定面分割手段74に入力される。また、概略形状取得手段72における概略形状情報の3次元座標(xyz座標)も処理部18に入力される。   As shown in FIG. 11, the processing unit 18 includes a measured surface dividing unit 74, an objective lens selecting unit 75, a light amount adjusting unit 76, a measuring surface shape measuring unit 77, and a data connection unit 78. Is input to the measured surface dividing means 74. Further, the three-dimensional coordinates (xyz coordinates) of the rough shape information in the rough shape acquisition unit 72 are also input to the processing unit 18.

そして、被測定面分割手段74は、概略形状取得手段72により取得した概略形状情報の3次元座標と、ステージ10に載置された測定対象物Pの3次元座標とを整合する。これにより、測定対象物Pと概略形状情報との位置合わせが行われる。そして、概略形状情報に基づいて被測定面Sを傾斜状領域Dと平坦状領域Kとで構成され1つの面積が測定視野W以下の複数の測定面Nに分割する。この場合、被測定面Sを一定の割合で測定面Nが重なるように分割する。   Then, the measured surface dividing unit 74 matches the three-dimensional coordinates of the approximate shape information acquired by the approximate shape acquiring unit 72 with the three-dimensional coordinates of the measurement object P placed on the stage 10. Thereby, alignment with the measuring object P and outline shape information is performed. Then, based on the schematic shape information, the measurement surface S is composed of the inclined region D and the flat region K, and one area is divided into a plurality of measurement surfaces N having a measurement visual field W or less. In this case, the surface S to be measured is divided so that the measurement surfaces N overlap at a constant rate.

被測定面分割手段74は、傾斜状領域Dと平坦状領域Kとの高低差で形成される段差の閾値(以下、段差閾値という)によって識別することが好ましい。   The measured surface dividing means 74 is preferably identified by a step threshold value (hereinafter referred to as a step threshold value) formed by the height difference between the inclined region D and the flat region K.

図12に示すように、例えば、うねり形状のうねり最大高さh(測定対象物Pの最大厚みh1-最小厚みh2)が100μmある場合に、段差閾値Rを例えば10μmに設定する。これにより、被測定面分割手段74は、被測定面Sにおいて10μm以上の高低差を有する領域を傾斜状領域Dとして判定し、10μm未満の高低差を有する領域を平坦状領域Kとして判断する。段差閾値Rをどの程度に設定するかは被測定面Sのうねり形状のうねり最大高さh、うねり幅の大きさ、うねり周期等に基づいて決定することができる。   As shown in FIG. 12, for example, when the undulation maximum height h (the maximum thickness h1-minimum thickness h2 of the measurement object P) is 100 μm, the step threshold R is set to 10 μm, for example. Thereby, the measured surface dividing means 74 determines an area having a height difference of 10 μm or more on the measured surface S as the inclined area D, and determines an area having an elevation difference of less than 10 μm as the flat area K. The degree to which the step threshold R is set can be determined based on the maximum undulation height h of the undulation shape of the measurement surface S, the size of the undulation width, the undulation period, and the like.

段差閾値Rを幾つに設定するかは、被測定面分割手段74に予め設定しておいてもよいが、ユーザが入力部22等を利用して被測定面分割手段74に任意に設定することが好ましい。これにより、被測定面Sの表面形状に応じて被測定面Sの分割数を適正に選択することができる。   The number of step threshold values R may be set in the measured surface dividing means 74 in advance, but the user arbitrarily sets it in the measured surface dividing means 74 using the input unit 22 or the like. Is preferred. Thereby, according to the surface shape of the to-be-measured surface S, the division | segmentation number of the to-be-measured surface S can be selected appropriately.

図13は、図7に示したうねり形状の被測定面Sを被測定面分割手段74により、x軸方向とy軸方向とに四角形状の16個の測定面N〜N16に分割し、分割した各測定面Nについて測定面に存在する最大高さを測定走査するのに最小限必要な干渉部14の最小走査範囲Z〜Zを設定した説明図である。 In FIG. 13, the measurement surface S having the wavy shape shown in FIG. 7 is divided by the measurement surface dividing means 74 into 16 measurement surfaces N 1 to N 16 that are square in the x-axis direction and the y-axis direction. FIG. 5 is an explanatory diagram in which minimum scanning ranges Z 1 to Z 8 of the interference unit 14 that are minimum necessary for measuring and scanning the maximum height existing on the measurement surface for each divided measurement surface N are set.

図13の(A)は分割した16個の測定面Nの最小走査範囲Z〜Zを示し、(B)は分割した16個の測定面N〜N16を示す。図13の(B)において、網状部分は測定面N同士の重なり部分を示す。また、図13の(C)は干渉部14の対物レンズ50の測定視野Wを示す。 FIG. 13A shows the minimum scanning ranges Z 1 to Z 8 of the 16 measurement surfaces N divided, and FIG. 13B shows the 16 measurement surfaces N 1 to N 16 divided. In FIG. 13B, the mesh portion indicates an overlapping portion of the measurement surfaces N. FIG. 13C shows a measurement visual field W of the objective lens 50 of the interference unit 14.

図13の(B)に示すように、16個の測定面NをNからN16と名前を付けたとすると、例えば測定面N及び測定面Nの最小走査範囲はZとなる。また、測定面N及び測定面N16の最小走査範囲はZとなる。測定面N〜N及び測定面N10〜N15についても同様に最小測定走査設定Z〜Zを設定することができる。 As shown in FIG. 13B, if the 16 measurement surfaces N are named N 1 to N 16 , for example, the minimum scanning range of the measurement surface N 1 and the measurement surface N 9 is Z 1 . The minimum scanning range of the measurement surface N 8 and the measurement surface N 16 becomes Z 8. Similarly, the minimum measurement scan settings Z 2 to Z 7 can be set for the measurement surfaces N 2 to N 7 and the measurement surfaces N 10 to N 15 .

なお、被測定面分割手段74が被測定面Sを傾斜状領域Dと平坦状領域Kとに分割する別の方法としては、表示部20と入力部22とを用いてユーザが被測定面分割手段74に対して分割領域を指定することもできる。即ち、表示部20に表示した概略形状情報をユーザが目視して傾斜状領域Dと平坦状領域Kとに識別し、識別した分割領域の位置座標(xy座標)を入力する。そして、被測定面分割手段74は、ユーザからの指定に基づいて被測定面Sを傾斜状領域Dと平坦状領域Kとに分割する。また、被測定面Sを傾斜状領域Dと平坦状領域Kとに分割できれば、上記の分割方法に限定するものではない。   As another method of dividing the measurement surface S into the inclined region D and the flat region K by the measurement surface dividing means 74, the user can divide the measurement surface using the display unit 20 and the input unit 22. Divided areas can also be designated for the means 74. That is, the user visually recognizes the approximate shape information displayed on the display unit 20 to identify the inclined area D and the flat area K, and inputs the position coordinates (xy coordinates) of the identified divided areas. Then, the measured surface dividing means 74 divides the measured surface S into the inclined region D and the flat region K based on the designation from the user. Moreover, if the to-be-measured surface S can be divided | segmented into the inclined area | region D and the flat area | region K, it will not be limited to said dividing method.

(対物レンズ選択手段)
以下説明するように、対物レンズ選択手段75は、分割した各測定面Nについて傾斜状領域Dと平坦状領域Kとに光源40から光を照射したときの測定に寄与する測定寄与照射量に応じて複数の対物レンズ50の中から使用する倍率の対物レンズ50を選択する。
(Objective lens selection means)
As will be described below, the objective lens selection means 75 responds to the measurement contribution irradiation amount that contributes to the measurement when the light is emitted from the light source 40 to the inclined region D and the flat region K for each divided measurement surface N. Then, the objective lens 50 having a magnification to be used is selected from the plurality of objective lenses 50.

図14は、被測定面分割手段74によって分割された傾斜状領域Dと平坦状領域Kとに、対物レンズ選択手段75によって倍率の異なる対物レンズ50を選択する一例を示した説明図である。   FIG. 14 is an explanatory diagram showing an example in which the objective lens 50 having different magnifications is selected by the objective lens selecting unit 75 for the inclined region D and the flat region K divided by the measured surface dividing unit 74.

測定対象物Pの被測定面Sの表面形状が図14のようにうねり形状の場合、対物レンズ50を通して被測定面Sに照射された光は散乱し易い。これにより、対物レンズ50に戻る光が弱くなり、撮影部16においてノイズの多い画像になるため測定精度が悪くなる。   When the surface shape of the measurement target surface S of the measurement object P is a wavy shape as shown in FIG. 14, the light irradiated on the measurement target surface S through the objective lens 50 is easily scattered. As a result, the light returning to the objective lens 50 becomes weak, and the imaging unit 16 becomes a noisy image, so that the measurement accuracy is deteriorated.

一方、対物レンズ50の特質として、開口数(NA)の高い高倍率レンズ50Cは開口数の低い低倍率レンズ50Aに比べて微弱な光でも明るく高解像にとらえることができ、低倍率レンズ50Aは高倍率レンズ50Cに比べて測定視野が広い。   On the other hand, as a characteristic of the objective lens 50, the high-magnification lens 50C having a high numerical aperture (NA) can be captured brightly and with high resolution even with weak light as compared with the low-magnification lens 50A having a low numerical aperture. Has a wider field of view than the high magnification lens 50C.

したがって、図14に示すように、対物レンズ選択手段75は、測定視野Wが広いが傾斜面に対する測定精度が悪い低倍率レンズ50Aを平坦状領域Kの測定に選択し、傾斜面に対する測定精度は良いが測定視野Wが狭い高倍率レンズ50Cを傾斜状領域Dの測定に選択する。これにより、傾斜状領域Dと平坦状領域Kの両方を高精度に測定でき、しかも平坦状領域Kに測定視野が広い低倍率レンズ50Aを使用することによって短時間で広範囲を測定でき、測定準備アライメントの時間短縮を図ることができる。   Therefore, as shown in FIG. 14, the objective lens selection means 75 selects the low-magnification lens 50A having a wide measurement visual field W but poor measurement accuracy with respect to the inclined surface for the measurement of the flat region K, and the measurement accuracy with respect to the inclined surface is A high-power lens 50C having a narrow measurement field W is selected for measurement of the inclined region D. As a result, it is possible to measure both the inclined region D and the flat region K with high accuracy, and to measure a wide range in a short time by using the low magnification lens 50A having a wide measurement field in the flat region K. The alignment time can be shortened.

なお、図14における符号Wxは被測定面Sの面内方向(x軸)の測定面Nの幅を示し、Wzは干渉部14のz軸方向の走査範囲を示す。   14 indicates the width of the measurement surface N in the in-plane direction (x-axis) of the measurement surface S, and Wz indicates the scanning range of the interference unit 14 in the z-axis direction.

次に、傾斜状領域Dと平坦状領域Kとによって複数の対物レンズ50の中から適正な倍率の対物レンズ50をどのように選択するかの対物レンズ選択方法を説明する。   Next, an objective lens selection method for selecting an objective lens 50 having an appropriate magnification from the plurality of objective lenses 50 using the inclined region D and the flat region K will be described.

図15は、見込角θ1の対物レンズ50で傾斜角度θ2の被測定面Sに光を照射したときの光の挙動を説明する説明図である。図15において、傾斜角度θ2は水平面17に対する被測定面Sの傾斜角度である。   FIG. 15 is an explanatory diagram for explaining the behavior of light when the measurement surface S with the inclination angle θ2 is irradiated with the objective lens 50 with the expected angle θ1. In FIG. 15, the inclination angle θ <b> 2 is the inclination angle of the measurement target surface S with respect to the horizontal plane 17.

即ち、空気中において、見込角θ1の対物レンズ50から傾斜角度θ2の測定対象物Pの被測定面Sへ光を照射した場合、対物レンズ50に戻る、いわゆる測定に寄与する照射光Aと対物レンズ50に戻らない、いわゆる測定に寄与しない照射光Bとがある。符号Cは、対物レンズ50に戻らない照射光Bの反射領域を示し、符号15は被測定面Sに対して垂直な法線である。   That is, in the air, when light is irradiated from the objective lens 50 having the expected angle θ1 to the measurement surface S of the measurement target P having the inclination angle θ2, the irradiation light A and the objective contributing to the so-called measurement return to the objective lens 50. There is irradiation light B that does not return to the lens 50 and does not contribute to measurement. Reference numeral C denotes a reflection region of the irradiation light B that does not return to the objective lens 50, and reference numeral 15 denotes a normal line perpendicular to the measurement surface S.

図15において、空気中では、開口数(NA)=sinθ1の関係がなりたつので、被測定面Sの傾斜角度θ2の理論的な測定限界傾斜角度θ2maxは、asin(NA)で表すことができる。例えばNAが0.3の対物レンズ50の場合、測定限界傾斜角度θ2maxは約17°となる。即ち、被測定面Sの傾斜角度θ2<asin(NA)の式を満足すれば測定可能と言える。換言すると、NAが0.3の対物レンズ50の場合には被測定面Sの傾斜角度が17°を超えると測定不可であり、17°以下であれば測定可能と判断できる。 In FIG. 15, since the numerical aperture (NA) = sin θ1 has been established in the air, the theoretical measurement limit inclination angle θ2 max of the inclination angle θ2 of the surface S to be measured can be expressed by asin (NA). . For example, in the case of the objective lens 50 having NA of 0.3, the measurement limit tilt angle θ2 max is about 17 °. That is, it can be said that measurement can be performed if the inclination angle θ2 <asin (NA) of the surface S to be measured is satisfied. In other words, in the case of the objective lens 50 having an NA of 0.3, it cannot be measured when the inclination angle of the surface S to be measured exceeds 17 °, and can be determined to be measurable if it is 17 ° or less.

しかしながら実際にはθ2<asin(NA)の式は理論的な測定限界傾斜角度θ2maxであり、対物レンズ50を選択する判断基準としてそのまま適用することは現実的でない。現実的な判断基準は対物レンズ50を通して被測定面Sに照射する光の全照射光量(F)に対して、対物レンズ50に戻る測定に寄与する測定寄与照射光量(G)の割合(G/F)によって決定することが好ましい。 However, in practice, the equation θ2 <asin (NA) is a theoretical measurement limit inclination angle θ2 max , and it is not realistic to apply it as it is as a criterion for selecting the objective lens 50. A realistic criterion is the ratio of the measurement contribution irradiation light amount (G) that contributes to the measurement returning to the objective lens 50 to the total irradiation light amount (F) of the light irradiated to the measurement surface S through the objective lens 50 (G / Preferably it is determined by F).

図16は、例えばNAが0.3の対物レンズ50において一様な照射光を想定した場合、被測定面Sの傾斜角度θ2と、全照射光量(F)に対する測定寄与照射光量(G)の割合(G/F)との関係を表したグラフである。   In FIG. 16, for example, when uniform irradiation light is assumed in the objective lens 50 having NA of 0.3, the inclination angle θ2 of the surface S to be measured and the measurement contribution irradiation light amount (G) with respect to the total irradiation light amount (F). It is a graph showing the relationship with a ratio (G / F).

図16の横軸は被測定面Sの傾斜角度θ2(°)を示し、縦軸はG/Fを示す。そして、G/Fが0.2未満(20%未満)になるとNAが0.3の対物レンズ50では測定不可となり、0.3よりも大きなNA(大きな倍率)の対物レンズ50を選択する必要がある。図15のグラフから、G/Fが0.2は傾斜角度θ2が約12°であり、現実的には、傾斜角度12°が測定限界傾斜角度θ2maxになる。 The horizontal axis in FIG. 16 indicates the inclination angle θ2 (°) of the surface S to be measured, and the vertical axis indicates G / F. When G / F is less than 0.2 (less than 20%), measurement is impossible with the objective lens 50 having an NA of 0.3, and it is necessary to select an objective lens 50 having an NA (large magnification) greater than 0.3. There is. From the graph of FIG. 15, when G / F is 0.2, the inclination angle θ2 is about 12 °, and actually, the inclination angle 12 ° becomes the measurement limit inclination angle θ2 max .

このことから、干渉部14に備える複数の対物レンズ50のそれぞれについて測定限界傾斜角度θ2maxにおけるG/Fを予め予備試験等により求めておく。そして、傾斜状領域D及び平坦状領域Kの測定寄与照射光量(G)を知ることによって、傾斜状領域D及び平坦状領域Kを高精度に測定するための適正な倍率の対物レンズ50を選択することができる。なお、全照射光量(F)は測定しなくても光源40の出力から知ることができる。 Therefore, G / F at the measurement limit inclination angle θ2 max is obtained in advance by a preliminary test or the like for each of the plurality of objective lenses 50 provided in the interference unit 14. Then, by knowing the measurement contribution irradiation light quantity (G) of the inclined region D and the flat region K, the objective lens 50 having an appropriate magnification for measuring the inclined region D and the flat region K with high accuracy is selected. can do. Note that the total irradiation light quantity (F) can be known from the output of the light source 40 without being measured.

したがって、本発明の実施の形態の表面形状測定装置1は、測定寄与照射光量(G)を検出する測定寄与照射光量検出手段82(図2及び図11参照)を更に設けることが好ましい。そして、対物レンズ選択手段75は、分割した傾斜状領域Dと平坦状領域KとによってG/Fに基づいて使用する倍率の対物レンズ50を選択する。これにより、傾斜状領域Dと平坦状領域Kとによって複数の対物レンズ50の中から適正な倍率の対物レンズ50を選択することができる。   Therefore, it is preferable that the surface shape measuring apparatus 1 according to the embodiment of the present invention further includes a measurement contribution irradiation light amount detection unit 82 (see FIGS. 2 and 11) that detects the measurement contribution irradiation light amount (G). Then, the objective lens selection means 75 selects the objective lens 50 having a magnification to be used based on the G / F by the divided inclined region D and flat region K. Thereby, the objective lens 50 having an appropriate magnification can be selected from the plurality of objective lenses 50 by the inclined region D and the flat region K.

なお、適正な倍率の対物レンズ50の選択方法として、測定寄与照射光量検出手段82に限定するものではない。傾斜状領域Dや平坦状領域Kの傾斜角度を測定して測定限界傾斜角度θ2maxを求めることができれば、直接的な指数である測定限界傾斜角度θ2maxに基づいて適正な倍率の対物レンズ50を選択してもよい。あるいは概略形状取得手段72で取得した測定対象物Pの概略形状情報を表示部20に表示し、操作者が目視で傾斜状領域Dや平坦状領域Kの傾斜角度の程度を判定して対物レンズ50を選択してもよい。 Note that the method for selecting the objective lens 50 having an appropriate magnification is not limited to the measurement contribution irradiation light amount detection means 82. If the measurement limit inclination angle θ2 max can be obtained by measuring the inclination angle of the inclined region D or the flat region K, the objective lens 50 having an appropriate magnification is based on the measurement limit inclination angle θ2 max that is a direct index. May be selected. Alternatively, the approximate shape information of the measurement object P acquired by the approximate shape acquisition unit 72 is displayed on the display unit 20, and the operator visually determines the degree of the inclination angle of the inclined region D or the flat region K to objective lens. 50 may be selected.

(光量調整手段)
以下説明するように、光量調整手段76は、分割した各測定面Nについて傾斜状領域Dと平坦状領域Kとに光源40から光を照射したときの測定に寄与する測定寄与照射量に応じて光源40の光量調整を行う。
(Light intensity adjustment means)
As will be described below, the light amount adjusting means 76 corresponds to the measurement contribution irradiation amount that contributes to the measurement when the light is emitted from the light source 40 to the inclined region D and the flat region K for each divided measurement surface N. The light amount of the light source 40 is adjusted.

光源40の光量調整についても、図15で説明した考えを用いることができる。例えばNAが0.3の対物レンズ50において一様な照射光を想定した場合、被測定面Sの傾斜角度θ2と、全照射光量(F)に対する測定に寄与する測定寄与照射光量(G)の割合(G/F)との関係は図16のグラフになる。   The idea described with reference to FIG. 15 can also be used for the light amount adjustment of the light source 40. For example, when uniform irradiation light is assumed in the objective lens 50 with NA of 0.3, the measurement contribution irradiation light amount (G) that contributes to the measurement with respect to the inclination angle θ2 of the surface S to be measured and the total irradiation light amount (F). The relationship with the ratio (G / F) is the graph of FIG.

ここで、被測定面Sの傾斜角度θ2が例えば6°のときのG/F(約0.56)は傾斜角度θ2が0°のときのG/F(1.0)の約半分になり、光量不足により測定精度が低下する。   Here, G / F (about 0.56) when the inclination angle θ2 of the measurement surface S is 6 °, for example, is about half of G / F (1.0) when the inclination angle θ2 is 0 °. Measurement accuracy decreases due to insufficient light quantity.

したがって、光量調整手段76は、被測定面Sの傾斜角度θ2が例えば6°のときには、傾斜角度θ2が0°のときの光量の約2倍に調整する。このように、傾斜角度θ2が0°のときの光量を基準光量として、被測定面Sの傾斜角度が大きくなることで生じる光量不足による測定精度低下を避けることができる。これにより、被測定面Sがうねり形状のように小さな傾斜角度から大きな傾斜角度まで複数の測定面Nが存在する場合であっても、各測定面Nの表面形状を高精度に測定することができる。   Therefore, when the inclination angle θ2 of the measured surface S is 6 °, for example, the light amount adjusting unit 76 adjusts the light amount to about twice the light amount when the inclination angle θ2 is 0 °. In this way, it is possible to avoid a decrease in measurement accuracy due to a shortage of light amount caused by an increase in the tilt angle of the surface S to be measured, with the light amount when the tilt angle θ2 is 0 ° as the reference light amount. Thereby, even when the measurement surface S has a plurality of measurement surfaces N from a small inclination angle to a large inclination angle, such as a wavy shape, the surface shape of each measurement surface N can be measured with high accuracy. it can.

したがって、光量調整手段76は、測定寄与照射光量検出手段82で検出した測定寄与照射光量(G)を光源40の光量調整方法に利用することができる。即ち、光量調整手段は平坦状領域Kを測定するときの測定寄与照射量Gを基準光量とし、傾斜状領域Dを測定するときの測定寄与照射量Gが基準光量になるように光源40の光量を調整する。   Therefore, the light amount adjusting unit 76 can use the measurement contribution irradiation light amount (G) detected by the measurement contribution irradiation light amount detection unit 82 in the light amount adjustment method of the light source 40. That is, the light amount adjusting means uses the measurement contribution irradiation amount G when measuring the flat region K as the reference light amount, and the light amount of the light source 40 so that the measurement contribution irradiation amount G when measuring the inclined region D becomes the reference light amount. Adjust.

これによって、傾斜状領域Dと平坦状領域Kとの光量が同じになるので、両方の領域D,Kを高精度に測定することができ且つ測定精度を均一化することができる。   Thereby, since the light quantity of the inclined area | region D and the flat area | region K becomes the same, both area | regions D and K can be measured with high precision, and a measurement precision can be equalized.

(測定面形状測定手段)
測定面形状測定手段77は、ステージ10を面内方向移動手段35により被測定面Sの面内方向に移動させることにより、分割した各測定面Nを選択した対物レンズ50及び調整した光源40の光量に基づいて表面形状を個々に測定して複数の測定データを取得するものである。
(Measuring surface shape measuring means)
The measuring surface shape measuring unit 77 moves the stage 10 in the in-plane direction of the surface to be measured S by the in-plane direction moving unit 35, thereby selecting the objective lens 50 that has selected each divided measuring surface N and the adjusted light source 40. A plurality of pieces of measurement data are obtained by individually measuring the surface shape based on the amount of light.

即ち、測定面形状測定手段77は、面内方向移動手段35により被測定面Sの面内方向に移動させることにより、分割した各測定面Nを選択した対物レンズ50及び調整した光源40の光量に基づいて表面形状を個々に測定して複数の測定データを取得する。   That is, the measuring surface shape measuring unit 77 is moved in the in-plane direction of the surface to be measured S by the in-plane direction moving unit 35, and thereby the light quantity of the objective lens 50 that selected each divided measuring surface N and the adjusted light source 40. A plurality of measurement data is obtained by individually measuring the surface shape based on the above.

即ち、図13で示した16個の測定面N〜N16ごとに設定した最小走査範囲Z〜Zの範囲で干渉部14を垂直方向に測定走査し、各測定面N〜N16の表面形状を測定する。処理部18は、例えば最初に測定面Nについて最小走査範囲Zだけ測定走査して測定面Nの表面形状を取得する。次に、測定面Nについて最小走査範囲Zだけ測定走査して測定面Nの表面形状を取得する。これを測定面N16まで繰り返す。 That is, the interference section 14 is measured and scanned in the vertical direction within the range of the minimum scanning range Z 1 to Z 8 set for each of the 16 measurement surfaces N 1 to N 16 shown in FIG. 13, and each measurement surface N 1 to N is scanned. 16 surface shapes are measured. Processing unit 18, for example, first to obtain a minimum scanning range Z 1 only measure the scanned surface shape of the measurement surface N 1 and the measurement surface N 1. Next, the measurement surface N 2 is measured and scanned by the minimum scanning range Z 2 to obtain the surface shape of the measurement surface N 2 . This is repeated until the measuring surface N 16.

(データ接続手段)
データ接続手段78は、測定面形状測定手段77で取得した各測定面Nの測定データを接続するものである。これにより、被測定面S全体の表面形状を測定することができる。データ接続手段78による各測定面Nの接続方法はソフトウェア処理等の公知の方法を採用することができる。
(Data connection method)
The data connection unit 78 connects the measurement data of each measurement surface N acquired by the measurement surface shape measurement unit 77. Thereby, the surface shape of the whole to-be-measured surface S can be measured. As a method for connecting each measurement surface N by the data connection means 78, a known method such as software processing can be adopted.

[表面形状測定方法]
次に、上記の如く構成した本発明の表面形状測定装置1を用いて、うねり形状の被測定面Sを有する測定対象物Pの表面形状を測定する表面形状測定方法について説明する。
[Surface shape measurement method]
Next, a surface shape measuring method for measuring the surface shape of the measuring object P having the undulating measured surface S using the surface shape measuring apparatus 1 of the present invention configured as described above will be described.

図17は、測定対象物Pの被測定面Sの表面形状をスティッチング測定方法で測定するステップフローである。説明し易いように本実施の表面形状測定方法では、図7に示すように、x軸方向のみにうねり形状を有し、x軸方向の長さが干渉部14の対物レンズ50の測定視野Wよりも長く、y軸方向の長さが測定視野Wよりも僅かに短い測定対象物Pの例で説明する。   FIG. 17 is a step flow for measuring the surface shape of the measurement surface S of the measurement object P by the stitching measurement method. For ease of explanation, in the surface shape measurement method of this embodiment, as shown in FIG. 7, the measurement field W of the objective lens 50 of the interference unit 14 has a wavy shape only in the x-axis direction and the length in the x-axis direction. An example of the measurement object P that is longer than the measurement visual field W and is longer than the measurement visual field W will be described.

先ず概略形状取得手段72は、測定対象物Pの被測定面Sの概略形状情報を取得する概略形状取得工程を行う(ステップ10)。概略形状取得手段72は、上記した三角測量方式のレーザー変位計、ステレオカメラ、パターン投影装置、CAD(computer-aided-design)データを保持する保持手段、干渉部14の対物レンズとして広視野な低倍率レンズを用いた白色干渉計の何れでもよい。   First, the approximate shape acquisition means 72 performs an approximate shape acquisition step of acquiring approximate shape information of the measurement target surface S of the measurement object P (step 10). The approximate shape obtaining means 72 is a triangulation laser displacement meter, a stereo camera, a pattern projection device, a holding means for holding CAD (computer-aided-design) data, and a low-viewpoint with a wide field of view as an objective lens of the interference unit 14. Any of white interferometers using a magnification lens may be used.

次に被測定面分割手段74は、概略形状取得手段72による概略形状情報の3次元座標とステージ10に載置された測定対象物Pの3次元座標とを整合し、概略形状情報に基づいて被測定面Sを傾斜状領域Dと平坦状領域Kとで構成され1つの面積が測定視野W以下の複数の測定面に分割する被測定面分割工程を行う(ステップ20)。   Next, the measured surface dividing means 74 aligns the three-dimensional coordinates of the approximate shape information obtained by the approximate shape acquisition means 72 with the three-dimensional coordinates of the measurement object P placed on the stage 10, and based on the approximate shape information. A measurement surface division step is performed in which the measurement surface S is divided into a plurality of measurement surfaces that are constituted by the inclined region D and the flat region K and each area is equal to or smaller than the measurement visual field W (step 20).

次に対物レンズ選択手段75は、分割した各測定面Nについて傾斜状領域Dと平坦状領域Kとに光源40から光を照射したときの測定に寄与する測定寄与照射量に応じて複数の対物レンズ50のうち使用する倍率の対物レンズ50を選択する対物レンズ選択工程を行う(ステップ30)。   Next, the objective lens selecting means 75 has a plurality of objectives corresponding to the measurement contribution doses that contribute to the measurement when the light is emitted from the light source 40 to the inclined region D and the flat region K for each of the divided measurement surfaces N. An objective lens selection step of selecting an objective lens 50 having a magnification to be used from among the lenses 50 is performed (step 30).

この対物レンズ選択工程において、図18に示すように、分割した複数の傾斜状領域Dと平坦状領域Kとの各測定面Nについて上記した対物レンズ選択方法で選択した対物レンズ50の対物レンズマップFを表示部20に表示することが好ましい。   In this objective lens selection step, as shown in FIG. 18, the objective lens map of the objective lens 50 selected by the above-described objective lens selection method for each measurement surface N of the plurality of divided inclined regions D and flat regions K. It is preferable to display F on the display unit 20.

図18の(A)は、被測定面Sのうねり形状をx軸方向とz軸方向とで示したものである。実際にはy軸方向にもうねりがあるが、図では省略している。図18の(B)は、図18の(A)のうねり形状を分割した複数の傾斜状領域Dと平坦状領域Kとについて選択した対物レンズ50の対物レンズマップFの一例を表示部20に表示したものである。10の(C)は、低倍率レンズ50A、中倍率レンズ50B、及び高倍率レンズ50Cの測定視野W,W,Wの大きさを示したものである。 FIG. 18A shows the waviness shape of the measurement surface S in the x-axis direction and the z-axis direction. Actually, there is a wave in the y-axis direction, but this is omitted in the figure. 18B shows an example of the objective lens map F of the objective lens 50 selected for the plurality of inclined regions D and flat regions K obtained by dividing the undulation shape of FIG. It is displayed. 10C shows the size of the measurement visual fields W 1 , W 2 , and W 3 of the low-power lens 50A, the medium-power lens 50B, and the high-power lens 50C.

図18の(B)のように、対物レンズマップFには、各測定面Nの測定範囲を四角形で表示するとともに、異なる倍率の対物レンズ50を異なる色で表示することが好ましい。例えば対物レンズマップFには、低倍率レンズ50Aで測定する測定面Nを赤色で示し、中倍率レンズ50Bで測定する測定面Nを緑色で示し、高倍率レンズ50Cで測定する測定面Nを青色で示すことができる。なお、斜線部分は測定面の重なり合う部分である。 As shown in FIG. 18B, it is preferable that the objective lens map F displays the measurement range of each measurement surface N in a square and displays the objective lenses 50 having different magnifications in different colors. For example, the objective lens map F, show the measurement surface N R to be measured at low magnification lens 50A in red shows the measurement surface N G measuring at medium magnification lens 50B in green, the measurement surface N of measuring at a high magnification lens 50C B can be shown in blue. Note that the hatched portion is a portion where the measurement surfaces overlap.

これにより、操作者に対して、測定面Nごとに使用する対物レンズ50の倍率を目視で確認させることができ、倍率に応じて対物レンズ50が面積の異なる測定範囲をもつことを明示することができる。   Accordingly, the operator can visually confirm the magnification of the objective lens 50 used for each measurement surface N, and clearly indicate that the objective lens 50 has a measurement range having a different area according to the magnification. Can do.

また、対物レンズマップFを表示部20に表示することで、表示しない場合に比べて、より最適な対物レンズ50の選択プランの様子をユーザは実感することができる。   Further, by displaying the objective lens map F on the display unit 20, the user can feel a more optimal state of the selection plan of the objective lens 50 than when not displaying it.

次に、光量調整手段76は、分割した各測定面Nについて傾斜状領域Dと平坦状領域Kとに光源40から光を照射したときの測定に寄与する測定寄与照射量に応じて光源40の光量調整を行う光量調整工程を行う(ステップ40)。   Next, the light amount adjusting means 76 of the light source 40 according to the measurement contribution irradiation amount that contributes to the measurement when the light is emitted from the light source 40 to the inclined region D and the flat region K for each divided measurement surface N. A light amount adjustment process for adjusting the light amount is performed (step 40).

次に処理部18の測定面形状測定手段77は、ステージ10を被測定面Sの面内方向に移動させることにより、分割した各測定面Nを選択した対物レンズ50及び調整した光源光量に基づいて表面形状を個々に測定して複数の測定データを取得する測定面形状測定工程を行う(ステップ50)。   Next, the measurement surface shape measuring means 77 of the processing unit 18 moves the stage 10 in the in-plane direction of the surface S to be measured, and thereby the divided measurement surface N is selected based on the selected objective lens 50 and the adjusted light source light quantity. Then, a measurement surface shape measurement process is performed in which the surface shape is individually measured to obtain a plurality of measurement data (step 50).

次に、処理部18のデータ接続手段78は、取得した複数の測定データを接続するデータ接続工程を行う(ステップ60)。   Next, the data connection means 78 of the processing unit 18 performs a data connection process for connecting the acquired plurality of measurement data (step 60).

これにより、スティッチング測定において、被測定面Sの表面形状測定を行う際の適正な倍率の対物レンズ50の選択及び光源40の適正な光量の調整の測定準備アライメントを行うことができるので被測定面Sの表面形状測定を高精度化できる。   Thereby, in the stitching measurement, it is possible to perform the measurement preparation alignment for selecting the objective lens 50 having an appropriate magnification when measuring the surface shape of the measurement surface S and adjusting the appropriate light quantity of the light source 40. The surface shape measurement of the surface S can be made highly accurate.

上記の説明した本実施の形態では、対物レンズ50の測定視野Wが被測定面Sよりも小さく、スティッチング測定を行う例で説明したが、スティッチング測定に限定するものではない。対物レンズ50の測定視野Wが被測定面Sと同等以上の場合であっても、本発明のように、概略形状取得工程(ステップ10)〜データ接続工程(ステップ60)を行うことによって、特にうねり形状の被測定面Sの表面形状を高精度に測定することができる。   In the above-described embodiment, the measurement visual field W of the objective lens 50 is smaller than the surface S to be measured and the stitching measurement is performed. However, the present invention is not limited to the stitching measurement. Even when the measurement visual field W of the objective lens 50 is equal to or greater than the measurement target surface S, by performing the general shape acquisition process (step 10) to the data connection process (step 60) as in the present invention, in particular, The surface shape of the measurement surface S having a wavy shape can be measured with high accuracy.

なお、ステージ10を光学部2に対して水平移動させることで説明したが、ステージ10に対して光学部2を水平移動させてもよい。また、本実施の形態では、被測定面Sがうねり形状である場合で説明したが、この形状に限定するものではなく、表面が凹凸の高低差を有する形状であればよい。   In addition, although the stage 10 was horizontally moved with respect to the optical unit 2, the optical unit 2 may be horizontally moved with respect to the stage 10. Further, in the present embodiment, the case where the surface to be measured S has a wavy shape has been described. However, the present invention is not limited to this shape, and the surface may be any shape having an uneven height difference.

なお、上記した本実施の形態の表面形状測定装置1では、測定対象物Pの被測定面Sの表面形状を測定する光を出力する光源40、光源40から出力された光を被測定面Sに照射する対物レンズ50、及び被測定面Sの測定画像を取得する撮影部16を少なくとも有する光学部2として、垂直走査型の白色干渉計の例で説明したが、本発明はレーザー共焦点顕微鏡にも適用することができる。   In the above-described surface shape measuring apparatus 1 according to the present embodiment, the light source 40 that outputs light for measuring the surface shape of the measurement target surface S of the measurement object P, and the light output from the light source 40 is the measurement target surface S. As an example of the vertical scanning type white interferometer as the optical unit 2 having at least the objective lens 50 for irradiating and the imaging unit 16 for acquiring the measurement image of the measurement surface S, the present invention is a laser confocal microscope. It can also be applied to.

P…測定対象物、Q,Q1,Q2,Q3…干渉縞曲線、S…被測定面、Z−0,Z−1…光軸、N…測定面、D…傾斜状領域、K…平坦状領域、A…測定に使用可能な照射光、B…測定に使用不可な照射光、C…対物レンズ50に戻らない反射光、F…対物レンズ分割マップ、Z…走査範囲、1…表面形状測定装置、2…光学部、2A…筐体、2B…レボルバー、10…ステージ、10S…ステージ面、12…光源部、14…干渉部、16…撮影部、18…処理部、20…表示部、22…入力部、34…xアクチュエータ、35…面内方向移動手段、36…yアクチュエータ、40…光源、42…コレクタレンズ、44,54…ビームスプリッタ、50…対物レンズ、50A…低倍率レンズ、50B…中倍率レンズ、50C…高倍率レンズ、52…参照ミラー、56…干渉部アクチュエータ、60…撮像素子、60S…撮像面、62…結像レンズ、70…zアクチュエータ、72…概略形状取得手段、74…被測定面分割手段、75…対物レンズ選択手段、76…光量調整手段、77…測定面形状測定手段、78…データ接続手段、80…ステージ移動手段、82…測定寄与照射光量測定手段   P: measurement object, Q, Q1, Q2, Q3: interference fringe curve, S: measurement surface, Z-0, Z-1: optical axis, N: measurement surface, D: inclined region, K: flat shape Area: A: Irradiated light usable for measurement, B: Irradiated light not usable for measurement, C: Reflected light not returning to the objective lens 50, F: Objective lens division map, Z: Scanning range, 1 ... Surface shape measurement Device: 2 ... Optical part 2A ... Case 2B ... Revolver 10 ... Stage 10S ... Stage surface 12 ... Light source part 14 ... Interference part 16 ... Shooting part 18 ... Processing part 20 ... Display part 22 ... Input unit, 34 ... x actuator, 35 ... in-plane direction moving means, 36 ... y actuator, 40 ... light source, 42 ... collector lens, 44,54 ... beam splitter, 50 ... objective lens, 50A ... low magnification lens, 50B: Medium magnification lens, 50C: High magnification lens, 2 ... Reference mirror, 56 ... Interfering part actuator, 60 ... Imaging element, 60S ... Imaging surface, 62 ... Imaging lens, 70 ... z actuator, 72 ... Approximate shape acquisition means, 74 ... Measurement surface dividing means, 75 ... Objective Lens selection means, 76 ... Light quantity adjustment means, 77 ... Measurement surface shape measurement means, 78 ... Data connection means, 80 ... Stage moving means, 82 ... Measurement contribution irradiation light quantity measurement means

Claims (12)

測定対象物を支持する支持部と、
前記測定対象物の被測定面の表面形状を測定する光を出力する光源、前記光源から出力された光を前記被測定面に照射する複数の倍率の異なる対物レンズ、及び前記被測定面の測定画像を取得する撮影部を少なくとも有する光学部と、
前記支持部を前記被測定面の面内方向に移動させる面内方向移動手段と、
前記被測定面の概略形状情報を取得する概略形状取得手段と、
前記概略形状情報に基づいて前記被測定面を傾斜状領域と平坦状領域とで構成される複数の測定面に分割する被測定面分割手段と、
前記分割した前記傾斜状領域と前記平坦状領域とに前記光を照射したときの測定に寄与する測定寄与照射量に応じて前記複数の対物レンズのうち使用する倍率の対物レンズを選択する対物レンズ選択手段と、
前記分割した前記傾斜状領域と前記平坦状領域とに前記光を照射したときの測定に寄与する測定寄与照射量に応じて前記光源の光量を調整する光量調整手段と、
前記支持部を前記被測定面の面内方向に移動させることにより、前記分割した各測定面を前記選択した対物レンズ及び前記調整した光量に基づいて表面形状を個々に測定して複数の測定データを取得する測定面形状測定手段と、
前記取得した複数の測定データを接続するデータ接続手段と、を備えた表面形状測定装置。
A support for supporting the measurement object;
A light source that outputs light for measuring the surface shape of the measurement target surface of the measurement object, a plurality of objective lenses having different magnifications that irradiate the measurement target surface with light output from the light source, and measurement of the measurement target surface An optical unit having at least a photographing unit for acquiring an image;
In-plane direction moving means for moving the support portion in the in-plane direction of the surface to be measured;
An approximate shape acquisition means for acquiring approximate shape information of the surface to be measured;
A measurement surface dividing means for dividing the measurement surface into a plurality of measurement surfaces composed of an inclined region and a flat region based on the schematic shape information;
An objective lens that selects an objective lens having a magnification to be used from among the plurality of objective lenses in accordance with a measurement contribution dose that contributes to measurement when the light is irradiated onto the divided inclined region and the flat region. A selection means;
A light amount adjusting means for adjusting a light amount of the light source according to a measurement contribution irradiation amount that contributes to measurement when the light is irradiated to the divided inclined region and the flat region;
By moving the support portion in the in-plane direction of the surface to be measured, a plurality of measurement data are obtained by individually measuring the surface shape of each of the divided measurement surfaces based on the selected objective lens and the adjusted light quantity. Measuring surface shape measuring means for acquiring,
A surface shape measuring device comprising: a data connecting means for connecting the plurality of acquired measurement data.
前記対物レンズの測定視野は前記測定対象物の被測定面よりも狭く、スティッチング測定により前記被測定面の表面形状を測定する請求項1に記載の表面形状測定装置。   The surface shape measurement apparatus according to claim 1, wherein the measurement field of the objective lens is narrower than the measurement target surface of the measurement object, and the surface shape of the measurement target surface is measured by stitching measurement. 前記対物レンズを通して前記被測定面に照射した光のうち前記対物レンズに戻り測定に寄与する照射光の測定寄与照射量Gを検出する測定寄与照射光量検出手段を設けた請求項1又は2に記載の表面形状測定装置。   The measurement contribution irradiation light quantity detection means which detects the measurement contribution irradiation amount G of the irradiation light which returns to the said objective lens among the lights irradiated to the said to-be-measured lens through the said objective lens, and contributes to a measurement is provided. Surface shape measuring device. 前記対物レンズ選択手段は前記分割した前記傾斜状領域及び前記平坦状領域について、照射した光の全照射光量Fに対する前記測定寄与照射量Gの割合G/Fに基づいて使用する倍率の対物レンズを選択する請求項1から3の何れか1項に記載の表面形状測定装置。   The objective lens selection means uses an objective lens having a magnification to be used based on the ratio G / F of the measurement contribution irradiation amount G to the total irradiation light amount F of the irradiated light with respect to the divided inclined region and the flat region. The surface shape measuring device according to any one of claims 1 to 3 to be selected. 前記光量調整手段は前記分割した前記傾斜状領域及び前記平坦状領域について、前記平坦状領域を測定するときの前記測定寄与照射量Gを基準光量とし、前記傾斜状領域を測定するときの前記測定寄与照射量Gが前記基準光量になるように前記光源の光量を調整する請求項1から4の何れか1項に記載の表面形状測定装置。   The light amount adjusting means is configured to measure the inclined region by measuring the inclined region and the flat region using the measurement contribution irradiation amount G when measuring the flat region as a reference light amount. The surface shape measuring apparatus of any one of Claim 1 to 4 which adjusts the light quantity of the said light source so that the contribution irradiation amount G may become the said reference light quantity. 前記測定対象物の前記被測定面の表面形状はうねり形状である請求項1から5の何れか1項に記載の表面形状測定装置。   The surface shape measuring apparatus according to claim 1, wherein a surface shape of the measurement target surface of the measurement object is a wavy shape. 前記概略形状取得手段は、三角測量方式のレーザー変位計、ステレオカメラ、パターン投影装置の何れかである請求項1から6の何れか1項に記載の表面形状測定装置。   The surface shape measuring apparatus according to any one of claims 1 to 6, wherein the approximate shape obtaining unit is any one of a triangulation laser displacement meter, a stereo camera, and a pattern projection apparatus. 前記概略形状取得手段は、前記測定対象物のCADデータを保持する保持手段である請求項1から6の何れか1項に記載の表面形状測定装置。   The surface shape measurement apparatus according to claim 1, wherein the approximate shape acquisition unit is a holding unit that holds CAD data of the measurement object. 前記概略形状取得手段は、前記光学部の対物レンズよりも倍率の小さな低倍率レンズを用いた白色干渉計である請求項1から6の何れか1項に記載の表面形状測定装置。   The surface shape measuring apparatus according to any one of claims 1 to 6, wherein the schematic shape acquisition unit is a white interferometer using a low-power lens having a lower magnification than the objective lens of the optical unit. 前記被測定面分割手段で分割された複数の測定面について前記対物レンズ選択手段で選択した対物レンズマップを表示する表示部を有する請求項1から9の何れか1項に記載の表面形状測定装置。   10. The surface shape measuring device according to claim 1, further comprising a display unit configured to display an objective lens map selected by the objective lens selecting unit for a plurality of measurement surfaces divided by the measurement surface dividing unit. . 前記光学部は白色干渉計又はレーザー共焦点顕微鏡である請求項1から10の何れか1項に記載の表面形状測定装置。   The surface shape measuring apparatus according to claim 1, wherein the optical unit is a white interferometer or a laser confocal microscope. 測定対象物を支持する支持部と、
前記測定対象物の被測定面の表面形状を測定する光を出力する光源、前記光源からの出力された光を前記被測定面に照射する倍率の異なる複数の対物レンズ、及び前記被測定面の測定画像を取得する撮影部を少なくとも有する光学部と、を少なくとも有する表面形状測定装置を用いて前記被測定面の表面形状を測定する表面形状測定方法であって、
前記被測定面の概略形状情報を取得する概略形状取得工程と、
前記概略形状情報に基づいて前記被測定面を傾斜状領域と平坦状領域とで構成される複数の測定面に分割する被測定面分割工程と、
前記分割した前記傾斜状領域と前記平坦状領域とに前記光を照射したときの測定に寄与する測定寄与照射量に応じて前記複数の対物レンズのうち使用する倍率の対物レンズを選択する対物レンズ選択工程と、
前記分割した前記傾斜状領域と前記平坦状領域とに前記光を照射したときの測定に寄与する測定寄与照射量に応じて前記光源の光量を調整する光量調整工程と、
前記支持部を前記被測定面の面内方向に移動させることにより、前記分割した各測定面を前記選択した対物レンズ及び前記調整した光量に基づいて表面形状を個々に測定して複数の測定データを取得する測定面形状測定工程と、
前記取得した複数の測定データを接続するデータ接続工程と、を備えた表面形状測定方法。
A support for supporting the measurement object;
A light source that outputs light for measuring the surface shape of the measurement target surface of the measurement object, a plurality of objective lenses having different magnifications for irradiating the measurement target surface with light output from the light source, and the measurement target surface A surface shape measuring method for measuring the surface shape of the surface to be measured using a surface shape measuring device having at least an optical unit having a photographing unit for acquiring a measurement image,
An approximate shape acquisition step of acquiring approximate shape information of the measured surface;
A measurement surface dividing step of dividing the measurement surface into a plurality of measurement surfaces composed of an inclined region and a flat region based on the schematic shape information;
An objective lens that selects an objective lens having a magnification to be used from among the plurality of objective lenses in accordance with a measurement contribution dose that contributes to measurement when the light is irradiated onto the divided inclined region and the flat region. A selection process;
A light amount adjustment step of adjusting a light amount of the light source according to a measurement contribution irradiation amount that contributes to measurement when the light is irradiated to the divided inclined region and the flat region;
By moving the support portion in the in-plane direction of the surface to be measured, a plurality of measurement data are obtained by individually measuring the surface shape of each of the divided measurement surfaces based on the selected objective lens and the adjusted light quantity. Measuring surface shape measuring step to obtain,
A data connection step of connecting the plurality of acquired measurement data; and a surface shape measurement method.
JP2017041711A 2017-03-06 2017-03-06 Surface shape measuring device and surface shape measuring method Active JP6820515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017041711A JP6820515B2 (en) 2017-03-06 2017-03-06 Surface shape measuring device and surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017041711A JP6820515B2 (en) 2017-03-06 2017-03-06 Surface shape measuring device and surface shape measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020215113A Division JP7085725B2 (en) 2020-12-24 2020-12-24 Surface shape measuring device and surface shape measuring method

Publications (2)

Publication Number Publication Date
JP2018146391A true JP2018146391A (en) 2018-09-20
JP6820515B2 JP6820515B2 (en) 2021-01-27

Family

ID=63591115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017041711A Active JP6820515B2 (en) 2017-03-06 2017-03-06 Surface shape measuring device and surface shape measuring method

Country Status (1)

Country Link
JP (1) JP6820515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430597B2 (en) 2020-08-07 2024-02-13 株式会社キーエンス white interference microscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798469A (en) * 1985-10-02 1989-01-17 Burke Victor B Noncontact gage system utilizing reflected light
JPH0829434A (en) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd Scanning probe microscope
JP2014001964A (en) * 2012-06-15 2014-01-09 Keyence Corp Shape measuring apparatus and shape measuring method
JP2016031368A (en) * 2014-07-25 2016-03-07 株式会社ミツトヨ Method for measuring high accuracy height map of test surface
JP2016161312A (en) * 2015-02-27 2016-09-05 株式会社東京精密 Alignment method of surface shape measurement device
JP2016164557A (en) * 2015-02-27 2016-09-08 株式会社東京精密 Surface shape measurement device and surface shape measurement method
JP2017040652A (en) * 2015-08-19 2017-02-23 株式会社ミツトヨ Method for measuring height maps of multiple fields of view and combining them to composite height map with instrument sensitivity to drifts minimized

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798469A (en) * 1985-10-02 1989-01-17 Burke Victor B Noncontact gage system utilizing reflected light
JPH0829434A (en) * 1994-07-18 1996-02-02 Olympus Optical Co Ltd Scanning probe microscope
JP2014001964A (en) * 2012-06-15 2014-01-09 Keyence Corp Shape measuring apparatus and shape measuring method
JP2016031368A (en) * 2014-07-25 2016-03-07 株式会社ミツトヨ Method for measuring high accuracy height map of test surface
JP2016161312A (en) * 2015-02-27 2016-09-05 株式会社東京精密 Alignment method of surface shape measurement device
JP2016164557A (en) * 2015-02-27 2016-09-08 株式会社東京精密 Surface shape measurement device and surface shape measurement method
JP2017040652A (en) * 2015-08-19 2017-02-23 株式会社ミツトヨ Method for measuring height maps of multiple fields of view and combining them to composite height map with instrument sensitivity to drifts minimized
US20170052018A1 (en) * 2015-08-19 2017-02-23 Mitutoyo Corporation Method for measuring a height map of multiple fields of view and combining them to a composite height map with minimized sensitivity to instrument drift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430597B2 (en) 2020-08-07 2024-02-13 株式会社キーエンス white interference microscope

Also Published As

Publication number Publication date
JP6820515B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6604769B2 (en) How to measure a high accuracy height map of a test surface
JP5638517B2 (en) Optical inspection probe
JP6937482B2 (en) Surface shape measuring device and its stitching measuring method
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
JP5972563B2 (en) Edge detection using structured illumination
JP6417645B2 (en) Alignment method for surface profile measuring device
CN106895793B (en) The method and apparatus of double mode depth measurement
JP7093915B2 (en) Surface shape measurement method
JP7085725B2 (en) Surface shape measuring device and surface shape measuring method
JP2015200578A (en) Optical interference measurement device
CN107525463A (en) The interference of light determines device and interference of light assay method
JP6355023B2 (en) Measuring object alignment method and surface shape measuring apparatus in surface shape measuring apparatus
JP2017151086A (en) Measurement method and measurement program
JP2019074470A (en) Adjustment method of image measurement device
JP6820515B2 (en) Surface shape measuring device and surface shape measuring method
JP2023176026A (en) Method for determining scan range
JP7304513B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
JP6179366B2 (en) Standard gauge, three-dimensional measuring apparatus, and calibration method for three-dimensional measuring apparatus
JP6882651B2 (en) Measurement preparation of surface shape measuring device Alignment method and surface shape measuring device
JP6880396B2 (en) Shape measuring device and shape measuring method
JP6820516B2 (en) Surface shape measurement method
JP2008191036A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP2015099048A (en) Standard gauge, three-dimensional measuring device, and three-dimensional measuring device calibration method
JP2023114760A (en) Surface shape measuring device and surface shape measuring method
KR20230096797A (en) Apparatus for measuring three-dimensional shape of target object which acquires multiple information of image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201217

R150 Certificate of patent or registration of utility model

Ref document number: 6820515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250