JP2018146281A - Thermal stress analysis simulation program and analysis method - Google Patents

Thermal stress analysis simulation program and analysis method Download PDF

Info

Publication number
JP2018146281A
JP2018146281A JP2017039116A JP2017039116A JP2018146281A JP 2018146281 A JP2018146281 A JP 2018146281A JP 2017039116 A JP2017039116 A JP 2017039116A JP 2017039116 A JP2017039116 A JP 2017039116A JP 2018146281 A JP2018146281 A JP 2018146281A
Authority
JP
Japan
Prior art keywords
strain
stress
given
thermal stress
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017039116A
Other languages
Japanese (ja)
Inventor
雄一 本山
Yuichi Motoyama
雄一 本山
利光 岡根
Toshimitsu Okane
利光 岡根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017039116A priority Critical patent/JP2018146281A/en
Publication of JP2018146281A publication Critical patent/JP2018146281A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simulation program and an analysis method for performing a thermal stress analysis of a variety of alloys to be obtained with high accuracy within a wide temperature range from a high temperature zone immediately after solidification to a room temperature without largely depending on alloy species.SOLUTION: A total distortion is given by adding a plastic strain to an elastic strain following a Hooke's law with respect to the stress. The plastic strain is given from a relationship in which the stress is proportional to a value obtained by raising a strain rate and multiplying it by an internal valuable S. The internal valuable is given from a hyperbolic function which regulates a shape of a strain-non elastic strain curve of the alloy.SELECTED DRAWING: Figure 2

Description

本発明は、内部変数を用いた弾塑性構成式を利用した各種合金の熱応力解析を行うシミュレーションプログラム及び解析方法に関する。   The present invention relates to a simulation program and an analysis method for performing thermal stress analysis of various alloys using an elastic-plastic constitutive equation using internal variables.

成形加工におけるニアネットシェイプ化への要求の高まりからCAE(Computer Aided Engineering)による熱応力解析を利用した溶融加工プロセスや熱処理プロセスにおける残留応力や変形の予測や制御が試みられている。例えば、特許文献1では、熱応力解析及び変形解析を用いた鋳造シミュレーションが開示されている。   Due to the increasing demand for near net shaping in molding, attempts have been made to predict and control residual stresses and deformations in melt processing and heat treatment processes using thermal stress analysis by CAE (Computer Aided Engineering). For example, Patent Document 1 discloses a casting simulation using thermal stress analysis and deformation analysis.

ところで、鋳造シミュレーションなどの熱応力解析に用いられる各種合金の構成式は、凝固終了直後の高温域から室温までの広い温度範囲で応力と歪との関係を高い精度で記述できることを求められる。従来、高温から室温までに生じる回復現象や、応力−歪み曲線における歪速度依存性に対応した構成式は幾つか提案されているが、その精度は必ずしも十分ではなかった。そこで、合金の加工硬化や回復・軟化の状態を内部変数と称されるパラメータで記述し、内部変数と応力及び温度の関数として非弾性挙動をより精度良く記述しようとする内部変数を用いた弾塑性構成式が提案されてきた。   By the way, constitutive equations of various alloys used for thermal stress analysis such as casting simulation are required to describe the relationship between stress and strain with high accuracy in a wide temperature range from a high temperature range immediately after completion of solidification to room temperature. Conventionally, several constitutive equations corresponding to the recovery phenomenon occurring from high temperature to room temperature and the strain rate dependence in the stress-strain curve have been proposed, but the accuracy is not always sufficient. Therefore, the work hardening, recovery, and softening states of the alloy are described by parameters called internal variables, and the elastic variables using internal variables are used to more accurately describe the inelastic behavior as a function of internal variables and stress and temperature. A plastic constitutive equation has been proposed.

例えば、非特許文献1では、内部変数を用いた合金の弾塑性構成式の1つの例が述べられているが、かかる構成式は合金の融点温度Tに対して0.5T以上の高い温度域を対象としており低温域での応力と歪との関係の精度には乏しい。 For example, Non-Patent Document 1 describes one example of an elasto-plastic constitutive equation of an alloy using internal variables. Such a constitutive equation is higher than the melting point temperature T m of the alloy by 0.5 T m or higher. Targeting the temperature range, the accuracy of the relationship between stress and strain in the low temperature range is poor.

一方、非特許文献2では、非特許文献1の弾塑性構成式をより低温域にまで拡張した下記式(1)〜(3)で表される構成式を提案している。ここで、式(1)は応力と非弾性歪み速度式と内部変数の関係式である。また、式(2)は内部変数の進化式、式(3)は飽和内部変数を表す式である。かかる構成式では、特に、鋳鋼において高温域から室温までの応力−歪み曲線を精度良く表現できるとしている。   On the other hand, Non-Patent Document 2 proposes constitutive formulas represented by the following formulas (1) to (3) obtained by extending the elastoplastic constitutive formula of Non-Patent Document 1 to a lower temperature range. Here, Expression (1) is a relational expression of stress, inelastic strain rate expression, and internal variables. Equation (2) is an evolution equation for internal variables, and Equation (3) is an equation representing saturated internal variables. In such a constitutive equation, particularly, a stress-strain curve from a high temperature region to room temperature can be expressed with high accuracy in cast steel.

しかしながら、非特許文献2で提案された構成式と、非特許文献3に掲載されているJIS ADC12ダイカスト用アルミニウム合金の応力−歪み曲線を用いて検証すると、室温変形における加工硬化挙動の反映が難しい。これは、非特許文献2で提案された構成式における応力−非弾性歪曲線の挙動を規定する内部変数の進化式ではADC12の応力−非弾性歪曲線を表現するには不十分であることを示している。   However, it is difficult to reflect the work hardening behavior at room temperature deformation when verified using the structural formula proposed in Non-Patent Document 2 and the stress-strain curve of the aluminum alloy for JIS ADC12 die-casting described in Non-Patent Document 3. . This is because the evolution formula of the internal variable that defines the behavior of the stress-inelastic strain curve in the constitutive formula proposed in Non-Patent Document 2 is insufficient to express the stress-inelastic strain curve of the ADC 12. Show.

Figure 2018146281
Figure 2018146281

特開2016−132027号公報JP 2016-1332027 A

L.Anand: Journal of Engineering Materials and Technology, (1980) 104(1), pp.12-17L. Anand: Journal of Engineering Materials and Technology, (1980) 104 (1), pp.12-17 戎 嘉男, 関根 和喜, 葉山 益次郎: 鉄と鋼, (1992) Vol. 78 No. 6 pp.894-901Yoshio Tsuji, Kazuaki Sekine, Masujiro Hayama: Iron and Steel, (1992) Vol. 78 No. 6 pp.894-901 志賀英俊,佐藤武志,神戸洋史,本山雄一,吉田 誠: 鋳造工学 (2015) 87(7), pp.453-459Hidetoshi Shiga, Takeshi Sato, Hiroshi Kobe, Yuichi Motoyama, Makoto Yoshida: Foundry Engineering (2015) 87 (7), pp.453-459

内部変数を用いた弾塑性構成式を利用して熱応力解析を行うシミュレーションプログラム及び解析方法において、凝固終了直後の高温域から室温までの広い温度範囲で高い精度を得られるようにするためには、その前提となる応力と歪との関係をこのような広い温度範囲においても高い精度で得られるようにすることが必要となる。特に、上記した非特許文献2の構成式が加工硬化挙動を反映できていないのは、式(2)が対象合金の応力−非弾性歪み曲線を十分に表現できていないことにあるが、このような合金特有の挙動については各種合金毎に考慮される必要がある。   In order to obtain high accuracy in a wide temperature range from high temperature range to room temperature immediately after solidification in a simulation program and analysis method for thermal stress analysis using elastoplastic constitutive equations using internal variables Therefore, it is necessary to obtain the relationship between stress and strain, which are the prerequisites, with high accuracy even in such a wide temperature range. In particular, the constitutive equation of Non-Patent Document 2 described above does not reflect the work hardening behavior because Equation (2) does not sufficiently represent the stress-inelastic strain curve of the target alloy. Such alloy-specific behavior needs to be considered for each type of alloy.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、合金種に大きく依存することなく汎用性を有し、凝固終了直後の高温域から室温までの広い温度範囲で高い精度を得られる合金の熱応力解析を行うためのシミュレーションプログラム及び解析方法を提供することにある。   The present invention has been made in view of the situation as described above, and its object is to have versatility without largely depending on the alloy type, from a high temperature range immediately after solidification to room temperature. An object of the present invention is to provide a simulation program and an analysis method for performing thermal stress analysis of an alloy that can obtain high accuracy in a wide temperature range.

本発明は、内部変数を用いた弾塑性構成式を利用して合金の熱応力解析を行うシミュレーションプログラム及び方法であって、全歪みは、応力との間でフックの法則に従う弾性歪みに塑性歪みを加算して与えられ、前記塑性歪みは、歪速度をべき乗し内部変数Sを乗じた値に前記応力が比例する関係から与えられ、前記内部変数は、前記合金の応力−非弾性ひずみ曲線の形状を規定する双曲線関数から与えられることを特徴とする。   The present invention relates to a simulation program and method for performing thermal stress analysis of an alloy using an elastoplastic constitutive equation using internal variables, and the total strain is a plastic strain to an elastic strain according to Hooke's law between stresses. The plastic strain is given from the relationship that the stress is proportional to the value obtained by raising the strain rate to the power and multiplying by the internal variable S, and the internal variable is the stress-inelastic strain curve of the alloy. It is given from a hyperbolic function that defines the shape.

かかる発明によれば、熱応力解析において、合金種に大きく依存することなく、凝固終了直後の高温域から室温までの広い温度範囲で高い精度の解析を得られるのである。   According to this invention, in the thermal stress analysis, a highly accurate analysis can be obtained in a wide temperature range from a high temperature range immediately after the completion of solidification to room temperature without greatly depending on the alloy type.

本発明によるプログラムを含む構成を示す図である。It is a figure which shows the structure containing the program by this invention. 応力−非弾性歪み曲線の実験値及び計算値の比較を示すグラフである。It is a graph which shows the comparison of the experimental value and calculated value of a stress-inelastic strain curve. 応力−非弾性歪み曲線の実験値及び計算値の比較を示すグラフである。It is a graph which shows the comparison of the experimental value and calculated value of a stress-inelastic strain curve. 応力−非弾性歪み曲線の実験値及び計算値の比較を示すグラフである。It is a graph which shows the comparison of the experimental value and calculated value of a stress-inelastic strain curve.

本発明の1つの実施例としての内部変数を用いた構成式を利用した各種合金の熱応力解析を行うシミュレーションプログラム及び解析方法についてその詳細を説明する。   The details of a simulation program and an analysis method for performing thermal stress analysis of various alloys using constitutive equations using internal variables as one embodiment of the present invention will be described.

なお、本実施例の要部をなす「内部変数を用いた構成式」は、変形温度に対応して応力と歪みとの関係を利用する公知の各種シミュレーションプログラム及び解析方法において適用され得てその組み込み方法も公知であるが故に、ここでは、「内部変数を用いた構成式」の部分についてのみ、その詳細を述べる。   The “constitutive formula using internal variables” that forms the main part of the present embodiment can be applied to various known simulation programs and analysis methods that use the relationship between stress and strain corresponding to the deformation temperature. Since the method of incorporation is also known, only the details of the “constitutive formula using internal variables” will be described here.

図1に示すように、コンピュータに組み込まれた、又は組み込まれ得るシミュレーションプログラム1は、溶融加工時や熱処理時において成形品に生じる熱応力や残留応力、変形等の欠陥の予測などを与える熱応力解析に関する各種計算を行うプログラムであり、メインプログラム(メインルーチン)100と、このサブルーチンを構成するサブプログラム10−1〜nと、を含む。サブプログラム10−1〜nは、メインプログラム100からの命令を受信して動作し、その動作結果をメインプログラム100へと送信する各種動作を司るプログラムである。かかるサブプログラム10のうちの1つであるサブプログラム10―1が本実施例としての「内部変数を用いた構成式」、すなわち、変形温度に対応して応力と歪みとの関係を与えるプログラムとなる。   As shown in FIG. 1, a simulation program 1 that is or can be incorporated into a computer is a thermal stress that gives a prediction of defects such as thermal stress, residual stress, and deformation that occur in a molded product during melt processing or heat treatment. It is a program that performs various calculations related to analysis, and includes a main program (main routine) 100 and subprograms 10-1 to 10-n constituting this subroutine. The subprograms 10-1 to 10-n are programs that operate by receiving instructions from the main program 100, and perform various operations for transmitting the operation results to the main program 100. A subprogram 10-1 which is one of the subprograms 10 is a “constituent formula using internal variables” as the present embodiment, that is, a program which gives a relationship between stress and strain corresponding to the deformation temperature, Become.

ところで、加工硬化について単位塑性歪量あたりの降伏応力の上昇量を表す式として、下記が提案されている(P.S. Follansbee and U.F. Kocks: Acta Metallurgica (1988) Volume 36, Issue 1, pp.81-93)。   By the way, the following formula has been proposed as an expression for the yield stress increase per unit plastic strain for work hardening (PS Follansbee and UF Kocks: Acta Metallurgica (1988) Volume 36, Issue 1, pp.81-93 ).

Figure 2018146281
Figure 2018146281

後述するように、構成式における内部変数の時間あたりの増加の挙動が単位塑性歪量あたりの降伏応力の上昇量の挙動と曲線形状において類似することを見いだし、上記した式(2)について式(5)を基に構成した双曲線関数を用いた下記式(9)に置き換えることを考慮した。   As will be described later, the behavior of the increase in internal variables per unit time in the constitutive equation is found to be similar to the behavior of the increase in yield stress per unit plastic strain in the curve shape. Consideration was made to replace the following equation (9) using a hyperbolic function based on 5).

つまり、双曲線関数であるtanh関数の変数にフィッティング係数αと、飽和内部変数Sに対する内部変数の比S/Sとを用いることで、高温域のみならず、低温域の応力−非弾性歪み曲線の形状を各種合金に対して汎用性高く、特に、加工硬化を反映して記述可能とするのである。 That is, by using the fitting coefficient α and the ratio S / S * of the internal variable to the saturated internal variable S * as the variable of the tanh function that is a hyperbolic function, not only the high temperature range but also the low temperature range stress-inelastic strain The shape of the curve is highly versatile with respect to various alloys, and in particular, it can be described by reflecting work hardening.

Figure 2018146281
Figure 2018146281

ここで、式(6)では、全歪みが弾性歪みと塑性歪みの和であることを示している。式(7)では、応力と弾性歪みとの間にはフックの法則が成り立つことを示している。式(8)で、C(T)は温度依存の定数であることを示している。なお、mは歪速度指数である。また、各温度における応力は、歪速度を歪速度指数mでべき乗した項に内部変数Sを乗じた値に比例することを示している。式(9)では、応力−非弾性ひずみ曲線の形状を規定している。ここで、hは硬化定数である。式(10)では各温度における飽和内部変数Sを表わし、σは各温度における飽和応力を表わす。右辺括弧内は、下記式(11)で表される飽和応力とひずみ速度の関係を表現するのに多用される、いわゆるNorton則における材料定数A(T)と対応する。 Here, equation (6) indicates that the total strain is the sum of elastic strain and plastic strain. Equation (7) shows that Hooke's law holds between stress and elastic strain. In the equation (8), C (T) is a temperature-dependent constant. Here, m is a strain rate index. The stress at each temperature is proportional to the value obtained by multiplying the term obtained by multiplying the strain rate by the strain rate exponent m and the internal variable S. Equation (9) defines the shape of the stress-inelastic strain curve. Here, h 0 is a curing constant. Equation (10) represents the saturation internal variable S * at each temperature, and σ * represents the saturation stress at each temperature. The contents in the right parenthesis correspond to the material constant A (T) in the so-called Norton rule, which is frequently used to express the relationship between the saturation stress and the strain rate expressed by the following formula (11).

Figure 2018146281
Figure 2018146281

つまり、各温度における飽和内部変数を決定する材料パラメータC(T)をA(T)に乗じた値が各温度における最大飽和内部変数となる。各温度で内部変数が飽和した時、 つまり、式(12)の時に飽和応力と歪み速度の関係がべき乗、つまり上記した式(11)となるように出来れば、内部変数が飽和したときにNorton則となり、応力―非弾性歪み曲線の歪み速度依存性を精度良く表現できるようになる。   That is, the value obtained by multiplying A (T) by the material parameter C (T) that determines the saturation internal variable at each temperature is the maximum saturation internal variable at each temperature. When the internal variable is saturated at each temperature, that is, if the relationship between the saturation stress and the strain rate is raised to the power of Equation (12), that is, the above Equation (11), Norton when the internal variable is saturated. As a rule, the strain rate dependence of the stress-inelastic strain curve can be expressed accurately.

Figure 2018146281
Figure 2018146281

以上を実現するため応力を規定する式を式(8)のように定めれば、内部変数飽和時に下記式(13)に示すようにC(T)がキャンセルされ、Norton則となる。   If the equation for defining the stress is defined as shown in equation (8) in order to realize the above, C (T) is canceled as shown in equation (13) below when the internal variable is saturated, and Norton's law is established.

Figure 2018146281
Figure 2018146281

上記によれば、内部変数を用いた弾塑性構成式を利用して熱応力解析を行うシミュレーションプログラム及び解析方法において、加工硬化挙動を示す合金であっても、応力と歪との関係を凝固終了直後の高温域から室温までの広い温度範囲で高い精度をもって与え得る。すなわち、結果として、合金種に大きく依存することなく汎用性を有し、高い精度のシミュレーションを与え得るのである。   According to the above, in the simulation program and analysis method for performing thermal stress analysis using an elastoplastic constitutive equation using internal variables, the solidification of the relationship between stress and strain is completed even for alloys that exhibit work hardening behavior It can be given with high accuracy in a wide temperature range from the high temperature range immediately after to room temperature. That is, as a result, it has versatility and does not depend greatly on the alloy type, and can give a highly accurate simulation.

次に、上記した構成式で非特許文献3と同様に、検証を行った結果について述べる。   Next, the result of verification performed in the same manner as in Non-Patent Document 3 with the above-described configuration formula will be described.

[実施例]
アルミニウム合金(JIS ADC12、液相線温度:571℃)を用いて、上記したように構成式を構築するとともに、非特許文献3から引用した室温、250℃、及び450℃で引っ張り試験の結果と比較を行った。なお、非特許文献3では引っ張り歪み速度を10―3 /sec及び10―4 /secと変えてそれぞれ引っ張り試験を行っている。各温度における計算及び実測における応力―非弾性歪み曲線を図2〜4に示した。
[Example]
Using an aluminum alloy (JIS ADC12, liquidus temperature: 571 ° C), the constitutive equation was constructed as described above, and the results of the tensile test at room temperature, 250 ° C, and 450 ° C cited from Non-Patent Document 3 A comparison was made. In Non-Patent Document 3, the tensile test is performed by changing the tensile strain rate to 10 −3 / sec and 10 −4 / sec. 2 to 4 show stress-inelastic strain curves obtained by calculation and actual measurement at each temperature.

図2に示すように、室温では、実測される応力―歪み曲線は歪み速度に依存しない。また、計算値もほぼこれを反映している。つまり、計算値及び実測値がほぼ一致している。加工硬化挙動においても計算値は、実測値とよく対応している。 As shown in FIG. 2, the measured stress-strain curve does not depend on the strain rate at room temperature. The calculated values almost reflect this. That is, the calculated value and the actually measured value are almost the same. In the work hardening behavior, the calculated value corresponds well with the actually measured value.

図3に示すように、250℃では、実測される応力―歪み曲線は歪み速度に依存するようになるが、計算値もこれを反映しており、計算値及び実測値もほぼ一致している。加工硬化挙動においても計算値は、実測値とよく対応している。   As shown in FIG. 3, at 250 ° C., the actually measured stress-strain curve becomes dependent on the strain rate, but the calculated value reflects this, and the calculated value and the actually measured value are almost the same. . In the work hardening behavior, the calculated value corresponds well with the actually measured value.

図4に示すように、400℃では、実測される応力―歪み曲線が歪み速度により大きく依存するようになるが、計算値はこれを反映しており、計算値及び実測値もほぼ一致している。そして、加工硬化挙動においても計算値は、実測値とよく対応している。   As shown in FIG. 4, at 400 ° C., the actually measured stress-strain curve greatly depends on the strain rate, but the calculated value reflects this, and the calculated value and the actually measured value almost coincide with each other. Yes. In the work hardening behavior, the calculated value corresponds well with the actually measured value.

以上述べたように、本発明によれば、従来提案されている構成式に比較して、高温域から室温までの広い温度範囲で高い精度で、且つ、広い合金種において、応力と歪みの関係を計算できるのである。かかる構成式を用いた熱応力解析を行うシミュレーションプログラム及び解析方法によれば、より高精度に溶融加工及び熱処理時に製品に生じる熱応力や残留応力、変形等の欠陥を高精度に予測することができるのである。   As described above, according to the present invention, the relationship between stress and strain is high in a wide temperature range from a high temperature range to room temperature, and in a wide range of alloy types, compared to the conventionally proposed constitutive equation. Can be calculated. According to a simulation program and an analysis method for performing thermal stress analysis using such a constitutive equation, it is possible to predict defects such as thermal stress, residual stress, and deformation generated in a product with high accuracy with high accuracy. It can be done.

ここまで本発明による代表的実施例及びこれに基づく改変例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例を見出すことができるだろう。   So far, representative examples and modified examples based on the examples have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments without departing from the scope of the appended claims.

1 シミュレーションプログラム
10 サブプログラム
100 メインプログラム

1 simulation program 10 subprogram 100 main program

Claims (4)

内部変数を用いた弾塑性構成式を利用して合金の熱応力解析を行うシミュレーションプログラムであって、
全歪みは、応力との間でフックの法則に従う弾性歪みに塑性歪みを加算して与えられ、
前記塑性歪みは、歪速度をべき乗し内部変数Sを乗じた値に前記応力が比例する関係から与えられ、
前記内部変数は、前記合金の応力−非弾性ひずみ曲線の形状を規定する双曲線関数から与えられることを特徴とする熱応力解析シミュレーションプログラム。
A simulation program for thermal stress analysis of an alloy using an elastoplastic constitutive equation using internal variables,
Total strain is given by adding plastic strain to elastic strain according to Hooke's law between stress,
The plastic strain is given from the relationship in which the stress is proportional to a value obtained by multiplying the strain rate by a power and the internal variable S.
The thermal stress analysis simulation program characterized in that the internal variable is given by a hyperbolic function that defines a shape of a stress-inelastic strain curve of the alloy.
前記内部変数は、
Figure 2018146281
で与えられることを特徴とする請求項1記載の熱応力解析シミュレーションプログラム。
The internal variable is
Figure 2018146281
The thermal stress analysis simulation program according to claim 1, which is given by:
内部変数を用いた弾塑性構成式を利用して合金の熱応力解析を行う方法であって、
全歪みは、応力との間でフックの法則に従う弾性歪みに塑性歪みを加算して与えられ、
前記塑性歪みは、歪速度をべき乗し内部変数Sを乗じた値に前記応力が比例する関係から与えられ、
前記内部変数は、前記合金の応力−非弾性ひずみ曲線の形状を規定する双曲線関数から与えられることを特徴とする熱応力解析方法。
A method of performing thermal stress analysis of an alloy using an elastoplastic constitutive equation using internal variables,
Total strain is given by adding plastic strain to elastic strain according to Hooke's law between stress,
The plastic strain is given from the relationship in which the stress is proportional to a value obtained by multiplying the strain rate by a power and the internal variable S.
The thermal stress analysis method according to claim 1, wherein the internal variable is given by a hyperbolic function that defines a shape of a stress-inelastic strain curve of the alloy.
前記内部変数は、
Figure 2018146281
で与えられることを特徴とする請求項3記載の熱応力解析方法。
The internal variable is
Figure 2018146281
The thermal stress analysis method according to claim 3, wherein the thermal stress analysis method is given by:
JP2017039116A 2017-03-02 2017-03-02 Thermal stress analysis simulation program and analysis method Pending JP2018146281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039116A JP2018146281A (en) 2017-03-02 2017-03-02 Thermal stress analysis simulation program and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039116A JP2018146281A (en) 2017-03-02 2017-03-02 Thermal stress analysis simulation program and analysis method

Publications (1)

Publication Number Publication Date
JP2018146281A true JP2018146281A (en) 2018-09-20

Family

ID=63591904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039116A Pending JP2018146281A (en) 2017-03-02 2017-03-02 Thermal stress analysis simulation program and analysis method

Country Status (1)

Country Link
JP (1) JP2018146281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530916A (en) * 2019-07-17 2019-12-03 太原理工大学 The measuring method of inside concrete thermal stress distribution in a kind of thermal histories
CN111006756A (en) * 2019-12-06 2020-04-14 福建福清核电有限公司 Method for diagnosing periodic fluctuation vibration of shafting of steam turbine generator unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530916A (en) * 2019-07-17 2019-12-03 太原理工大学 The measuring method of inside concrete thermal stress distribution in a kind of thermal histories
CN111006756A (en) * 2019-12-06 2020-04-14 福建福清核电有限公司 Method for diagnosing periodic fluctuation vibration of shafting of steam turbine generator unit

Similar Documents

Publication Publication Date Title
Rusinek et al. Constitutive relations in 3-D for a wide range of strain rates and temperatures–application to mild steels
CN109255202B (en) Method for estimating fatigue crack initiation life of mechanical component
Yang et al. Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets
US20160279878A1 (en) Rapid synthetic material prototyping process
JP6455880B2 (en) Casting simulation method
JP2018146281A (en) Thermal stress analysis simulation program and analysis method
JP2013054001A (en) Stress-strain relation evaluation method and springback amount prediction method
Khamei et al. Modeling the hot-deformation behavior of Ni60 wt%–Ti40 wt% intermetallic alloy
Zhang et al. Identification of friction coefficients and strain-compensated Arrhenius-type constitutive model by a two-stage inverse analysis technique
Mao et al. Study of static recrystallization behaviors of GCr15 steel under two-pass hot compression deformation
CN106446390A (en) Calculation method for steady creep rate fitting equation of metal material
Wang et al. Prediction on hot deformation behavior of spray-formed 7055 aluminum alloy via phenomenological models
JP2015132564A (en) Thermal deformation analysis method, thermal deformation analysis program, and thermal deformation analysis apparatus
JP2007152407A (en) Method and apparatus for predicting forming breakage during press forming
JP6984443B2 (en) How to predict the amount of mold wear, its prediction program, and how to specify the wear estimation formula
CN107739815B (en) A kind of austenitic stainless steel deep cooling container strain hardening guarantor's support method of optimization
JP2006326606A (en) Method for predicting service life of metal die
KR101569512B1 (en) Prediction metal properties
JP6148390B1 (en) Evaluation method for metal materials
CN107727497B (en) A kind of acquisition methods for austenitic stainless steel this structure curve considering Room Temperature Creep
JP2007000881A (en) Method for producing ductile cast iron
JP2018062006A (en) Method of estimating hardness of casting of nodular graphite cast iron
CN110990977A (en) Method for determining fatigue life of mechanical part based on energy method
JP6947059B2 (en) Shape design method for molten metal pot
Dong et al. Characterization of creep behavior of TiAl alloy with high Nb content at elevated temperatures