JP2018145041A - Active carbon manufacturing method - Google Patents

Active carbon manufacturing method Download PDF

Info

Publication number
JP2018145041A
JP2018145041A JP2017040024A JP2017040024A JP2018145041A JP 2018145041 A JP2018145041 A JP 2018145041A JP 2017040024 A JP2017040024 A JP 2017040024A JP 2017040024 A JP2017040024 A JP 2017040024A JP 2018145041 A JP2018145041 A JP 2018145041A
Authority
JP
Japan
Prior art keywords
activated carbon
yield
pore
activation treatment
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017040024A
Other languages
Japanese (ja)
Inventor
孝 廣瀬
Takashi Hirose
孝 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Prefectural Industrial Technology Research Center
Original Assignee
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefectural Industrial Technology Research Center filed Critical Aomori Prefectural Industrial Technology Research Center
Priority to JP2017040024A priority Critical patent/JP2018145041A/en
Publication of JP2018145041A publication Critical patent/JP2018145041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for manufacturing active carbon having properties of pores (pore properties) such as mesopore volume controlled through a process of a gas activation treatment or the like using apple trimmed branch or the like as a carbonization raw material.SOLUTION: There is provided an active carbon manufacturing method for providing active carbon 10 by supplying a carbonization article 1 by carbonization treatment of a carbonization raw material to an activation treatment process P. There is provided an active carbon manufacturing method, in which an activation treatment condition is an active treatment time, the product between treatment time or yield and properties of pores is calculated in advance and desired pore particles are obtained by setting the treatment time and the yield because yield is reduced, volume of pores increases, diameter of pores increases and specific area increase by making the treatment time long. There is provided an active carbon manufacturing method, in which pore properties to be controlled is at least one of specific surface area, micro pore (pore with diameter of 2 nm or less) volume, mesopore (pore with diameter of 2 to 50 nm) volume or pore diameter distribution.SELECTED DRAWING: Figure 1

Description

本発明は活性炭製造方法に係り、特に、メソ孔活性炭等の新しい製造方法に関するものである。   The present invention relates to an activated carbon production method, and more particularly to a new production method for mesoporous activated carbon and the like.

本願発明者は従来より、りんご剪定枝を原料とする活性炭製造技術を研究している。既報では、2〜4mm程度のチップ状りんご剪定枝(Pruned apple branches)から空気賦活にて調製した活性炭を塩酸で洗浄し、微量な金属および非金属元素(以下:微量元素)を低減させた試料の細孔物性等について、チップ状のスギ(Cryptomeria japonica D.DON)を原料とした活性炭および市販の活性炭と比較検討した。   The inventor of the present application has conventionally studied an activated carbon production technique using apple pruned branches as a raw material. In the previous report, activated carbon prepared by air activation from 2 to 4 mm chip-shaped apple pruned branches was washed with hydrochloric acid to reduce traces of metal and non-metal elements (hereinafter trace elements). The properties of the pores were compared with activated carbon made from chip-shaped cedar (Cryptomeria japonica D.DON) and commercially available activated carbon.

その結果、りんご剪定枝を原料とした活性炭は、比表面積および細孔容積はスギを原料とした活性炭や市販のものよりも大きく、孔径の大きなミクロ孔と4nmより大きいメソ孔(直径2〜50nmの孔)が多く生成された。これは、りんご剪定枝中に多く含まれる微量元素の触媒的作用によるものと考えられた。また、りんご剪定枝を原料とした活性炭は、水蒸気吸着量が他の活性炭よりも多いことが分かった。しかし、この活性炭中に官能基が認められないことから、大きなメソ孔容積が起因していると推定された。   As a result, the activated carbon made from pruned apples has a larger specific surface area and pore volume than activated carbon made from cedar and commercially available, and has micropores with a large pore diameter and mesopores with a diameter larger than 4 nm (diameter 2-50 nm). Many holes). This was thought to be due to the catalytic action of trace elements contained abundantly in apple pruned branches. Moreover, it turned out that the activated carbon which used the apple pruned branch as a raw material has more water vapor adsorption amounts than other activated carbon. However, since no functional group was observed in the activated carbon, it was estimated that a large mesopore volume was caused.

りんご剪定枝等の木質バイオマスを燃料等に利用する場合、その形状としてチップやペレットが挙げられる。チップはハンマーミル等にて木片化したもの、ペレットはチップを元にして、添加剤等加えずに圧力を加えながら成形されたものである。前者は後者と比較して不均一な形状で含水率が高く、またハンドリングが悪いとされている。したがって、既報で報告したような特徴を活かした活性炭を実用段階にて製造しようとする場合、原料の均一性や価格に影響を及ぼす因子である輸送、製造炉の単位容積当たりの収率等を勘案すると、原料の形状として上述した内容からチップよりもペレットの方が望ましい。   When woody biomass such as apple pruned branches is used as fuel or the like, chips and pellets can be cited as the shape. The chips are made of wood with a hammer mill or the like, and the pellets are formed based on the chips while applying pressure without adding additives. The former is said to have a non-uniform shape and high moisture content compared to the latter, and poor handling. Therefore, when trying to manufacture activated carbon that takes advantage of the features reported in the previous report at the practical stage, the factors that affect the uniformity and price of raw materials, transportation, the yield per unit volume of the manufacturing furnace, etc. Considering this, pellets are preferable to chips from the above-mentioned contents as the raw material shape.

特許第5935039号公報「活性炭製造方法」Japanese Patent No. 5935039 “Activated carbon production method”

廣瀬孝,菊地徹,櫛引正剛:木材学会誌58(2),63-68(2012).Takashi Hirose, Toru Kikuchi, Masatake Kushibiki: Journal of the Wood Society of Japan 58 (2), 63-68 (2012). Paivi Lehtikangas:Biomass and Bioenergy20 351-360(2001).Paivi Lehtikangas: Biomass and Bioenergy 20 351-360 (2001). TUMULURU Jaya Shanker,HESS Richard:THE JOURNAL OF THE INSTITUTE OF MATELIALS 23(6),41-43(2015).TUMULURU Jaya Shanker, HESS Richard: THE JOURNAL OF THE INSTITUTE OF MATELIALS 23 (6), 41-43 (2015). クラレケミカル社:活性炭「クラレコール」製品一覧,http://www.kuraray-c.co.jp/products/kuraraycoal.html 2016年12月27日参照Kuraray Chemical Co., Ltd .: List of activated carbon “Kuraray Coal” products, http://www.kuraray-c.co.jp/products/kuraraycoal.html See December 27, 2016 山田敦:Hokkaido For. Prod. Inst 20(2),24-28(2006).Satoshi Yamada: Hokkaido For. Prod. Inst 20 (2), 24-28 (2006). 安部房子:Bull. For. & For. Prod. Res. Inst. 345, 1-4(1987).Fumiko Abe: Bull. For. & For. Prod. Res. Inst. 345, 1-4 (1987). 渡辺哲哉:化学装置44(10),64-68(2002).Tetsuya Watanabe: Chemical equipment 44 (10), 64-68 (2002). "新版活性炭 基礎と応用",真田雄三,鈴木基之,藤元 薫:,講談社サイエンティフィック,東京,1997,p6.“New Activated Carbon Fundamentals and Applications”, Yuzo Sanada, Motoyuki Suzuki, Satoshi Fujimoto: Kodansha Scientific, Tokyo, 1997, p6. 柳井弘,石崎信男:"活性炭読本",日刊工業新聞社,東京,1999,pp.118-119.(非特許文献には、後述実施例における参照文献を含む。)Hiroshi Yanai, Nobuo Ishizaki: “Activated Carbon Reader”, Nikkan Kogyo Shimbun, Tokyo, 1999, pp.118-119. (Non-patent literature includes references in examples described later.)

しかし、既往の研究において、りんご剪定枝を原料としたペレットから活性炭を調製し、その物性を評価する技術は、未だ開示されていないのが現状である。また、比表面積が大きい活性炭やメソ孔容積の大きい活性炭は高い吸湿性能を備えるため、吸湿材、電気二重層キャパシタ用途を初め有用性が高いが、かかるメソ孔容積等を製造方法により制御できる技術があれば、吸湿性能の調節や用途に応じた吸湿性能の付与を行うことができ、便利である。   However, in the past research, the present state of technology for preparing activated carbon from pellets made from apple pruned branches and evaluating the physical properties has not yet been disclosed. Activated carbon with a large specific surface area and activated carbon with a large mesopore volume have high moisture absorption performance, so it is highly useful in applications such as hygroscopic materials and electric double layer capacitors. If there is, the moisture absorption performance can be adjusted and the moisture absorption performance according to the application can be imparted, which is convenient.

そこで本発明が解決しようとする課題は、かかる従来技術の問題点を踏まえ、たとえばりんご剪定枝等を炭素化原料とし、ガス賦活処理等の過程を経て制御されたメソ孔容積等の細孔の特性(細孔特性)を有する活性炭を製造する技術を提供することである。また、本発明の課題は、たとえばりんご剪定枝等によるペレット状の炭化物を出発原料とし、製造方法によって制御されたメソ孔容積等の細孔特性を有する活性炭を製造する技術を提供することである。   Therefore, the problem to be solved by the present invention is based on the problems of the prior art, for example, using pruned apples as a carbonized raw material and controlling pores such as mesopore volume controlled through a process such as gas activation treatment. It is to provide a technique for producing activated carbon having characteristics (pore characteristics). Another object of the present invention is to provide a technique for producing activated carbon having pore characteristics such as mesopore volume controlled by a production method using, for example, pelletized carbides from apple pruned branches as a starting material. .

本願発明者は、上記課題の解決のため、りんごの果樹園管理のために切られた枝(りんご剪定枝)を原料としたペレットから調製した活性炭、およびペレット状の市販活性炭に賦活処理を加えた試料に関して比較調査した。その結果、比表面積およびミクロ孔容積は、両活性炭ともに収率が低くなるにしたがって大きくなった。一方メソ孔容積は、両活性炭ともに収率が低くなるにしたがって大きくなる傾向を示したものの、りんご剪定枝活性炭の方が市販活性炭よりも決定係数は高く、またそれぞれの試料の間で有意な差を示すことが分かった。さらに、ミクロ孔分布、メソ孔分布ともに、収率の違い等によって、そのピークは異なることが分かった。   In order to solve the above-mentioned problems, the inventor of the present application added activation treatment to activated carbon prepared from pellets made from branches cut for apple orchard management (apple pruned branches) and commercially available activated carbon in pellet form. A comparative study was conducted on the samples. As a result, the specific surface area and micropore volume increased as the yield decreased for both activated carbons. On the other hand, although the mesopore volume tended to increase as the yield decreased for both activated carbons, apple pruned activated carbon had a higher coefficient of determination than commercial activated carbon, and there was a significant difference between the samples. It was found that Furthermore, it was found that the peak differs depending on the yield and the like in both the micropore distribution and the mesopore distribution.

かかる知見を基礎とし、賦活処理過程における賦活処理条件を調節することによって上記課題を解決できることに想到し、本発明の完成に至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下の通りである。   Based on this knowledge, the inventors have conceived that the above problems can be solved by adjusting the activation treatment conditions in the activation treatment process, and have completed the present invention. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

[1] 炭素化原料が炭素化処理されてなる炭素化物を賦活処理過程に供して活性炭を得る活性炭製造方法であって、
該賦活処理過程における賦活処理条件を調節することにより得られる活性炭の収率を調節し、それによって活性炭の細孔の特性を制御することを特徴とする、活性炭製造方法。
[2] 前記細孔の特性が比表面積、ミクロ孔(直径2nm以下の孔)容積、メソ孔(直径2〜50nmの孔)容積、または細孔直径分布の少なくともいずれかであることを特徴とする、[1]に記載の活性炭製造方法。
[3] 前記賦活処理条件は賦活処理時間であることを特徴とする、[1]または[2]に記載の活性炭製造方法。
[4] 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記細孔の容積を大きくすることを特徴とする、[3]に記載の活性炭製造方法。
[1] An activated carbon production method for obtaining activated carbon by subjecting a carbonized material obtained by carbonizing a carbonized raw material to an activation process,
A method for producing activated carbon, characterized by adjusting the yield of activated carbon obtained by adjusting the activation treatment conditions in the activation treatment process, thereby controlling the characteristics of the pores of the activated carbon.
[2] The characteristic of the pore is at least one of a specific surface area, a micropore (a pore having a diameter of 2 nm or less), a mesopore (a pore having a diameter of 2 to 50 nm), or a pore diameter distribution. The activated carbon production method according to [1].
[3] The activated carbon production method according to [1] or [2], wherein the activation treatment condition is an activation treatment time.
[4] The activated carbon production method according to [3], wherein the yield is lowered by extending the activation treatment time, thereby increasing the volume of the pores.

[5] 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記細孔の直径を大きくすることを特徴とする、[3]に記載の活性炭製造方法。
[6] 前記細孔がメソ孔であることを特徴とする、[5]に記載の活性炭製造方法。
[7] 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記比表面積を大きくすることを特徴とする、[3]に記載の活性炭製造方法。
[8] 賦活処理時間または収率と細孔特性との関係を予め求めておき、賦活処理時間または収率の設定によって所望の細孔特性を得ることを特徴とする、[3]に記載の活性炭製造方法。
[5] The method for producing activated carbon according to [3], wherein the activation treatment time is lengthened to lower the yield, thereby increasing the diameter of the pores.
[6] The activated carbon production method according to [5], wherein the pores are mesopores.
[7] The method for producing activated carbon according to [3], wherein the activation treatment time is lengthened to lower the yield and thereby increase the specific surface area.
[8] The relationship between activation treatment time or yield and pore characteristics is obtained in advance, and desired pore characteristics are obtained by setting the activation treatment time or yield. Activated carbon manufacturing method.

[9] 得られる活性炭がペレット状であることを特徴とする、[1]ないし[8]のいずれかに記載の活性炭製造方法。
[10] 前記炭素化原料は樹木枝であることを特徴とする、[1]ないし[9]のいずれかに記載の活性炭製造方法。
[11] 前記炭素化原料はりんご剪定枝であることを特徴とする、[1]ないし[9]のいずれかに記載の活性炭製造方法。
〔12〕 ペレット状の炭素化原料から前記炭素化物を得る炭素化処理過程を備えることを特徴とする、[1]ないし[11]のいずれかに記載の活性炭製造方法。
[9] The activated carbon production method according to any one of [1] to [8], wherein the obtained activated carbon is in a pellet form.
[10] The method for producing activated carbon according to any one of [1] to [9], wherein the carbonized raw material is a tree branch.
[11] The method for producing activated carbon according to any one of [1] to [9], wherein the carbonized raw material is an apple pruned branch.
[12] The activated carbon production method according to any one of [1] to [11], further comprising a carbonization treatment step of obtaining the carbonized product from a pelletized carbonized raw material.

本発明の活性炭製造方法は上述のように構成されるため、これによれば、たとえばりんご剪定枝等を炭素化原料とし、ガス賦活処理等の過程を経て制御されたメソ孔容積等の細孔の特性(細孔特性)を有する活性炭を製造することができる。また、本発明によれば、メソ孔容積等の細孔特性を製造方法により制御することができ、吸湿性能の調節や用途に応じた吸湿性能の付与を行うことができ、製品開発を容易ならしめ、拡大することができる。   Since the activated carbon production method of the present invention is configured as described above, according to this, pores such as mesopore volume and the like controlled through a process such as gas activation treatment using, for example, apple pruned branches as a carbonized raw material Activated carbon having the following characteristics (pore characteristics) can be produced. In addition, according to the present invention, pore characteristics such as mesopore volume can be controlled by the production method, moisture absorption performance can be adjusted and moisture absorption performance can be imparted according to applications, and product development can be facilitated. Can be squeezed and enlarged.

また、たとえばりんご剪定枝等によるペレット状の炭化物を出発原料とし、製造方法によって制御されたメソ孔容積等の細孔特性を有する活性炭を製造することができる。特にりんご剪定枝を原料とする場合、制御された細孔特性を備える活性炭を実用性の高いペレット状のものとして提供できることは、従来は廃棄するしかなかったりんご剪定枝の有効利用推進につながり、廃棄物産生量の軽減につながる。   Further, for example, activated carbon having pore characteristics such as mesopore volume controlled by a production method can be produced using pelletized carbides such as apple pruned branches as a starting material. Especially when using apple pruned branches as a raw material, the ability to provide activated carbon with controlled pore characteristics as highly practical pellets leads to the effective utilization promotion of apple pruned branches that had to be discarded in the past. It leads to reduction of waste production.

本発明の活性炭製造方法の基本的構成を示すフロー図である。It is a flowchart which shows the basic composition of the activated carbon manufacturing method of this invention. ペレット状の炭素化原料を用いる本発明活性炭製造方法の構成を示すフロー図である。(以下の各図は全て実施例に係る)It is a flowchart which shows the structure of this invention activated carbon manufacturing method using a pellet-like carbonization raw material. (The following figures are all related to the examples) 両活性炭における収率とかさ密度(換算値)との関係を示すグラフである。It is a graph which shows the relationship between the yield and bulk density (converted value) in both activated carbon. 両活性炭における収率と比表面積(換算値)との関係を示すグラフである。It is a graph which shows the relationship between the yield and specific surface area (converted value) in both activated carbon. 両活性炭における収率とミクロ孔容積(換算値)との関係を示すグラフである。It is a graph which shows the relationship between the yield in both activated carbon, and micropore volume (converted value). 両活性炭における収率とメソ孔容積(換算値)との関係を示すグラフである。It is a graph which shows the relationship between the yield in both activated carbons, and mesopore volume (converted value). りんご剪定枝活性炭のミクロ孔分布(換算値)を示すグラフである。It is a graph which shows the micropore distribution (converted value) of apple pruned activated carbon. 市販活性炭のミクロ孔分布(換算値)を示すグラフである。It is a graph which shows the micropore distribution (converted value) of commercial activated carbon. りんご剪定枝活性炭の微分メソ孔容積(換算値)を示すグラフである。It is a graph which shows the differential mesopore volume (equivalent value) of apple pruned branch activated carbon. 市販活性炭の微分メソ孔容積(換算値)を示すグラフである。It is a graph which shows the differential mesopore volume (converted value) of commercial activated carbon.

本発明について、図表を用いつつさらに詳細に説明する。
図1は、本発明の活性炭製造方法の基本的構成を示すフロー図である。図示するように本活性炭製造方法は、炭素化原料が炭素化処理されてなる炭素化物1を賦活処理過程Pに供して活性炭10を得るものであって、賦活処理過程Pにおける賦活処理条件を調節することにより、得られる活性炭の収率を調節し、それによって、細孔特性が制御された活性炭10を得ることを主たる構成とする。ここで制御すべき細孔特性としては、比表面積、ミクロ孔(直径2nm以下の孔)容積、メソ孔(直径2〜50nmの孔)容積、または細孔直径分布の少なくともいずれかとする。
The present invention will be described in more detail with reference to the drawings.
FIG. 1 is a flowchart showing the basic configuration of the activated carbon production method of the present invention. As shown in the figure, this activated carbon production method is to obtain the activated carbon 10 by subjecting the carbonized material 1 obtained by carbonizing the carbonized raw material to the activation treatment process P, and adjusting the activation treatment conditions in the activation treatment process P. Thus, the main structure is to obtain the activated carbon 10 in which the yield of the obtained activated carbon is adjusted, and thereby the pore characteristics are controlled. The pore characteristics to be controlled here are at least one of specific surface area, micropore (pores having a diameter of 2 nm or less), mesopore (pores having a diameter of 2 to 50 nm), or pore diameter distribution.

炭素化物1の原料とするための炭素化原料としては、樹木枝、果樹の剪定枝、バラ科果樹の剪定枝、殊にりんご剪定枝を好適に用いるものとすることができる。これらは、本発明に係る活性炭製造に適した原料であることに加え、容易に入手できる低コストの原料であり、特に果樹の剪定枝、りんご剪定枝は廃棄物であるため、コスト的にメリットが大きいためである。   As the carbonized raw material for use as the raw material for the carbonized product 1, a tree branch, a pruned branch of a fruit tree, a pruned branch of a Rosaceae fruit tree, particularly a pruned branch of an apple can be preferably used. In addition to being a raw material suitable for activated carbon production according to the present invention, these are low-cost raw materials that can be easily obtained, and in particular, the pruned branches of fruit trees and the pruned branches of apples are wastes, so they are cost-effective. This is because it is large.

また、本発明製造方法による活性炭10はペレット状であることが望ましい。そこで炭素化原料としてはペレット状のものを好適に用いることができる。
図2は、ペレット状の炭素化原料を用いる本発明活性炭製造方法の構成を示すフロー図である。図示するように本発明製造方法は、ペレット状の炭素化原料r21からペレット状の炭素化物21を得る炭素化処理過程r2Pを備えた構成とすることができる。これにより、賦活処理過程2Pを経て、細孔特性が制御されたペレット状活性炭210を得ることができる。
Moreover, it is desirable that the activated carbon 10 according to the production method of the present invention is in a pellet form. Therefore, pelletized materials can be suitably used as the carbonization raw material.
FIG. 2 is a flowchart showing the configuration of the activated carbon production method of the present invention using pelletized carbonized raw materials. As shown in the figure, the production method of the present invention can be configured to include a carbonization treatment process r2P for obtaining a pelletized carbonized product 21 from a pelletized carbonized raw material r21. Thereby, the pellet-shaped activated carbon 210 with which the pore characteristic was controlled can be obtained through the activation process 2P.

賦活処理過程P等における賦活処理条件は、賦活処理時間とする。賦活処理時間を長くすることによって得られる活性炭10等の収率を下げ、それにより細孔の容積を大きくすることができる。また、賦活処理時間を長くすることによって収率を下げ、それにより細孔の直径を大きくすることができる。細孔には上述の通り、メソ孔またはミクロ孔の少なくともいずれかを含むものとすることができる。また、賦活処理時間を長くすることによって収率を下げ、それにより比表面積を大きくすることができる。   The activation process condition in the activation process P or the like is the activation process time. By increasing the activation treatment time, the yield of the activated carbon 10 and the like obtained can be reduced, and thereby the pore volume can be increased. In addition, the yield can be lowered by lengthening the activation treatment time, thereby increasing the diameter of the pores. As described above, the pores may include at least one of mesopores and micropores. Moreover, the yield can be lowered by lengthening the activation treatment time, thereby increasing the specific surface area.

なお、賦活処理時間または収率と細孔特性との関係を予め求めておき、賦活処理時間または収率の設定によって所望の細孔特性を得るようにする活性炭製造方法も、本発明の範囲内である。   An activated carbon production method in which the relationship between the activation treatment time or yield and the pore characteristics is obtained in advance and the desired pore characteristics are obtained by setting the activation treatment time or yield is also within the scope of the present invention. It is.

以下、本発明を実施例によってさらに説明するが、本発明はかかる実施例に限定されるものではない。なお本実施例は、本発明に至る研究経過(実験および考察経過)を示すものである。

<主題 りんご剪定枝を原料としたペレット状活性炭の細孔特性の研究>
1.目的
りんご剪定枝を原料としたペレットから調製した活性炭およびペレット状の市販活性炭に賦活処理を加えた試料を調製、それぞれの細孔物性等を調べ、両者を比較検討する。それにより、制御された細孔特性を有する活性炭製造の可能性を検討する。
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this Example. In addition, a present Example shows the research progress (experiment and consideration progress) which leads to this invention.

<Theme: Study on pore characteristics of pelleted activated carbon made from pruned apples>
1. Objective To prepare activated carbon prepared from pellets made from apple pruned branches and pellet-type commercial activated carbon with activation treatment, examine their physical properties, etc., and compare both. Thereby, the possibility of producing activated carbon with controlled pore properties is investigated.

2. 実験方法
2.1 サンプルの調製
2.1.1 ペレットの調製
原料として、りんご剪定枝をハンマークラッシャーでチップ化し、ふるいにかけた10mm以下のものを用いた。ペレット化は、ペレタイザー(アースエンジニアリング社製、EF−BS−150)を用いて、目標直径を4mmとして調製した。
2. Experimental Method 2.1 Sample Preparation 2.1.1 Pellet Preparation As a raw material, an apple pruned branch was chipped with a hammer crusher and sieved to 10 mm or less. For pelletization, a target diameter was adjusted to 4 mm using a pelletizer (EF-BS-150, manufactured by Earth Engineering Co., Ltd.).

2.1.2 活性炭の調製
原料として、2.1.1で調製したペレットを用いた。炭素化処理は、活性炭製造実験機(MET社製)を用いて、キルン容器に7400gのペレットを投入し、窒素ガス100L/minを流通させながら、最高到達温度850℃、保持時間0.5時間の条件で行い、n=3とした。炭素化率:Y(%)は、105℃、24時間加熱後のペレットの質量:W(%)および105℃、24時間加熱後の炭素化物の質量:W(%)、から以下の(1)式より算出した。
=W/W×100 …(1)式
2.1.2 Preparation of activated carbon The pellet prepared in 2.1.1 was used as a raw material. Carbonization treatment is performed using an activated carbon production experiment machine (manufactured by MET), putting 7400 g of pellets into a kiln container and circulating 100 L / min of nitrogen gas, while reaching a maximum temperature of 850 ° C. and a holding time of 0.5 hours. N = 3. Carbonization rate: Y c (%) is the mass of the pellet after heating at 105 ° C. for 24 hours: W t (%) and the mass of the carbonized product after heating at 105 ° C. for 24 hours: W c (%) (1).
Yc = Wc / Wt * 100 ... (1) Formula

賦活処理は、炭素化と同じく活性炭製造実験機(MET社製)を用いて、キルン容器に4200gの炭素化物(以下:A1)を投入し、窒素ガス100L/min、水蒸気12mL/minを流通させながら、最高到達温度850℃の条件で行った。A1からの目標収率は80%、70%、50%、40%(以下:A2、A3、A4、A5)とした。また比較用の出発原料として、市販活性炭(クラレケミカル社製、クラレコール3GG 原料:ヤシ殻と石炭、以下:C1)を用い、C1からの目標収率は、90%、80%、70%、60%(以下:C2、C3、C4、C5)とした。   The activation treatment is performed by using an activated carbon production experimental machine (manufactured by MET Co., Ltd.) as in the case of carbonization. However, it was performed under the condition of the maximum temperature reached 850 ° C. The target yield from A1 was 80%, 70%, 50%, 40% (hereinafter: A2, A3, A4, A5). As a starting material for comparison, commercially available activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal 3GG raw material: coconut shell and coal, hereinafter: C1) was used, and the target yield from C1 was 90%, 80%, 70%, 60% (hereinafter: C2, C3, C4, C5).

2.2 基本物性の評価
各活性炭の収率:YCa(%)は、105℃、24時間加熱後のA1の質量:W(g)および105℃、24時間加熱後の各活性炭の質量:W(g)から以下の(2)式より求めた。
Ca=W/W×100 …(2)式
2.2 Evaluation of basic physical properties Yield of each activated carbon: Y Ca (%) is the mass of A1 after heating at 105 ° C. for 24 hours: W s (g) and the mass of each activated carbon after heating at 105 ° C. for 24 hours : It calculated | required from the following (2) Formula from Wc (g).
Y Ca = W c / W s × 100 (2) formula

また、試料の直径はノギスを使用し、中央付近を測定、n=3とした。かさ密度:B(g/cm)は、JIS Z 7302に準じて空の測定容器の質量:m(g)、試料を満たした測定容器の質量 m(g)、測定容器の容積:V(cm)から以下の式(3)より算出、n=3とした。
=(m−m)/×1000 …(3)式
Moreover, the diameter of the sample used calipers, measured near the center, and set n = 3. Bulk density: B d (g / cm 3 ) is the mass of an empty measuring container according to JIS Z 7302: m 0 (g), the mass of the measuring container filled with the sample m 1 (g), the volume of the measuring container : Calculated from V (cm 3 ) by the following formula (3), n = 3.
B d = (m 1 −m 0 ) / × 1000 (3) formula

灰分:YAsh(%)は、活性炭1gを磁性皿に入れ、JIS K 1474に準じて105℃、24時間加熱後の試料の質量:W(%)および加熱炉(いすゞ製作所社製、ETP−26K)で800℃、4時間加熱後の試料の質量:W(%)から以下の(4)式より算出、n=3とした。
Ash=W/W×100 …(4)式
Ash content: Y Ash (%) is obtained by putting 1 g of activated carbon into a magnetic dish and heating the sample after heating for 24 hours at 105 ° C. according to JIS K 1474: W m (%) and a heating furnace (ETP manufactured by Isuzu Seisakusho, ETP The mass of the sample after heating at 800 ° C. for 4 hours at −26 K): W a (%) was calculated from the following formula (4), and n = 3.
Y Ash = W a / W m × 100 (4)

2.3 細孔構造の評価
比表面積、細孔容積および分布は、比表面積/細孔分布測定装置(日本ベル社製、BELSORP−mini)を用いて算出した。試料は粉砕せずペレットの状態のまま用い、250℃、5時間脱気後に−196℃での窒素吸脱着等温線を測定、BET法により比表面積:S(m/g)、MP法によりミクロ孔容積:VtN(cm/g)およびミクロ孔分布、BJH法によりメソ孔容積:ViN(cm/g)および微分メソ孔容積分布を算出、それぞれn=3とした。
2.3 Evaluation of pore structure The specific surface area, pore volume and distribution were calculated using a specific surface area / pore distribution measuring apparatus (BELSORP-mini, manufactured by Bell Japan). The sample is used in the form of pellets without being pulverized, and after deaeration at 250 ° C. for 5 hours, a nitrogen adsorption / desorption isotherm at −196 ° C. is measured. Specific surface area: S N (m 2 / g) by MP method Was used to calculate the micropore volume: V tN (cm 3 / g) and micropore distribution, and the BJH method was used to calculate the mesopore volume: V iN (cm 3 / g) and differential mesopore volume distribution, where n = 3.

また既報では、りんご剪定枝から調製した活性炭の灰分は18.2%であり、条件によっては活性炭中に含まれる微量元素の質量が細孔物性の算出に大きく影響を及ぼすと想定される。そこで微量元素の比表面積を0m/g、ミクロ孔容積およびメソ孔容積を0cm/gと仮定し、灰分:YAsh(%)を除いたかさ密度や比表面積、ミクロ孔容積、メソ孔容積等の値:Vから、以下の(5)式より換算値:Coを算出、収率との関係や分布をグラフ化した。
Co=V/(100−YAsh)×100 …(5)式

さらに、両活性炭の各収率における比表面積、ミクロ孔容積、メソ孔容積の換算値の平均値に関して有意差検定(P<0.05)を行った。
In the previous report, the ash content of activated carbon prepared from apple pruned branches is 18.2%, and it is assumed that the mass of trace elements contained in the activated carbon greatly affects the calculation of pore properties depending on the conditions. Therefore, assuming that the specific surface area of the trace element is 0 m 2 / g, the micropore volume and the mesopore volume are 0 cm 3 / g, the bulk density, the specific surface area, the micropore volume, and the mesopore excluding ash: Y Ash (%) From the value such as volume: V, the conversion value: Co was calculated from the following equation (5), and the relationship and distribution with the yield were graphed.
Co = V / (100−Y Ash ) × 100 (5)

Furthermore, a significant difference test (P <0.05) was performed on the average values of the converted specific values of specific surface area, micropore volume, and mesopore volume at each yield of both activated carbons.

3. 結果および考察
3.1 りんご剪定枝を原料としたペレットおよび活性炭の物性
表1にりんご剪定枝を原料とした活性炭(A2〜A5)と市販活性炭(C2〜C5)の目標収率および実際の収率を示す。また、表2にはりんご剪定枝を原料とした活性炭等(A1〜A5)、および市販活性炭(C1〜C5)の物性をまとめて示す。ペレットの灰分は2.6%であり、既報にて述べたりんご剪定枝の灰分2.1%やLehtikangasや山田の研究で示されているペレット化したバークや林地残材、葉付枝条の灰分(バーク:2.7%、林地残材:2.4%、葉付枝条:2.2%)と近い値であった。また、両活性炭の灰分は収率が低くなるにしたがって大きくなり、A2は10.4%、A5は20.8%と、活性炭の質量のそれぞれ1/10、1/5を占めることが分かった。既報において、りんご剪定枝に含まれる微量元素化合物中の元素は90%以上をCaが占め、次いでP、Kの順であったことより、本研究の灰分も同様にカルシウムが多く含まれているものと考えられた。
3. 3. Results and Discussion 3.1 Physical properties of pellets and activated carbon made from apple pruned branches as raw materials Table 1 shows target yields and actual yields of activated carbon (A2 to A5) and commercial activated carbons (C2 to C5) made from apple pruned branches as raw materials. Indicates the rate. Table 2 summarizes the physical properties of activated carbon and the like (A1 to A5) made from apple pruned branches and commercially available activated carbon (C1 to C5). The ash content of the pellet is 2.6%. The ash content of the apple pruned branch described in the previous report is 2.1%. It was close to (bark: 2.7%, forest land residue: 2.4%, leaf branch: 2.2%). Moreover, it turned out that the ash content of both activated carbon becomes large as a yield becomes low, A2 is 10.4%, A5 is 20.8%, and occupies 1/10 and 1/5 of the mass of activated carbon, respectively. . In the previous report, Ca accounted for over 90% of the elements in trace element compounds contained in apple pruned branches, followed by P and K, so the ash content of this study was also high in calcium. It was considered a thing.

次に、直径およびかさ密度は両活性炭ともに収率が低くなるにしたがって小さくなったが、かさ密度に関しては10〜20メッシュの木炭を賦活前の炭素化物として用いた阿部の研究と同様の傾向を示していることが分かった。炭素化物の形状が異なっても、収率が低くなるにしたがって小さくなる傾向には影響がないと推察された。   Next, the diameter and bulk density of both activated carbons decreased as the yield decreased. However, the bulk density was similar to that of Abe's research using 10-20 mesh charcoal as a carbonized product before activation. I found out that Even if the shape of the carbonized product was different, it was presumed that there was no effect on the tendency to decrease as the yield decreased.

比表面積およびミクロ孔容積は、両活性炭ともに収率が低くなるにしたがって大きくなった。比表面積に関しても阿部の研究と同様の傾向を示していることが分かった。一方、メソ孔容積に関しては、りんご剪定枝を原料とした活性炭は収率が低くなるにしたがって大きくなったのに対して、市販活性炭はC1からC4まではほぼ同等の値を示し、C5はC4の1.5倍と急増した。   The specific surface area and micropore volume increased as the yield decreased for both activated carbons. It was found that the specific surface area showed the same tendency as in the Abe study. On the other hand, regarding mesopore volume, activated carbon made from apple pruned branches increased as the yield decreased, whereas commercially available activated carbon showed almost the same value from C1 to C4, and C5 was C4. It increased rapidly by 1.5 times.

渡辺は、多くのファクタにより、炭素化原材料中のベイサルプレーンはガス化反応に対して種々の異なった反応性を示すと報告している。また、賦活をさらに進めるとミクロ孔を拡大してメソ孔にすることができるが、この段階では細孔の形は前段階に比べるともっとランダムになるとも報告している。さらに中川は、賦活反応によって形成する細孔構造は賦活初期の炭素化物構造に依存するため、同じ出発原料からドラスティックに細孔分布の異なる活性炭を作り分けることは、賦活条件を変化させるのみでは困難であると報告している。これらのことより、原料の差異によってメソ孔等の生成過程は異なり、しかも複雑な要因が絡み合うため、原料によっては収率との相関性が低くなるものがあることが推察された。   Watanabe reports that due to a number of factors, basal planes in carbonized raw materials exhibit a variety of different reactivities to gasification reactions. Moreover, it is reported that if the activation is further advanced, the micropores can be enlarged to become mesopores, but at this stage, the shape of the pores becomes more random than the previous stage. Furthermore, Nakagawa's pore structure formed by the activation reaction depends on the carbonized structure at the initial stage of activation, so making activated carbons with different pore distributions from the same starting material drastically can be done only by changing the activation conditions. Reported difficulty. From these facts, it was inferred that the production process of mesopores differs depending on the raw materials, and that complicated factors are intertwined, so that some raw materials have a low correlation with the yield.

3.2 活性炭の細孔物性
図3は、両活性炭における収率とかさ密度(換算値)との関係を示すグラフである。図示するように両活性炭とも、かさ密度は収率が低くなるにしたがって小さくなる傾向にあり、決定係数Rは0.88以上と高い値を示した。また、試験はn=3で行っているが、それぞれの試料で誤差は大きくなかった。このことより、収率とかさ密度との関係は高い相関性を有していることが示唆された。
3.2 Pore Physical Properties of Activated Carbon FIG. 3 is a graph showing the relationship between yield and bulk density (converted value) for both activated carbons. Both activated carbon As shown, the bulk density tends to decrease in accordance with the yield is low, the coefficient of determination R 2 showed 0.88 or more as high. Moreover, although the test was performed by n = 3, the error was not large in each sample. This suggests that the relationship between yield and bulk density has a high correlation.

図4は、両活性炭における収率と比表面積(換算値)との関係を示すグラフである。図示するように両活性炭とも、比表面積は収率が低くなるにしたがって大きくなくなる傾向にあり、A5およびC5はほぼ同等の値である1200m/g程度を示した。また、決定係数Rは両活性炭ともに0.78以上と高い値を示した。 FIG. 4 is a graph showing the relationship between the yield and specific surface area (converted value) for both activated carbons. As shown in the figure, the specific surface areas of both activated carbons tended to become smaller as the yield decreased, and A5 and C5 showed approximately 1200 m 2 / g, which is almost the same value. The coefficient of determination R 2 showed 0.78 or more as high in both the activated carbon.

図5は、両活性炭における収率とミクロ孔容積(換算値)との関係を示すグラフである。図示するように両活性炭とも、ミクロ孔容積は収率が低くなるにしたがって大きくなる傾向にあり、A5およびC5はほぼ同等の値である0.6m/g程度を示した。また、決定係数Rは両活性炭ともに0.88以上と高い値を示した。 FIG. 5 is a graph showing the relationship between the yield of both activated carbons and the micropore volume (converted value). As shown in the figure, in both activated carbons, the micropore volume tends to increase as the yield decreases, and A5 and C5 show approximately the same value of about 0.6 m 3 / g. The coefficient of determination R 2 showed 0.88 or more as high in both the activated carbon.

これらの結果より、収率と比表面積およびミクロ孔容積との関係は両活性炭ともに高い決定係数を示すことが分かった。したがって、実用段階にて製造しようとする場合、収率を調整することで目標とする細孔物性に制御可能であることが示された。   From these results, it was found that the relationship between yield, specific surface area and micropore volume showed a high coefficient of determination for both activated carbons. Therefore, when it was going to manufacture in a practical use stage, it was shown that it can control to the target pore physical property by adjusting a yield.

図6は、両活性炭における収率とメソ孔容積(換算値)との関係を示すグラフである。図示するように両活性炭とも、メソ孔容積は収率が低くなるにしたがって大きくなる傾向にあり、A5およびC5はほぼ同等の値である0.2m/g程度を示した。また、決定係数Rはりんご剪定枝活性炭が0.97に対して、市販活性炭は0.40と低い値を示した。 FIG. 6 is a graph showing the relationship between the yield and mesopore volume (converted value) in both activated carbons. As shown in the figure, in both activated carbons, the mesopore volume tended to increase as the yield decreased, and A5 and C5 showed approximately the same value of about 0.2 m 3 / g. The coefficient of determination R 2 for apple pruned branches activated carbon 0.97, commercially available activated carbon was lower 0.40 value.

表3、表4に、各性炭の比表面積、ミクロ孔容積、メソ孔容積を危険率5%にて有意差検定を行った結果を示す。表3に示すりんご剪定枝活性炭では、A1からA5まで全ての活性炭において、その差は有意であることが分かった。それに対して、表4に示す市販活性炭では、比表面積およびミクロ孔容積においてC5と他の活性炭との差が有意であったものの、C1からC4の間の差は有意ではなかった。またメソ孔容積においてC1からC5の全ての間の差は有意ではなかった。   Tables 3 and 4 show the results of significant difference tests on the specific surface area, micropore volume, and mesopore volume of each charcoal at a risk factor of 5%. In the apple pruned activated carbon shown in Table 3, the difference was found to be significant in all activated carbons from A1 to A5. On the other hand, in the commercial activated carbon shown in Table 4, although the difference between C5 and other activated carbons was significant in specific surface area and micropore volume, the difference between C1 and C4 was not significant. Also, the difference between all of C1 to C5 in mesopore volume was not significant.

このことから、図4〜6において、りんご剪定枝活性炭の近似直線は有意な差を有したものであるのに対して、市販活性炭の近似直線は収率との関係において信頼性の低いものである分かった。りんご剪定枝を原料とした活性炭は収率と比表面積、ミクロ孔容積、メソ孔容積との関係が高い相関性を有しており、収率を調整することでそれぞれの細孔物性をコントロールしやすい原料であることが示された。   Therefore, in FIGS. 4 to 6, the approximate straight line of the apple pruned activated carbon has a significant difference, whereas the approximate straight line of the commercially available activated carbon has low reliability in relation to the yield. I understand. Activated carbon made from apple pruned branches has a high correlation between yield and specific surface area, micropore volume, and mesopore volume, and each pore property can be controlled by adjusting the yield. It was shown to be an easy ingredient.

図7は、りんご剪定枝活性炭のミクロ孔分布(換算値)を示すグラフである。図中、ミクロ孔のピークに着目すると、0.6nm付近では、A2からA3と収率が低くなるにしたがって高くなった。その後、A4がA2と同程度になるものの、A4の0.7nm以上のミクロ孔が多くなり、A5では0.8nm付近にピークがシフトする結果となった。   FIG. 7 is a graph showing the micropore distribution (converted value) of apple pruned activated carbon. Focusing on the peak of the micropore in the figure, the yield increased from A2 to A3 in the vicinity of 0.6 nm as the yield decreased. After that, although A4 became almost the same as A2, the number of micropores of 0.7 nm or more in A4 increased, and in A5, the peak shifted to about 0.8 nm.

図8は、市販活性炭のミクロ孔分布(換算値)を示すグラフである。図示するように、C1とC2は0.6nmをピークとしてほぼ変わらないものの、C3でピークが0.7nm、C4で0.8nmにシフトし、C5でそのピークが高くなった。このことから市販活性炭では、収率が低くなるにしたがってミクロ孔のピークも0.6nmから0.8nmと大きい方にシフトすることが分かった。   FIG. 8 is a graph showing the micropore distribution (converted value) of commercially available activated carbon. As shown in the figure, although C1 and C2 are almost unchanged with a peak at 0.6 nm, the peak is shifted to 0.7 nm at C3, 0.8 nm at C4, and the peak is increased at C5. From this, it was found that with the commercial activated carbon, the peak of the micropores shifted from 0.6 nm to 0.8 nm as the yield decreased.

図9は、りんご剪定枝活性炭の微分メソ孔容積(換算値)を示すグラフである。図示するようにりんご剪定枝活性炭は、全体として収率が低くなるにしたがって微分メソ孔容積が大きくなった。また、凸部(ピーク)の位置も、A2で4.8nm付近、A3で5.5nm付近、A4で10.7nm付近、A5で18.5nm付近、と収率が小さくなるにしたがって直径の大きな側にシフトすることが分かった。   FIG. 9 is a graph showing the differential mesopore volume (converted value) of apple pruned activated carbon. As shown in the figure, the pruned apple activated carbon has an increased differential mesopore volume as the yield decreases as a whole. In addition, the position of the convex portion (peak) also increases in diameter as A2 is around 4.8 nm, A3 is around 5.5 nm, A4 is around 10.7 nm, and A5 is around 18.5 nm. It turned out to shift to the side.

図10は、市販活性炭の微分メソ孔容積(換算値)を示すグラフである。図示するように市販活性炭は、収率が高くなるにしたがって微分メソ孔容積が全体的に低くなり、その後、4.7nm付近を中心に高くなることが分かった。Franklinは、木炭のような難黒鉛炭素について、微結晶炭素が乱層構造をとる結晶子と芳香族の周囲に配置している炭素、あるいは結晶子間の架橋構造に関与している炭素などの未組織炭素から構成するモデルを提案している。また渡辺は、水蒸気賦活される原材料の炭素化物はベイサルプレーンと呼ばれる黒鉛状の微小結晶面でできていて、この微小面は芳香族性の炭素からなっていると報告している。   FIG. 10 is a graph showing the differential mesopore volume (converted value) of commercially available activated carbon. As shown in the figure, it was found that the commercial activated carbon had an overall decrease in the differential mesopore volume as the yield increased, and then increased mainly around 4.7 nm. Franklin is a non-graphite carbon such as charcoal, a microcrystalline carbon having a turbulent structure and a carbon arranged around an aromatic, or a carbon involved in a cross-linked structure between crystallites, etc. A model composed of unorganized carbon is proposed. Watanabe reports that the carbonized product of the steam-activated raw material is made of a graphite-like microcrystalline surface called basal plane, and this microsurface is made of aromatic carbon.

上述した結果や文献等より、りんご剪定枝を原料としたペレットから調製した活性炭の比表面積、およびミクロ孔容積、メソ孔容積が収率との間に高い相関性を有した理由は、次のような機作によるものと考えられる。すなわち、
(1)まず、りんご剪定枝中のカルシウム系を中心とする微量元素の触媒的な作用によって未組織炭素が選択的に消費され、微結晶炭素で閉鎖されたミクロ孔が解放される。
(2)次に、微結晶炭素が消費され、現存する細孔の拡大や隣接するミクロ孔間の壁が完全に焼失して、より径の大きい細孔が形成される。
かかる一連のプロセスが、C1を原料とした市販活性炭と比較して、りんご剪定枝活性炭においては規則的に進む性質を有しているためである、と考えられる。
From the above results and literature, the specific surface area of activated carbon prepared from pellets made from pruned apples, and the micropore volume and mesopore volume had a high correlation with the yield. This is thought to be due to such a mechanism. That is,
(1) First, the unstructured carbon is selectively consumed by the catalytic action of trace elements centering on the calcium system in the apple pruned branch, and the micropores closed by the microcrystalline carbon are released.
(2) Next, the microcrystalline carbon is consumed, and the expansion of existing pores and the walls between adjacent micropores are completely burned down to form pores with larger diameters.
Such a series of processes is considered to be due to the property that the apple pruned branch activated carbon has a property of proceeding regularly as compared with the commercial activated carbon using C1 as a raw material.

りんご剪定枝を原料としたペレットから調製した活性炭は、収率と比表面積およびミクロ孔容積、メソ孔容積との相関性が高い。これは、高い活性炭品質が求められる電気二重層キャパシタ用活性炭や吸湿剤として利用する際に、適している特性である。これらの用途を初めとして、吸湿性能の高度な制御・調節が有意義な活性炭としての全分野における実用化が、大いに期待される。   Activated carbon prepared from pellets made from apple pruned branches is highly correlated with yield, specific surface area, micropore volume, and mesopore volume. This is a characteristic suitable for use as an activated carbon for an electric double layer capacitor or a hygroscopic agent that requires high activated carbon quality. Starting with these applications, practical application in all fields as activated carbon, in which advanced control and adjustment of moisture absorption performance is significant, is highly expected.

4. 結言
本研究では、りんご剪定枝を原料としたペレットから調製した活性炭およびペレット状の市販活性炭に賦活処理を加えた試料の細孔物性等を調べ、両者を比較検討した結果、以下の知見を得た。
(1)比表面積およびミクロ孔容積は、両活性炭ともに収率が低くなるにしたがって大きくなくなる傾向を示した。
(2)メソ孔容積は、両活性炭ともに収率が低くなるにしたがって大きくなる傾向を示したものの、りんご剪定枝活性炭の方が市販活性炭よりも決定係数は高く、各収率試料間で有意な差を示すことが分かった。
(3)ミクロ孔分布、メソ孔分布ともに収率の違いによって、その分布のピークは異なることが分かった。
4). Conclusion In this study, we examined the pore properties of activated carbon prepared from pellets made from pruned apples and commercial activated carbon pellets, and compared the results to obtain the following knowledge. It was.
(1) The specific surface area and the micropore volume tended to become smaller as the yield decreased for both activated carbons.
(2) Although the mesopore volume tended to increase as the yield decreased for both activated carbons, the pruned apple activated carbon had a higher coefficient of determination than the commercially available activated carbon and was significantly different between the yield samples. It was found to show a difference.
(3) It was found that the peak of the distribution differs depending on the yield in both micropore distribution and mesopore distribution.

すなわち、時間をファクターとした収率(活性炭後/活性炭前)と比表面積等細孔特性との関係が、比較例の市販品では有意な差のない相関であるのに対して、りんご剪定枝活性炭は有意な差を有する相関であることが、本研究・発明により明らかとなった。これにより、賦活処理条件を調節することで、得られる活性炭の収率を調節し、それによって活性炭の細孔の特性を制御可能であることが明らかとなった。   In other words, the relationship between the yield (after activated carbon / before activated carbon) and pore characteristics such as specific surface area is a correlation with no significant difference in the commercial product of the comparative example, whereas the pruned apple branch This research and invention revealed that activated carbon is a correlation with a significant difference. Thus, it was clarified that by adjusting the activation treatment conditions, the yield of the obtained activated carbon can be adjusted, and thereby the characteristics of the pores of the activated carbon can be controlled.

本発明の活性炭製造方法によれば、りんご剪定枝等を炭素化原料とし、ガス賦活処理等の過程を経て制御されたメソ孔容積等の細孔の特性(細孔特性)を有する活性炭を製造することができる。また、りんご剪定枝等によるペレット状の炭化物を出発原料とし、製造方法によって制御されたメソ孔容積等の細孔特性を有する活性炭を製造することができる。したがって、吸湿材やキャパシタ用活性炭など、メソ孔がより多い活性炭を必要とするか、もしくはそれが望ましいあらゆる製品分野、技術分野における利用が可能である。また、りんご剪定枝を原料とした付加価値の高い製品を提供することができるため、大量に廃棄されているりんご剪定枝の有効活用方法としても極めて優れている。したがって、関連する産業分野において、利用性の高い発明である。   According to the activated carbon production method of the present invention, activated carbon having mesopore volume and other pore characteristics (pore characteristics) controlled through processes such as gas activation treatment using pruned apples as a carbonized raw material. can do. Also, activated carbon having pore characteristics such as mesopore volume controlled by the production method can be produced using pelletized carbides such as apple pruned branches as a starting material. Therefore, it can be used in any product field or technical field where activated carbon having more mesopores such as a hygroscopic material and activated carbon for capacitors is required or desirable. In addition, since a product with high added value can be provided using apple pruning branches as a raw material, it is extremely excellent as an effective utilization method for apple pruning branches discarded in large quantities. Therefore, the invention is highly useful in the related industrial fields.

1…炭素化物
21…ペレット状の炭素化物
10…細孔特性が制御された活性炭
210…細孔特性が制御されたペレット状活性炭
P…賦活処理過程
r21…ペレット状の炭素化原料
r2P…炭素化処理過程
DESCRIPTION OF SYMBOLS 1 ... Carbonized product 21 ... Pelletized carbonized product 10 ... Activated carbon 210 with controlled pore characteristics ... Pelletized activated carbon P with controlled pore characteristics ... Activation treatment process r21 ... Pelletized carbonized raw material r2P ... Carbonized Process

Claims (12)

炭素化原料が炭素化処理されてなる炭素化物を賦活処理過程に供して活性炭を得る活性炭製造方法であって、該賦活処理過程における賦活処理条件を調節することにより得られる活性炭の収率を調節し、それによって活性炭の細孔の特性を制御することを特徴とする、活性炭製造方法。 An activated carbon manufacturing method for obtaining activated carbon by subjecting a carbonized material obtained by carbonization treatment to an activation treatment process, and adjusting a yield of activated carbon obtained by adjusting activation treatment conditions in the activation treatment process And thereby controlling the characteristics of the pores of the activated carbon. 前記細孔の特性が比表面積、ミクロ孔(直径2nm以下の孔)容積、メソ孔(直径2〜50nmの孔)容積、または細孔直径分布の少なくともいずれかであることを特徴とする、請求項1に記載の活性炭製造方法。 The characteristic of the pore is at least one of a specific surface area, a micropore (pore with a diameter of 2 nm or less), a mesopore (pore with a diameter of 2 to 50 nm), or a pore diameter distribution. Item 2. A method for producing activated carbon according to Item 1. 前記賦活処理条件は賦活処理時間であることを特徴とする、請求項1または2に記載の活性炭製造方法。 The activated carbon production method according to claim 1, wherein the activation treatment condition is an activation treatment time. 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記細孔の容積を大きくすることを特徴とする、請求項3に記載の活性炭製造方法。 4. The activated carbon production method according to claim 3, wherein the yield is lowered by increasing the activation treatment time, thereby increasing the volume of the pores. 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記細孔の直径を大きくすることを特徴とする、請求項3に記載の活性炭製造方法。 4. The activated carbon production method according to claim 3, wherein the yield is lowered by lengthening the activation treatment time, thereby increasing the diameter of the pores. 前記細孔がメソ孔であることを特徴とする、請求項5に記載の活性炭製造方法。 The method for producing activated carbon according to claim 5, wherein the pores are mesopores. 前記賦活処理時間を長くすることによって前記収率を下げ、それにより前記比表面積を大きくすることを特徴とする、請求項3に記載の活性炭製造方法。 The method for producing activated carbon according to claim 3, wherein the yield is lowered by extending the activation treatment time, thereby increasing the specific surface area. 賦活処理時間または収率と細孔特性との関係を予め求めておき、賦活処理時間または収率の設定によって所望の細孔特性を得ることを特徴とする、請求項3に記載の活性炭製造方法。 The activated carbon production method according to claim 3, wherein a relationship between activation treatment time or yield and pore characteristics is obtained in advance, and desired pore characteristics are obtained by setting the activation treatment time or yield. . 得られる活性炭がペレット状であることを特徴とする、請求項1ないし8のいずれかに記載の活性炭製造方法。 9. The activated carbon production method according to claim 1, wherein the obtained activated carbon is in a pellet form. 前記炭素化原料は樹木枝であることを特徴とする、請求項1ないし9のいずれかに記載の活性炭製造方法。 The method for producing activated carbon according to claim 1, wherein the carbonized raw material is a tree branch. 前記炭素化原料はりんご剪定枝であることを特徴とする、請求項1ないし9のいずれかに記載の活性炭製造方法。 The method for producing activated carbon according to any one of claims 1 to 9, wherein the carbonized raw material is apple pruned branches. ペレット状の炭素化原料から前記炭素化物を得る炭素化処理過程を備えることを特徴とする、請求項1ないし11のいずれかに記載の活性炭製造方法。
The method for producing activated carbon according to any one of claims 1 to 11, further comprising a carbonization treatment step of obtaining the carbonized material from a pelletized carbonized raw material.
JP2017040024A 2017-03-03 2017-03-03 Active carbon manufacturing method Pending JP2018145041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017040024A JP2018145041A (en) 2017-03-03 2017-03-03 Active carbon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017040024A JP2018145041A (en) 2017-03-03 2017-03-03 Active carbon manufacturing method

Publications (1)

Publication Number Publication Date
JP2018145041A true JP2018145041A (en) 2018-09-20

Family

ID=63589447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017040024A Pending JP2018145041A (en) 2017-03-03 2017-03-03 Active carbon manufacturing method

Country Status (1)

Country Link
JP (1) JP2018145041A (en)

Similar Documents

Publication Publication Date Title
Iwanow et al. Activated carbon as catalyst support: precursors, preparation, modification and characterization
Panwar et al. Influence of activation conditions on the physicochemical properties of activated biochar: A review
Yek et al. Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon
Yorgun et al. Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation
Bouchelta et al. Effects of pyrolysis conditions on the porous structure development of date pits activated carbon
Fu et al. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate
Zhang et al. Preparation of activated carbon from sawdust by zinc chloride activation
Lee et al. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C
Fu et al. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues
Sreńscek-Nazzal et al. Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses
JP5763228B2 (en) High surface area carbon and method for producing the same
David et al. Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity
US20160038913A1 (en) Process for the production of high-quality activated carbons as well as activated carbons produced according to the process
Jun et al. Effect of activation temperature and heating duration on physical characteristics of activated carbon prepared from agriculture waste
JP6760583B2 (en) How to make activated carbon
Kurosaki et al. Shape-controlled multi-porous carbon with hierarchical micro–meso-macro pores synthesized by flash heating of wood biomass
Gao et al. Coal tar residues based activated carbon: Preparation and characterization
JP2011016693A (en) Method for producing composite activated carbon based on biomass waste and methane gas storage material using the same
Parthasarathy et al. Char products from bamboo waste pyrolysis and acid activation
Devi et al. Recent advancement in biomass-derived activated carbon for waste water treatment, energy storage, and gas purification: a review
Hao et al. Strong discs of activated carbons from hydrothermally carbonized beer waste
Bedane et al. Textural characteristics of activated carbons prepared from agricultural residues‐review
Thithai et al. Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures
JP2018145041A (en) Active carbon manufacturing method
Ajayi et al. A comparative study of thermal and chemical activation of Canarium Schweinfurthii Nutshell

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170311