JP2018141214A - Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member - Google Patents

Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member Download PDF

Info

Publication number
JP2018141214A
JP2018141214A JP2017037091A JP2017037091A JP2018141214A JP 2018141214 A JP2018141214 A JP 2018141214A JP 2017037091 A JP2017037091 A JP 2017037091A JP 2017037091 A JP2017037091 A JP 2017037091A JP 2018141214 A JP2018141214 A JP 2018141214A
Authority
JP
Japan
Prior art keywords
hydrogen
resistant
hydrogen embrittlement
sprayed coating
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017037091A
Other languages
Japanese (ja)
Inventor
隆 熊井
Takashi Kumai
隆 熊井
祐輔 西浦
Yusuke NISHIURA
祐輔 西浦
亮太 水谷
Ryota Mizutani
亮太 水谷
敬治 森本
Takaharu Morimoto
敬治 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Original Assignee
Yoshikawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP2017037091A priority Critical patent/JP2018141214A/en
Publication of JP2018141214A publication Critical patent/JP2018141214A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen embrittlement-resistant coating that sufficiently achieves both of safety and economical efficiency of hydrogen equipment, and a hydrogen embrittlement-resistant coating member coated with the hydrogen embrittlement-resistant coating.SOLUTION: A hydrogen embrittlement-resistant sprayed coating contains a material having hydrogen blocking properties, with the content of O of 0.2 atom% or less.SELECTED DRAWING: None

Description

本発明は、耐水素脆性溶射皮膜と、耐水素脆性溶射皮膜でコーティングした耐水素脆性溶射皮膜部材に関する。   The present invention relates to a hydrogen brittle thermal spray coating and a hydrogen brittle thermal spray coating member coated with a hydrogen brittle thermal spray coating.

近年、産業界において環境保護の面から二酸化炭素等の地球温暖化ガスの発生を抑制することが求められ、自動車や輸送機器に関して水素を燃料とする燃料電池を電力源とするものが開発されている。燃料電池は水素を燃料として電力を発生するもので、二酸化炭素を発生することがないとともに、エネルギー変換効率が高いことでも有力な電力源であると言える。燃料電池が自動車、輸送機器類に一般利用される上では、水素を供給するための水素ステーションを設置するというようなインフラの設備が必要となるため、その検討対応がなされている。水素を燃料とする燃料電池やそれに水素を供給するための水素ステーションを含む機器においては、水素を扱う構成部品が不可欠であるが、その構成部品に利用する金属材料は、長期間水素を接触すると材料内に水素が侵入し、侵入した水素によって引張強度、伸び、あるいは絞りなどが低下する現象が知られている。この現象は一般に水素脆化と呼ばれている。現状では水素エネルギーシステムを構成する機器には、水素脆化の問題から、オーステナイト系ステンレス鋼SUS316Lとアルミ合金A6061−T6の使用を規定している。しかしながらSUS316L,A6061−T6は強度が低く、コストが高い。燃料電池自動車や水素インフラにおける機器では、水素脆化を生じることなく高い耐久性を有することが必要であるとともに、機器製造コストを極力抑えることも求められる。水素脆化は材料中に侵入した水素によって引き起こされるため、高圧水素ガス環境下においても材料内部に水素を制御する技術が開発できれば、水素脆化を抑えられる可能性がある。これらの観点から水素侵入を抑制することが可能な表面皮膜は、材料の水素脆化を制御する有力な技術の一つであると期待できる。また、ハイテンボルトの遅れ破壊のように主に腐食反応から侵入する水素起因もあり、鋼材の表面を耐食性皮膜で被覆することで腐食を防止すれば水素脆性を抑制できると期待できる。   In recent years, there has been a demand in the industry to suppress the generation of global warming gases such as carbon dioxide from the viewpoint of environmental protection, and fuel cells that use hydrogen as fuel for automobiles and transportation equipment have been developed. Yes. A fuel cell generates power using hydrogen as a fuel, does not generate carbon dioxide, and has high energy conversion efficiency, so it can be said that it is a powerful power source. When fuel cells are generally used in automobiles and transportation equipment, infrastructure facilities such as installing a hydrogen station for supplying hydrogen are required, and therefore, a study is being made. In equipment including a fuel cell using hydrogen and a hydrogen station for supplying hydrogen to it, components that handle hydrogen are indispensable. It is known that hydrogen penetrates into a material, and the tensile strength, elongation, drawing or the like is lowered by the penetrated hydrogen. This phenomenon is generally called hydrogen embrittlement. At present, the use of austenitic stainless steel SUS316L and aluminum alloy A6061-T6 is prescribed for equipment constituting the hydrogen energy system because of hydrogen embrittlement. However, SUS316L and A6061-T6 have low strength and high cost. Devices in fuel cell vehicles and hydrogen infrastructure are required to have high durability without causing hydrogen embrittlement, and it is also required to suppress the device manufacturing cost as much as possible. Since hydrogen embrittlement is caused by hydrogen that has penetrated into the material, hydrogen embrittlement may be suppressed if a technology for controlling hydrogen inside the material can be developed even in a high-pressure hydrogen gas environment. From these viewpoints, a surface film capable of suppressing hydrogen intrusion can be expected to be one of the leading technologies for controlling hydrogen embrittlement of materials. Moreover, there is also a hydrogen cause that penetrates mainly from the corrosion reaction like delayed fracture of high tensile bolts, and it can be expected that hydrogen embrittlement can be suppressed if corrosion is prevented by coating the surface of the steel material with a corrosion resistant film.

しかし、これまで水素機器の安全性と経済性を十分に両立させる耐水素脆性皮膜は提供されていない。例えば特許文献1においては、多層ヘテロ皮膜が開示されているものの具体的な形成方法は示されておらず、多層構造ゆえにコストが高いと考えられる。特許文献2には、オーステナイト系ステンレス素材を水素ガス雰囲気下で一定の水蒸気分圧を制御して酸化物皮膜を形成する技術が提案されており、酸化物皮膜の膜厚を100nmから1000nmに制御することでオーステナイト系ステンレスへの水素侵入を起こさないようにしている。しかしながら、高温熱処理により酸化物皮膜を形成するようにしていることから、表面処理操作に大きな処理エネルギーが必要となる問題がある。特許文献3には、高濃度のオゾンガスを大気温環境下で作用させることで酸化膜を得る方法が開示されているが専用処理装置が必要となる。   However, no hydrogen brittle-resistant coating that sufficiently satisfies the safety and economics of hydrogen equipment has been provided so far. For example, in Patent Document 1, although a multilayer hetero-coating is disclosed, a specific formation method is not shown, and it is considered that the cost is high due to the multilayer structure. Patent Document 2 proposes a technique for forming an oxide film by controlling a constant water vapor partial pressure of an austenitic stainless steel material in a hydrogen gas atmosphere. The film thickness of the oxide film is controlled from 100 nm to 1000 nm. This prevents hydrogen from entering the austenitic stainless steel. However, since the oxide film is formed by high-temperature heat treatment, there is a problem that a large treatment energy is required for the surface treatment operation. Patent Document 3 discloses a method for obtaining an oxide film by applying high-concentration ozone gas under an ambient temperature environment. However, a dedicated processing apparatus is required.

特開2015−172212号公報Japanese Patent Laying-Open No. 2015-172212 特許第4492537号公報Japanese Patent No. 4492537 特開2014−109059号公報JP 2014-109059 A

本発明が解決しようとする課題は、水素機器の安全性と経済性を十分に両立させうる耐水素脆性皮膜と、この耐水素脆性皮膜でコーティングした耐水素脆性皮膜部材を提供することにある。   The problem to be solved by the present invention is to provide a hydrogen embrittlement resistant film capable of sufficiently satisfying both safety and economy of hydrogen equipment, and a hydrogen embrittlement resistant film member coated with the hydrogen embrittlement resistant film.

この課題を解決するために本発明者らは、溶射法により作製する溶射皮膜に着目した。溶射法は鋼材を防食するのに簡便で強力な方法であり、アルミニウム、アルミナ、チタニウム等の結晶質溶射皮膜や非晶質溶射皮膜は水素遮断性を有し水素脆性を抑制する働きもある。ただし、通常の溶射皮膜は空孔や割れのような欠陥があり十分な水素遮蔽効果はない。そこで本発明者らは、無酸化雰囲気急速冷却溶射ガン等を利用して欠陥の少ない溶射皮膜の作製を志向した。その結果、優れた耐水素脆性効果を有する溶射皮膜を完成するに至った。   In order to solve this problem, the present inventors paid attention to a thermal spray coating produced by a thermal spraying method. The thermal spraying method is a simple and powerful method for preventing corrosion of steel materials, and a crystalline thermal spray coating such as aluminum, alumina, and titanium or an amorphous thermal spray coating has a hydrogen barrier property and also functions to suppress hydrogen embrittlement. However, ordinary sprayed coatings have defects such as vacancies and cracks and do not have a sufficient hydrogen shielding effect. Therefore, the present inventors have aimed to produce a sprayed coating with few defects by using a rapid cooling spray gun in an non-oxidizing atmosphere. As a result, a thermal spray coating having excellent hydrogen embrittlement resistance has been completed.

すなわち、本発明によれば、次の耐水素脆性溶射皮膜及び耐水素脆性溶射皮膜部材が提供される。
1.水素遮断性を有する素材から成る耐水素脆性溶射皮膜であって、Oの含有量が0.2原子%以下である耐水素脆性溶射皮膜。
2.Alを含有し、結晶粒径が10μm以下のミクロ組織をなしている前記1に記載の耐水素脆性溶射皮膜。
3.Mgを0.3〜15質量%含有し、残部がAlよりなる前記2に記載の耐水素脆性溶射皮膜。
4.Tiを含有する前記1に耐水素脆性溶射皮膜。
5.Nを15〜50原子%含有し、残部がTiよりなる前記4に記載の耐水素脆性溶射皮膜。
6.Feを含有するとともに、Cr、Ni、Mo、P、C、Bのいずれかの元素を1種以上含有する前記1に記載の耐水素脆性溶射皮膜。
7.非結晶相を有し、非結晶相の割合が90%以上である前記6に記載の耐水素脆性溶射皮膜。
8.膜厚が10〜1000μmである前記1〜7のいずれかに記載の耐水素脆性溶射皮膜。
9.皮膜中の空孔率が1%未満である前記1〜8のいずれかに記載の耐水素脆性溶射皮膜。
10.前記1〜9のいずれかに記載の耐水素脆性溶射皮膜でコーティングした耐水素脆性溶射皮膜部材。
That is, according to the present invention, the following hydrogen-brittle-resistant spray coating and hydrogen-brittle-resistant spray coating member are provided.
1. A hydrogen-brittle-resistant thermal spray coating comprising a material having a hydrogen barrier property, wherein the content of O is 0.2 atomic% or less.
2. 2. The hydrogen embrittlement resistant sprayed coating according to 1 above, which contains Al and has a microstructure with a crystal grain size of 10 μm or less.
3. 3. The hydrogen brittle resistant thermal spray coating as described in 2 above, containing 0.3 to 15% by mass of Mg and the balance being Al.
4). The hydrogen brittle-resistant thermal spray coating 1 described above containing Ti.
5. 5. The hydrogen embrittlement resistant thermal spray coating as described in 4 above, containing 15 to 50 atomic% of N and the balance being Ti.
6). 2. The hydrogen embrittlement resistant sprayed coating according to the above 1, which contains Fe and contains at least one element selected from Cr, Ni, Mo, P, C, and B.
7). 7. The hydrogen brittle resistant thermal spray coating as described in 6 above, which has an amorphous phase and the ratio of the amorphous phase is 90% or more.
8). 8. The hydrogen brittle resistant thermal spray coating according to any one of 1 to 7, wherein the film thickness is 10 to 1000 μm.
9. 9. The hydrogen embrittlement resistant sprayed coating according to any one of 1 to 8 above, wherein the porosity in the coating is less than 1%.
10. A hydrogen-brittle-resistant thermal spray coating member coated with the hydrogen-brittle-resistant thermal spray coating according to any one of 1 to 9 above.

本発明によれば、水素機器の安全性と経済性を十分に両立させうる。すなわち、本発明の耐水素脆性溶射皮膜は溶射によって作製されるので低コストであり、十分な経済性を有する。また、本発明の耐水素脆性溶射皮膜は水素遮断性を有する素材から成り、しかもOの含有量が0.2原子%以下であり皮膜自体の酸化が少ないので、緻密で欠陥の少ない皮膜である。したがって水素機器の安全性を向上させることができる。例えば、溶射皮膜に生成するAl不動態や、Cr不動態、TiNは水素を透過しにくい働きがあり、チタンはTiHが生成する等、ハイテン鋼材を被覆することで耐水素脆性が期待できる。 According to the present invention, the safety and economics of hydrogen equipment can be sufficiently achieved. That is, since the hydrogen-brittle-resistant thermal spray coating of the present invention is produced by thermal spraying, it is low in cost and has sufficient economic efficiency. Further, the hydrogen-brittle-resistant thermal spray coating of the present invention is made of a material having a hydrogen barrier property, and further, since the O content is 0.2 atomic% or less and the coating itself is less oxidized, it is a dense coating with few defects. . Therefore, the safety of the hydrogen equipment can be improved. For example, Al 2 O 3 passivation formed on the sprayed coating, Cr 2 O 3 passive, TiN has a function of hardly permeating hydrogen, titanium forms TiH 3 and so on. Hydrogen brittleness can be expected.

本発明の耐水素脆性溶射皮膜の作製に使用可能な溶線式火炎溶射装置のイメージ図である。It is an image figure of the hot wire type flame spraying apparatus which can be used for preparation of the hydrogen-brittle resistant thermal spray coating of this invention. 本発明の耐水素脆性溶射皮膜の作製に使用可能な粉末式火炎溶射装置のイメージ図である。It is an image figure of the powder type flame spraying apparatus which can be used for preparation of the hydrogen-brittle-resistant thermal spray coating of this invention. 本発明の耐水素脆性溶射皮膜の作製に使用可能な電気式溶射装置のイメージ図である。It is an image figure of the electric spraying apparatus which can be used for preparation of the hydrogen-brittle-resistant sprayed coating of this invention. 本発明の耐水素脆性溶射皮膜の皮膜断面のSEM画像である。It is a SEM image of the film section of the hydrogen embrittlement resistant thermal spray coating of the present invention. 本発明の耐水素脆性溶射皮膜のX線回折測定結果である。It is an X-ray-diffraction measurement result of the hydrogen-brittle-resistant thermal spray coating of this invention. 本発明の耐水素脆性溶射皮膜の水素チャージ後の引張試験結果である。It is the tension test result after hydrogen charge of the hydrogen-brittle-resistant thermal spray coating of this invention.

以下、本発明を実施するための形態として、本発明の耐水素脆性溶射皮膜の作製方法と試験結果を説明する。   Hereinafter, as a mode for carrying out the present invention, a method for producing a hydrogen brittle resistant thermal spray coating of the present invention and a test result will be described.

(1)耐水素脆性皮膜の作製方法
1)溶線式火炎溶射装置による作製
図1に示すように溶線式火炎溶射装置の先端にノズルキャップを装着し、その不活性ガス噴射部より、流量600〜1200L/min程度の不活性ガス(N)を流すことで溶融金属を急速的に冷却させつつ、酸化抑制した溶射皮膜を350μm以上になるよう作製する。基材にはSK−85を使用し、事前にアルミナグリッドにより表面をブラスト処理する。Al−5Mg溶射皮膜の溶射材料はφ3.17の線材を使用する。
(1) Production method of hydrogen brittle-resistant coating 1) Production by hot-wire flame spraying device As shown in FIG. 1, a nozzle cap is attached to the tip of the hot-wire flame spraying device, and the flow rate of 600- A sprayed coating in which oxidation is suppressed is made to be 350 μm or more while rapidly cooling the molten metal by flowing an inert gas (N 2 ) of about 1200 L / min. SK-85 is used for the substrate, and the surface is blasted beforehand with an alumina grid. As a thermal spraying material for the Al-5Mg thermal spray coating, a wire rod having a diameter of 3.17 is used.

2)粉末式火炎溶射装置による作製
図2に示すように粉末式火炎溶射装置の先端に二重円筒を装着し、その不活性ガス噴射部より流速流量400〜1200L/min程度の不活性ガス(N)を流すことで溶融粒子を急速的に冷却させつつ、酸化抑制した溶射皮膜を350μm以上になるよう作製する。基材には溶線式火炎溶射で作製する場合と同様の基材(SK−85)を用い、事前にアルミナグリッドにより表面をブラスト処理する。Al−5Mg皮膜の溶射材料はAl−5Mg粉末を使用し、Fe基アモルファス皮膜の溶射材料はガスアトマイズ粉(Fe60−Cr10−Ni−Mo−P17−C)を使用する。
2) Production by powder flame spraying apparatus As shown in FIG. 2, a double cylinder is attached to the tip of the powder flame spraying apparatus, and an inert gas (flow rate flow rate of about 400 to 1200 L / min from its inert gas injection part) while rapid manner to cool the molten particles by passing a N 2), to produce so that the sprayed coating suppresses oxidation than 350 .mu.m. For the base material, the same base material (SK-85) as that prepared by hot wire flame spraying is used, and the surface is blasted beforehand with an alumina grid. Spray material of Al-5 mg coating using Al-5 mg powder, the spray material of the Fe-based amorphous film uses gas atomization powder (Fe 60 -Cr 10 -Ni 8 -Mo 2 -P 17 -C 3).

3)電気式溶射装置による作製
図3に示すように電気式溶射装置の先端に二重円筒を装着し、その不活性ガス噴射部より、流量400〜1200L/min程度の不活性ガス(N)を流すことで溶融粒子を急速冷却させつつ、酸化抑制した溶射皮膜を350μm以上になるよう作製する。基材には他の溶射装置で作製する場合と同様の基材(SK−85)を使用し、事前にアルミナグリッドにより表面をブラスト処理する。Ti皮膜とTiN皮膜の溶射材料はトーホーテック社製チタン粉TC−150を使用する。
3) Manufacture by electric spraying device As shown in FIG. 3, a double cylinder is attached to the tip of the electric spraying device, and an inert gas (N 2) having a flow rate of about 400 to 1200 L / min from its inert gas injection unit. ) To rapidly cool the molten particles and produce an oxidation-suppressed thermal spray coating of 350 μm or more. The same base material (SK-85) as that used for the other thermal spraying apparatus is used as the base material, and the surface is blasted beforehand with an alumina grid. As a thermal spraying material for the Ti coating and the TiN coating, titanium powder TC-150 manufactured by Toho Tech Co., Ltd. is used.

(2)試験結果
1)空孔率測定
作製した溶射皮膜(本発明品)の空孔率評価として、皮膜断面のSEM画像を図4に示し、この皮膜断面の画像解析による空孔率算出結果を表1に示す。本発明品の空孔率は0.01〜0.3%の範囲にある。
(2) Test result 1) Porosity measurement As a porosity evaluation of the produced thermal spray coating (product of the present invention), a SEM image of the coating cross section is shown in FIG. 4, and the porosity calculation result by image analysis of the coating cross section Is shown in Table 1. The porosity of the product of the present invention is in the range of 0.01 to 0.3%.

2)EDS測定
作製した溶射皮膜(本発明品)の酸素量の分析としてEDSによる定量分析結果を表2に示す。本発明品の酸素量は0.00〜0.17原子%の範囲にある。
2) EDS measurement Table 2 shows the results of quantitative analysis by EDS as an analysis of the oxygen content of the produced sprayed coating (product of the present invention). The amount of oxygen of the product of the present invention is in the range of 0.00 to 0.17 atomic%.

3)EBSD測定
Al−5Mg溶射皮膜(本発明品)の結晶粒径の分析としてEBSDによる定量分析結果を表3に示す。本発明品の結晶粒径は8μm以下である。
3) EBSD measurement Table 3 shows the quantitative analysis results by EBSD as analysis of the crystal grain size of the Al-5Mg sprayed coating (product of the present invention). The crystal grain size of the product of the present invention is 8 μm or less.

4)X線回折測定
作製した溶射皮膜(本発明品)のX線回折測定結果を図5に示す。Fe基アモルファス皮膜ではアモルファス相を有する場合に得られるブロードなハローピークを検出し、TiN皮膜ではTiNに対応する回折ピークを検出した。
4) X-ray diffraction measurement FIG. 5 shows the X-ray diffraction measurement results of the produced sprayed coating (product of the present invention). The Fe-based amorphous film detected a broad halo peak obtained when it had an amorphous phase, and the TiN film detected a diffraction peak corresponding to TiN.

5)示差走査熱量測定
作製したFe基アモルファス皮膜のアモルファス化率を評価するため、示差走査熱量測定を行った。なお単ロール法で作製したアモルファス箔のアモルファス化率を100%とし算術を行った。結果を表4に示す。X線回折測定の結果を支持するものであり、本発明品のFe基アモルファス溶射皮膜は高いアモルファス相を有する溶射皮膜であることが確認された。
5) Differential scanning calorimetry In order to evaluate the amorphization rate of the produced Fe-based amorphous film, differential scanning calorimetry was performed. Arithmetic was performed with the amorphous ratio of the amorphous foil produced by the single roll method being 100%. The results are shown in Table 4. In support of the results of X-ray diffraction measurement, it was confirmed that the Fe-based amorphous sprayed coating of the present invention was a sprayed coating having a high amorphous phase.

6)引張強度測定
作製した溶射皮膜(本発明品)の水素チャージ後の引張試験結果を図6に示す。水素チャージ条件は、0.1mol/LのHSOと1.0g/LのNHSCNを混合した溶液に浸漬し、電流は100mA/cm、時間は48時間である。本発明品では局部伸びが観測され、水素侵入による脆化が起きていないことを確認した。
6) Measurement of tensile strength Fig. 6 shows the tensile test results after hydrogen charging of the produced sprayed coating (product of the present invention). The hydrogen charging conditions were immersed in a solution in which 0.1 mol / L H 2 SO 4 and 1.0 g / L NH 4 SCN were mixed, the current was 100 mA / cm 2 , and the time was 48 hours. In the product of the present invention, local elongation was observed, and it was confirmed that no embrittlement due to hydrogen penetration occurred.

7)水素量測定
作製した溶射皮膜(本発明品)に上記と同じ条件で水素チャージ後、溶射皮膜を剥いだ後の基材の水素量測定結果を表5に示す。本発明品では基材への水素侵入が抑制されており、水素遮断性を有することがわかる。
7) Measurement of hydrogen content Table 5 shows the measurement results of the hydrogen content of the base material after hydrogen spraying was performed on the prepared thermal spray coating (product of the present invention) under the same conditions as described above and the thermal spray coating was peeled off. In the product of the present invention, hydrogen intrusion into the substrate is suppressed and it can be seen that the product has hydrogen barrier properties.

Claims (10)

水素遮断性を有する素材から成る耐水素脆性溶射皮膜であって、Oの含有量が0.2原子%以下である耐水素脆性溶射皮膜。   A hydrogen-brittle-resistant thermal spray coating comprising a material having a hydrogen barrier property, wherein the content of O is 0.2 atomic% or less. Alを含有し、結晶粒径が10μm以下のミクロ組織をなしている請求項1に記載の耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant sprayed coating according to claim 1, comprising Al and having a microstructure with a crystal grain size of 10 μm or less. Mgを0.3〜15質量%含有し、残部がAlよりなる請求項2に記載の耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant thermal spray coating according to claim 2, comprising 0.3 to 15% by mass of Mg, the balance being made of Al. Tiを含有する請求項1に耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant sprayed coating according to claim 1 containing Ti. Nを15〜50原子%含有し、残部がTiよりなる請求項4に記載の耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant sprayed coating according to claim 4, comprising 15 to 50 atomic% of N and the balance being Ti. Feを含有するとともに、Cr、Ni、Mo、P、C、Bのいずれかの元素を1種以上含有する請求項1に記載の耐水素脆性溶射皮膜。   The hydrogen-brittle-resistant sprayed coating according to claim 1, which contains Fe and at least one element selected from Cr, Ni, Mo, P, C, and B. 非結晶相を有し、非結晶相の割合が90%以上である請求項6に記載の耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant sprayed coating according to claim 6, which has an amorphous phase and the ratio of the amorphous phase is 90% or more. 膜厚が10〜1000μmである請求項1〜7のいずれかに記載の耐水素脆性溶射皮膜。   The hydrogen brittle resistant thermal spray coating according to any one of claims 1 to 7, which has a thickness of 10 to 1000 µm. 皮膜中の空孔率が1%未満である請求項1〜8のいずれかに記載の耐水素脆性溶射皮膜。   The hydrogen embrittlement resistant sprayed coating according to any one of claims 1 to 8, wherein the porosity in the coating is less than 1%. 請求項1〜9のいずれかに記載の耐水素脆性溶射皮膜でコーティングした耐水素脆性溶射皮膜部材。   A hydrogen brittle thermal spray coating member coated with the hydrogen brittle thermal spray coating according to any one of claims 1 to 9.
JP2017037091A 2017-02-28 2017-02-28 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member Pending JP2018141214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037091A JP2018141214A (en) 2017-02-28 2017-02-28 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037091A JP2018141214A (en) 2017-02-28 2017-02-28 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member

Publications (1)

Publication Number Publication Date
JP2018141214A true JP2018141214A (en) 2018-09-13

Family

ID=63527651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037091A Pending JP2018141214A (en) 2017-02-28 2017-02-28 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member

Country Status (1)

Country Link
JP (1) JP2018141214A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827971A (en) * 1981-08-14 1983-02-18 Hitachi Ltd Melt spraying for metal
JPH06165952A (en) * 1992-11-30 1994-06-14 Kyocera Corp Chamber for thermal spraying and thermal spraying method using the chamber
JP2001516396A (en) * 1996-06-28 2001-09-25 メタルスプレイ インターナショナル エルシー Thermal spraying method and thermal spraying device
JP2002309364A (en) * 2001-04-12 2002-10-23 Tocalo Co Ltd Low-temperature thermal spray coated member and manufacturing method thereof
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus
JP2005226107A (en) * 2004-02-12 2005-08-25 Ion Engineering Research Institute Corp Hydrogen barrier-coated article for stainless steel pipe, vessel or the like, and production method therefor
WO2005093113A1 (en) * 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
JP2015145516A (en) * 2014-01-31 2015-08-13 株式会社中山アモルファス Anticorrosive spray coating, method for forming the same, and spray device for forming the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827971A (en) * 1981-08-14 1983-02-18 Hitachi Ltd Melt spraying for metal
JPH06165952A (en) * 1992-11-30 1994-06-14 Kyocera Corp Chamber for thermal spraying and thermal spraying method using the chamber
JP2001516396A (en) * 1996-06-28 2001-09-25 メタルスプレイ インターナショナル エルシー Thermal spraying method and thermal spraying device
JP2002309364A (en) * 2001-04-12 2002-10-23 Tocalo Co Ltd Low-temperature thermal spray coated member and manufacturing method thereof
JP2003183805A (en) * 2001-10-09 2003-07-03 National Institute For Materials Science Method for forming metal film with hvof thermal spray gun and thermal spray apparatus
JP2005226107A (en) * 2004-02-12 2005-08-25 Ion Engineering Research Institute Corp Hydrogen barrier-coated article for stainless steel pipe, vessel or the like, and production method therefor
WO2005093113A1 (en) * 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
JP2015145516A (en) * 2014-01-31 2015-08-13 株式会社中山アモルファス Anticorrosive spray coating, method for forming the same, and spray device for forming the same

Similar Documents

Publication Publication Date Title
Fesharaki et al. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods
Chatha et al. Characterisation and corrosion-erosion behaviour of carbide based thermal spray coatings
Lu et al. Erosion and corrosion behavior of shrouded plasma sprayed Cr3C2-NiCr coating
Konys et al. Status of tritium permeation barrier development in the EU
Singh et al. Development and characterization of Cr3C2–NiCr coated superalloy by novel cold spray process
JP2019527345A (en) Cold spray chrome coating for nuclear fuel rods
Kalsi et al. Performance of cold spray coatings on Fe-based superalloy in Na2SO4–NaCl environment at 900 C
Dong et al. Enhancing the hot-corrosion resistance of atmospheric plasma sprayed Ni-based coatings by adding a deoxidizer
Swaminathan et al. Microstructural evolution and high temperature oxidation characteristics of cold sprayed Ni-20Cr nanostructured alloy coating
Hou et al. Microstructure and laser irradiation characteristics of TiC-free and TiC-doped tungsten-based coatings prepared by supersonic atmospheric plasma spraying
JP5017675B2 (en) Film manufacturing method
Mohammed et al. Tailoring corrosion resistance of laser-cladded Ni/WC surface by adding rare earth elements
Verdian Fabrication of FeAl (Cu) intermetallic coatings by plasma spraying of vacuum annealed powders
Senderowski et al. The effect of hot treatment on composition and microstructure of HVOF iron aluminide coatings in Na 2 SO 4 molten salts
Chen et al. The oxidation behavior of three different zones of welded Incoloy 800H alloy
RU2649218C1 (en) Method for forming anti-corrosive coating on articles from low-carbon steel
Xiao et al. Hydrogen permeation barriers and preparation techniques: A review
Mehrizi et al. Laser cladding of CoWSi/WSi2 on Ni substrate and evaluation of its high temperature oxidation behavior
Verdian et al. Characterization and electrochemical properties of Ni (Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying
JP2018141214A (en) Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member
Ashraf et al. Effects of annealing treatment on corrosion resistance of arc sprayed aluminum coating
Cai et al. Transient oxidation behavior of MCrAlY coating irradiated by high-current pulsed electron beam
Korobov et al. High-temperature oxidation behavior of Fe-25Cr-5Al Arc spraying coatings
Wang et al. Formation and properties of Ni-based amorphous metallic coating produced by HVAF thermal spraying
EP4092309A1 (en) Pipe and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211012