JP2018139497A - Cell culture vessel and cell culture method - Google Patents

Cell culture vessel and cell culture method Download PDF

Info

Publication number
JP2018139497A
JP2018139497A JP2015117114A JP2015117114A JP2018139497A JP 2018139497 A JP2018139497 A JP 2018139497A JP 2015117114 A JP2015117114 A JP 2015117114A JP 2015117114 A JP2015117114 A JP 2015117114A JP 2018139497 A JP2018139497 A JP 2018139497A
Authority
JP
Japan
Prior art keywords
cell culture
molecule
responsive
cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015117114A
Other languages
Japanese (ja)
Inventor
優史 丸山
Yuji Maruyama
優史 丸山
千鶴 平井
Chizuru Hirai
千鶴 平井
啓介 渋谷
Keisuke Shibuya
啓介 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015117114A priority Critical patent/JP2018139497A/en
Priority to PCT/JP2016/064669 priority patent/WO2016199552A1/en
Publication of JP2018139497A publication Critical patent/JP2018139497A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell culture vessel in which a cell is peeled with a change in temperature or pH.SOLUTION: A cell culture vessel cultures a cell. The cell culture vessel has, on its surface, a stimulus-responsive material containing temperature-responsive molecules, pH-responsive molecules and cell-adhesive molecules. In the stimulus-responsive material, there are a plurality of coupling structures of the temperature-responsive molecules and pH-responsive molecules.SELECTED DRAWING: Figure 1

Description

本発明は、細胞を培養する細胞培養装置及び細胞培養方法に関する。   The present invention relates to a cell culture apparatus and a cell culture method for culturing cells.

再生医療では患者から細胞を採取し、その細胞を体外で増殖させ、必要に応じて細胞組織として分化誘導を行い、患者の疾患に戻す治療法がある。細胞を体外で安定的に増殖培養するには、培養環境を一定に維持管理し、細胞を非侵襲的に回収できることが重要である。   In regenerative medicine, there is a treatment method in which cells are collected from a patient, the cells are proliferated outside the body, differentiation is induced as a cellular tissue as necessary, and the disease is returned to the patient. In order to stably proliferate and culture cells outside the body, it is important that the culture environment is maintained and managed so that the cells can be collected non-invasively.

細胞の品質に影響を与える培養環境因子としては、温度、pH、溶存酸素、溶存二酸化炭素などが挙げられる。多くの場合、専門知識を持った人による手作業での培養を行うが、より安定的に細胞を供給するためには自動細胞培養装置が必要となってくる。しかし、手作業や自動細胞培養装置で問題となるのは、pHのオンラインモニタリングが困難であることである。手作業では、インキュベータ内の温度、CO2濃度を一定に維持するのみで、培養容器内のpHをオンラインでモニタリングすることはない。また自動培養装置にしても、無菌状態を保ったままpH電極を取り付け、電極の校正まで行うことは困難である。そのため、万が一、培養中にpH異常が発生してもそれを検知できず、下流工程に不良品細胞が混入してしまう。   Examples of culture environment factors that affect cell quality include temperature, pH, dissolved oxygen, and dissolved carbon dioxide. In many cases, manual culture is performed by a person with specialized knowledge, but an automatic cell culture apparatus is required to supply cells more stably. However, a problem with manual operations and automated cell culture devices is that online monitoring of pH is difficult. In manual operation, only the temperature and CO2 concentration in the incubator are maintained constant, and the pH in the culture vessel is not monitored online. Moreover, even in an automatic culture apparatus, it is difficult to attach a pH electrode while maintaining aseptic conditions and perform calibration of the electrode. Therefore, even if a pH abnormality occurs during the culture, it cannot be detected, and defective cells are mixed in the downstream process.

一方、細胞の回収にあたっては、通常はトリプシンなどの酵素を用い細胞と培養容器底面の接着を剥がすことが行われているが、細胞への損傷が問題となっている。そこで、近年、放射線照射や紫外線照射などの手法によって調製される温度応答性ポリマを用い、温度応答によって培養容器底面の親水性、疎水性を制御することで細胞を非侵襲的に剥離する材料が開発されている(特許文献1、2)。   On the other hand, in collecting cells, an enzyme such as trypsin is usually used to peel off the adhesion between the cell and the bottom of the culture container, but damage to the cell is a problem. Therefore, in recent years, a material that non-invasively detaches cells by controlling the hydrophilicity and hydrophobicity of the bottom surface of the culture vessel by temperature response using a temperature-responsive polymer prepared by a method such as radiation irradiation or ultraviolet irradiation has been developed. It has been developed (Patent Documents 1 and 2).

細胞を医療用材料などとして用いる場合、適切な環境下で培養されたかを管理することと細胞を非侵襲的に回収することを同時に満たす必要があるが、現在そのような培養容器は実現していない。例えば特許文献3では熱応答性ポリマとpH応答性ポリマの複数の層を用いた培養容器の可能性について言及されているが、pH異常の際の細胞除去方法としては不十分である。   When cells are used as medical materials, it is necessary to satisfy both the management of whether the cells are cultured in an appropriate environment and the non-invasive recovery of the cells at the same time. Absent. For example, Patent Document 3 mentions the possibility of a culture vessel using a plurality of layers of a thermoresponsive polymer and a pH-responsive polymer, but it is insufficient as a method for removing cells when pH is abnormal.

特開2008−263863号公報JP 2008-263863 A 特開2013−162796号公報JP 2013-162696 A 特表2014−501099号公報Special table 2014-501099 gazette

温度やpHの変化により細胞を剥離させる細胞培養容器を提供することを目的とする。   It aims at providing the cell culture container which peels a cell by the change of temperature or pH.

本発明は、細胞を培養する細胞培養容器であって、その細胞培養容器の表面に、温度応答性分子、pH応答性分子及び細胞接着性分子を含む刺激応答性材料を有する。また、刺激応答性材料において、温度応答性分子とpH応答性分子の結合構造が複数存在する。   The present invention is a cell culture container for culturing cells, and has a stimulus-responsive material including a temperature-responsive molecule, a pH-responsive molecule, and a cell-adhesive molecule on the surface of the cell culture container. In addition, in the stimulus-responsive material, there are a plurality of binding structures of temperature-responsive molecules and pH-responsive molecules.

本発明により、温度やpHの変化により細胞を剥離させる細胞培養容器を提供することができる。従って、pH異常の有無を簡便に判別可能となる。また、温度変化による非侵襲的な細胞回収も可能となる。   According to the present invention, it is possible to provide a cell culture container in which cells are detached by a change in temperature or pH. Therefore, it is possible to easily determine whether there is a pH abnormality. In addition, non-invasive cell recovery by temperature change is also possible.

刺激応答性分子の部分構造例である。It is an example of a partial structure of a stimulus-responsive molecule. 細胞培養容器の製造工程の一部である。It is a part of manufacturing process of a cell culture container. 本発明で提供する細胞培養容器を用いる自動培養プロセスと自動培養装置の例である。It is an example of the automatic culture process and automatic culture apparatus which use the cell culture container provided by this invention. 細胞剥離の模式図である。It is a schematic diagram of cell detachment. 細胞剥離実験の培養容器写真である。It is a culture container photograph of a cell detachment experiment.

本発明は、細胞培養装置において、培養中の培養環境を維持管理し、正常に培養された細胞を非侵襲的に回収することを可能にする刺激応答性材料に関する。   The present invention relates to a stimulus-responsive material that maintains a culture environment during culture in a cell culture device and enables non-invasive recovery of normally cultured cells.

以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.

本発明で提供する細胞培養容器は、表面に、刺激応答性分子(刺激応答性材料)を備える。刺激応答性分子は、温度応答性分子(温度応答性材料)とpH応答性分子(pH応答性材料)と細胞接着性分子(細胞接着性材料)を備える。1種類の材料が温度応答性材料とpH応答性材料と細胞接着性材料を兼ねていてもよいし、温度応答性材料とpH応答性材料を兼ねる材料と細胞接着性材料の組み合わせでもよい。   The cell culture container provided in the present invention includes a stimulus-responsive molecule (stimulus-responsive material) on the surface. The stimulus-responsive molecule includes a temperature-responsive molecule (temperature-responsive material), a pH-responsive molecule (pH-responsive material), and a cell-adhesive molecule (cell-adhesive material). One kind of material may serve as a temperature responsive material, a pH responsive material, and a cell adhesive material, or a combination of a material that serves as a temperature responsive material and a pH responsive material and a cell adhesive material.

本発明に係る細胞培養容器によれば、(1)所定のpH範囲を超えた培養環境の場合、培養細胞を剥離し、細胞を製品として回収しない、(2)適正な培養環境下で培養された細胞を回収する際、酵素を用いず、非侵襲的に細胞を回収することが可能となる。従って、培養後の検査工程への負荷を低減するとともに、安全性の高い細胞、特に医療用途の細胞を得ることができる。   According to the cell culture container of the present invention, (1) in the case of a culture environment exceeding a predetermined pH range, the cultured cells are detached and the cells are not collected as a product. (2) The cells are cultured in an appropriate culture environment. When the collected cells are collected, the cells can be collected non-invasively without using an enzyme. Therefore, it is possible to reduce the burden on the inspection process after culturing and obtain highly safe cells, particularly cells for medical use.

また、本発明に係る細胞培養方法によれば、放射線照射や紫外線照射を用いずに培養容器表面に機能性材料を導入できることから、安価で生産性の高い容器の生産プロセスを実現できる。   In addition, according to the cell culture method of the present invention, a functional material can be introduced onto the surface of the culture vessel without using radiation irradiation or ultraviolet irradiation, so that a low-cost and high-productivity container production process can be realized.

本発明で提供する細胞培養容器は、表面に導入されたいずれかの材料の水和状態が培養中のpH異常の際もしくは温度低下の際に変化することで細胞が剥離する。pH異常の際の細胞剥離は、材料のイオン化の度合いがpH正常範囲内におけるイオン化の度合いから外れることで水和状態がpH正常範囲内から外れることを原理とするのが好ましいが、pHに対して直接応答性を有さなくとも、pH異常に伴う電解質濃度の変化によって水和状態がpH正常範囲内から外れるなどでもよい。なお、pH正常範囲およびpH異常範囲は、適用する細胞および用途によって設定可能な範囲であるが、一例としてはpH6.8−7.6がpH正常範囲として挙げられる。温度低下による細胞剥離は、温度応答性材料がLCST以下になることで水和性が向上することを原理とすることが好ましいが、それ以外でもよい。   In the cell culture container provided in the present invention, the cells are detached by changing the hydration state of any material introduced to the surface when the pH is abnormal during the culture or when the temperature is lowered. Cell detachment in the event of abnormal pH is preferably based on the principle that the hydration state deviates from within the normal pH range by deviating from the degree of ionization within the normal pH range. Even if it does not have direct responsiveness, the hydration state may deviate from the normal pH range due to a change in the electrolyte concentration accompanying the abnormal pH. The normal pH range and the abnormal pH range are ranges that can be set depending on the cell to be applied and the intended use. As an example, a normal pH range of 6.8 to 7.6 can be mentioned. The cell detachment due to the temperature drop is preferably based on the principle that the temperature-responsive material is LCST or less to improve hydration, but other methods may be used.

本発明では、細胞培養容器の表面に、温度応答性分子、pH応答性分子及び細胞接着性分子を含む刺激応答性材料を有する。刺激応答性材料において、温度応答性分子とpH応答性分子の結合構造が複数存在する。温度応答性分子とpH応答性分子の結合構造が複数存在し、例えば温度応答性分子とpH応答性分子が交互に存在することで、細胞培養容器の幅広い面に細胞剥離機能を持たせることができる。   In the present invention, the surface of the cell culture container has a stimulus-responsive material containing a temperature-responsive molecule, a pH-responsive molecule, and a cell adhesion molecule. In the stimulus-responsive material, there are a plurality of binding structures of temperature-responsive molecules and pH-responsive molecules. Multiple binding structures of temperature-responsive molecules and pH-responsive molecules exist. For example, the presence of alternating temperature-responsive molecules and pH-responsive molecules can give cell detachment function to a wide range of cell culture vessels. it can.

図1は刺激応答性分子の部分構造例を示す。図1の刺激応答性分子10は、温度応答性分子30とpH応答性分子40で構成される。   FIG. 1 shows an example of a partial structure of a stimulus-responsive molecule. The stimulus-responsive molecule 10 in FIG. 1 is composed of a temperature-responsive molecule 30 and a pH-responsive molecule 40.

多官能性分子として細胞接着性分子を利用してもよく、pH応答性分子と細胞接着性分子の両方を用いることも可能であり、細胞接着性pH温度応答性材料が得られる。図1の刺激応答性分子20は、温度応答性分子30とpH応答性分子40と細胞接着性分子50で構成される。   A cell adhesive molecule may be used as the multifunctional molecule, and both a pH responsive molecule and a cell adhesive molecule can be used, and a cell adhesive pH temperature responsive material is obtained. The stimulus-responsive molecule 20 in FIG. 1 is composed of a temperature-responsive molecule 30, a pH-responsive molecule 40, and a cell adhesion molecule 50.

いずれにせよ、温度応答材料は温度変化もしくはpH変化によって水和状態が変化するが、特に、pH応答性分子と細胞接着分子の両方を用いた場合、1種類の材料のみで目的の機能を達成可能なため、好ましいと言える。なお、温度応答材料は、直鎖ポリマでもよいし、ブランチポリマ、架橋ポリマであってもよい。   In any case, the temperature-responsive material changes its hydration state due to temperature change or pH change. In particular, when both pH-responsive molecules and cell adhesion molecules are used, the desired function can be achieved with only one type of material. This is preferable because it is possible. The temperature responsive material may be a linear polymer, a branch polymer, or a crosslinked polymer.

温度応答材料とpH応答材料を1種類の材料が兼ねない場合でも、別々に温度応答材料とpH応答材料を導入することで細胞培養容器表面に温度応答性とpH応答性を備えさせることは可能だが、均一性の観点から望ましくない。すなわち、細胞接着部位の周辺に温度応答材料しか存在しない場合や、逆にpH応答材料しか存在しない場合が生じ得るため、細胞の確実な剥離は必ずしも実現できない。   Even if one kind of temperature-responsive material and pH-responsive material does not work, it is possible to provide temperature-responsiveness and pH-responsiveness on the cell culture vessel surface by introducing temperature-responsive material and pH-responsive material separately. However, it is not desirable from the viewpoint of uniformity. That is, since there may be a case where only a temperature responsive material is present around the cell adhesion site, or a case where only a pH responsive material is present, reliable cell detachment cannot always be realized.

温度応答材料は下限臨界溶液温度(Lower Critical Solution temperature、 以下、LCSTという)を示し得ることが望ましく、そのLCSTは0℃以上40℃以下の範囲内であり得ることが好ましい。本発明は細胞を培養する培養容器の発明であり、細胞が生存できる環境を作る必要がある。LCSTが0℃より小さい、または40℃より大きい場合には、細胞の生存が困難になるので、LCSTは0℃以上40℃以下の範囲内にすることが望ましい。   The temperature-responsive material may desirably exhibit a lower critical solution temperature (hereinafter referred to as LCST), and the LCST may preferably be within a range of 0 ° C. or higher and 40 ° C. or lower. The present invention is an invention of a culture vessel for culturing cells, and it is necessary to create an environment in which the cells can survive. When LCST is smaller than 0 ° C. or larger than 40 ° C., cell survival becomes difficult. Therefore, it is desirable that LCST be in the range of 0 ° C. or more and 40 ° C. or less.

温度応答性分子と多官能性分子の結合は、共有結合であることが好ましいが、水素結合やイオン結合等の可逆な結合の可能性を否定するものではない。   The bond between the temperature-responsive molecule and the polyfunctional molecule is preferably a covalent bond, but the possibility of a reversible bond such as a hydrogen bond or an ionic bond is not denied.

温度応答性分子と多官能性分子の間の共有結合生成には、求核部位と被求核部位の反応、求電子部位と被求電子部位の反応、付加反応、転位反応、ラジカル反応、シグマトロピー反応、メタセシス反応、カップリング反応、酸化的結合生成反応、脱水縮合やそれらの組み合わせなどを利用することが出来るが、生産性や簡便性の観点から、求核部位と被求核部位の反応が好ましい。   For covalent bond formation between temperature-responsive molecule and polyfunctional molecule, reaction of nucleophilic site and nucleophilic site, reaction of electrophilic site and electrophilic site, addition reaction, rearrangement reaction, radical reaction, sigmatropy Reactions, metathesis reactions, coupling reactions, oxidative bond formation reactions, dehydration condensation and combinations thereof can be used, but from the viewpoint of productivity and simplicity, the reaction between the nucleophilic site and the nucleophilic site preferable.

求核部位の例としては、アミン、チオール、チオラート、アルコール、アルコキシド、カルボキシレート、有機金属化合物部位、エノール、アセタール、アミナール、などが挙げられるが、これらに限定されるものではない。また、被求核部位の反応の例としては、エポキシド、酸塩化物、酸無水物、エステル、カルボニル、イミン、共役カルボニル、アリールハライド、などが挙げられるが、これらに限定されるものではない。   Examples of nucleophilic moieties include, but are not limited to, amines, thiols, thiolates, alcohols, alkoxides, carboxylates, organometallic compound moieties, enols, acetals, aminals, and the like. Examples of the reaction at the nucleophilic site include, but are not limited to, epoxide, acid chloride, acid anhydride, ester, carbonyl, imine, conjugated carbonyl, aryl halide, and the like.

温度応答材料の原料となる温度応答性分子は、合成上の観点から、両末端に求核部位または被求核部位を有することが好ましいが、これに限定されるものではない。   The temperature-responsive molecule that is a raw material of the temperature-responsive material preferably has a nucleophilic site or a nucleophilic site at both ends from the viewpoint of synthesis, but is not limited thereto.

温度応答材料の原料となる温度応答性分子は、LCSTを示し得ることが好ましいが、温度応答性分子が多官能性分子と交互に結合した際にLCSTを示し得るならば、原料がLCSTを示す必要はない。   The temperature-responsive molecule that is the raw material of the temperature-responsive material is preferably capable of exhibiting LCST. However, if the temperature-responsive molecule can exhibit LCST when alternately bonded with a polyfunctional molecule, the raw material exhibits LCST. There is no need.

温度応答性分子としては、ε−ポリリジン吉草酸アミド、ε−ポリリジン吉草酸アミド共重合体、ε−ポリリジン酪酸アミド共重合体、ε−ポリリジンプロピオン酸アミド共重合体、N−ヒドロキシペンチルε−ポリリジン、N−ヒドロキシペンチルε−ポリリジン共重合体、N−ヒドロキシブチルε−ポリリジン、N−ヒドロキシブチルε−ポリリジン共重合体、γ−ポリグルタミン酸ヒドロキシヘキシルアミド、γ−ポリグルタミン酸ヒドロキシヘキシルアミド共重合体、γ−ポリグルタミン酸ヒドロキシペンチルアミド、γ−ポリグルタミン酸ヒドロキシペンチルアミド共重合体、γ−ポリグルタミン酸ヒドロキシブチルアミド共重合体、δ−ポリアスパラギン酸ヒドロキシヘキシルアミド、δ−ポリアスパラギン酸ヒドロキシヘキシルアミド共重合体、δ−ポリアスパラギン酸ヒドロキシペンチルアミド、δ−ポリアスパラギン酸ヒドロキシペンチルアミド共重合体、ポリ乳酸、ポリエチレングリコール共重合体、ポリプロピレングリコール、ポリプロピレングリコール共重合体、ヒドロキシプロピルセルロース誘導体、ポリ−N−イソプロピルアクリルアミド、ポリ−N,N−ジエチルアクリルアミド、ポリメタクリル酸ブチルもしくは、それらの複合体やそれらを部分構造として備えるデンドリマーやゲルや架橋ゲルを含む分子が挙げられるが、それらに限定されるものではない。なお、温度応答性は、温度応答分子の種類や分子量、多官能性分子の種類や量を変えることで制御できる。   As temperature-responsive molecules, ε-polylysine valeric acid amide, ε-polylysine valeric acid amide copolymer, ε-polylysine butyric acid amide copolymer, ε-polylysine propionic acid amide copolymer, N-hydroxypentyl ε-polylysine N-hydroxypentyl ε-polylysine copolymer, N-hydroxybutyl ε-polylysine, N-hydroxybutyl ε-polylysine copolymer, γ-polyglutamic acid hydroxyhexylamide, γ-polyglutamic acid hydroxyhexylamide copolymer, γ-polyglutamic acid hydroxypentylamide, γ-polyglutamic acid hydroxypentylamide copolymer, γ-polyglutamic acid hydroxybutylamide copolymer, δ-polyaspartic acid hydroxyhexylamide, δ-polyaspartic acid hydroxyhexylamide copolymer Polymer, δ-polyaspartic acid hydroxypentylamide, δ-polyaspartic acid hydroxypentylamide copolymer, polylactic acid, polyethylene glycol copolymer, polypropylene glycol, polypropylene glycol copolymer, hydroxypropyl cellulose derivative, poly-N- Examples include, but are not limited to, isopropylacrylamide, poly-N, N-diethylacrylamide, polybutyl methacrylate, or complexes thereof, and dendrimers, gels and cross-linked gels comprising them as a partial structure. Absent. The temperature responsiveness can be controlled by changing the type and molecular weight of the temperature-responsive molecule and the type and amount of the polyfunctional molecule.

多官能性分子が有する官能基の数は、2つ以上であり、直鎖ポリマを調製する場合には2つであることが好ましい。   The number of functional groups possessed by the polyfunctional molecule is 2 or more, and preferably 2 when preparing a linear polymer.

温度応答材料は水中かつ細胞が生存可能なpH領域内でpH応答性を有するべきであることから、多官能性分子としてpH応答分子を利用する場合、pH応答分子は、pKaが2以上13以下の酸もしくはpKaが2以上13以下の共役酸を生じ得る塩基を含むことが好ましい。pKaが2以上13以下の酸としては、カルボン酸、フェノール性ヒドロキシル基、ホウ酸、スルホン酸、ホスホン酸、ホスフィン酸、などが挙げられ、pKaが2以上13以下の共役酸を生じ得る塩基としては、アミン、イミン、ホスファゼン、グアニジン、ヘテロ芳香族化合物、ヘテロ環状化合物、などが挙げられるが、これらに限定されるものではない。pH応答性分子の一例としてはエチレンジアミンが挙げられる。なお、pH応答性は、導入するpH応答分子の種類や量を変えることで制御することができる。   Since the temperature responsive material should have pH responsiveness in water and in a pH range where cells can survive, when using a pH responsive molecule as a multifunctional molecule, the pH responsive molecule has a pKa of 2 or more and 13 or less. It is preferable that an acid or a base having a pKa of 2 or more and 13 or less can be produced. Examples of the acid having a pKa of 2 or more and 13 or less include carboxylic acid, phenolic hydroxyl group, boric acid, sulfonic acid, phosphonic acid, phosphinic acid, and the like, and a base capable of producing a conjugate acid having a pKa of 2 or more and 13 or less. Examples include, but are not limited to, amines, imines, phosphazenes, guanidines, heteroaromatic compounds, and heterocyclic compounds. An example of a pH-responsive molecule is ethylenediamine. The pH responsiveness can be controlled by changing the type and amount of the pH responsive molecule to be introduced.

温度応答材料は、培養容器器材表面への導入の観点から、末端もしくは側鎖に反応性の部位を有する必要がある。反応性の部位としては求核性官能基が好ましく、1級アミンがより好ましいが、これに限定されるものではない。   The temperature-responsive material needs to have a reactive site at the terminal or side chain from the viewpoint of introduction to the surface of the culture vessel equipment. The reactive site is preferably a nucleophilic functional group, more preferably a primary amine, but is not limited thereto.

温度応答材料の培養容器表面への導入は、共有結合を介することが好ましいが、静電吸着や物理吸着などの可能性を否定するものではない。なお、共有結合を介する場合は、求核性官能基と被求核性官能基の反応を用いることが好ましく、その場合、培養容器表面側の官能基は被求核性官能基であることが好ましい。このとき被求核性官能基としては、カルボジイミドやDMT−MMのような縮合剤によって活性化されたカルボン酸、エポキシド、NHSエステル、HOBtエステル、HOAtエステル、アルデヒド、酸塩化物、酸無水物、などが挙げられるがそれらに限定されるものではない。   The introduction of the temperature-responsive material to the culture vessel surface is preferably via a covalent bond, but it does not deny the possibility of electrostatic adsorption or physical adsorption. When a covalent bond is used, it is preferable to use a reaction between a nucleophilic functional group and a nucleophilic functional group. In that case, the functional group on the surface of the culture vessel is a nucleophilic functional group. preferable. At this time, as the nucleophilic functional group, carboxylic acid activated by a condensing agent such as carbodiimide or DMT-MM, epoxide, NHS ester, HOBt ester, HOAt ester, aldehyde, acid chloride, acid anhydride, However, it is not limited to them.

細胞接着材料の原料となる細胞接着性分子は、温度応答材料と共有結合していてもよいが、結合していなくてもよいし、共有結合している材料と共有結合していない材料の混合物でもよい。細胞接着性分子を温度応答材料と共有結合させる場合には、温度応答材料と多官能性分子との結合様式と同様の結合様式を利用することが生産性の観点から好ましい。細胞接着性分子を温度応答材料と共有結合させない場合には、細胞接着性分子の溶液塗布による導入が生産性の観点から好ましい。   The cell adhesion molecule as a raw material of the cell adhesion material may be covalently bonded to the temperature-responsive material, but may not be bonded, or a mixture of the covalently bonded material and the non-covalently bonded material. But you can. When the cell adhesion molecule is covalently bonded to the temperature-responsive material, it is preferable from the viewpoint of productivity to use a bonding mode similar to the bonding mode between the temperature-responsive material and the multifunctional molecule. In the case where the cell adhesion molecule is not covalently bonded to the temperature-responsive material, introduction of the cell adhesion molecule by solution application is preferable from the viewpoint of productivity.

細胞接着性分子としては、ゼラチン、コラーゲン、RDGペプチド、ラミニン、フィブロネクチン、ビトロネクチン、コンドロイチン硫酸塩、ヒアルロン酸、フィブリン、インテグリン、カドヘリン、クローディン、ポリリジン、免疫グロブリン、トロンボスポンジもしくはそれらの部分構造を含む分子が挙げられるが、それらに限定されるものではない。   Cell adhesion molecules include gelatin, collagen, RDG peptide, laminin, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, fibrin, integrin, cadherin, claudin, polylysine, immunoglobulin, thrombosponge or partial structures thereof Include, but are not limited to, molecules.

温度応答性材料を導入する細胞培養容器の器材は、細胞毒性がない限り特に制限はなく、例えばポリスチレン、ガラス、ポリペプチド、ポリサッカライド、エポキシ樹脂、アクリル樹脂、メタクリレート樹脂、ビニル樹脂、フェノール樹脂、シリコーン樹脂、フルオロ系樹脂、ポリエステル、無機酸化物、などを用いることが出来る。   The equipment of the cell culture container into which the temperature responsive material is introduced is not particularly limited as long as there is no cytotoxicity. For example, polystyrene, glass, polypeptide, polysaccharide, epoxy resin, acrylic resin, methacrylate resin, vinyl resin, phenol resin, Silicone resin, fluororesin, polyester, inorganic oxide, and the like can be used.

細胞培養容器の表面は、温度応答材料、pH応答材料、細胞接着材料以外の物質によって修飾されていてもよい。   The surface of the cell culture vessel may be modified with a substance other than the temperature responsive material, the pH responsive material, and the cell adhesion material.

図2は細胞培養容器の製造する工程の一部である。細胞培養容器60の表面に被求核性官能基70が存在する。固定化処理により、刺激応答性分子20と被求核性官能基70が結合する。   FIG. 2 shows a part of a process for manufacturing a cell culture container. A nucleophilic functional group 70 exists on the surface of the cell culture vessel 60. By the immobilization treatment, the stimulus-responsive molecule 20 and the nucleophilic functional group 70 are bonded.

本発明で提供する細胞培養容器の製造方法は、細胞培養容器の表面活性化、表面活性化された細胞培養容器への導入する材料の溶液の接触、材料導入後の細胞培養容器の洗浄、を工程として含む。一方で、放射線照射や紫外線照射を材料の導入に工程として含まない。   The method for producing a cell culture container provided by the present invention comprises surface activation of a cell culture container, contact of a solution of a material to be introduced into the surface-activated cell culture container, and washing of the cell culture container after introduction of the material. Included as a process. On the other hand, irradiation and ultraviolet irradiation are not included as a process in the introduction of materials.

本発明で提供する細胞培養容器の滅菌は、紫外線照射、γ線照射、エタノール処理、などで実施することが出来る。   Sterilization of the cell culture container provided in the present invention can be carried out by ultraviolet irradiation, γ-ray irradiation, ethanol treatment, or the like.

本発明で提供する細胞培養容器を用いた細胞培養には、一般的な条件を用いることが出来る。   General conditions can be used for cell culture using the cell culture vessel provided in the present invention.

本発明で提供する細胞培養容器を用いた非浸襲的細胞回収は、培養温度にある細胞培養容器の温度を室温もしくは室温以下0℃以上の温度に低下させる工程を含むことが好ましい。また、このときに培養時の培地のまま温度を変化させてもよいし、培地を、あらかじめ一定の温度にされた細胞毒性のない緩衝液に入れ替えて温度を変化させてもよい。細胞毒性のない緩衝液としては、リン酸緩衝液、リン酸緩衝生理食塩水、トリス緩衝液、トリス緩衝生理食塩水、グッド緩衝液(MES、Bis−Tris、ADA、PlPES、ACES、MOPSO、BES、MOPS、TES、HEPES、DlPSO、TAPSO、POPSO、HEPPSO、EPPS、Tricine、Bicine、TAPS、CHES、CAPSO、CAPS)、生理食塩水、培地などが挙げられるが、これらに限定されるものではない。   The noninvasive cell recovery using the cell culture container provided in the present invention preferably includes a step of lowering the temperature of the cell culture container at the culture temperature to room temperature or below 0 ° C. At this time, the temperature may be changed as it is in the culture medium, or the temperature may be changed by replacing the culture medium with a non-cytotoxic buffer solution that has been previously set to a constant temperature. Non-cytotoxic buffers include phosphate buffer, phosphate buffered saline, Tris buffer, Tris buffered saline, Good buffer (MES, Bis-Tris, ADA, PlPES, ACES, MOPSO, BES , MOPS, TES, HEPES, DLPSO, TAPSO, POPSO, HEPPSO, EPPS, Tricine, Bicine, TAPS, CHES, CAPSO, CAPS), physiological saline, medium, and the like, but are not limited thereto.

図3は自動培養プロセスと自動培養装置を示す。自動培養装置320は自動培養プロセス310のように、細胞播種、培地交換、継代、培地交換、継代、細胞剥離の順で処理する。この過程で、温度管理、CO濃度管理、光学観察を行う。 FIG. 3 shows an automatic culture process and an automatic culture apparatus. As in the automatic culture process 310, the automatic culture apparatus 320 performs processing in the order of cell seeding, medium exchange, passage, medium exchange, passage, and cell detachment. In this process, temperature management, CO 2 concentration management, and optical observation are performed.

本発明で提供する細胞培養容器は、培地交換、温度管理、CO濃度管理、光学観察の機能を有する自動培養装置に適用できる。自動培養装置は、播種機能や継代機能を備えていてもよい。 The cell culture vessel provided in the present invention can be applied to an automatic culture apparatus having functions of medium exchange, temperature management, CO 2 concentration management, and optical observation. The automatic culture apparatus may have a seeding function and a passage function.

自動培養装置320は、細胞培養容器60を置くステージ330と、ポンプ340と、ポンプ340を用いて細胞培養容器60から培地を吸い出すノズル350と、緩衝液を保存する保存部360と、細胞培養容器60に緩衝液を導入するノズル370と、保存中の緩衝液の温度を制御する温度制御部380と、培養環境の温度を計測する温度計測部390と、培養環境のCO濃度を計測する濃度計測部400と、培養容器の状態を光学的に観察する観察部410を有する。 The automatic culture apparatus 320 includes a stage 330 on which the cell culture container 60 is placed, a pump 340, a nozzle 350 that sucks out the medium from the cell culture container 60 using the pump 340, a storage unit 360 that stores a buffer solution, and a cell culture container. 60, a nozzle 370 for introducing a buffer solution, a temperature control unit 380 for controlling the temperature of the buffer solution during storage, a temperature measurement unit 390 for measuring the temperature of the culture environment, and a concentration for measuring the CO 2 concentration of the culture environment It has the measurement part 400 and the observation part 410 which observes the state of a culture container optically.

これらの機器により、温度やpHを制御できる。例えば培養終了時には、細胞剥離のために培地を25℃の緩衝液に交換した後に25℃でインキュベートすることができる。また、例えばpH異常によって細胞が剥離した際にも光学系によって自動または手動にて検知できる。   These devices can control temperature and pH. For example, at the end of the culture, the medium can be replaced with a 25 ° C. buffer for cell detachment, and then incubated at 25 ° C. For example, even when cells are detached due to an abnormal pH, it can be detected automatically or manually by an optical system.

実施例1〜2および比較例1〜2で細胞培養容器を作成した。また、実施例3〜4および比較例3〜5では温度およびpH応答による細胞剥離の実証実験を実施した(図4、図5)。   Cell culture containers were prepared in Examples 1-2 and Comparative Examples 1-2. In Examples 3 to 4 and Comparative Examples 3 to 5, demonstration experiments of cell detachment by temperature and pH response were performed (FIGS. 4 and 5).

図4は細胞剥離工程を示す。細胞培養容器60の表面に被求核性官能基70及び刺激応答性分子20の結合物が存在する。さらに、刺激応答分子20に細胞520が接着している。温度およびpH応答による細胞剥離処理により、細胞550は剥離する。   FIG. 4 shows a cell detachment process. A binding product of the nucleophilic functional group 70 and the stimulus-responsive molecule 20 is present on the surface of the cell culture vessel 60. Further, the cell 520 is adhered to the stimulus response molecule 20. The cells 550 are detached by the cell detachment treatment based on the temperature and pH response.

図5は細胞剥離実験の培養容器写真を示す。   FIG. 5 shows a culture container photograph of the cell detachment experiment.

<実施例1>
実施例1では、温度応答性分子と二官能性pH応答分子と細胞接着分子を含む材料Aを合成した。
<Example 1>
In Example 1, a material A containing a temperature-responsive molecule, a bifunctional pH-responsive molecule, and a cell adhesion molecule was synthesized.

ポリプロピレングリコールジグリシジルエーテル(1当量)、エチレンジアミン(1.1当量)、ゼラチン(5wt%)を含む水/エタノール溶液を60℃で6時間加熱した。得られた反応溶液に5倍量の水を加え、再度60℃で加熱することで温度応答性を示す成分のみ沈殿させ、上澄みを捨てることで精製した。この精製操作を3回繰り返した。この材料AのLCSTは約30℃であった。   A water / ethanol solution containing polypropylene glycol diglycidyl ether (1 equivalent), ethylenediamine (1.1 equivalent), and gelatin (5 wt%) was heated at 60 ° C. for 6 hours. Five times the amount of water was added to the obtained reaction solution, and the mixture was heated again at 60 ° C. to precipitate only the component exhibiting temperature responsiveness, and the supernatant was discarded for purification. This purification operation was repeated three times. The LCST of this material A was about 30 ° C.

<比較例1>
比較例1では、温度応答性分子と二官能性pH応答分子を含み、細胞接着性分子を含まない材料Bを合成した。
<Comparative Example 1>
In Comparative Example 1, a material B including a temperature-responsive molecule and a bifunctional pH-responsive molecule and not including a cell adhesion molecule was synthesized.

ポリプロピレングリコールジグリシジルエーテル(1当量)、エチレンジアミン(1.1当量)を含む水/エタノール溶液を60℃で6時間加熱した。得られた反応溶液に5倍量の水を加え、再度60℃で加熱することで温度応答性を示す成分のみ沈殿させ、上澄みを捨てることで精製した。この精製操作を3回繰り返した。この材料BのLCSTは約30℃であった。   A water / ethanol solution containing polypropylene glycol diglycidyl ether (1 equivalent) and ethylenediamine (1.1 equivalent) was heated at 60 ° C. for 6 hours. Five times the amount of water was added to the obtained reaction solution, and the mixture was heated again at 60 ° C. to precipitate only the component exhibiting temperature responsiveness, and the supernatant was discarded for purification. This purification operation was repeated three times. The LCST of this material B was about 30 ° C.

<実施例2>
実施例2では、材料Aを用いて培養容器Aを作成した。
<Example 2>
In Example 2, the culture container A was prepared using the material A.

表面にカルボン酸を有する親水化ポリスチレン容器(以下、無修飾培養容器)に、EDC・HClのPBS溶液(pH5.8)を加え、40℃で2時間加熱した。その後、容器表面をPBS緩衝液(pH5.8)にて洗浄し、材料AのPBS溶液(pH5.8)を加え、40℃で12時間加熱した。得られた培養容器Aは、PBS緩衝液(pH5.8)、純水の順で洗浄した後、紫外線照射によって滅菌した。   A PBS solution (pH 5.8) of EDC · HCl was added to a hydrophilic polystyrene container (hereinafter referred to as “unmodified culture container”) having carboxylic acid on the surface, and heated at 40 ° C. for 2 hours. Thereafter, the surface of the container was washed with a PBS buffer (pH 5.8), a PBS solution (pH 5.8) of material A was added, and the mixture was heated at 40 ° C. for 12 hours. The obtained culture vessel A was washed with PBS buffer (pH 5.8) and pure water in this order, and then sterilized by ultraviolet irradiation.

<比較例2>
比較例2では、材料Bを用いて培養容器Bを作成した。
<Comparative Example 2>
In Comparative Example 2, a culture vessel B was prepared using the material B.

無修飾培養容器に、EDC・HClのPBS溶液(pH5.8)を加え、40℃で2時間加熱した。その後、容器表面をPBS緩衝液(pH5.8)にて洗浄し、材料BのPBS溶液(pH5.8)を加え、40℃で12時間加熱した。得られた培養容器Bは、PBS緩衝液(pH5.8)、純水の順で洗浄した後、紫外線照射によって滅菌した。   A PBS solution (pH 5.8) of EDC · HCl was added to an unmodified culture vessel and heated at 40 ° C. for 2 hours. Thereafter, the container surface was washed with a PBS buffer (pH 5.8), a PBS solution of material B (pH 5.8) was added, and the mixture was heated at 40 ° C. for 12 hours. The obtained culture vessel B was washed with PBS buffer (pH 5.8) and pure water in this order, and then sterilized by ultraviolet irradiation.

<実施例3>(温度応答による剥離実験)
実施例3では、培養容器Aを用いてMEF細胞(マウス胚性線維芽細胞)の温度応答による剥離実験を実施した。
<Example 3> (Peeling experiment by temperature response)
In Example 3, an exfoliation experiment was performed using the culture vessel A by temperature response of MEF cells (mouse embryonic fibroblasts).

標準的なプロトコルにて、培養容器Aに培養液を入れ、培養容器A上でMEF細胞を培養した。細胞が培養容器Aに十分に接着したことを確認し、培養容器Aをインキュベータから取り出し、37℃に温めた培地と交換した後に、4℃に温度を低下させたところ、培養容器Aから細胞は剥離し、回収率95%で細胞が回収された。   By using a standard protocol, the culture solution was put into the culture vessel A, and the MEF cells were cultured on the culture vessel A. After confirming that the cells were sufficiently adhered to the culture vessel A, removing the culture vessel A from the incubator and replacing the medium with a medium warmed to 37 ° C, the temperature was lowered to 4 ° C. The cells were detached and recovered at a recovery rate of 95%.

本発明の主な目的は細胞を剥離させて回収することである。細胞の回収率が70%以上あれば、回収率が高いと言える。なお、本発明で用いる回収率は生死細胞オートアナライザーVi−CELLによって測定した結果である。   The main object of the present invention is to detach and collect cells. If the cell recovery rate is 70% or more, it can be said that the recovery rate is high. In addition, the recovery rate used in the present invention is a result of measurement by viable cell autoanalyzer Vi-CELL.

<実施例4>(pH応答による剥離実験)
実施例4では、培養容器Aを用いてMEF細胞のpH応答による剥離実験を実施した。
<Example 4> (Peeling experiment by pH response)
In Example 4, a peeling experiment based on the pH response of MEF cells was performed using the culture vessel A.

標準的なプロトコルにて、培養容器Aに培養液を入れ、培養容器A上でMEF細胞を培養した。細胞が培養容器Aに十分に細胞が接着したことを確認し、培養容器Aをインキュベータから取り出し、37℃に温めたpH6.5リン酸緩衝生理食塩水と交換した後に、再度インキュベータ中で静置したところ、培養容器Aから細胞は剥離し、回収率95%で細胞が回収された。   By using a standard protocol, the culture solution was put into the culture vessel A, and the MEF cells were cultured on the culture vessel A. After confirming that the cells were sufficiently adhered to the culture vessel A, the culture vessel A was removed from the incubator, replaced with pH 6.5 phosphate buffered saline heated to 37 ° C., and then left in the incubator again. As a result, the cells were detached from the culture vessel A, and the cells were recovered at a recovery rate of 95%.

<比較例3>(温度応答による剥離実験)
比較例3では、培養容器Bを用いてMEF細胞の温度応答による剥離実験を実施した。
<Comparative example 3> (Peeling experiment by temperature response)
In Comparative Example 3, an exfoliation experiment based on the temperature response of MEF cells was performed using the culture vessel B.

標準的なプロトコルにて、培養容器Bに培養液を入れ、培養容器B上でMEF細胞を培養した。細胞が培養容器Bに十分に細胞が接着したことを確認し、培養容器Bをインキュベータ中で一晩静置したものの、接着した細胞の数は播種した細胞の数の5%以下であり、細胞接着性は低かった。   By using a standard protocol, the culture solution was put into the culture vessel B, and the MEF cells were cultured on the culture vessel B. Although it was confirmed that the cells were sufficiently adhered to the culture vessel B and the culture vessel B was allowed to stand overnight in an incubator, the number of adhered cells was 5% or less of the number of seeded cells. The adhesion was low.

比較例3では、実施例3、4と比べて回収率が非常に低かった。これは、培養容器Bが温度応答性分子と二官能性pH応答分子を含み、細胞接着性分子を含まない材料を用いるからである。培養容器Bが細胞接着性分子を有することで、多くの細胞を培養容器Bに十分に収集することができ、十分に収集できたからこそ細胞の回収率が向上するものである。   In Comparative Example 3, the recovery rate was very low as compared with Examples 3 and 4. This is because the culture vessel B uses a material that contains a temperature-responsive molecule and a bifunctional pH-responsive molecule, but does not contain a cell adhesion molecule. Since the culture vessel B has cell adhesion molecules, a large number of cells can be sufficiently collected in the culture vessel B, and the collection rate of the cells is improved because the cells are sufficiently collected.

<比較例4>(温度応答による剥離実験)
比較例4では、無修飾培養容器を用いてMEF細胞の温度応答による剥離実験を実施した。
<Comparative example 4> (Peeling experiment by temperature response)
In Comparative Example 4, an exfoliation experiment based on the temperature response of MEF cells was performed using an unmodified culture vessel.

標準的なプロトコルにて、無修飾培養容器に培養液を入れ、無修飾培養容器上でMEF細胞を培養した。細胞が無修飾培養容器に十分に細胞が接着したことを確認し、無修飾培養容器をインキュベータから取り出し、37℃に温めた培地と交換した後に、4℃に温度を低下させたが、細胞は回収されなかった。   By using a standard protocol, the culture solution was put into an unmodified culture vessel, and MEF cells were cultured on the unmodified culture vessel. After confirming that the cells were sufficiently adhered to the unmodified culture vessel, the unmodified culture vessel was removed from the incubator and replaced with a medium warmed to 37 ° C., and the temperature was lowered to 4 ° C. It was not recovered.

<比較例5>(pH応答による剥離実験)
比較例5では、無修飾培養容器を用いてMEF細胞のpH応答による剥離実験を実施した。
<Comparative Example 5> (Peeling experiment by pH response)
In Comparative Example 5, a peeling experiment based on the pH response of MEF cells was performed using an unmodified culture vessel.

標準的なプロトコルにて、無修飾培養容器に培養液を入れ、無修飾培養容器上でMEF細胞を培養した。細胞が無修飾培養容器に十分に細胞が接着したことを確認し、無修飾培養容器をインキュベータから取り出し、37℃に温めたpH6.5緩衝液と交換した後に、再度インキュベータ中で静置したところ、回収率40%で細胞が回収された。   By using a standard protocol, the culture solution was put into an unmodified culture vessel, and MEF cells were cultured on the unmodified culture vessel. After confirming that the cells were sufficiently adhered to the unmodified culture vessel, the unmodified culture vessel was removed from the incubator, replaced with a pH 6.5 buffer warmed to 37 ° C., and then allowed to stand again in the incubator. Cells were recovered at a recovery rate of 40%.

<実施例5>
実施例5では、培養容器Aを自動培養装置に適用し、温度制御による細胞剥離を実証した。
<Example 5>
In Example 5, the culture vessel A was applied to an automatic culture apparatus to demonstrate cell detachment by temperature control.

自動培養装置中にて培養容器Aを用いてiPS細胞を培養した後に、培地交換機能を用いて培地の大部分を取り除き、あらかじめ25℃にされたpH7.4リン酸緩衝生理食塩水と交換した。その後、培養容器Aを25℃にてインキュベートしたところ、顕微鏡観察にて、iPS細胞の剥離が確認された。   After culturing iPS cells using the culture vessel A in an automatic culture apparatus, most of the medium was removed using the medium exchange function, and replaced with pH 7.4 phosphate buffered saline that had been brought to 25 ° C. in advance. . Thereafter, when the culture vessel A was incubated at 25 ° C., iPS cell detachment was confirmed by microscopic observation.

<実施例6>
実施例6では、培養容器Aを自動培養装置に適用し、pH異常時の細胞剥離を再現した実証を行った。
<Example 6>
In Example 6, the culture container A was applied to an automatic culture apparatus, and a demonstration that reproduced cell detachment when pH was abnormal was performed.

自動培養装置中にて培養容器Aを用いてiPS細胞を培養した後に、培地交換機能を用いて培地の大部分を取り除き、あらかじめ37℃にされたpH6.5リン酸緩衝生理食塩水と交換することでpH低下を再現した。その後、培養容器Aを37℃にてインキュベートしたところ、顕微鏡観察にて、iPS細胞の剥離が確認された。   After culturing iPS cells using the culture vessel A in an automatic culture apparatus, most of the medium is removed using the medium exchange function, and replaced with pH 6.5 phosphate buffered saline that has been previously brought to 37 ° C. The pH drop was reproduced. Thereafter, when the culture vessel A was incubated at 37 ° C., iPS cell detachment was confirmed by microscopic observation.

実施例3、4ではMEF細胞を用いて細胞が培養容器から剥離することを確認した。また、実施例5、6ではiPS細胞を用いて細胞が培養容器から剥離するかを確認した。以上により、実施例2で作成した培養容器を用いることで、細胞の種類によらず高い回収率で細胞を回収できることが確認できた。   In Examples 3 and 4, it was confirmed that cells were detached from the culture vessel using MEF cells. In Examples 5 and 6, iPS cells were used to confirm whether the cells were detached from the culture vessel. As described above, it was confirmed that by using the culture container prepared in Example 2, it was possible to recover cells with a high recovery rate regardless of the type of cells.

<比較例6>
比較例6では、温度応答性分子と二官能性pH応答分子と細胞接着分子を含むが、下限溶解臨界温度が0℃より小さい材料Cを合成した。
<Comparative Example 6>
In Comparative Example 6, a material C containing a temperature-responsive molecule, a bifunctional pH-responsive molecule, and a cell adhesion molecule, but having a lower limit dissolution critical temperature lower than 0 ° C. was synthesized.

ポリプロピレングリコールジグリシジルエーテル(1当量)、エチレンジアミン(5当量)、ゼラチン(5wt%)を含む水/エタノール溶液を60℃で6時間加熱した。得られた反応溶液は透析により精製した。この材料CはLCSTを示さなかった。   A water / ethanol solution containing polypropylene glycol diglycidyl ether (1 equivalent), ethylenediamine (5 equivalents), and gelatin (5 wt%) was heated at 60 ° C. for 6 hours. The obtained reaction solution was purified by dialysis. This material C showed no LCST.

<比較例7>
比較例7では、材料Cを用いて培養容器Cを作成した。
<Comparative Example 7>
In Comparative Example 7, a culture vessel C was prepared using the material C.

無修飾培養容器に、EDC・HClのPBS溶液(pH5.8)を加え、40℃で2時間加熱した。その後、容器表面をPBS緩衝液(pH5.8)にて洗浄し、材料CのPBS溶液(pH5.8)を加え、40℃で12時間加熱した。得られた培養容器Cは、PBS緩衝液(pH5.8)、純水の順で洗浄した後、紫外線照射によって滅菌した。   A PBS solution (pH 5.8) of EDC · HCl was added to an unmodified culture vessel and heated at 40 ° C. for 2 hours. Thereafter, the surface of the container was washed with a PBS buffer (pH 5.8), a PBS solution of material C (pH 5.8) was added, and the mixture was heated at 40 ° C. for 12 hours. The obtained culture container C was washed with PBS buffer (pH 5.8) and pure water in this order, and then sterilized by ultraviolet irradiation.

<比較例8>
比較例8では、培養容器Cを用いてMEF細胞の温度応答による剥離実験を実施した。標準的なプロトコルにて、培養容器Cに培養液を入れ、培養容器C上でMEF細胞を培養した。細胞が培養容器Cに十分に接着したことを確認し、培養容器Cをインキュベータから取り出し、37℃に温めたpH6.5リン酸緩衝生理食塩水と交換した後に、再度インキュベータ中で静置したところ、培養容器Cから細胞は剥離し、回収率10%で細胞が回収された。
<Comparative Example 8>
In Comparative Example 8, an exfoliation experiment based on the temperature response of MEF cells was performed using the culture vessel C. Using a standard protocol, the culture solution was put into the culture vessel C, and the MEF cells were cultured on the culture vessel C. After confirming that the cells adhered sufficiently to the culture vessel C, the culture vessel C was removed from the incubator, replaced with pH 6.5 phosphate buffered saline heated to 37 ° C., and then left to stand in the incubator again. The cells were detached from the culture vessel C, and the cells were recovered at a recovery rate of 10%.

<実施例7>
実施例7では、温度応答性分子と二官能性pH応答分子と細胞接着分子を含む材料Dを合成した。
<Example 7>
In Example 7, a material D containing a temperature-responsive molecule, a bifunctional pH-responsive molecule, and a cell adhesion molecule was synthesized.

N−アシル化ポリリジン(1当量)、ポリエチレングリコールジグリシジルエーテル(1.1当量)、ゼラチン(5wt%)を含む水/エタノール溶液を60℃で6時間加熱した。得られた反応溶液は透析により精製した。この材料DのLCSTは約30℃であった。   A water / ethanol solution containing N-acylated polylysine (1 equivalent), polyethylene glycol diglycidyl ether (1.1 equivalent) and gelatin (5 wt%) was heated at 60 ° C. for 6 hours. The obtained reaction solution was purified by dialysis. The LCST of material D was about 30 ° C.

<実施例8>
実施例8では、材料Dを用いて培養容器Dを作成した。
<Example 8>
In Example 8, a culture vessel D was prepared using the material D.

無修飾培養容器に、EDC・HClのPBS溶液(pH5.8)を加え、40℃で2時間加熱した。その後、容器表面をPBS緩衝液(pH5.8)にて洗浄し、材料DのPBS溶液(pH5.8)を加え、40℃で12時間加熱した。得られた培養容器Dは、PBS緩衝液(pH5.8)、純水の順で洗浄した後、紫外線照射によって滅菌した。   A PBS solution (pH 5.8) of EDC · HCl was added to an unmodified culture vessel and heated at 40 ° C. for 2 hours. Thereafter, the surface of the container was washed with a PBS buffer (pH 5.8), a PBS solution (pH 5.8) of material D was added, and the mixture was heated at 40 ° C. for 12 hours. The obtained culture vessel D was washed with PBS buffer (pH 5.8) and pure water in this order, and then sterilized by ultraviolet irradiation.

<実施例9>(温度応答による剥離実験)
実施例9では、培養容器Dを用いてCHO細胞の温度応答による剥離実験を実施した。
<Example 9> (Peeling experiment by temperature response)
In Example 9, an exfoliation experiment based on the temperature response of CHO cells was performed using the culture vessel D.

標準的なプロトコルにて、培養容器Dに培養液を入れ、培養容器D上でCHO細胞を培養した。細胞が培養容器Dに十分に接着したことを確認し、培養容器Dをインキュベータから取り出し、37℃に温めたpH6.5リン酸緩衝生理食塩水と交換した後に、再度インキュベータ中で静置したところ、培養容器Aから細胞は剥離し、回収率70%で細胞が回収された。   Using a standard protocol, the culture solution was put into the culture vessel D, and CHO cells were cultured on the culture vessel D. After confirming that the cells were sufficiently adhered to the culture vessel D, the culture vessel D was removed from the incubator, replaced with pH 6.5 phosphate buffered saline heated to 37 ° C., and then allowed to stand again in the incubator. The cells were detached from the culture vessel A, and the cells were recovered at a recovery rate of 70%.

<実施例10>(pH応答による剥離実験)
実施例10では、培養容器Dを用いてCHO細胞のpH応答による剥離実験を実施した。
<Example 10> (Peeling experiment by pH response)
In Example 10, a peeling experiment based on the pH response of CHO cells was performed using the culture vessel D.

標準的なプロトコルにて、培養容器Dに培養液を入れ、培養容器D上でCHO細胞を培養した。細胞が培養容器Dに十分に接着したことを確認し、培養容器Dをインキュベータから取り出し、37℃に温めたpH6.5緩衝液と交換した後に、再度インキュベータ中で静置したところ、培養容器Dから細胞は剥離し、回収率80%で細胞が回収された。   Using a standard protocol, the culture solution was put into the culture vessel D, and CHO cells were cultured on the culture vessel D. After confirming that the cells were sufficiently adhered to the culture vessel D, the culture vessel D was removed from the incubator, replaced with a pH 6.5 buffer solution warmed to 37 ° C., and then allowed to stand again in the incubator. The cells were detached, and the cells were collected at a recovery rate of 80%.

<実施例11>
実施例11では、温度応答性分子と二官能性pH応答分子と細胞接着分子を含む材料Eを合成した。
<Example 11>
In Example 11, a material E containing a temperature-responsive molecule, a bifunctional pH-responsive molecule, and a cell adhesion molecule was synthesized.

N−アルキル化ポリリジン(1当量)、ポリエチレングリコールジグリシジルエーテル(1.1当量)、ゼラチン(5wt%)を含む水/エタノール溶液を60℃で6時間加熱した。得られた反応溶液は透析により精製した。この材料EのLCSTは約30℃であった。   A water / ethanol solution containing N-alkylated polylysine (1 equivalent), polyethylene glycol diglycidyl ether (1.1 equivalent) and gelatin (5 wt%) was heated at 60 ° C. for 6 hours. The obtained reaction solution was purified by dialysis. The LCST of this material E was about 30 ° C.

<実施例12>
実施例12では、材料Eを用いて培養容器Eを作成した。
<Example 12>
In Example 12, a culture vessel E was prepared using the material E.

無修飾培養容器に、EDC・HClのPBS溶液(pH5.8)を加え、40℃で2時間加熱した。その後、容器表面をPBS緩衝液(pH5.8)にて洗浄し、材料EのPBS溶液(pH5.8)を加え、40℃で12時間加熱した。得られた培養容器Eは、PBS緩衝液(pH5.8)、純水の順で洗浄した後、紫外線照射によって滅菌した。   A PBS solution (pH 5.8) of EDC · HCl was added to an unmodified culture vessel and heated at 40 ° C. for 2 hours. Thereafter, the container surface was washed with a PBS buffer (pH 5.8), a PBS solution (pH 5.8) of material E was added, and the mixture was heated at 40 ° C. for 12 hours. The obtained culture vessel E was washed with PBS buffer solution (pH 5.8) and pure water in this order, and then sterilized by ultraviolet irradiation.

<実施例13>(Ph応答による薄利実験)
実施例13では、培養容器Eを用いてMEF細胞のpH応答による剥離実験を実施した。
<Example 13> (Slight experiment by Ph response)
In Example 13, a peeling experiment based on the pH response of MEF cells was performed using the culture vessel E.

標準的なプロトコルにて、培養容器Eに培養液を入れ、培養容器E上でMEF細胞を培養した。細胞が培養容器Eに十分に接着したことを確認し、培養容器Eをインキュベータから取り出し、37℃に温めたpH6.5緩衝液と交換した後に、再度インキュベータ中で静置したところ、培養容器Eから細胞は剥離し、回収率80%で細胞が回収された。   Using a standard protocol, the culture solution was put into the culture vessel E, and the MEF cells were cultured on the culture vessel E. After confirming that the cells were sufficiently adhered to the culture vessel E, the culture vessel E was removed from the incubator, replaced with a pH 6.5 buffer solution warmed to 37 ° C., and then allowed to stand again in the incubator. The cells were detached, and the cells were collected at a recovery rate of 80%.

<実施例14>(pH応答による剥離実験)
実施例14では、培養容器Eを用いてMEF細胞のpH応答による剥離実験を実施した。
<Example 14> (Peeling experiment by pH response)
In Example 14, a peeling experiment based on the pH response of MEF cells was performed using the culture vessel E.

標準的なプロトコルにて、培養容器Eに培養液を入れ、培養容器E上でMEF細胞を培養した。細胞が培養容器Eに十分に接着したことを確認し、培養容器Eをインキュベータから取り出し、37℃に温めたpH6.5緩衝液と交換した後に、再度インキュベータ中で静置したところ、培養容器Eから細胞は剥離し、回収率70%で細胞が回収された。   Using a standard protocol, the culture solution was put into the culture vessel E, and the MEF cells were cultured on the culture vessel E. After confirming that the cells were sufficiently adhered to the culture vessel E, the culture vessel E was removed from the incubator, replaced with a pH 6.5 buffer solution warmed to 37 ° C., and then allowed to stand again in the incubator. The cells were detached from the cells, and the cells were recovered at a recovery rate of 70%.

10 刺激応答性分子
20 刺激応答性分子
30 温度応答性分子
40 pH応答性分子
50 細胞接着性分子
60 細胞培養容器
70 被求核性官能基
310 自動培養プロセス
320 自動培養装置
330 ステージ
340 ポンプ
350 ノズル
360 保存部
370 ノズル
380 温度制御部
390 温度計測部
400 濃度計測部
410 観察部
510 細胞が接着した細胞培養容器表面
520 細胞
550 細胞
DESCRIPTION OF SYMBOLS 10 Stimulus responsive molecule 20 Stimulus responsive molecule 30 Temperature responsive molecule 40 pH responsive molecule 50 Cell adhesion molecule 60 Cell culture vessel 70 Nucleophilic functional group 310 Automatic culture process 320 Automatic culture device 330 Stage 340 Pump 350 Nozzle 360 Storage Unit 370 Nozzle 380 Temperature Control Unit 390 Temperature Measurement Unit 400 Concentration Measurement Unit 410 Observation Unit 510 Cell Culture Container Surface 520 Cells 550 Cells Adhered to Cells

Claims (11)

細胞を培養する細胞培養容器であって、
前記細胞培養容器の表面に、温度応答性分子、pH応答性分子及び細胞接着性分子を含む刺激応答性材料を有し、
前記刺激応答性材料において、前記温度応答性分子と前記pH応答性分子の結合構造が複数存在することを特徴とする細胞培養容器。
A cell culture vessel for culturing cells,
On the surface of the cell culture container, there is provided a stimulus-responsive material containing a temperature-responsive molecule, a pH-responsive molecule and a cell adhesion molecule,
The cell culture container, wherein the stimulus-responsive material includes a plurality of binding structures of the temperature-responsive molecule and the pH-responsive molecule.
請求項1に記載の細胞培養容器であって、
前記温度応答性分子は下限臨界溶解温度を示す分子であることを特徴とする細胞培養容器。
The cell culture container according to claim 1,
The cell culture vessel, wherein the temperature-responsive molecule is a molecule exhibiting a lower critical solution temperature.
請求項2に記載の細胞培養容器であって、
前記下限臨界溶解温度を示す分子は、ポリアルキレングリコール、N−アシル化ポリリジン、N−アルキル化ポリリジン、γ−ポリグルタミン酸ヒドロキシヘキシルアミド、δ−ポリアスパラギン酸ヒドロキシヘキシルアミド、ヒドロキシプロピルセルロース、ポリ−N−イソプロピルアクリルアミド、ポリ−N,N−ジエチルアクリルアミド、のいずれかを含むことを特徴とする細胞培養容器。
A cell culture container according to claim 2,
The molecules exhibiting the lower critical solution temperature are polyalkylene glycol, N-acylated polylysine, N-alkylated polylysine, γ-polyglutamic acid hydroxyhexylamide, δ-polyaspartic acid hydroxyhexylamide, hydroxypropylcellulose, poly-N. A cell culture vessel comprising any of isopropylacrylamide and poly-N, N-diethylacrylamide.
請求項1に記載の細胞培養容器であって、
前記pH応答性分子は、pKaが2以上13以下の酸、またはpKaが2以上13以下の共役酸を生じ得る塩基を含むことを特徴とする細胞培養容器。
The cell culture container according to claim 1,
The cell-culture container, wherein the pH-responsive molecule contains an acid having a pKa of 2 or more and 13 or less, or a base capable of generating a conjugate acid having a pKa of 2 or more and 13 or less.
請求項4に記載の細胞培養容器であって、
前記pKaが2以上13以下の酸は、カルボン酸、フェノール性ヒドロキシル基、ホウ酸、スルホン酸、ホスホン酸、ホスフィン酸のいずれかを含み、
前記pKaが2以上13以下の共役酸を生じ得る塩基は、アミン、イミン、ホスファゼン、グアニジン、ヘテロ芳香族化合物、ヘテロ環状化合物、のいずれかを含むことを特徴とする細胞培養容器。
The cell culture container according to claim 4, wherein
The acid having a pKa of 2 or more and 13 or less includes any of carboxylic acid, phenolic hydroxyl group, boric acid, sulfonic acid, phosphonic acid, and phosphinic acid,
The cell culture vessel, wherein the base capable of producing a conjugate acid having a pKa of 2 or more and 13 or less includes any of amine, imine, phosphazene, guanidine, heteroaromatic compound, and heterocyclic compound.
請求項1に記載の細胞培養容器であって、
前記細胞接着性分子は、細胞膜上の分子と相互作用し得る分子であることを特徴とする細胞培養容器。
The cell culture container according to claim 1,
The cell culture container, wherein the cell adhesion molecule is a molecule capable of interacting with a molecule on a cell membrane.
請求項6に記載の細胞培養容器であって、
前記細胞膜上の分子と相互作用し得る分子は、ゼラチン、コラーゲン、RDGペプチド、ラミニン、フィブロネクチン、ビトロネクチン、コンドロイチン硫酸塩、ヒアルロン酸、フィブリン、インテグリン、カドヘリン、クローディン、ポリリジン、免疫グロブリン、トロンボスポンジ、のいずれかを含むことを特徴とする細胞培養容器。
The cell culture container according to claim 6,
Molecules that can interact with molecules on the cell membrane are gelatin, collagen, RDG peptide, laminin, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, fibrin, integrin, cadherin, claudin, polylysine, immunoglobulin, thrombosponge, A cell culture vessel comprising any of the above.
細胞培養容器を用いて細胞を培養する細胞培養方法であって、
前記細胞培養容器の表面に、温度応答性分子、pH応答性分子及び細胞接着性分子を含む刺激応答性材料を有し、
前記刺激応答性材料において、前記温度応答性分子と前記pH応答性分子の結合構造が複数存在し、
前記多官能性分子はpH応答性分子及び細胞接着性分子を含み、
前記細胞培養容器に培養液を入れて細胞を培養する培養工程と、
前記細胞培養容器に所定の処理を加えて、前記細胞培養容器から細胞を剥離させる剥離工程を有することを特徴とする細胞培養方法。
A cell culture method for culturing cells using a cell culture container,
On the surface of the cell culture container, there is provided a stimulus-responsive material containing a temperature-responsive molecule, a pH-responsive molecule and a cell adhesion molecule,
In the stimulus-responsive material, there are a plurality of binding structures of the temperature-responsive molecule and the pH-responsive molecule,
The multifunctional molecule includes a pH responsive molecule and a cell adhesion molecule;
A culture step of culturing cells by placing a culture solution in the cell culture vessel;
A cell culture method comprising a peeling step of applying a predetermined treatment to the cell culture container to peel the cells from the cell culture container.
請求項8に記載の細胞培養方法であって、
前記所定の処理は、前記培養工程の時から温度を低下させる処理であることを特徴とする細胞培養方法。
The cell culture method according to claim 8, wherein
The cell culturing method, wherein the predetermined treatment is a treatment for lowering the temperature from the time of the culturing step.
請求項8に記載の細胞培養方法であって、
前記所定の処理は、前記培養液を細胞毒性のない緩衝液に交換する処理であることを特徴とする細胞培養方法。
The cell culture method according to claim 8, wherein
The cell culture method, wherein the predetermined treatment is a treatment for exchanging the culture solution with a buffer solution having no cytotoxicity.
請求項10に記載の細胞培養方法であって、
前記緩衝液は、リン酸緩衝液、リン酸緩衝生理食塩水、トリス緩衝液、トリス緩衝生理食塩水、グッド緩衝液、生理食塩水、培地、のいずれかであることを特徴とする細胞培養方法。
The cell culture method according to claim 10, wherein
The cell culture method, wherein the buffer solution is any one of a phosphate buffer solution, a phosphate buffered saline solution, a Tris buffer solution, a Tris buffered saline solution, a Good buffer solution, a physiological saline solution, and a medium. .
JP2015117114A 2015-06-10 2015-06-10 Cell culture vessel and cell culture method Pending JP2018139497A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015117114A JP2018139497A (en) 2015-06-10 2015-06-10 Cell culture vessel and cell culture method
PCT/JP2016/064669 WO2016199552A1 (en) 2015-06-10 2016-05-18 Cell culture vessel and cell culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015117114A JP2018139497A (en) 2015-06-10 2015-06-10 Cell culture vessel and cell culture method

Publications (1)

Publication Number Publication Date
JP2018139497A true JP2018139497A (en) 2018-09-13

Family

ID=57503884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015117114A Pending JP2018139497A (en) 2015-06-10 2015-06-10 Cell culture vessel and cell culture method

Country Status (2)

Country Link
JP (1) JP2018139497A (en)
WO (1) WO2016199552A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451023B2 (en) * 2016-12-22 2019-01-16 Dic株式会社 Cell culture substrate
EP3561044A4 (en) 2016-12-22 2020-09-02 DIC Corporation Cell culture substrate
JP7271870B2 (en) * 2017-08-16 2023-05-12 東ソー株式会社 Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells
JP2019092396A (en) * 2017-11-17 2019-06-20 株式会社日立製作所 Automatic culture apparatus, and cell culture method
CN108744048B (en) * 2018-06-29 2020-11-13 重庆科技学院 Double-layer hydrogel capable of realizing self-curling and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819056B2 (en) * 2010-11-18 2015-11-18 大日本印刷株式会社 Cell culture substrate
JP5905194B2 (en) * 2010-11-18 2016-04-20 大日本印刷株式会社 Filamentous floating cell patterning substrate
US20120156777A1 (en) * 2010-12-16 2012-06-21 General Electric Company Cell carrier, associated methods for making cell carrier and culturing cells using the same

Also Published As

Publication number Publication date
WO2016199552A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2016199552A1 (en) Cell culture vessel and cell culture method
JP5614471B2 (en) Cell sheet having dimensions, manufacturing method thereof, and cell culture carrier therefor
US10941375B2 (en) Fiber scaffolds for enhancing cell proliferation in cell culture
JP2011172925A (en) Medical laminated body
JP6451023B2 (en) Cell culture substrate
KR20240001270A (en) Cell culture container
WO2014031721A1 (en) Fiber scaffolds for enhancing cell proliferation in cell culture
JP2015224332A (en) Stimulation response type material and cell culture vessel using the same
CN115926568A (en) Resin film formed from scaffold material for cell culture, carrier for cell culture, and vessel for cell culture
JP4161106B2 (en) Cell peeling agent and cell sheet peeling method
JPWO2007080990A1 (en) Long-term maintenance of liver tissue cell function
JP6447787B2 (en) Cell culture substrate
JP4668568B2 (en) Culturing container, culturing apparatus, and cell culturing method
JPH06141851A (en) Carrier for animal tissue culture and method for animal cell culture using the same
JP2009082005A (en) Method for producing cell sheet with suppressed shrinkage
JP2015223108A (en) Cell culture chamber and production method thereof, and method and kit for cell culture using cell culture chamber
JP2006211959A (en) Cell-culturing material
WO2022210034A1 (en) Cell culture vessel and method for culturing cells
TW200306349A (en) The cell culture method using a porous membrane
JP7053065B1 (en) Cell culture equipment for cell sheet production, recovery support, and cell sheet production kit
JP6264765B2 (en) Tissue preparation method
JP2012105587A (en) Cell support, method for producing cell sheet, and cell sheet
JP2018042572A (en) Tissue production method
JP2022099262A (en) Cell culture vessel and method for culturing cell
JP2016013111A (en) Culture vessel having peelable base part