JP2018138780A5 - - Google Patents

Download PDF

Info

Publication number
JP2018138780A5
JP2018138780A5 JP2017034031A JP2017034031A JP2018138780A5 JP 2018138780 A5 JP2018138780 A5 JP 2018138780A5 JP 2017034031 A JP2017034031 A JP 2017034031A JP 2017034031 A JP2017034031 A JP 2017034031A JP 2018138780 A5 JP2018138780 A5 JP 2018138780A5
Authority
JP
Japan
Prior art keywords
protrusion
communication hole
compressor
piston
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017034031A
Other languages
Japanese (ja)
Other versions
JP6876463B2 (en
JP2018138780A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017034031A priority Critical patent/JP6876463B2/en
Priority claimed from JP2017034031A external-priority patent/JP6876463B2/en
Priority to CN201820258358.8U priority patent/CN208595041U/en
Priority to PCT/JP2018/004384 priority patent/WO2018155209A1/en
Priority to CN201810153192.8A priority patent/CN108506189B/en
Publication of JP2018138780A publication Critical patent/JP2018138780A/en
Publication of JP2018138780A5 publication Critical patent/JP2018138780A5/ja
Application granted granted Critical
Publication of JP6876463B2 publication Critical patent/JP6876463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

しかし、上記(1)の構成によれば、突部の軸方向と直交する方向の寸法が突部の先端に向かうにつれて小さくなるので、連通孔に侵入した突部と連通孔の内壁面との間に形成される隙間は圧縮室から排気室に向かって広がる。このため、突部が連通孔に侵入し始めた際の気体の流路断面積の変化を緩和でき、圧縮室内の気体の排出が不十分となって過圧縮が生じることを抑制できる。また、突部が連通孔に侵入し始めてから圧縮機用ピストンが上死点に到達するまでの期間において、突部と連通孔の内壁面との間の隙間を介して圧縮室から排気室に向かう気体の流れが阻害されにくくなる。よって、圧縮抵抗を抑制して圧縮機の駆動動力を低減でき、断熱効率の低下を抑制できる。また、圧縮機の騒音や振動を抑制できる。
さらに、突部の軸方向と直交する方向の寸法が突部の先端に向かうにつれて小さくなっているが、圧縮機用ピストンを鋳造で製造する場合に設定される抜き勾配を兼ねて突部の形状を設定すれば、鋳造後の突部の機械加工を省略でき、製造コストを低減できる。
However, according to the above configuration (1), the dimension of the projection in the direction orthogonal to the axial direction becomes smaller toward the tip of the projection, so that the distance between the projection entering the communication hole and the inner wall surface of the communication hole is reduced. The gap formed therebetween expands from the compression chamber toward the exhaust chamber. For this reason, it is possible to alleviate the change in the cross-sectional area of the gas when the protrusion starts to enter the communication hole, and it is possible to suppress the occurrence of excessive compression due to insufficient discharge of the gas in the compression chamber. Also, during a period from when the protrusion starts to enter the communication hole to when the compressor piston reaches the top dead center, the compression chamber is moved from the compression chamber to the exhaust chamber through a gap between the protrusion and the inner wall surface of the communication hole. The flow of the flowing gas is less likely to be hindered. Therefore, the driving power of the compressor can be reduced by suppressing the compression resistance, and the decrease in the adiabatic efficiency can be suppressed. Further, noise and vibration of the compressor can be suppressed.
Furthermore, although the dimension of the projection in the direction perpendicular to the axial direction decreases toward the tip of the projection, the shape of the projection also serves as a draft set when the compressor piston is manufactured by casting. By setting, the machining of the protrusion after casting can be omitted, and the manufacturing cost can be reduced.

(2)少なくとも一実施形態に係る圧縮機は、
上死点と下死点との間を移動して気体を圧縮するように構成された上記(1)の構成の圧縮機用ピストンと、
前記圧縮機用ピストンの前記頂面とともに前記圧縮室を形成するシリンダと、
前記圧縮機用ピストンにより圧縮された気体を排出するための排気室と前記圧縮室との連通状態を切り替えるための排気弁と、
前記圧縮室と前記排気室とを連通させる連通孔が形成されるとともに、前記排気弁の閉弁時に前記排気弁が当接可能な弁座を含む弁座形成部材と、を備え、
前記圧縮機用ピストンは、前記上死点において、該圧縮機用ピストンの前記突部の少なくとも先端が前記弁座形成部材の前記連通孔に侵入するように構成された。
(2) The compressor according to at least one embodiment includes:
A piston for a compressor according to the above (1), configured to move between top dead center and bottom dead center to compress gas;
A cylinder forming the compression chamber together with the top surface of the piston for the compressor,
An exhaust valve for switching the communicating state between the compression chamber and the exhaust chamber for discharging the compressed gas by the compressor piston,
A communication hole that communicates the compression chamber and the exhaust chamber is formed, and a valve seat forming member including a valve seat that the exhaust valve can contact when the exhaust valve is closed,
The piston for the compressor is configured such that at the top dead center, at least the tip of the protrusion of the piston for the compressor enters the communication hole of the valve seat forming member.

(3)幾つかの実施形態では、上記(2)の構成において、
前記圧縮機用ピストンが上死点に位置するときにおける、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁と、前記突部の側面との隙間が最小間隙であり、
前記突部の前記側面と前記連通孔の内壁面との間の隙間の大きさは、前記突部の前記先端に近づくにつれて前記最小間隙から単調増加する。
(3) In some embodiments, in the configuration of the above (2),
When the compressor piston is located at the top dead center, the gap between the opening edge of the communication hole on the surface of the valve seat forming member on the compression chamber side and the side surface of the protrusion is the minimum gap,
The size of the gap between the side surface of the protrusion and the inner wall surface of the communication hole monotonically increases from the minimum gap as approaching the tip of the protrusion.

上記(3)の構成によれば、圧縮機用ピストンが上死点に位置するときにおける、弁座形成部材の圧縮室側の表面における連通孔の開口縁と、突部の側面との隙間が最小間隙となるので、圧縮機用ピストンが上死点から下死点に向かって移動を開始すると、該隙間を境に、該隙間よりも排気室側にある連通孔内の領域と圧縮室とで圧力差が生じる。すなわち、圧縮機用ピストンが上死点から下死点に向かって移動を開始すると、該隙間よりも排気室側にある連通孔内の領域よりも圧縮室内の圧力が低くなるので、吸気弁の開弁時期を早めることができる。 According to the configuration of the above (3), when the compressor piston is located at the top dead center, the gap between the opening edge of the communication hole on the surface of the valve seat forming member on the compression chamber side and the side surface of the protrusion is formed. Since the minimum gap is reached, when the compressor piston starts moving from top dead center toward bottom dead center, the area within the communication hole closer to the exhaust chamber than the gap and the compression chamber are separated by the gap. Pressure difference. That is, when the compressor piston starts moving from the top dead center toward the bottom dead center, the pressure in the compression chamber becomes lower than the area in the communication hole on the exhaust chamber side than the gap. The valve opening time can be advanced.

(4)幾つかの実施形態では、上記(3)の構成において、前記突部の前記先端が前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁に到達した第1時点から、前記圧縮機用ピストンが前記上死点に到達する第2時点までの期間、前記連通孔の前記開口縁と前記突部の側面との間に前記側面と前記連通孔の内壁面との間の隙間が最も小さくなる環状孔端部が形成される。 (4) In some embodiments, in the configuration of (3), the first point in time when the tip of the protrusion reaches the opening edge of the communication hole on the surface of the valve seat forming member on the compression chamber side. From the period up to a second point in time when the compressor piston reaches the top dead center, between the opening edge of the communication hole and the side surface of the projection, the side surface and the inner wall surface of the communication hole An annular hole end where the gap between them is minimized is formed.

一実施形態では、突部233は、ピストン230をシリンダ220内で下死点から上死点に向かって移動させると、バルブプレート250の連通孔252に挿入されるように形成された部位である。すなわち、ピストン230は、上死点において、突部233の少なくとも先端がバルブプレート250の連通孔252に侵入するように構成されている。
一実施形態では、突部233は、軸AX方向に沿って延在する略円柱形状を呈する。すなわち、一実施形態では、突部233は、軸AX方向と直交する方向に沿った断面形状が円形である。一実形態では、突部233は、軸AX方向と直交する方向の寸法、すなわち外径が突部233の先端233aに向かうにつれて小さくなるように形成されている。
In one embodiment, the protrusion 233 is a portion formed to be inserted into the communication hole 252 of the valve plate 250 when the piston 230 is moved from the bottom dead center to the top dead center in the cylinder 220. . That is, the piston 230 is configured such that at least the tip of the protrusion 233 enters the communication hole 252 of the valve plate 250 at the top dead center.
In one embodiment, the protrusion 233 has a substantially cylindrical shape extending along the axis AX. That is, in one embodiment, the protrusion 233 has a circular cross section along a direction orthogonal to the axis AX direction. In Kazumi facilities embodiment, projections 233, the dimension in the direction orthogonal to the axial direction AX, that is, the outer diameter is formed to be smaller toward the distal end 233a of the projection 233.

一実施形態では、突部233は、側面233bが軸AX方向に沿った断面において直線状となるように形成されている。なお、突部233のうち頂面232への接続部233cは、頂面232から突部233の先端233aに向かって徐々に縮径して軸AX方向に沿った断面が凹状の曲面となる。すなわち、接続部233cは、突部233の先端233aから頂面232に向かうにつれて裾広がりとなるように形成されている。
一実施形態では、突部233の軸AX方向に沿った長さがバルブプレート250の連通孔252の延在長さと略等しい。これにより、死容積を効率的に低減できる。しかし、例えば、一実施形態の圧縮機200に組み込まれたピストン230が上死点において突部233の先端233aが排気弁255に当接しなければ、突部233の軸AX方向に沿った長さを適宜設定してもよい。
In one embodiment, the protrusion 233 is formed such that the side surface 233b is linear in a cross section along the axis AX direction. The connection portion 233c of the top surface 232 of the projection 233, the cross section along the axis AX direction gradually reduced in diameter toward the distal end 233a of the top surface 232 from the projection 233 is a concave curved surface. That is, the connection portion 233 c is formed so as to expand toward the bottom from the tip 233 a of the protrusion 233 toward the top surface 232.
In one embodiment, the length of the protrusion 233 along the axis AX direction is substantially equal to the extension length of the communication hole 252 of the valve plate 250. Thereby, a dead volume can be reduced efficiently. However, if the tip 233a of the protrusion 233 does not abut the exhaust valve 255 at the top dead center of the piston 230 incorporated in the compressor 200 of one embodiment, for example, the length of the protrusion 233 along the axis AX direction. May be set as appropriate.

上述したように、突部233の外径は先端233aからピストン本体部231頂面232に向かうにつれて大きくなるので、突部233が連通孔252内に侵入するにつれて、連通孔252の開口縁252aと突部233の側面233bとの間の隙間、すなわち環状孔端部256の断面積は減少し、上死点において最小値となる。上死点における連通孔252の開口縁252aと突部233の側面233b(接続部233c)との間の隙間を最小隙間と呼ぶ。図7は、圧縮室221及び排気室261の近傍を示す断面図であり、ピストン230が上死点に到達した状態を示す。 As described above, since the outer diameter of the projection 233 increases from the tip 233a toward the top surface 232 of the piston body 231, as the projection 233 enters the communication hole 252, the opening edge 252 a of the communication hole 252 increases. The gap between the protrusion 233 and the side surface 233b, that is, the cross-sectional area of the annular hole end 256 decreases, and reaches a minimum value at the top dead center. The gap between the opening edge 252a of the communication hole 252 at the top dead center and the side surface 233b (the connection portion 233c) of the protrusion 233 is referred to as a minimum gap. FIG. 7 is a cross-sectional view showing the vicinity of the compression chamber 221 and the exhaust chamber 261 and shows a state where the piston 230 has reached the top dead center.

図8は、発明者らが行った実験結果について説明する図であり、図8(a)は、発明者らが行った実験結果を表すグラフであり、図8(b)は、突部233の寸法hの75%(0.75h)だけ突部233が連通孔252に侵入した状態を模式的に示す図である。
図8(a)において、径比Φは、代表径dを開口縁252aにおける連通孔252の内径(連通孔径)Dで除した値である。図8(a)は、実験に用いた圧縮機の断熱効率ηadのグラフである図8(a)において、断熱効率ηadについての菱形、四角形、及び三角形のそれぞれのプロットは、冷媒の吸入圧力及び排気圧力を変更した3つの異なる実験条件による実験結果のそれぞれに対応するものである。
8A and 8B are diagrams illustrating the results of experiments performed by the inventors. FIG. 8A is a graph illustrating the results of the experiments performed by the inventors, and FIG. FIG. 7 is a view schematically showing a state in which a protrusion 233 has entered the communication hole 252 by 75% (0.75 h) of the dimension h of FIG.
8A, the diameter ratio Φ is a value obtained by dividing the representative diameter d by the inner diameter (communication hole diameter) D of the communication hole 252 at the opening edge 252a. 8 (a) is a graph of the adiabatic efficiency ηad of a compressor used in the experiment. In FIG. 8A , diamond, square, and triangle plots of the adiabatic efficiency ηad respectively correspond to experimental results under three different experimental conditions in which the suction pressure and the exhaust pressure of the refrigerant are changed. .

図示はしていないが、径比Φが大きくなれば、駆動動力は増加するとともに、駆動動力の増加度合いが大きくなる。また、図示はしていないが、体積効率は、径比Φが大きくなれば、径比Φに比例して向上する。
そのため、図8(a)に示すように、断熱効率ηadは、所定の径比Φ(Φ=0.7の近傍)で最大となり、径比Φが所定の径比Φより大きくなっても、小さくなっても低下する。
Although not illustrated, the larger the diameter ratio [Phi, the driving dynamic force increases, the degree of increase in the driving dynamic force increases. Although not shown, the volumetric efficiency increases in proportion to the diameter ratio Φ as the diameter ratio Φ increases.
Therefore, as shown in FIG. 8A, the adiabatic efficiency ηad becomes maximum at a predetermined diameter ratio Φ (near Φ = 0.7), and even if the diameter ratio Φ becomes larger than the predetermined diameter ratio Φ, It decreases even if it gets smaller.

Claims (6)

シリンダとともに気体を圧縮する圧縮室を形成する頂面を有するピストン本体部と、
前記ピストン本体部の軸方向に沿って前記頂面から突出するように設けられる突部と、
を備え、
前記突部は、
前記軸方向と直交する方向の寸法が前記突部の先端に向かうにつれて小さくなるように形成され、
前記軸方向と直交する方向に沿った断面形状が円形であり、
前記突部のうち前記頂面への接続部は、前記頂面から前記突部の先端に向かって徐々に縮径して前記軸方向に沿った断面が凹状の曲面となる
圧縮機用ピストン。
A piston body having a top surface forming a compression chamber for compressing gas with the cylinder;
A projection provided to project from the top surface along the axial direction of the piston body,
With
The protrusion is
The dimension in the direction perpendicular to the axial direction is formed so as to become smaller toward the tip of the protrusion,
The cross-sectional shape along a direction orthogonal to the axial direction is circular,
The connecting portion of the protrusion to the top surface is gradually reduced in diameter from the top surface toward the tip of the protrusion, so that a cross section along the axial direction has a concave curved surface.
上死点と下死点との間を移動して気体を圧縮するように構成された請求項1に記載の圧縮機用ピストンと、
前記圧縮機用ピストンの前記頂面とともに前記圧縮室を形成するシリンダと、
前記圧縮機用ピストンにより圧縮された気体を排出するための排気室と前記圧縮室との連通状態を切り替えるための排気弁と、
前記圧縮室と前記排気室とを連通させる連通孔が形成されるとともに、前記排気弁の閉弁時に前記排気弁が当接可能な弁座を含む弁座形成部材と、を備え、
前記圧縮機用ピストンは、前記上死点において、該圧縮機用ピストンの前記突部の少なくとも先端が前記弁座形成部材の前記連通孔に侵入するように構成された
圧縮機。
The compressor piston according to claim 1, wherein the piston is configured to move between a top dead center and a bottom dead center to compress the gas.
A cylinder forming the compression chamber together with the top surface of the piston for the compressor,
An exhaust valve for switching the communicating state between the compression chamber and the exhaust chamber for discharging the compressed gas by the compressor piston,
A communication hole that communicates the compression chamber and the exhaust chamber is formed, and a valve seat forming member including a valve seat that the exhaust valve can contact when the exhaust valve is closed,
The compressor, wherein the compressor piston is configured such that at the top dead center, at least a tip of the protrusion of the compressor piston enters the communication hole of the valve seat forming member.
前記圧縮機用ピストンが上死点に位置するときにおける、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁と、前記突部の側面との隙間が最小間隙であり、
前記突部の前記側面と前記連通孔の内壁面との間の隙間の大きさは、前記突部の前記先端に近づくにつれて前記最小間隙から単調増加する請求項2に記載の圧縮機。
When the compressor piston is located at the top dead center, the gap between the opening edge of the communication hole on the surface of the valve seat forming member on the compression chamber side and the side surface of the protrusion is the minimum gap,
The compressor according to claim 2, wherein the size of the gap between the side surface of the protrusion and the inner wall surface of the communication hole monotonically increases from the minimum gap as approaching the tip of the protrusion.
前記突部の前記先端が前記弁座形成部材の前記圧縮室側の表面における前記連通孔の開口縁に到達した第1時点から、前記圧縮機用ピストンが前記上死点に到達する第2時点までの期間、前記連通孔の前記開口縁と前記突部の側面との間に前記側面と前記連通孔の内壁面との間の隙間が最も小さくなる環状孔端部が形成される請求項3に記載の圧縮機。 From the first point in time when the tip of the protrusion reaches the opening edge of the communication hole on the surface of the valve seat forming member on the side of the compression chamber, a second point in time when the compressor piston reaches the top dead center 4. An end of the annular hole in which the gap between the side surface and the inner wall surface of the communication hole is the smallest between the opening edge of the communication hole and the side surface of the protrusion. A compressor according to claim 1. 前記突部の前記軸方向の寸法の75%だけ前記先端から前記頂面側に向かった位置における前記突部の外径は、前記弁座形成部材の前記圧縮室側の表面における前記連通孔の内径の60%以上80%以下の範囲内である請求項2乃至4の何れか一項に記載の圧縮機。   The outer diameter of the protrusion at a position facing the top surface from the tip by 75% of the axial dimension of the protrusion is the communication hole of the communication hole in the surface of the valve seat forming member on the compression chamber side. The compressor according to any one of claims 2 to 4, wherein the compression ratio is in the range of 60% to 80% of the inner diameter. 請求項2乃至5の何れか一項に記載の圧縮機と、
前記圧縮機で圧縮された気体と熱交換を行うための熱交換器を有する熱交換ユニットと、
ヒートポンプサイクル構成機器と、
を備えるヒートポンプユニット。
A compressor according to any one of claims 2 to 5,
A heat exchange unit having a heat exchanger for performing heat exchange with the gas compressed by the compressor,
Heat pump cycle components,
A heat pump unit comprising:
JP2017034031A 2017-02-24 2017-02-24 Compressor piston, compressor and heat pump unit Active JP6876463B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017034031A JP6876463B2 (en) 2017-02-24 2017-02-24 Compressor piston, compressor and heat pump unit
CN201820258358.8U CN208595041U (en) 2017-02-24 2018-02-08 Piston for compressor, compressor and heat pump unit
PCT/JP2018/004384 WO2018155209A1 (en) 2017-02-24 2018-02-08 Compressor piston, compressor, and heat pump unit
CN201810153192.8A CN108506189B (en) 2017-02-24 2018-02-08 Piston for compressor, and heat pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034031A JP6876463B2 (en) 2017-02-24 2017-02-24 Compressor piston, compressor and heat pump unit

Publications (3)

Publication Number Publication Date
JP2018138780A JP2018138780A (en) 2018-09-06
JP2018138780A5 true JP2018138780A5 (en) 2020-03-12
JP6876463B2 JP6876463B2 (en) 2021-05-26

Family

ID=63254393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034031A Active JP6876463B2 (en) 2017-02-24 2017-02-24 Compressor piston, compressor and heat pump unit

Country Status (3)

Country Link
JP (1) JP6876463B2 (en)
CN (2) CN108506189B (en)
WO (1) WO2018155209A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102648B4 (en) * 2021-02-04 2022-11-17 SPH Sustainable Process Heat GmbH Piston compressor, in particular for a heat pump
JP6928192B1 (en) * 2021-05-12 2021-09-01 株式会社三井E&Sマシナリー Piston pump
JP7200310B1 (en) 2021-08-05 2023-01-06 株式会社三井E&Sマシナリー piston pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082867B2 (en) * 1991-07-09 2000-08-28 株式会社日立製作所 Hermetic compressor
US6623258B1 (en) * 1999-05-25 2003-09-23 Danfoss Compressors Gmbh Axial piston refrigerant compressor with piston front face projection
KR100922213B1 (en) * 2003-06-13 2009-10-20 엘지전자 주식회사 Hermatic compressor
CN201096070Y (en) * 2007-08-07 2008-08-06 上海扎努西电气机械有限公司 Cold compressor piston decreasing clearance volume
JP5533061B2 (en) * 2009-06-12 2014-06-25 パナソニック株式会社 Hermetic compressor and refrigeration system
JP5617402B2 (en) * 2010-07-15 2014-11-05 パナソニック株式会社 Reciprocating compressor and refrigerator using the same
JP6065192B2 (en) * 2011-05-09 2017-01-25 パナソニックIpマネジメント株式会社 Hermetic compressor
JP5828136B2 (en) * 2011-08-08 2015-12-02 パナソニックIpマネジメント株式会社 Hermetic compressor
JP6259447B2 (en) * 2013-04-01 2018-01-10 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Hermetic compressor and refrigeration system
WO2014192382A1 (en) * 2013-05-31 2014-12-04 株式会社前川製作所 Brayton cycle refrigeration device

Similar Documents

Publication Publication Date Title
JP2018138780A5 (en)
KR101457664B1 (en) Piston for a refrigeration compressor
US9903356B2 (en) Compressor and discharging muffler thereof
JP6876463B2 (en) Compressor piston, compressor and heat pump unit
JP6388715B2 (en) Compressor
JP2007516378A (en) Reciprocating compressor with expanded valve seat area
JP6154501B2 (en) Compressor cylinder exhaust structure of air compressor
US20170314452A1 (en) Piston for internal combustion engine, and cooling channel core
JP2011132940A (en) Hermetic compressor and refrigeration system
US10100777B2 (en) Piston for internal combustion engine, and cooling channel core
JP2005069215A (en) Piston
JP4397664B2 (en) Piston machine for gas discharge
KR101811793B1 (en) A compressor comprising cylinder head
KR20150118965A (en) Flow restrictor and gas compressor
CN212563569U (en) Weight reduction piston and compressor
JP6423496B1 (en) Diaphragm pump
JPH0663897U (en) Centrifugal compressor with vaneless diffuser
KR102112211B1 (en) Method of manufacturing Oil separation device of the compressor
KR200478212Y1 (en) Structure of Suction Valve and Suction Port
EP3812587B1 (en) Diaphragm pump
CN218902547U (en) Pneumatic vibrator
JP6368517B2 (en) Hydraulic rotating machine
TWI473703B (en) Piston set and compressor thereof
CN212508826U (en) Compressor pump body and rolling rotor type compressor
JP4454329B2 (en) Check valve