JP2018137846A - Terminal structure of superconducting apparatus - Google Patents

Terminal structure of superconducting apparatus Download PDF

Info

Publication number
JP2018137846A
JP2018137846A JP2017029358A JP2017029358A JP2018137846A JP 2018137846 A JP2018137846 A JP 2018137846A JP 2017029358 A JP2017029358 A JP 2017029358A JP 2017029358 A JP2017029358 A JP 2017029358A JP 2018137846 A JP2018137846 A JP 2018137846A
Authority
JP
Japan
Prior art keywords
current lead
heat insulating
superconducting
terminal structure
superconducting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017029358A
Other languages
Japanese (ja)
Inventor
廣瀬 正幸
Masayuki Hirose
正幸 廣瀬
俊也 森村
Toshiya Morimura
俊也 森村
智男 三村
Tomoo Mimura
智男 三村
丸山 修
Osamu Maruyama
修 丸山
哲太郎 中野
Tetsutaro Nakano
哲太郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Tokyo Electric Power Co Holdings Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017029358A priority Critical patent/JP2018137846A/en
Publication of JP2018137846A publication Critical patent/JP2018137846A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal structure of a superconducting apparatus, that is capable of suppressing an increase in AC loss; and that is easy to connect a current lead with a normal temperature part connection conductor.SOLUTION: There is provided a terminal structure of a superconducting apparatus comprising a current lead electrically connected to an end portion of a superconductor in a superconducting apparatus, the current lead having an annularly formed cross section orthogonal to an axial direction of the current lead. The terminal structure comprises a sealing member for making the current lead not be immersed in a coolant by sealing the coolant that maintains the superconductor at ultralow temperature toward the superconducting apparatus, and an outer side heat insulating member covering an outer periphery of the current lead.SELECTED DRAWING: Figure 1

Description

本発明は、超電導機器の端末構造に関する。   The present invention relates to a terminal structure of a superconducting device.

超電導機器の一つとして、超電導ケーブルがある。特許文献1は、超電導ケーブルの端末構造を開示しており、この端末構造は、端末処理したケーブルコアに備える超電導導体の端部と、この端部に電気的に接続される常電導リードと、これらの接続箇所の外周を覆うと共に液体窒素などの冷媒が充填される断熱構造体とを備える。   One of the superconducting devices is a superconducting cable. Patent Document 1 discloses a terminal structure of a superconducting cable, and this terminal structure includes an end portion of a superconducting conductor provided in a cable core subjected to terminal processing, and a normal conducting lead electrically connected to the end portion. And a heat insulating structure that covers the outer periphery of these connection locations and is filled with a refrigerant such as liquid nitrogen.

上記断熱構造体は、ケーブル側断熱容器と、リード側断熱容器と、絶縁部材とを備える。ケーブル側断熱容器は、超電導ケーブルに備えるケーブル断熱管における常電導リード側の端部に設けられる。リード側断熱容器は、常電導リードにおける超電導ケーブル側の端部を覆うように設けられる。絶縁部材は、接地されているケーブル断熱管に接続されて接地電位となるケーブル側断熱容器と、高電位であるリード側断熱容器との間に必要な絶縁性能が得られるように介在される。   The heat insulating structure includes a cable side heat insulating container, a lead side heat insulating container, and an insulating member. The cable-side heat insulation container is provided at the end portion on the normal conduction lead side in the cable heat insulation pipe provided for the superconducting cable. The lead-side heat insulating container is provided so as to cover the end portion of the normal conducting lead on the superconducting cable side. The insulating member is interposed between a cable-side heat insulating container that is connected to a grounded cable heat-insulating tube and has a ground potential, and a lead-side heat insulating container that has a high potential so as to obtain necessary insulating performance.

上記端末構造における電流リードのうち、常温側端部(超電導導体に繋がれる低温側端部と反対側の端部)は、編組線などの常温部接続導体を介して、常電導機器(例えば、Gas Insulated Switchgearなど)の導体(例えばブスバー)に電気的に接続される。   Out of the current leads in the terminal structure, the normal temperature side end (the end opposite to the low temperature side end connected to the superconducting conductor) is a normal conducting device (for example, via a normal temperature part connecting conductor such as a braided wire) It is electrically connected to a conductor (eg, a bus bar) of Gas Insulated Switchgear.

特開2013−59211号公報JP 2013-59211 A

電流リードに接続される常温部接続導体は、常電導の材料で構成される。この常温部接続導体は、通電時に温度が高くなり過ぎないように所定の導体断面積で構成される。一方、電流リードの導体断面積は、常温部接続導体の導体断面積に比して小さくなるのが一般的である。電流リードの導体断面積を大きくすると、電流リードを介した侵入熱が大きくなり、超電導ケーブルシステムの損失の増加を招く虞があるからである。電流リードの断面積と常温部接続導体の断面積の差が大きいほど、電流リードと常温部接続導体との接続が難しくなる。   The normal temperature part connecting conductor connected to the current lead is made of a normal conducting material. This normal temperature part connecting conductor is configured with a predetermined conductor cross-sectional area so that the temperature does not become too high when energized. On the other hand, the conductor cross-sectional area of the current lead is generally smaller than the conductor cross-sectional area of the normal temperature part connecting conductor. This is because when the conductor cross-sectional area of the current lead is increased, the intrusion heat through the current lead increases, which may increase the loss of the superconducting cable system. The larger the difference between the cross-sectional area of the current lead and the cross-sectional area of the normal temperature part connecting conductor, the more difficult the connection between the current lead and the normal temperature part connecting conductor is.

また、超電導機器が交流で使用される場合、交流損失の増加を抑制するために、交直抵抗比が1に近い電流リードが望まれる。そのため、そのような要請に応える電流リードを備える超電導機器の端末構造である必要もある。   Further, when a superconducting device is used with alternating current, a current lead with an AC / DC resistance ratio close to 1 is desired in order to suppress an increase in alternating current loss. Therefore, it is also necessary to have a terminal structure of a superconducting device having a current lead that meets such a demand.

上記事情に鑑み、本発明の目的の一つは、交流損失の増加を抑制でき、しかも電流リードと常温部接続導体とを接続し易い超電導機器の端末構造を提供することにある。   In view of the above circumstances, one of the objects of the present invention is to provide a terminal structure of a superconducting device that can suppress an increase in AC loss and can easily connect a current lead and a room temperature connection conductor.

本発明の一態様に係る超電導機器の端末構造は、超電導機器の超電導導体の端部に電気的に接続される電流リードを備える超電導機器の端末構造であって、前記電流リードは、その軸方向に直交する断面が環状に形成されており、前記超電導導体を極低温に維持する冷媒を前記超電導機器側に封止して前記電流リードが前記冷媒中に浸漬されないようにする封止部材と、前記電流リードの外周を覆う外側熱絶縁部材と、を備える。   A terminal structure of a superconducting device according to one aspect of the present invention is a terminal structure of a superconducting device including a current lead electrically connected to an end portion of a superconducting conductor of the superconducting device, and the current lead has an axial direction thereof A sealing member that is formed in an annular shape in a cross section orthogonal to the superconducting conductor is sealed on the superconducting device side so that the current lead is not immersed in the refrigerant; and An outer heat insulating member covering an outer periphery of the current lead.

上記超電導機器の端末構造によれば、交流損失の増加を抑制でき、しかも電流リードと常温部接続導体とを接続し易い。   According to the terminal structure of the superconducting device, an increase in AC loss can be suppressed, and the current lead and the normal temperature part connecting conductor can be easily connected.

実施形態1に示す超電導機器の端末構造の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the terminal structure of the superconducting apparatus shown in Embodiment 1. 図1のII−II横断面図である。It is the II-II transverse cross section of FIG. 変形例1に示す電流リードの概略横断面図である。10 is a schematic cross-sectional view of a current lead shown in Modification 1. FIG. 変形例2に示す電流リードの概略横断面図である。10 is a schematic cross-sectional view of a current lead shown in Modification 2. FIG. 実施形態2に示す超電導機器の端末構造の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the terminal structure of the superconducting apparatus shown in Embodiment 2.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

<1>実施形態に係る超電導機器の端末構造は、超電導機器の超電導導体の端部に電気的に接続される電流リードを備える超電導機器の端末構造であって、前記電流リードは、その軸方向に直交する断面が環状に形成されており、前記超電導導体を極低温に維持する冷媒を前記超電導機器側に封止して前記電流リードが前記冷媒中に浸漬されないようにする封止部材と、前記電流リードの外周を覆う外側熱絶縁部材と、を備える。 <1> The terminal structure of the superconducting device according to the embodiment is a terminal structure of a superconducting device including a current lead electrically connected to an end portion of the superconducting conductor of the superconducting device, and the current lead has an axial direction thereof A sealing member that is formed in an annular shape in a cross section orthogonal to the superconducting conductor is sealed on the superconducting device side so that the current lead is not immersed in the refrigerant; and An outer heat insulating member covering an outer periphery of the current lead.

上記構成では、断面環状の電流リードを利用することで、電流リードの交直抵抗比を1に近づけることができ、交流用途における交流損失の増加を抑制することができる。ここで、上記構成では電流リードが冷媒に浸漬されないように超電導機器側に封止する封止部材が存在するため、環状の電流リードの内部空間や、電流リードと外側熱絶縁部材との隙間に冷媒が漏れ出すことがない。   In the above configuration, by using a current lead having an annular cross section, the AC / DC resistance ratio of the current lead can be made close to 1, and an increase in AC loss in AC applications can be suppressed. Here, in the above configuration, there is a sealing member that seals the superconducting device so that the current lead is not immersed in the refrigerant. Therefore, in the internal space of the annular current lead or in the gap between the current lead and the outer heat insulating member. The refrigerant will not leak.

また、断面環状の電流リードを利用することで、電流リードと常温部接続導体との接続を容易にすることができる。交直抵抗比を1にすることを考えた場合、実施形態の構成とは異なり、複数の導電性の素線を撚り合わせてなる撚り線をさらに複数撚り合わせた構造とすることも考えられる。しかし、この構造の場合、電流リードの径方向の中心側にある素線に常温部接続導体を接続するには撚りをほぐさなければならず、接続作業が非常に難しい。このような問題点は、断面環状の電流リードでは生じないため、実施形態の構成では電流リードと常温部接続導体との接続を容易に行なうことができる。   In addition, by using the current lead having an annular cross section, the connection between the current lead and the normal temperature part connection conductor can be facilitated. In consideration of setting the AC / DC resistance ratio to 1, unlike the configuration of the embodiment, a structure in which a plurality of twisted wires formed by twisting a plurality of conductive strands is further twisted may be considered. However, in the case of this structure, it is necessary to loosen the twist in order to connect the room temperature portion connection conductor to the strand located on the center side in the radial direction of the current lead, and the connection work is very difficult. Since such a problem does not occur in a current lead having an annular cross section, in the configuration of the embodiment, it is possible to easily connect the current lead and the normal temperature part connection conductor.

<2>実施形態に係る超電導機器の端末構造として、前記電流リードは、複数の撚り線構造体を環状に配置してなり、前記撚り線構造体は、複数の素線を撚り合わせてなり、少なくとも一部の素線の外周に絶縁被覆が形成されることで、隣接する素線間が絶縁されている形態を挙げることができる。 <2> As the terminal structure of the superconducting device according to the embodiment, the current lead is formed by arranging a plurality of stranded wire structures in an annular shape, and the stranded wire structure is formed by twisting a plurality of strands. By forming an insulating coating on the outer periphery of at least some of the strands, a form in which adjacent strands are insulated can be cited.

電流リードを撚り線構造体によって構成することで、電流リードの交直抵抗比を1に近づけることができる。複数の素線を撚り合わせてなる撚り線構造体では、各素線に流れる交流電流が均一的になるからである。ここで、撚り線構造体を更に撚り合わせるのではなく環状に配置する構成では、各撚り線構造体に常温部接続導体を接続し易い。   By configuring the current lead with a stranded wire structure, the AC / DC resistance ratio of the current lead can be made close to 1. This is because in the stranded wire structure formed by twisting a plurality of strands, the alternating current flowing through each strand is uniform. Here, in the configuration in which the stranded wire structures are arranged in an annular shape instead of being twisted together, it is easy to connect the room temperature portion connection conductor to each stranded wire structure.

また、撚り線構造体を環状に配置する構成では、各撚り線構造体に常温部接続導体を接続した撚り線ユニットを作製した後、それら撚り線ユニットを環状に並べるといった手順で超電導機器の端末構造を構築することができる。そのため、例えば工場で作製した撚り線ユニットを施工現場で環状に並べて、その外側に外側熱絶縁部材を配置するだけで、超電導機器の端末構造を容易に構築することができる。   Moreover, in the structure which arrange | positions a strand wire structure in cyclic | annular form, after producing the strand wire unit which connected the normal temperature part connection conductor to each strand wire structure, it is the terminal of superconducting equipment in the procedure of arranging these strand wire units annularly. A structure can be built. Therefore, for example, a terminal structure of a superconducting device can be easily constructed simply by arranging twisted wire units manufactured at a factory in an annular shape at a construction site and arranging an outer heat insulating member on the outside thereof.

<3>実施形態に係る超電導機器の端末構造として、前記電流リードは、パイプ状の導体で構成される形態を挙げることができる。 <3> As the terminal structure of the superconducting device according to the embodiment, the current lead may be formed of a pipe-shaped conductor.

パイプ状の電流リードは、複数の撚り線構造体からなる電流リードよりも、容易に作製することができる。パイプ状の電流リードの場合、その厚さを薄くすることで、電流リードの交直抵抗比を1に近づけることができる。   Pipe-shaped current leads can be more easily produced than current leads made of a plurality of stranded wire structures. In the case of a pipe-shaped current lead, the AC / DC resistance ratio of the current lead can be made close to 1 by reducing the thickness thereof.

<4>実施形態に係る超電導機器の端末構造として、前記外側熱絶縁部材は、真空断熱構造または非真空断熱構造を備える形態を挙げることができる。 <4> As the terminal structure of the superconducting device according to the embodiment, the outer heat insulating member may include a vacuum heat insulating structure or a non-vacuum heat insulating structure.

一般に、真空断熱構造の方が非真空断熱構造よりも断熱性能に優れ、非真空断熱構造の方が真空断熱構造よりも容易に形成できるという特徴がある。外側熱絶縁部材を真空断熱構造とするか非真空断熱構造とするかによって、端末構造全体の断熱性能の調整を行うことができる。   In general, the vacuum heat insulation structure is superior in heat insulation performance than the non-vacuum heat insulation structure, and the non-vacuum heat insulation structure is more easily formed than the vacuum heat insulation structure. The heat insulation performance of the entire terminal structure can be adjusted depending on whether the outer heat insulating member has a vacuum heat insulating structure or a non-vacuum heat insulating structure.

<5>実施形態に係る超電導機器の端末構造として、前記電流リードの内部に配置される内側熱絶縁部材を備え、前記内側熱絶縁部材は、真空断熱構造または非真空断熱構造を備える形態を挙げることができる。 <5> The terminal structure of the superconducting device according to the embodiment includes an inner heat insulating member disposed inside the current lead, and the inner heat insulating member includes a vacuum heat insulating structure or a non-vacuum heat insulating structure. be able to.

断面環状の電流リードの内部空間に内側熱絶縁部材を配置することで、当該内部空間を介した熱侵入を抑えることができる。また、内側熱絶縁部材によって電流リードをその内部から支持することができる。内側熱絶縁部材を真空断熱構造とするか非真空断熱構造とするかによって、端末構造全体の断熱性能の調整を行うことができる。   By disposing the inner heat insulating member in the internal space of the current lead having an annular cross section, heat penetration through the internal space can be suppressed. Further, the current lead can be supported from the inside by the inner heat insulating member. The heat insulation performance of the entire terminal structure can be adjusted depending on whether the inner heat insulating member has a vacuum heat insulating structure or a non-vacuum heat insulating structure.

<6>実施形態に係る超電導機器の端末構造として、前記超電導機器は超電導ケーブルであって、その超電導ケーブルに備わる端末側端部の断熱容器が高電位となる超電導ケーブルである形態を挙げることができる。 <6> As a terminal structure of a superconducting device according to the embodiment, the superconducting device may be a superconducting cable, and a heat insulating container at a terminal side end provided in the superconducting cable may be a superconducting cable having a high potential. it can.

超電導ケーブルに備わる端末側端部の断熱容器が高電位となる構成としては、特許文献1に記載されるケーブル側断熱容器とリード側断熱容器と絶縁部材とを備え、リード側断熱容器が高電位となる構成を挙げることができる。このような形態の超電導ケーブルの端末構造では、外側熱絶縁部材が電流リードと同電位となっていても問題がないため、外側熱絶縁部材に電気絶縁を考慮した断熱設計が不要になる。   As a configuration in which the heat insulating container at the terminal end provided in the superconducting cable has a high potential, the cable side heat insulating container, the lead side heat insulating container, and the insulating member described in Patent Document 1 are provided, and the lead side heat insulating container has a high potential. The structure which becomes can be mentioned. In the terminal structure of the superconducting cable having such a configuration, there is no problem even if the outer heat insulating member has the same potential as the current lead. Therefore, the heat insulating design considering the electric insulation is not required for the outer heat insulating member.

<7>実施形態に係る超電導機器の端末構造として、前記電流リードの常温側端部が、径方向外方に拡がっている形態を挙げることができる。 <7> As the terminal structure of the superconducting device according to the embodiment, the room temperature side end portion of the current lead may be extended radially outward.

超電導機器に流す電流が大きくなるほど、電流リードと常温部接続導体との間の導体断面積のサイズ差が顕著になる。通電時に温度が高くなり過ぎないように常温部接続導体の導体断面積を大きくすることはできても、サイズの制約がある超電導機器の端末構造において電流リードの導体断面積を大きくすることは難しいからである。これに対して、電流リードの端部が径方向外方に拡がっていれば、電流リードと常温部接続導体とのサイズ差が大きくても、両者を接続し易い。   As the current flowing through the superconducting device increases, the difference in size of the conductor cross-sectional area between the current lead and the room temperature connection conductor becomes more prominent. Although it is possible to increase the conductor cross-sectional area of the normal temperature connection conductor so that the temperature does not become too high when energized, it is difficult to increase the conductor cross-section of the current lead in the terminal structure of superconducting equipment with size restrictions Because. On the other hand, if the end portion of the current lead expands outward in the radial direction, even if the size difference between the current lead and the normal temperature portion connecting conductor is large, it is easy to connect both.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

<実施形態1>
本実施形態では、超電導ケーブル線路の端部に形成される超電導機器の端末構造1を図1,2に基づいて説明する。本例の超電導ケーブルは、特許文献1に記載のようにその端部にリード側断熱容器とケーブル側断熱容器と絶縁部材とを備える構成であり、図1ではリード側断熱容器2のみを図示している。図1の紙面下側にはケーブル側断熱容器と絶縁部材とが存在すると考えて良い。
<Embodiment 1>
In the present embodiment, a terminal structure 1 of a superconducting device formed at an end portion of a superconducting cable line will be described with reference to FIGS. As described in Patent Document 1, the superconducting cable of this example is configured to include a lead-side heat insulating container, a cable-side heat insulating container, and an insulating member at its end, and FIG. 1 illustrates only the lead-side heat insulating container 2. ing. It can be considered that the cable-side heat insulating container and the insulating member exist below the paper surface of FIG.

≪超電導機器の端末構造≫
図1に示すように、本例の超電導機器の端末構造1は、超電導ケーブルの端部に設けられるリード側断熱容器2の先端に設けられている。この超電導機器の端末構造1は、電流リード11と外側熱絶縁部材12と内側熱絶縁部材13と封止部材14とを備える。
≪Terminal structure of superconducting equipment≫
As shown in FIG. 1, the terminal structure 1 of the superconducting device of this example is provided at the tip of a lead-side heat insulating container 2 provided at the end of the superconducting cable. The terminal structure 1 of this superconducting device includes a current lead 11, an outer heat insulating member 12, an inner heat insulating member 13, and a sealing member 14.

[電流リード]
実施形態1の電流リード11は、図2の横断面図に示すように、同心円状に並べられた複数の撚り線構造体11αで構成される。本例では、80本の撚り線構造体11αが、同心円状に並んで配置されている。この電流リード11の径方向外方には外側熱絶縁部材12が配置され、径方向内方には内側熱絶縁部材13が配置されている。
[Current lead]
As shown in the cross-sectional view of FIG. 2, the current lead 11 of Embodiment 1 is composed of a plurality of stranded wire structures 11α arranged concentrically. In this example, 80 stranded wire structures 11α are arranged concentrically. An outer heat insulating member 12 is disposed radially outward of the current lead 11, and an inner heat insulating member 13 is disposed radially inward.

各撚り線構造体11αは、図2の下図に示すように、撚りの中心に配置される中心線110と、中心線110の外周に撚り合わされる外周線111と、を備える一次撚り線で構成されている。この一次撚り線は、1本の中心線110の外周に6本の外周線111が撚り合わされた七本撚りの構造となっている。   As shown in the lower diagram of FIG. 2, each stranded wire structure 11α is composed of a primary stranded wire including a center line 110 disposed at the center of the twist and an outer peripheral wire 111 twisted around the outer periphery of the center line 110. Has been. This primary stranded wire has a seven-stranded structure in which six outer peripheral wires 111 are twisted around the outer periphery of one central line 110.

外周線111は、銅やその合金、アルミニウムやその合金などの良導体で構成される素線と、その素線の外周に形成されるエナメルなどの絶縁被覆と、を備える被覆導線で構成される。素線の断面積および絶縁被覆の平均厚さは適宜選択することができる。   The outer peripheral wire 111 is formed of a coated conductive wire including a strand made of a good conductor such as copper or an alloy thereof, aluminum or an alloy thereof, and an insulating coating such as enamel formed on the outer circumference of the strand. The cross-sectional area of the strands and the average thickness of the insulating coating can be selected as appropriate.

中心線110は、外周線111の素線よりも低熱伝導性の非導電材で構成されている。交流の場合、表皮効果によって撚りの中心の位置にある導体にはあまり電流が流れない。そのため、中心線110を良導体としても、中心線110が熱の伝達経路となるだけである。これに対して、中心線110を低熱伝導性の非導電材とすれば、電流リード11の電流容量を減らすことなく、電流リード11の熱の伝達経路を減らすことができる。非導電材として、例えば、FRP(繊維強化プラスチック)などの樹脂を挙げることができる。   The center line 110 is made of a non-conductive material having a lower thermal conductivity than the strands of the outer peripheral line 111. In the case of alternating current, current does not flow so much through the conductor at the center of the twist due to the skin effect. Therefore, even if the center line 110 is a good conductor, the center line 110 only serves as a heat transfer path. On the other hand, if the center line 110 is made of a non-conductive material having low thermal conductivity, the heat transfer path of the current lead 11 can be reduced without reducing the current capacity of the current lead 11. Examples of non-conductive materials include resins such as FRP (fiber reinforced plastic).

上記中心線110の外径は、外周線111の外径と同じでも異なっていても良い。中心線110の外径を外周線111の外径とほぼ同じとすると、図示するように1本の中心線110と6本の外周線111とを密着させた状態で撚り合わせることができる。   The outer diameter of the center line 110 may be the same as or different from the outer diameter of the outer peripheral line 111. Assuming that the outer diameter of the center line 110 is substantially the same as the outer diameter of the outer peripheral line 111, one center line 110 and six outer peripheral lines 111 can be twisted together as shown.

上記構成を備える電流リード11の常温側端部には、図1に示すように、常温部接続導体15が導電接続部150を介して接続されている。常温部接続導体15は、例えば複数の編組線などで構成されており、そのため導電接続部150も複数形成される。   As shown in FIG. 1, a normal temperature portion connection conductor 15 is connected to a normal temperature side end portion of the current lead 11 having the above configuration via a conductive connection portion 150. The normal temperature part connection conductor 15 is composed of, for example, a plurality of braided wires, and therefore, a plurality of conductive connection parts 150 are also formed.

[外側熱絶縁部材]
外側熱絶縁部材12は、環状の電流リード11の外周に配置され、電流リード11への熱侵入を抑える部材である(図2を合わせて参照)。この外側熱絶縁部材12は、真空断熱構造を備えるか、または非真空断熱構造を備える。真空断熱構造としては、内部が真空引きされた構造を挙げることができる。また、非真空断熱構造としては、例えばウレタンなどの構造材を挙げることができる。例えば、電流リード11の外周にウレタンシートを巻回するなどして、非真空断熱構造の外側熱絶縁部材12を構成することができる。
[Outside heat insulation member]
The outer heat insulating member 12 is a member that is disposed on the outer periphery of the annular current lead 11 and suppresses heat intrusion into the current lead 11 (see also FIG. 2). The outer heat insulating member 12 has a vacuum heat insulating structure or a non-vacuum heat insulating structure. Examples of the vacuum heat insulating structure include a structure in which the inside is evacuated. Moreover, as a non-vacuum heat insulation structure, structural materials, such as urethane, can be mentioned, for example. For example, the outer heat insulating member 12 having a non-vacuum heat insulating structure can be configured by winding a urethane sheet around the outer periphery of the current lead 11.

外側熱絶縁部材12は、超電導ケーブルの端末構造におけるリード側断熱容器2の端部にオーバーラップした状態となっている。ウレタンシートを巻回するなどして外側熱絶縁部材12を形成する場合、リード側断熱容器2の端部に外側熱絶縁部材12をオーバーラップさせることは容易である。   The outer heat insulating member 12 is in a state of overlapping the end portion of the lead-side heat insulating container 2 in the terminal structure of the superconducting cable. When the outer heat insulating member 12 is formed by, for example, winding a urethane sheet, it is easy to overlap the outer heat insulating member 12 with the end portion of the lead-side heat insulating container 2.

[内側熱絶縁部材]
内側熱絶縁部材13は、環状の電流リード11の内部に配置され、熱侵入を抑える部材である(図2を合わせて参照)。内側熱絶縁部材13の形状は、電流リード11の内部に配置できれば特に限定されない。例えば、本例の内側熱絶縁部材13は円柱状となっているが、多角柱状であっても構わない。内側熱絶縁部材13は、外側熱絶縁部材12と同様に、真空断熱構造を備えるか、または非真空断熱構造を備える。ウレタンシートを折り畳んで電流リード11の内部に配置することで、内側熱絶縁部材13としても構わない。
[Inner thermal insulation]
The inner heat insulating member 13 is a member that is disposed inside the annular current lead 11 and suppresses heat intrusion (see also FIG. 2). The shape of the inner heat insulating member 13 is not particularly limited as long as it can be disposed inside the current lead 11. For example, the inner heat insulating member 13 of this example has a cylindrical shape, but may have a polygonal column shape. Similar to the outer heat insulating member 12, the inner heat insulating member 13 has a vacuum heat insulating structure or a non-vacuum heat insulating structure. The inner heat insulating member 13 may be formed by folding the urethane sheet and disposing it inside the current lead 11.

内側熱絶縁部材13は無くても構わない。内側熱絶縁部材13を設けない場合、電流リード11の内部空間の常温側端部を封止し、環状の電流リード11の内部空間に外気が侵入することを抑制することが好ましい。   The inner heat insulating member 13 may be omitted. In the case where the inner heat insulating member 13 is not provided, it is preferable to seal the room temperature side end portion of the internal space of the current lead 11 to prevent the outside air from entering the internal space of the annular current lead 11.

[封止部材]
図1に示すように、封止部材14は、超電導ケーブルを冷却する液体冷媒4中に電流リード11が浸漬されないように、液体冷媒4を超電導ケーブル側(紙面下側)に封止する部材である。本例では、封止部材14は、電流リード11が電流経路として接続される接続台座140と、その接続台座140をリード側断熱容器2に固定するフランジ部材141と、で構成されている。
[Sealing member]
As shown in FIG. 1, the sealing member 14 is a member that seals the liquid refrigerant 4 to the superconducting cable side (the lower side in the drawing) so that the current lead 11 is not immersed in the liquid refrigerant 4 that cools the superconducting cable. is there. In this example, the sealing member 14 includes a connection base 140 to which the current lead 11 is connected as a current path, and a flange member 141 that fixes the connection base 140 to the lead-side heat insulating container 2.

接続台座140は、電流リード11を超電導ケーブルに電気的に接続するための部材であって、銅やその合金などの良導体で構成されている。接続台座140は、編組線などの低温部接続導体3を介して、図示しない超電導ケーブルの超電導導体に接続される。本例の接続台座140は、紙面上側に配置される板部と、それに繋がる柱部と、で構成されている。柱部の外径は、超電導ケーブルの径に応じた大きさになっており、超電導ケーブルの超電導導体層に繋がる低温部接続導体3を柱部に接続し易くなっている。   The connection base 140 is a member for electrically connecting the current lead 11 to the superconducting cable, and is made of a good conductor such as copper or an alloy thereof. The connection pedestal 140 is connected to a superconducting conductor of a superconducting cable (not shown) via a low temperature part connecting conductor 3 such as a braided wire. The connection pedestal 140 of this example is composed of a plate portion disposed on the upper side of the paper surface and a column portion connected to the plate portion. The outer diameter of the column portion is sized according to the diameter of the superconducting cable, and it is easy to connect the low temperature portion connection conductor 3 connected to the superconducting conductor layer of the superconducting cable to the column portion.

一方、フランジ部材141は、リード側断熱容器2の端部に固定される部材であって、上述した接続台座140をリード側断熱容器2に固定する機能を持っている。このフランジ部材141と接続台座140とで、液体冷媒4をリード側断熱容器2内に封止することができる。   On the other hand, the flange member 141 is a member fixed to the end portion of the lead-side heat insulating container 2 and has a function of fixing the connection base 140 described above to the lead-side heat insulating container 2. With the flange member 141 and the connection base 140, the liquid refrigerant 4 can be sealed in the lead-side heat insulating container 2.

[その他の構成]
電流リード11と熱絶縁部材12,13との間には極力隙間が形成されないようにすることが好ましい。隙間が形成されると、その隙間に外気が侵入したときに結露が生じる虞があるからである。例えば、両熱絶縁部材12,13を共にウレタンなどの変形性に優れる材料で構成すれば、電流リード11と熱絶縁部材12,13とを密着させることができるので、電流リード11と熱絶縁部材12,13との間に隙間ができ難くなる。また、金属製の真空断熱槽と、その外周を覆う変形性の樹脂材料で両熱絶縁部材12,13を形成しても良い。あるいは、電流リード11と熱絶縁部材12,13との隙間を樹脂で埋めるといった対応や、電流リード11の常温側端部に空気を遮蔽するカバーを設けるといった対応を行なっても良い。
[Other configurations]
It is preferable that a gap is not formed as much as possible between the current lead 11 and the heat insulating members 12 and 13. This is because when the gap is formed, condensation may occur when outside air enters the gap. For example, if both the heat insulating members 12 and 13 are made of a material having excellent deformability such as urethane, the current lead 11 and the heat insulating members 12 and 13 can be brought into close contact with each other. It becomes difficult to form a gap between Moreover, you may form both heat insulation members 12 and 13 with a metal vacuum heat insulation tank and the deformable resin material which covers the outer periphery. Alternatively, it is possible to take measures such as filling the gap between the current lead 11 and the heat insulating members 12 and 13 with resin, or providing a cover that shields air at the room temperature side end of the current lead 11.

≪超電導機器の端末構造の形成手順の一例≫
上記超電導機器の端末構造1は、例えば、以下のようにして形成することができる。まず、接続台座140との接続端がリード側断熱容器2で覆われていない低温部接続導体3に、接続台座140を接続する。次いで、低温部接続導体3と接続台座140との接続部にリード側断熱容器2を据え付け、当該接続部がリード側断熱容器2の内部に配置された状態とする。そして、リード側断熱容器2における超電導ケーブル側の端部(図示せず)を、超電導ケーブルの断熱部(図示せず)と接続すると共に、フランジ部材141を介してリード側断熱容器2の電流リード11側の端部と接続台座140とを接続する。フランジ部材141は、リード側断熱容器2に予め取り付けられていても良いし、後付けであっても良い。上記手順によって、接続台座140とフランジ部材141とでリード側断熱容器2の端部を封止することができる。ここで、接続台座140への電流リード11の接続や、電流リード11の内部への内側熱絶縁部材13の配置は、接続台座140と低温部接続導体3との接続前に行うこともできるし、接続後に行うこともできる。また、電流リード11の常温側端部には予め常温部接続導体15を接続しておくこともできる。
≪Example of terminal structure formation procedure for superconducting equipment≫
The terminal structure 1 of the superconducting device can be formed as follows, for example. First, the connection base 140 is connected to the low temperature part connection conductor 3 whose connection end with the connection base 140 is not covered with the lead-side heat insulating container 2. Next, the lead-side heat insulation container 2 is installed at the connection portion between the low-temperature portion connection conductor 3 and the connection base 140, and the connection portion is placed inside the lead-side heat insulation container 2. Then, an end portion (not shown) on the superconducting cable side in the lead-side heat insulating container 2 is connected to a heat insulating portion (not shown) of the superconducting cable, and the current lead of the lead-side heat insulating container 2 via the flange member 141. 11 and the connection base 140 are connected. The flange member 141 may be attached in advance to the lead side heat insulating container 2 or may be retrofitted. By the above procedure, the end of the lead-side heat insulating container 2 can be sealed with the connection base 140 and the flange member 141. Here, the connection of the current lead 11 to the connection pedestal 140 and the arrangement of the inner thermal insulation member 13 inside the current lead 11 can be performed before the connection pedestal 140 and the low-temperature portion connection conductor 3 are connected. It can also be done after connection. Further, the room temperature portion connection conductor 15 can be connected to the room temperature side end of the current lead 11 in advance.

次いで、電流リード11の外周に、ウレタンシートなどを巻回して外側熱絶縁部材12を形成したり、半割れ状の外側熱絶縁部材12を被せる。特にウレタンシートを電流リード11の外周に巻回する構成であれば、外側熱絶縁部材12と電流リード11との間に隙間ができ難い。このような簡素な構成の外側熱絶縁部材12とすることができるのは、封止部材14によって、電流リード11と外側熱絶縁部材12との隙間に液体冷媒4が浸入することがないからである。   Next, the outer heat insulating member 12 is formed on the outer periphery of the current lead 11 by winding a urethane sheet or the like, or the outer heat insulating member 12 having a half crack shape is covered. In particular, if the urethane sheet is wound around the outer periphery of the current lead 11, it is difficult to form a gap between the outer heat insulating member 12 and the current lead 11. The reason why the outer heat insulating member 12 having such a simple configuration can be obtained is that the liquid refrigerant 4 does not enter the gap between the current lead 11 and the outer heat insulating member 12 by the sealing member 14. is there.

≪超電導機器の端末構造の効果≫
断面環状の電流リード11を利用することで、電流リード11の交直抵抗比を1に近づけることができ、交流用途における交流損失の増加を抑制することができる。本例の構成では、電流リード11が液体冷媒4に浸漬されないように超電導機器側に封止する封止部材14が存在するため、電流リード11の内部空間に液体冷媒4が浸入することはない。そのため、超電導機器の端末構造1の外側に液体冷媒4が漏れることはない。
≪Effect of terminal structure of superconducting equipment≫
By using the current lead 11 having an annular cross section, the AC / DC resistance ratio of the current lead 11 can be made close to 1, and an increase in AC loss in AC applications can be suppressed. In the configuration of this example, since there is a sealing member 14 that seals the current lead 11 on the superconducting device side so that the current lead 11 is not immersed in the liquid refrigerant 4, the liquid refrigerant 4 does not enter the internal space of the current lead 11. . Therefore, the liquid refrigerant 4 does not leak outside the terminal structure 1 of the superconducting device.

また、断面環状の電流リード11を利用することで、電流リード11と常温部接続導体15との接続を容易にすることができる。電流リード11を構成する撚り線構造体11αの撚りをほぐすことなく、電流リード11と常温部接続導体15とを接続することができるからである。例えば、常温部接続導体15の導体断面積(複数の編組線の導体断面積の合計)を、電流リード11の導体断面積の10倍以上としても、電流リード11と常温部接続導体15とを接続することができる。   Further, by using the current lead 11 having an annular cross section, the connection between the current lead 11 and the room temperature portion connection conductor 15 can be facilitated. This is because the current lead 11 and the room temperature part connection conductor 15 can be connected without unwinding the twist of the stranded wire structure 11α constituting the current lead 11. For example, even if the conductor cross-sectional area of the room temperature connection conductor 15 (the sum of the conductor cross-sectional areas of the plurality of braided wires) is 10 times or more the conductor cross-section area of the current lead 11, the current lead 11 and the room temperature connection conductor 15 Can be connected.

<変形例1>
変形例1では、電流リード11が、複数の一次撚り線を撚り合わせてなる二次撚り線で構成される電流リード11を図3に基づいて説明する。図3は、図1のII−II横断面に相当する。
<Modification 1>
In the first modification, the current lead 11 configured by a secondary stranded wire formed by twisting a plurality of primary stranded wires will be described with reference to FIG. 3. FIG. 3 corresponds to the II-II cross section of FIG.

本例では、内側熱絶縁部材13と外側熱絶縁部材12との隙間に、14本の撚り線構造体11βが配置されている。各撚り線構造体11βは、素線よりも低熱伝導性の非導電材で構成される中心線112の外周に、6つの一次撚り線を撚り合わせた構成を備える。一次撚り線は、実施形態1で示した撚り線構造体11αと同じ構成を備えるものを利用できる。ここで、中心線112の外径は、一次撚り線11αの包絡円径と同じとすることが好ましく、そうすることで、1本の中心線112と6本の一次撚り線11αとを密着させた状態で撚り合わせることができる。   In this example, 14 stranded wire structures 11β are disposed in the gap between the inner heat insulating member 13 and the outer heat insulating member 12. Each stranded wire structure 11β has a configuration in which six primary stranded wires are twisted together on the outer periphery of a center line 112 made of a non-conductive material having a lower thermal conductivity than the strands. As the primary stranded wire, one having the same configuration as the stranded wire structure 11α shown in the first embodiment can be used. Here, the outer diameter of the center line 112 is preferably the same as the envelope circle diameter of the primary stranded wire 11α, so that one center line 112 and the six primary stranded wires 11α are brought into close contact with each other. Can be twisted together.

変形例1の構成によっても、実施形態1の構成と同様の効果を得ることができる。   Even with the configuration of the first modification, the same effects as the configuration of the first embodiment can be obtained.

<変形例2>
変形例2では、電流リード11が、パイプ状の導体によって構成される超電導機器の端末構造1を図4に基づいて説明する。図4は、図1のII−II横断面に相当する。
<Modification 2>
In Modification 2, a terminal structure 1 of a superconducting device in which the current lead 11 is constituted by a pipe-shaped conductor will be described with reference to FIG. 4 corresponds to the II-II cross section of FIG.

本例では、外側熱絶縁部材12と内側熱絶縁部材13との隙間に、パイプ状導体11γが配置されている。パイプ状導体11γは、押出などで容易に形成することができる。パイプ状導体11γの材質としては、リン脱酸銅などを好適に利用することができる。   In this example, the pipe-shaped conductor 11γ is disposed in the gap between the outer heat insulating member 12 and the inner heat insulating member 13. The pipe-shaped conductor 11γ can be easily formed by extrusion or the like. As a material of the pipe-shaped conductor 11γ, phosphorus deoxidized copper or the like can be suitably used.

変形例2の構成によっても、実施形態1の構成と同様の効果を得ることができる。   Even with the configuration of the second modification, the same effect as the configuration of the first embodiment can be obtained.

<実施形態2>
実施形態2では、電流リード11の常温側端部をラッパ状に拡げた超電導機器の端末構造10を図5に基づいて説明する。
<Embodiment 2>
In the second embodiment, a terminal structure 10 of a superconducting device in which a normal temperature side end portion of a current lead 11 is expanded in a trumpet shape will be described with reference to FIG.

図5に示すように、本例の電流リード11の外径は、常温側端部に向うに従って徐々に大きくなっており、そのため電流リード11の常温側端部がラッパ状に拡がっている。このような電流リード11は、図2,3に示す撚り線構造体11α,11βであっても良いし、図4に示すパイプ状導体11γであっても良い。撚り線構造体11α,11βであれば、各撚り線構造体11α,11βの常温側端部を、電流リード11の径方向外方に拡げる。一方、パイプ状導体11γであれば、その常温側端部に、パイプ状導体11γの軸方向に向って伸びる複数の切り込みを形成し、切り込みによって分割されたパイプ状導体11γの常温側端部を、パイプ状導体11γの径方向外方に拡げる。   As shown in FIG. 5, the outer diameter of the current lead 11 of this example gradually increases toward the normal temperature side end, and therefore, the normal temperature side end of the current lead 11 expands in a trumpet shape. Such a current lead 11 may be the stranded wire structures 11α and 11β shown in FIGS. 2 and 3, or the pipe-like conductor 11γ shown in FIG. In the case of the stranded wire structures 11α and 11β, the room temperature side ends of the stranded wire structures 11α and 11β are expanded outward in the radial direction of the current lead 11. On the other hand, in the case of the pipe-shaped conductor 11γ, a plurality of cuts extending in the axial direction of the pipe-shaped conductor 11γ are formed at the room-temperature-side end, and the room-temperature-side end of the pipe-shaped conductor 11γ divided by the cut is formed. The pipe-shaped conductor 11γ expands outward in the radial direction.

電流リード11の常温側端部をラッパ状に拡げた構成であれば、実施形態1の構成よりも、常温部接続導体15を電流リード11に接続し易くなる。電流リード11の常温側端部が径方向外方に拡がることで、当該端部に形成される複数の導電接続部150が互いの配置の邪魔となり難いからである。例えば、電流リード11の常温側端部のある位置に導電接続部150を形成した後、その近傍に別の導電接続部150を形成する際、既設の導電接続部150が邪魔になり難い。   With the configuration in which the room temperature side end of the current lead 11 is expanded in a trumpet shape, it is easier to connect the room temperature connection conductor 15 to the current lead 11 than in the configuration of the first embodiment. This is because the room temperature side end of the current lead 11 expands radially outward, so that the plurality of conductive connection parts 150 formed at the end are unlikely to interfere with each other. For example, when the conductive connection portion 150 is formed at a position where the normal temperature side end portion of the current lead 11 is formed and another conductive connection portion 150 is formed in the vicinity thereof, the existing conductive connection portion 150 is unlikely to become an obstacle.

<その他の実施形態>
実施形態や変形例では電流リード11の常温側端部が鉛直上方に配置される縦置き型の超電導機器の端末構造1(10)を構築したが、電流リード11が鉛直方向に対して傾いた状態に配置された超電導機器の端末構造1(10)とすることもできる。例えば、電流リード11が水平方向に伸びる横置き型の超電導機器の端末構造1(10)とすることが挙げられる。その他、電流リード11が鉛直方向に沿って配置されるが、電流リード11の常温側端部が鉛直下方に配置される逆さ置き型の超電導機器の端末構造1(10)とすることもできる。横置き型や逆さ置き型とすることができるのは、リード側断熱容器2の端部が封止部材14で封止され、液体冷媒4が電流リード11の側に漏れ出さないように構成されているからである。
<Other embodiments>
In the embodiment and the modification, the terminal structure 1 (10) of the vertical superconducting device in which the normal temperature side end portion of the current lead 11 is arranged vertically upward is constructed, but the current lead 11 is inclined with respect to the vertical direction. It can also be set as the terminal structure 1 (10) of the superconducting apparatus arrange | positioned in the state. For example, the terminal structure 1 (10) of a horizontal type superconducting device in which the current leads 11 extend in the horizontal direction can be mentioned. In addition, although the current lead 11 is arranged along the vertical direction, the terminal structure 1 (10) of the inverted superconducting device in which the normal temperature side end portion of the current lead 11 is arranged vertically downward may be used. The horizontal installation type or the inverted installation type can be configured such that the end of the lead-side heat insulating container 2 is sealed with the sealing member 14 so that the liquid refrigerant 4 does not leak to the current lead 11 side. Because.

本発明の超電導機器の端末構造は、超電導機器と常電導機器との電気的な接続に好適に利用することができる。   The terminal structure of the superconducting device of the present invention can be suitably used for electrical connection between the superconducting device and the normal conducting device.

1,10 超電導機器の端末構造
11 電流リード 11α,11β 撚り線構造体 11γ 導電パイプ
110,112 中心線 111 被覆導線(外周線)
12 外側熱絶縁部材
13 内側熱絶縁部材
14 封止部材 140 接続台座 141 フランジ部材
15 編組線(常温部接続導体) 150 導電接続部
2 リード側断熱容器
3 低温部接続導体
4 液体冷媒
1,10 Terminal structure of superconducting equipment 11 Current lead 11α, 11β Stranded wire structure 11γ Conductive pipe 110, 112 Center line 111 Coated conductor (outer periphery)
DESCRIPTION OF SYMBOLS 12 Outer heat insulation member 13 Inner heat insulation member 14 Sealing member 140 Connection base 141 Flange member 15 Braided wire (normal temperature part connection conductor) 150 Conductive connection part 2 Lead side heat insulation container 3 Low temperature part connection conductor 4 Liquid refrigerant

Claims (7)

超電導機器の超電導導体の端部に電気的に接続される電流リードを備える超電導機器の端末構造であって、
前記電流リードは、その軸方向に直交する断面が環状に形成されており、
前記超電導導体を極低温に維持する冷媒を前記超電導機器側に封止して前記電流リードが前記冷媒中に浸漬されないようにする封止部材と、
前記電流リードの外周を覆う外側熱絶縁部材と、
を備える超電導機器の端末構造。
A terminal structure of a superconducting device comprising a current lead electrically connected to an end of a superconducting conductor of the superconducting device,
The current lead has an annular cross section perpendicular to its axial direction,
A sealing member that seals the superconducting device with a refrigerant that maintains the superconducting conductor at a very low temperature so that the current leads are not immersed in the refrigerant; and
An outer heat insulating member covering the outer periphery of the current lead;
A terminal structure of a superconducting device.
前記電流リードは、複数の撚り線構造体を環状に配置してなり、
前記撚り線構造体は、複数の素線を撚り合わせてなり、
少なくとも一部の素線の外周に絶縁被覆が形成されることで、隣接する素線間が絶縁されている請求項1に記載の超電導機器の端末構造。
The current lead is formed by arranging a plurality of twisted wire structures in an annular shape,
The stranded wire structure is formed by twisting a plurality of strands,
The terminal structure of a superconducting device according to claim 1, wherein an insulating coating is formed on an outer periphery of at least a part of the strands to insulate adjacent strands.
前記電流リードは、パイプ状の導体で構成される請求項1に記載の超電導機器の端末構造。   The terminal structure of a superconducting device according to claim 1, wherein the current lead is composed of a pipe-shaped conductor. 前記外側熱絶縁部材は、真空断熱構造または非真空断熱構造を備える請求項1から請求項3のいずれか1項に記載の超電導機器の端末構造。   4. The terminal structure of a superconducting device according to claim 1, wherein the outer heat insulating member includes a vacuum heat insulating structure or a non-vacuum heat insulating structure. 5. 前記電流リードの内部に配置される内側熱絶縁部材を備え、
前記内側熱絶縁部材は、真空断熱構造または非真空断熱構造を備える請求項1から請求項4のいずれか1項に記載の超電導機器の端末構造。
An inner heat insulating member disposed inside the current lead;
The terminal structure of a superconducting device according to any one of claims 1 to 4, wherein the inner heat insulating member includes a vacuum heat insulating structure or a non-vacuum heat insulating structure.
前記超電導機器は、超電導ケーブルであって、その超電導ケーブルに備わる端末側端部の断熱容器が高電位となる超電導ケーブルである請求項1から請求項5のいずれか1項に記載の超電導機器の端末構造。   The superconducting device according to any one of claims 1 to 5, wherein the superconducting device is a superconducting cable, and a heat insulating container at a terminal side end provided in the superconducting cable has a high potential. Terminal structure. 前記電流リードの常温側端部が、径方向外方に拡がっている請求項1から請求項6のいずれか1項に記載の超電導機器の端末構造。   The terminal structure of a superconducting device according to any one of claims 1 to 6, wherein an end portion of the current lead on a normal temperature side extends radially outward.
JP2017029358A 2017-02-20 2017-02-20 Terminal structure of superconducting apparatus Pending JP2018137846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029358A JP2018137846A (en) 2017-02-20 2017-02-20 Terminal structure of superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029358A JP2018137846A (en) 2017-02-20 2017-02-20 Terminal structure of superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2018137846A true JP2018137846A (en) 2018-08-30

Family

ID=63367197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029358A Pending JP2018137846A (en) 2017-02-20 2017-02-20 Terminal structure of superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2018137846A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222286A (en) * 1985-03-28 1986-10-02 Toshiba Corp Switch for current lead of superconducting coil
JPS63157904U (en) * 1987-04-01 1988-10-17
JP2002280628A (en) * 2001-03-16 2002-09-27 Sumitomo Electric Ind Ltd Terminal structure for cryogenic equipment
JP2005341767A (en) * 2004-05-28 2005-12-08 Sumitomo Electric Ind Ltd Terminal structure of superconducting cable
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure
JP2013059211A (en) * 2011-09-08 2013-03-28 Sumitomo Electric Ind Ltd Terminal structure of superconductive cable
JP2015091165A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222286A (en) * 1985-03-28 1986-10-02 Toshiba Corp Switch for current lead of superconducting coil
JPS63157904U (en) * 1987-04-01 1988-10-17
JP2002280628A (en) * 2001-03-16 2002-09-27 Sumitomo Electric Ind Ltd Terminal structure for cryogenic equipment
JP2005341767A (en) * 2004-05-28 2005-12-08 Sumitomo Electric Ind Ltd Terminal structure of superconducting cable
JP2010021260A (en) * 2008-07-09 2010-01-28 Sumitomo Electric Ind Ltd Current lead for cryogenic apparatus, and terminal connection structure
JP2013059211A (en) * 2011-09-08 2013-03-28 Sumitomo Electric Ind Ltd Terminal structure of superconductive cable
JP2015091165A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable

Similar Documents

Publication Publication Date Title
KR101978510B1 (en) Superconducting Cable
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
KR20100015720A (en) A termination unit
KR20150101353A (en) Power cable having termination connection box
KR20120113187A (en) Superconducting cable
JP6169030B2 (en) Superconducting cable terminal structure
JP4741037B1 (en) Gas insulated bus
CN101996748B (en) Tubular leadthrough
CN104040815A (en) Connecting structure for room-temperature insulation type superconductive cable
JP5807849B2 (en) Intermediate connection member of superconducting cable and intermediate connection structure of superconducting cable
CN106300216A (en) Insulation terminal assembly
JP2001338557A (en) Vacuum valve
JP2018137846A (en) Terminal structure of superconducting apparatus
TW201535437A (en) Static Apparatus
CN106384632A (en) Insulation casing pipe and manufacturing method thereof, and insulator
WO2016012049A1 (en) High voltage power transmission line
KR102309365B1 (en) Apparatus for voltage withstand test
JP2018137071A (en) Superconductive cable
US20150357804A1 (en) A tubular insulation device, a high voltage power arrangement and a method for providing an insulated high voltage power cable
JP5142124B2 (en) Terminal connection box for coaxial CV cable and supporting structure thereof
JP4253434B2 (en) Compound insulation type gas insulated switchgear
JPH11111539A (en) Stationary induction electrical apparatus
JP2020028134A (en) Terminal structure of superconducting cable
JP2010153211A (en) Cryogenic bushing structure
JP2020028132A (en) Terminal structure of superconducting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210625