JP2018137049A - Fuel cell including electrolyte membrane comprising eggshell membrane - Google Patents

Fuel cell including electrolyte membrane comprising eggshell membrane Download PDF

Info

Publication number
JP2018137049A
JP2018137049A JP2017028801A JP2017028801A JP2018137049A JP 2018137049 A JP2018137049 A JP 2018137049A JP 2017028801 A JP2017028801 A JP 2017028801A JP 2017028801 A JP2017028801 A JP 2017028801A JP 2018137049 A JP2018137049 A JP 2018137049A
Authority
JP
Japan
Prior art keywords
fuel cell
membrane
fuel
eggshell
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017028801A
Other languages
Japanese (ja)
Other versions
JP6886835B2 (en
Inventor
尚貴 谷藤
Naotaka Tanifuji
尚貴 谷藤
長谷部 由紀夫
Yukio Hasebe
由紀夫 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Almado Inc
Original Assignee
Institute of National Colleges of Technologies Japan
Almado Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Almado Inc filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2017028801A priority Critical patent/JP6886835B2/en
Publication of JP2018137049A publication Critical patent/JP2018137049A/en
Application granted granted Critical
Publication of JP6886835B2 publication Critical patent/JP6886835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell in which urea or carbonated water can be used as fuel.SOLUTION: A fuel cell, in which urea or carbonated water that is safe and easy to handle can be used as fuel, can be provided by including an electrolyte membrane comprising an eggshell membrane. The fuel cell can be improved in power generation performance by adsorbing metal chloride, such as platinum or gold chloride, palladium chloride and iron chloride, to the eggshell membrane. Since an eggshell membrane is a stable raw material even at high temperatures and urea is also safe fuel at high temperatures, a fuel cell in which an eggshell is used as an electrolyte membrane and urea is used as fuel is expected to be improved in effective power generation performance, as direct urea power generation at high temperatures.SELECTED DRAWING: Figure 4

Description

本発明は、卵殻膜からなる電解質膜を備えた固体高分子形燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell including an electrolyte membrane made of eggshell membrane.

化石燃料を使用しないクリーンなエネルギーとして知られている燃料電池は、燃料となる化合物を電気化学的に酸化することにより、燃料の化学エネルギーを直接電気エネルギーに変換して取り出すものであり、エネルギー損失が少ない発電手段として注目されている。特に、固体高分子形燃料電池(polymer electrolyte fuel cell、PEFC)の一種である直接メタノール型燃料電池(direct methanol fuel cell、DMFC)は、メタノールと水の化学反応を起点として電気エネルギーを生産するものであり、水素を燃料とするタイプの燃料電池と異なり、貯蔵や運搬が容易な液体燃料を発電することができるため、小型で簡便な動力源として自動車や電化製品への応用が見込まれている。   Fuel cells, known as clean energy that does not use fossil fuels, are obtained by converting the chemical energy of the fuel directly into electrical energy by electrochemically oxidizing the fuel compound, resulting in energy loss. Is attracting attention as a means of power generation. In particular, a direct methanol fuel cell (DMFC), which is a kind of polymer electrolyte fuel cell (PEFC), produces electric energy based on a chemical reaction between methanol and water. Unlike a fuel cell that uses hydrogen as a fuel cell, it can generate liquid fuel that is easy to store and transport, so it is expected to be applied to automobiles and electrical appliances as a small and simple power source. .

固体高分子形燃料電池で用いる高分子系電解質膜は、膜におけるプロトン移動の効率が発電力の高さに直接影響し、発電性能向上にとって重要な部品である。最も使用されている高分子系電解質膜は、ナフィオン(Nafion:登録商標、デュポン社製)に代表されるパーフルオロスルホン酸膜であり、加水分解及び酸化に対する高い安定性と優れたプロトン伝導性を有するが、高価格であり、90℃以上の比較的高い温度及び低温度における伝導性の喪失、およびメタノール透過性が高いという欠点がある。   The polymer electrolyte membrane used in the polymer electrolyte fuel cell is an important component for improving the power generation performance because the efficiency of proton transfer in the membrane directly affects the height of the power generation. The most used polymer electrolyte membrane is a perfluorosulfonic acid membrane represented by Nafion (registered trademark, manufactured by DuPont), which has high stability against hydrolysis and oxidation and excellent proton conductivity. However, it is expensive, has the disadvantages of loss of conductivity at relatively high and low temperatures above 90 ° C., and high methanol permeability.

本発明者らは、固体高分子形燃料電池用の新たな電解質膜として、天然薄膜である卵殻膜を利用することに成功した(特許文献1)。卵殻膜は、鶏卵などの鳥類の卵の卵殻の内側にある膜で、微細かつ丈夫な繊維からなる網目構造をもつタンパク質であり、燃料電池用の電解質膜に適することを見出した。   The present inventors succeeded in utilizing an eggshell membrane that is a natural thin film as a new electrolyte membrane for a polymer electrolyte fuel cell (Patent Document 1). The eggshell membrane is a membrane inside the eggshell of avian eggs such as chicken eggs, and is a protein having a network structure composed of fine and strong fibers, and has been found to be suitable for an electrolyte membrane for a fuel cell.

特許第6016019号明細書Japanese Patent No. 6016019

本発明は、パーフルオロスルホン酸高分子系電解質膜を用いる従来の燃料電池では使用できない燃料で発電することのできる、卵殻膜で作製した電解質膜を用いる燃料電池を提供することを課題とする。   An object of the present invention is to provide a fuel cell using an electrolyte membrane made of eggshell membranes, which can generate electricity with a fuel that cannot be used in a conventional fuel cell using a perfluorosulfonic acid polymer electrolyte membrane.

直接メタノール型燃料電池では、負極(燃料極)で、燃料のメタノールが水と反応して、CHOH+HO→CO+6H+6eというアノード反応によりプロトンが発生し、高分子系電解質膜中を伝導したプロトンが正極(空気極)で酸素と反応して、6H+(3/2)O+6e→3HOというカソード反応により水が生成される。
一方、メタノールではなく尿素を固体高分子形燃料電池の燃料とすると、従来のパーフルオロスルホン酸膜系の電解質膜では、強酸性基のスルホ基が尿素と相互作用してプロトン伝導性を低下させて、発電することができなかった。
In a direct methanol fuel cell, fuel methanol reacts with water at the negative electrode (fuel electrode), and protons are generated by an anode reaction of CH 3 OH + H 2 O → CO 2 + 6H + + 6e , and the polymer electrolyte membrane Protons conducted inside react with oxygen at the positive electrode (air electrode), and water is generated by a cathode reaction of 6H + + (3/2) O 2 + 6e → 3H 2 O.
On the other hand, if urea instead of methanol is used as the fuel for the polymer electrolyte fuel cell, in the conventional perfluorosulfonic acid membrane electrolyte membrane, the strongly acidic sulfo group interacts with urea to lower the proton conductivity. Could not generate electricity.

ところが、電解質膜として卵殻膜を用いると、卵殻膜の主成分はタンパク質であるため強酸性基がなく、尿素との相互作用の影響が少なくプロトン移動が起こるため、尿素を燃料として発電することを発見した。
これまで、尿素を燃料とする際には燃料にアルカリ試薬を添加し、電解質膜もアニオン交換膜を使用してOHイオンの伝達で発電していたが、卵殻膜は、尿素、あるいは尿素原料として直接尿を中性条件で燃料として使用できるばかりか、今まで燃料電池の燃料として使用できなかった二酸化炭素(炭酸水)も、そのまま燃料として発電できる。
このように、本発明者らは、卵殻膜では膜の内部でプロトン移動が起こるという従来の電解質膜素材と発電のメカニズムが異なることを見出し、本発明を完成させるに至った。
However, when eggshell membranes are used as electrolyte membranes, the main component of eggshell membranes is proteins, so there are no strongly acidic groups, and there is little influence of interaction with urea, so proton transfer occurs. discovered.
Until now, when urea was used as fuel, an alkaline reagent was added to the fuel, and the electrolyte membrane also used an anion exchange membrane to generate electricity by OH - ion transfer. As well as being able to directly use urine as a fuel under neutral conditions, carbon dioxide (carbonated water) that could not be used as a fuel for fuel cells can be directly generated as fuel.
Thus, the present inventors have found that eggshell membranes have a different mechanism of power generation from conventional electrolyte membrane materials in which proton transfer occurs inside the membrane, and have completed the present invention.

本発明は、以下の技術的事項から構成される。
(1)卵殻膜からなる電解質膜と金属触媒と電極とを備え、燃料として、尿素または炭酸水を用いることを特徴とする燃料電池。
(2)卵殻膜には金属塩化物が吸着されている、(1)に記載の燃料電池。
(3)金属塩化物が白金または金の塩化物、塩化パラジウム、または塩化鉄である、(2)に記載の燃料電池。
(4)金属触媒が白金、金、ニッケルまたは銀である、(1)ないし(3)のいずれかに記載の燃料電池。
(5)金属触媒が卵殻膜の両面に担持されている、(1)ないし(4)のいずれかに記載の燃料電池。
The present invention is composed of the following technical matters.
(1) A fuel cell comprising an electrolyte membrane made of an eggshell membrane, a metal catalyst, and an electrode, and using urea or carbonated water as fuel.
(2) The fuel cell according to (1), wherein a metal chloride is adsorbed on the eggshell membrane.
(3) The fuel cell according to (2), wherein the metal chloride is platinum or gold chloride, palladium chloride, or iron chloride.
(4) The fuel cell according to any one of (1) to (3), wherein the metal catalyst is platinum, gold, nickel, or silver.
(5) The fuel cell according to any one of (1) to (4), wherein the metal catalyst is supported on both sides of the eggshell membrane.

卵殻膜からなる電解質膜を用いた燃料電池は、本発明者らによって既に提案されていた(特許文献1)が、メタノールを燃料として卵殻膜でも発電したことにとどまっていた。本発明の卵殻膜を用いた燃料電池では、燃料として尿素を水溶液のままで使用することができる。尿素はメタノールや水素に比べて安全で取扱いが容易であるばかりか、人間、動物が生活する場所であれば尿としてどこでも取得できるという大きな利点がある。また、従来の燃料電池では今まで発電しなかった燃料である炭酸水を用いることができることを初めて見出し、卵殻膜の有する新たな機能性が示された。   A fuel cell using an electrolyte membrane made of an eggshell membrane has already been proposed by the present inventors (Patent Document 1), but has only been able to generate power using an eggshell membrane using methanol as a fuel. In the fuel cell using the eggshell membrane of the present invention, urea can be used as a fuel in an aqueous solution. Urea is not only safer and easier to handle than methanol and hydrogen, but also has the great advantage that it can be obtained anywhere as a urine where humans and animals live. In addition, it has been found for the first time that carbonated water, which is a fuel that has not been generated until now, can be used in conventional fuel cells.

さらに、燃料として尿素を用いて80℃までの発電効率を検討した結果、メタノール燃料では不可能な高温で作動させることが可能であり、しかも、高温での発電は常温でのものよりはるかに効率的な発電性能をもたらすことも明らかになった。燃料電池の発電力を高めるためには、動作温度は100〜200℃に高くする必要がある。従来のパーフルオロスルホン酸膜系の電解質膜は、約90℃で伝導性が喪失するので高温では使用できかったが、卵殻膜は200℃まで安定な素材であり、尿素も高温で安全な燃料であるから、本発明の燃料電池は、従来の電解質膜を用いた燃料電池に比べ、より効率的な発電力の向上という画期的な効果が期待できる。   Furthermore, as a result of investigating the power generation efficiency up to 80 ° C using urea as a fuel, it is possible to operate at a high temperature that is impossible with methanol fuel, and the power generation at high temperature is much more efficient than at normal temperature It also became clear that it would bring about power generation performance. In order to increase the power generation of the fuel cell, it is necessary to increase the operating temperature to 100 to 200 ° C. Conventional perfluorosulfonic acid membrane-based electrolyte membranes could not be used at high temperatures because of their loss of conductivity at about 90 ° C, but eggshell membranes are stable materials up to 200 ° C, and urea is a safe fuel at high temperatures. Therefore, the fuel cell of the present invention can be expected to have an epoch-making effect of improving power generation more efficiently than a fuel cell using a conventional electrolyte membrane.

燃料電池の構造と尿素を用いた燃料電池の反応式Fuel cell structure and reaction formula of fuel cell using urea 本発明の燃料電池が尿素を燃料とする作用機構The fuel cell of the present invention uses urea as fuel. 金属塩化物を吸着させた卵殻膜の発電力Power generation in eggshell membranes adsorbed with metal chlorides メタノールと尿素による燃料電池の性能比較Performance comparison of methanol and urea fuel cells 家畜の尿を用いた発電の試みTrial of power generation using livestock urine 本発明の燃料電池が炭酸水を燃料とする作用機構The fuel cell of the present invention uses carbonated water as a fuel.

本発明は、卵殻膜を電解質膜として、尿素や炭酸水を燃料とする燃料電池に関する。
本発明で使用される卵殻膜は、陸生の卵生動物すべての卵、特に鳥類の卵の卵殻の内側にある膜であればいずれも使用できる。特に鶏卵の卵殻膜が、入手の容易性、コストの点から好ましい。
卵殻膜は、コラーゲン、グルコサミン、デスモシンおよびヒアルロン酸を含み、繊維性のタンパク質を主成分とする網目状の構造を有する。タンパク質は、構成アミノ酸としてシステインを多く含み、酸、アルカリ、プロテアーゼに対して比較的安定で、水に不溶性である。タンパク質内部にあるアミノ酸側鎖が、プロトンを移動させる機能を有するため、卵殻膜は燃料電池用の電解質膜として用いることができる。
The present invention relates to a fuel cell using an eggshell membrane as an electrolyte membrane and urea or carbonated water as fuel.
The eggshell membrane used in the present invention can be any membrane as long as it is inside the eggshell of all terrestrial ovarian animals, particularly the eggs of birds. In particular, eggshell membranes of chicken eggs are preferred from the standpoint of availability and cost.
The eggshell membrane contains collagen, glucosamine, desmosine and hyaluronic acid, and has a network structure mainly composed of fibrous protein. Proteins contain many cysteines as constituent amino acids, are relatively stable to acids, alkalis and proteases, and are insoluble in water. Since the amino acid side chain in the protein has a function of transferring protons, the eggshell membrane can be used as an electrolyte membrane for a fuel cell.

卵から卵殻膜を分離して得る方法は特に限定されないが、電解質膜として用いるためには、ある程度の面積が必要のため、卵からできるだけ大きく平らな卵殻膜を切り出す必要がある。例えば、卵の鋭端部に直径1〜3cm程度の小さな穴をあけて、卵白、卵黄を取り出した後水洗いして、洗った卵殻膜付きの卵殻を高濃度の酢酸水溶液に漬ける。80〜90%の酢酸水溶液に2〜3日漬けることにより、卵殻の主成分である炭酸カルシウムを溶解させることができる。   A method for separating the eggshell membrane from the egg is not particularly limited, but in order to use it as an electrolyte membrane, a certain amount of area is required. Therefore, it is necessary to cut out a eggshell membrane that is as large and flat as possible from the egg. For example, a small hole with a diameter of about 1 to 3 cm is made at the sharp end of the egg, and the egg white and egg yolk are taken out and washed with water, and the washed eggshell with the eggshell membrane is immersed in a high concentration acetic acid aqueous solution. By soaking in an 80-90% aqueous acetic acid solution for 2-3 days, calcium carbonate, which is the main component of the eggshell, can be dissolved.

通常卵の原型をほぼ保持している卵殻膜が得られ、ハサミ等を用いて鋭端部と鈍端部を切り除いて中央部が膨らんだ略筒状とし、縦方向に切って展開してから、燃料電池の電極より大きなサイズに切り出す。切り出した卵殻膜は天日乾燥、室温乾燥等で乾燥させる。このようにして得られた卵殻膜には金属塩化物を吸着させることが好ましい。金属塩化物水溶液に卵殻膜を浸漬して金属塩化物を吸着させると、導入された金属イオンにより燃料電池の発電性能を増すことができ、白金や金の塩化物、塩化パラジウムもしくはおよび塩化鉄が好ましい。   A eggshell membrane that almost retains the original shape of the egg is obtained, and the sharp and blunt ends are cut off using scissors and the like to form a substantially cylindrical shape with the center swelled. And cut out to a size larger than the electrode of the fuel cell. The cut out eggshell membrane is dried by sun drying, room temperature drying or the like. It is preferable to adsorb metal chloride to the eggshell membrane thus obtained. If the eggshell membrane is immersed in an aqueous metal chloride solution to adsorb the metal chloride, the introduced metal ions can increase the power generation performance of the fuel cell, and platinum, gold chloride, palladium chloride, and iron chloride preferable.

次いで、乾燥させた2〜3cm角の卵殻膜を燃料電池の電解質膜として用いるために、卵殻膜の両面に触媒層をコーティングする。触媒としては、燃料または酸素との酸化還元反応を活性化できる金属を用いることができ、白金、金、ニッケル、または銀が好ましい。金属の触媒層を卵殻膜の両面にコーティングする方法は、通常のコーティング方法を用いることができるが、卵殻膜にはスパッタコーティングを用いて、少量かつ均一な触媒層を作製することが好ましい。   Next, in order to use the dried eggshell membrane of 2 to 3 cm square as an electrolyte membrane of a fuel cell, a catalyst layer is coated on both sides of the eggshell membrane. As the catalyst, a metal capable of activating a redox reaction with fuel or oxygen can be used, and platinum, gold, nickel, or silver is preferable. As a method of coating the metal catalyst layer on both sides of the eggshell membrane, a normal coating method can be used, but it is preferable to produce a small and uniform catalyst layer using sputter coating on the eggshell membrane.

このようにして得られた、コーティングにより触媒層を両面に担持させた卵殻膜を、電極間に挿入して燃料電池ユニットを作成する。電極間に挿入する前に、コーティングした卵殻膜に両面導電テープを格子状に貼り付けてもよく、または、電極としてバイポーラプレートと呼ばれる導電板で直接挟み込んでもよい。尿素または炭酸水を燃料としたタイプの固体高分子形燃料電池用として使用することができ、なかでも、直接燃料形燃料電池用の直接尿素型燃料電池用、直接炭酸水型燃料電池用として使用することが好ましい。   The thus obtained eggshell membrane carrying the catalyst layer on both sides by coating is inserted between the electrodes to produce a fuel cell unit. Before inserting between the electrodes, a double-sided conductive tape may be attached to the coated eggshell membrane in a lattice pattern, or the electrodes may be directly sandwiched between conductive plates called bipolar plates. Can be used for solid polymer fuel cells of the type fueled with urea or carbonated water, especially for direct urea fuel cells for direct fuel fuel cells and direct carbonated fuel cells It is preferable to do.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

[実験1:卵殻膜を電解質膜とする燃料電池の作成]
中身を取り出して水洗いの終わった卵殻膜付きの卵殻を、酢酸水溶液(90%)に2日間漬けて炭酸カルシウムを溶解させてから、これを水洗、乾燥した後、2.8cm角の大きさに切り整えた。スパッタ装置(真空デバイス社製 MSP−1S マグネトロンスパッタ装置)を用いて、両面の切片中央の約1cm角部分に1分間白金層をスパッタコーティングし、両面で約60μgの白金を担持させた。
切片中央の白金コートした部分を囲むように、膜に両面導電テープを格子状に貼り付けてから、2つの電極で挟んで燃料電池キットを作成した。
[Experiment 1: Production of fuel cell using eggshell membrane as electrolyte membrane]
After the contents are removed and washed with water, the eggshell with eggshell membrane is immersed in an acetic acid aqueous solution (90%) for 2 days to dissolve calcium carbonate, washed with water, dried, and then 2.8 cm square. Trimmed. Using a sputtering apparatus (MSP-1S magnetron sputtering apparatus manufactured by Vacuum Device Inc.), a platinum layer was sputter coated for 1 minute on the approximately 1 cm square portion at the center of both sections, and approximately 60 μg of platinum was supported on both surfaces.
A fuel cell kit was prepared by attaching a double-sided conductive tape to the membrane in a lattice shape so as to surround the platinum-coated portion at the center of the section, and sandwiching it between two electrodes.

[実験2:卵殻膜に金属塩化物を吸着させた燃料電池の作成]
上記(1)と同様の水洗、乾燥後に約3cm角に切り整えた卵殻膜の切片を、それぞれHAuCl、HPtCl、PdCl、FeClの0.01M水溶液に24時間浸漬させて吸着させた。乾燥後、膜の両面にスパッタ装置を用いて、両面の切片中央の約1cm角部分に1分間白金層をスパッタコーティングし、両面で約60μgの白金を担持させてから、膜を電極間に挿入して燃料電池キットを作成した。
[Experiment 2: Production of fuel cell with metal chloride adsorbed on eggshell membrane]
The eggshell membrane slices cut into approximately 3 cm squares after washing with water and drying as in the above (1) were immersed in 0.01 M aqueous solutions of HAuCl 4 , H 2 PtCl 6 , PdCl 2 and FeCl 3 for 24 hours, respectively. I let you. After drying, using a sputtering device on both sides of the film, a platinum layer is sputter coated for 1 minute on the approximately 1 cm square part at the center of both sections, and about 60 μg of platinum is supported on both sides, and then the film is inserted between the electrodes. A fuel cell kit was created.

燃料電池の基本構造は、図1に示すとおりである。   The basic structure of the fuel cell is as shown in FIG.

[実験3:尿素を使用した燃料電池の起電力の測定]
尿素を用いた燃料電池の反応式は、図1に示すとおりである。
(1)測定方法
同じ条件の燃料電池を4個作製し、燃料電池セル内へ3%尿素水溶液を導入した後に、デジタルマルチメーター(A&D製AD−5529)で起電力の経時変化について2時間測定し、それをビデオカメラで記録した。さらに、0分と120分後については、朝日分光製IVP0605I−V測定装置(ニ端子法で測定)でI−V測定を行った。I−V測定から求めた最大出力の平均値を求めた。
[Experiment 3: Measurement of electromotive force of fuel cell using urea]
The reaction formula of a fuel cell using urea is as shown in FIG.
(1) Measurement method After preparing four fuel cells under the same conditions and introducing a 3% aqueous urea solution into the fuel cells, the digital multimeter (A & D AD-5529) measures the electromotive force over time for 2 hours. And recorded it with a video camera. Further, after 0 minute and 120 minutes, IV measurement was performed with an IVP0605 I-V measuring apparatus (measured by the two-terminal method) manufactured by Asahi Spectroscopy. The average value of the maximum output obtained from the IV measurement was obtained.

(2)白金触媒を使用した燃料電池
実験1の(1)で作成した2.8cm角の卵殻膜を使用した燃料電池では、3%尿素溶液を燃料とした場合の発電の最大出力は、3.0μWであった。卵殻膜を電解質膜として用いると、卵殻膜の主成分はタンパク質であるため強酸性基がなく、尿素との相互作用の影響が少なくプロトン移動が起こるため、発電することがわかった。図2にその作用機構を示す。卵殻膜は尿素を中性条件で燃料として使用できることから、プロトン移動が膜内部で起こると推定される。
(2) Fuel cell using platinum catalyst In the fuel cell using the eggshell membrane of 2.8 cm square prepared in (1) of Experiment 1, the maximum output of power generation when 3% urea solution is used as fuel is 3 0.0 μW. When the eggshell membrane was used as the electrolyte membrane, the main component of the eggshell membrane was protein, so there was no strongly acidic group, and it was found that power generation occurs because proton transfer occurs with little influence of interaction with urea. FIG. 2 shows the mechanism of action. Since eggshell membranes can use urea as a fuel under neutral conditions, proton transfer is presumed to occur inside the membrane.

次に、起電力が卵殻膜の大きさにより影響を受けるかどうかを検討した。実験2と同様な方法で、事前に0.01Mの塩化鉄水溶液に24時間浸漬させた、それぞれ2.4cm角、2.6cm角、3.0cm角の卵殻膜に対して白金コートを行ってから、燃料電池を作成した。3%尿素水溶液を燃料とすると、それぞれ、21.7μW、26.4μW、40.3μWの最大出力が測定された。膜が大きくなるに従って発電性能が向上することが確認されたが、鶏卵の卵殻膜を使用する場合、3cm角以上の大きさのものを作成するのは困難であった。   Next, we examined whether the electromotive force is affected by the size of the eggshell membrane. In the same manner as in Experiment 2, platinum coating was applied to 2.4 cm square, 2.6 cm square, and 3.0 cm square eggshell membranes that were previously immersed in an aqueous 0.01 M iron chloride solution for 24 hours. From this, a fuel cell was created. When 3% urea aqueous solution was used as the fuel, the maximum outputs of 21.7 μW, 26.4 μW, and 40.3 μW were measured, respectively. Although it was confirmed that the power generation performance improved as the membrane became larger, it was difficult to produce a chicken egg shell membrane having a size of 3 cm square or more.

(3)異なる金属塩化物を吸着させた卵殻膜を使用した燃料電池
実験2で作製した、それぞれ塩化金酸(HAuCl)、塩化白金酸(HPtCl)、塩化パラジウム(PdCl)、塩化鉄(FeCl)を吸着させた2.8cm角の卵殻膜を使用した燃料電池のセルに、3%尿素水溶液を導入して起電力を測定した。金属塩化物を吸着させていない卵殻膜を用いたものを対照として実験した。
(3) Fuel cell using eggshell membranes adsorbed with different metal chlorides Produced in Experiment 2, chloroauric acid (HAuCl 4 ), chloroplatinic acid (H 2 PtCl 6 ), palladium chloride (PdCl 2 ), An electromotive force was measured by introducing a 3% aqueous urea solution into a fuel cell using a 2.8 cm square eggshell membrane adsorbed with iron chloride (FeCl). An experiment using eggshell membranes not adsorbing metal chloride was used as a control.

その結果を図3に示す。塩化金酸を吸着させた卵殻膜の発電性能が最も向上し、対照の約35倍もの起電力を示した。それ以外の塩化物でもそれぞれ、対照に比べ、21倍、15倍、11倍の起電力が測定され、金属塩化物として金属イオンを導入すると、発電性能が最大値を示すことがわかった。   The result is shown in FIG. The power generation performance of the eggshell membrane adsorbed with chloroauric acid was the most improved, and the electromotive force was about 35 times that of the control. In other chlorides, the electromotive force was measured 21 times, 15 times, and 11 times that of the control, and it was found that when metal ions were introduced as the metal chloride, the power generation performance showed the maximum value.

[実験4:メタノールと尿素による燃料電池の性能比較]
市販されているナフィオン(登録商標)膜と本発明の卵殻膜をそれぞれ使用した燃料電池の性能比較実験を行った。本発明の卵殻膜としては、上記実験3で最も発電性能が高い塩化金酸を吸着させたものを用いた。対照として、金属塩化物を吸着させていない卵殻膜を用いた。
[Experiment 4: Comparison of fuel cell performance with methanol and urea]
The fuel cell performance comparison experiment using the commercially available Nafion (registered trademark) membrane and the eggshell membrane of the present invention was conducted. As the eggshell membrane of the present invention, a membrane adsorbed with chloroauric acid having the highest power generation performance in Experiment 3 was used. As a control, an eggshell membrane not adsorbing metal chloride was used.

燃料として3%メタノール溶液を用いた場合、本発明の卵殻膜を用いたもの(150μW)は、ナフィオン膜を用いたもの(910μW)の1/9の発電性能であったが、燃料として3%尿素溶液を用いると、本発明の卵殻膜を用いたもの(130μW)は、ナフィオン膜を用いたもの(2.0μW)の65倍、発電性能が向上した(図4)。   When a 3% methanol solution was used as the fuel, the one using the eggshell membrane of the present invention (150 μW) was 1/9 the power generation performance of the one using the Nafion membrane (910 μW), but 3% as the fuel When the urea solution was used, the power generation performance of the one using the eggshell membrane of the present invention (130 μW) was improved 65 times that using the Nafion membrane (2.0 μW) (FIG. 4).

本発明の卵殻膜を用いた燃料電池では、燃料として尿素をそのまま水溶液で使用できることが確認された。下記表1に示すように、尿素はメタノールや水素に比べて安全で取扱いが容易であり、燃料電池の燃料とできることのメリットは大きい。
In the fuel cell using the eggshell membrane of the present invention, it has been confirmed that urea can be used as it is in an aqueous solution. As shown in Table 1 below, urea is safer and easier to handle than methanol and hydrogen, and has the great advantage of being a fuel for fuel cells.

また、本発明の卵殻膜が尿素を燃料とできるのは、卵殻膜の主成分がタンパク質であるため強酸性基がなく、尿素と卵殻膜との相互作用は尿素とナフィオン(登録商標)膜との相互作用よりも小さくなり、卵殻膜の機能は触媒で分解されたプロトンを移動させるために用いられることがわかった。   In addition, the eggshell membrane of the present invention can use urea as a fuel because the main component of the eggshell membrane is protein, so there is no strongly acidic group, and the interaction between urea and eggshell membrane is the relationship between urea and Nafion (registered trademark) membrane. It was found that the function of the eggshell membrane is used to transfer the protons decomposed by the catalyst.

[実験5:家畜の尿を用いた発電の試み]
塩化鉄(1.0×10−2M)で吸着処理した卵殻膜に、触媒の白金を両面に1cm角にスパッタコートして燃料電池を作成し、黒毛和牛のメスの尿を燃料として起電力を測定した。比較として2%尿素水溶液を用いた。
結果は図5に示すように、尿を燃料とした方が2%尿素水溶液より多く発電し、尿中のホルモン等の有機物が発電に寄与した可能性があり、卵殻膜を用いる燃料電池が人間の生活圏全てで発電可能な装置となることが分かった。
[Experiment 5: Trial of power generation using livestock urine]
A fuel cell is created by sputter-coating a platinum catalyst on both sides of an eggshell membrane that has been adsorbed with iron chloride (1.0 × 10 −2 M) to create a fuel cell, and electromotive force using Japanese black cattle female urine as fuel. Was measured. For comparison, a 2% urea aqueous solution was used.
As shown in FIG. 5, the urine fuel may generate more power than the 2% urea solution, and organic substances such as hormones in the urine may have contributed to the power generation. It turned out to be a device that can generate electricity in all living areas.

[実験6:温度条件の変化による発電性能の比較]
燃料として尿素を用いて80℃までの発電性能を測定した。
塩化鉄(1.0×10−2M)で吸着処理した卵殻膜に、触媒の白金を両面に1cm角にスパッタコートして燃料電池を作成し、3%尿素水溶液を導入した。燃料電池を恒温器内に設置して、器内の温度を20℃〜80℃に徐々に上昇させながら、テスターで発電の経時変化を追跡した。
[Experiment 6: Comparison of power generation performance by changing temperature conditions]
The power generation performance up to 80 ° C. was measured using urea as the fuel.
A fuel cell was prepared by sputter-coating platinum catalyst on both sides of an eggshell membrane adsorbed with iron chloride (1.0 × 10 −2 M) on both sides, and a 3% urea aqueous solution was introduced. The fuel cell was installed in a thermostatic chamber, and the change in power generation with time was followed by a tester while gradually increasing the temperature in the chamber from 20 ° C to 80 ° C.

その結果は、以下の表2のとおりであり、80℃では、20℃での7倍以上発電性能が高まることが確認された。このように、尿素を用いると、メタノール燃料では不可能な高温で作動させることが可能であり、しかも、高温での発電は常温でのものよりはるかに効率的な発電性能をもたらすことも明らかになった。
The results are as shown in Table 2 below, and it was confirmed that at 80 ° C., the power generation performance increased by 7 times or more at 20 ° C. Thus, when urea is used, it is possible to operate at a high temperature that is not possible with methanol fuel, and it is also clear that power generation at high temperature provides much more efficient power generation performance than at normal temperature became.

燃料電池の発電力を高めるためには、動作温度は100〜200℃に高くする必要がある。従来のパーフルオロスルホン酸膜系の電解質膜は、約90℃で伝導性が喪失するので高温では使用できなかったが、卵殻膜は200℃まで安定な素材であり、尿素も高温で安全な燃料であるから、本発明の燃料電池は、従来の電解質膜を用いた燃料電池に比べ、尿素と卵殻膜の相乗効果により、より効率的な発電力の向上という画期的な効果が期待される。   In order to increase the power generation of the fuel cell, it is necessary to increase the operating temperature to 100 to 200 ° C. Conventional perfluorosulfonic acid membrane-based electrolyte membranes could not be used at high temperatures because their conductivity was lost at about 90 ° C, but eggshell membranes are a stable material up to 200 ° C, and urea is a safe fuel at high temperatures. Therefore, the fuel cell of the present invention is expected to have an epoch-making effect of improving the power generation more efficiently due to the synergistic effect of urea and eggshell membrane than the fuel cell using the conventional electrolyte membrane. .

[実験7:炭酸水を使用した燃料電池の起電力の測定]
従来の燃料電池では今まで発電することのできなかった燃料である炭酸水を用いることができるかどうか検討した。
ナフィオン(登録商標)膜と本発明の卵殻膜を用いた燃料電池に炭酸水を導入して発電力を測定した。結果は表3に示すとおりである。
[Experiment 7: Measurement of electromotive force of fuel cell using carbonated water]
We examined whether carbonated water, a fuel that could not be generated by conventional fuel cells, could be used.
Carbon dioxide water was introduced into a fuel cell using the Nafion (registered trademark) membrane and the eggshell membrane of the present invention, and the power generation was measured. The results are as shown in Table 3.

ナフィオン(登録商標)膜ではほとんど発電しないが、本発明の卵殻膜、特に塩化鉄処理した卵殻膜を用いると、メタノールや尿素を燃料とした場合と同等の発電性能が確認され、二酸化炭素を溶かした水が、燃料として作用することを初めて示すものである。炭酸水を用いた燃料電池の反応式と発電の仕組みを図6に示した。   The Nafion (registered trademark) membrane generates little power, but using the eggshell membrane of the present invention, particularly the eggshell membrane treated with iron chloride, confirms the power generation performance equivalent to when methanol or urea is used as fuel, and dissolves carbon dioxide. This shows for the first time that water acts as a fuel. The reaction formula of the fuel cell using carbonated water and the mechanism of power generation are shown in FIG.

本発明の燃料電池が炭酸水でも発電できたことにより、従来の電解質膜素材と発電のメカニズムが異なり、卵殻膜では膜の内部でプロトン移動が起こるということが解明され、これにより、卵殻膜だけではなく、卵殻膜様タンパク質の天然薄膜が、今後燃料電池の電解質膜として探究される礎となる結果である。   The fact that the fuel cell of the present invention can generate power even with carbonated water has revealed that the mechanism of power generation is different from that of conventional electrolyte membrane materials, and it has been clarified that proton transfer occurs inside the membrane in eggshell membranes. Rather, the natural thin film of eggshell membrane-like protein is the result of exploring future electrolyte membranes for fuel cells.

そして、卵殻膜と尿素の両方が高温で安定であることにより、高温での直接尿素発電のような効率的な発電が可能となり、実用面においても革新的な燃料電池を提供することができる。   Since both eggshell membranes and urea are stable at high temperatures, efficient power generation such as direct urea power generation at high temperatures is possible, and an innovative fuel cell can be provided in practical terms.

本発明によれば、卵殻膜からなる電解質膜を備えることにより、燃料として尿素や炭酸水を用いることができる燃料電池を提供できる。卵殻膜に金属塩化物を吸着させると発電性能が向上する。高温でも安定な尿素を燃料として用いることで、高温での直接尿素発電のような効率的な発電性能の向上が期待される。
燃料電池の従来の燃料であるメタノールや水素に比べ、尿素や炭酸水は安価であるばかりか、安全で取扱いが容易であるという、燃料電池の燃料として最良の利点を有するものである。しかも、尿素原料として尿をそのまま燃料として用いることができるので、人間や家畜の生活するところであれば、どこでも燃料を入手できる燃料電池の提供を可能とする。
ADVANTAGE OF THE INVENTION According to this invention, the fuel cell which can use urea and carbonated water as a fuel can be provided by providing the electrolyte membrane which consists of eggshell membranes. The power generation performance is improved by adsorbing metal chlorides on the eggshell membrane. By using urea, which is stable even at high temperatures, as a fuel, it is expected to improve efficient power generation performance like direct urea power generation at high temperatures.
Compared to methanol and hydrogen, which are conventional fuel cells, urea and carbonated water are not only inexpensive, but also have the best advantages as fuel for fuel cells, which are safe and easy to handle. Moreover, since urine can be used as a fuel as a raw material for urea, it is possible to provide a fuel cell in which fuel can be obtained anywhere as long as humans or livestock live.

Claims (5)

卵殻膜からなる電解質膜と金属触媒と電極とを備え、燃料として、尿素または炭酸水を用いることを特徴とする燃料電池。   A fuel cell comprising an electrolyte membrane made of an eggshell membrane, a metal catalyst, and an electrode, and using urea or carbonated water as a fuel. 卵殻膜には金属塩化物が吸着されている、請求項1に記載の燃料電池。   The fuel cell according to claim 1, wherein a metal chloride is adsorbed on the eggshell membrane. 金属塩化物が白金または金の塩化物、塩化パラジウム、または塩化鉄である、請求項2に記載の燃料電池。   The fuel cell according to claim 2, wherein the metal chloride is platinum or gold chloride, palladium chloride, or iron chloride. 金属触媒が白金、金、ニッケルまたは銀である、請求項1ないし3のいずれかに記載の燃料電池。   The fuel cell according to any one of claims 1 to 3, wherein the metal catalyst is platinum, gold, nickel or silver. 金属触媒が卵殻膜の両面に担持されている、請求項1ないし4のいずれかに記載の燃料電池。


The fuel cell according to any one of claims 1 to 4, wherein the metal catalyst is supported on both sides of the eggshell membrane.


JP2017028801A 2017-02-20 2017-02-20 Fuel cell with an electrolyte membrane made of eggshell membranes Active JP6886835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028801A JP6886835B2 (en) 2017-02-20 2017-02-20 Fuel cell with an electrolyte membrane made of eggshell membranes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028801A JP6886835B2 (en) 2017-02-20 2017-02-20 Fuel cell with an electrolyte membrane made of eggshell membranes

Publications (2)

Publication Number Publication Date
JP2018137049A true JP2018137049A (en) 2018-08-30
JP6886835B2 JP6886835B2 (en) 2021-06-16

Family

ID=63365615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028801A Active JP6886835B2 (en) 2017-02-20 2017-02-20 Fuel cell with an electrolyte membrane made of eggshell membranes

Country Status (1)

Country Link
JP (1) JP6886835B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110695370A (en) * 2019-10-16 2020-01-17 泉州师范学院 Copper-based nano composite material and preparation method and application thereof
CN112019090A (en) * 2019-05-30 2020-12-01 清华大学 Decorative ring
CN114175326A (en) * 2019-07-30 2022-03-11 法国国家科研中心 Ion exchange membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021426A (en) * 1998-07-03 2000-01-21 Toyota Motor Corp Fuel cell
JP2005174748A (en) * 2003-12-11 2005-06-30 Nissan Motor Co Ltd Fuel cell system
JP2008530745A (en) * 2005-02-09 2008-08-07 アルケマ フランス Fuel cell comprising a fuel soluble in an aqueous medium and having a boiling point of 65 ° C. or higher
JP2010534384A (en) * 2007-06-29 2010-11-04 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アン Devices incorporating artificial biomimetic membranes
JP2012527721A (en) * 2009-05-22 2012-11-08 ユニバーシティ オブ ストラスクライド Fuel cell
JP2016085845A (en) * 2014-10-24 2016-05-19 パナソニックIpマネジメント株式会社 Fuel cartridge, liquid fuel and fuel battery system
JP6016019B2 (en) * 2012-10-30 2016-10-26 独立行政法人国立高等専門学校機構 ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL, AND FUEL CELL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021426A (en) * 1998-07-03 2000-01-21 Toyota Motor Corp Fuel cell
JP2005174748A (en) * 2003-12-11 2005-06-30 Nissan Motor Co Ltd Fuel cell system
JP2008530745A (en) * 2005-02-09 2008-08-07 アルケマ フランス Fuel cell comprising a fuel soluble in an aqueous medium and having a boiling point of 65 ° C. or higher
JP2010534384A (en) * 2007-06-29 2010-11-04 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アン Devices incorporating artificial biomimetic membranes
JP2012527721A (en) * 2009-05-22 2012-11-08 ユニバーシティ オブ ストラスクライド Fuel cell
JP6016019B2 (en) * 2012-10-30 2016-10-26 独立行政法人国立高等専門学校機構 ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL, AND FUEL CELL
JP2016085845A (en) * 2014-10-24 2016-05-19 パナソニックIpマネジメント株式会社 Fuel cartridge, liquid fuel and fuel battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112019090A (en) * 2019-05-30 2020-12-01 清华大学 Decorative ring
CN112019090B (en) * 2019-05-30 2021-08-31 清华大学 Decorative ring
CN114175326A (en) * 2019-07-30 2022-03-11 法国国家科研中心 Ion exchange membrane
CN110695370A (en) * 2019-10-16 2020-01-17 泉州师范学院 Copper-based nano composite material and preparation method and application thereof
CN110695370B (en) * 2019-10-16 2022-12-13 泉州师范学院 Copper-based nano composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6886835B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
Wang et al. Radiation-grafted anion-exchange membranes: the switch from low-to high-density polyethylene leads to remarkably enhanced fuel cell performance
Vincent et al. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis
JP5095089B2 (en) Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
Unlu et al. Anion exchange membrane fuel cells: experimental comparison of hydroxide and carbonate conductive ions
CN110504472A (en) A kind of direct methanol fuel cell membrane electrode and preparation method thereof improving catalyst utilization
Moon et al. Evaluation of Low‐Cost Separators for Increased Power Generation in Single Chamber Microbial Fuel Cells with Membrane Electrode Assembly
JP6886835B2 (en) Fuel cell with an electrolyte membrane made of eggshell membranes
Shin et al. On-site crosslinked quaternized poly (vinyl alcohol) as ionomer binder for solid alkaline fuel cells
CN103123974B (en) Conducting polymer/metal/proton exchange composite membrane and preparation and application thereof
WO2011025021A1 (en) Electrode for microbial fuel cell, and microbial fuel cell using same
JP2019519668A (en) Ion conductive membrane
Das et al. Crosslinked poly (vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells
CN112510235A (en) Polyvinyl alcohol-bacterial cellulose trimmings structure type alkaline anion exchange membrane, preparation and application
Zhang et al. A flexible nanocomposite membrane based on traditional cotton fabric to enhance performance of microbial fuel cell
CN106848359B (en) A kind of intermediate temperature solid oxide fuel cell electrolyte and preparation method thereof
Zen et al. Oxygen Reduction on Ruthenium‐Oxide Pyrochlore Produced in a Proton‐Exchange Membrane
CN111509280B (en) BC-based basic anion exchange membrane and preparation and application thereof
Kabasawa et al. Influence of decomposition products from perfluorosulfonic acid membrane on fuel cell performance
Wang et al. Proton exchange membrane water electrolysis incorporating sulfo-phenylated polyphenylene catalyst coated membranes
US20080003479A1 (en) Ionic polymer metal composite electrolyte for fuel cell
Yang et al. Hydrous Ta2 O 5⋅ n H 2 O Modified Membrane-Electrode Assemblies for PEMFCs
Cloutier et al. Triode operation of a proton exchange membrane (PEM) methanol electrolyser
CN109411772A (en) A kind of processing method for catalyst of fuel batter with proton exchange film
Kunz Lessons learned from phosphoric acid electrolyte fuel cell development pertinent to PEMFCs
CN117254081B (en) Anti-aging proton exchange membrane, preparation method thereof and membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210517

R150 Certificate of patent or registration of utility model

Ref document number: 6886835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210402