JP2018135293A - Method for producing amide compound - Google Patents

Method for producing amide compound Download PDF

Info

Publication number
JP2018135293A
JP2018135293A JP2017030251A JP2017030251A JP2018135293A JP 2018135293 A JP2018135293 A JP 2018135293A JP 2017030251 A JP2017030251 A JP 2017030251A JP 2017030251 A JP2017030251 A JP 2017030251A JP 2018135293 A JP2018135293 A JP 2018135293A
Authority
JP
Japan
Prior art keywords
acid
trifluoromethanesulfonate
compound
iii
amide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017030251A
Other languages
Japanese (ja)
Other versions
JP6952974B2 (en
Inventor
憲吾 兵藤
Kengo Hyodo
憲吾 兵藤
源和 長谷川
Motokazu Hasegawa
源和 長谷川
尚輝 大石
Naoki Oishi
尚輝 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2017030251A priority Critical patent/JP6952974B2/en
Publication of JP2018135293A publication Critical patent/JP2018135293A/en
Application granted granted Critical
Publication of JP6952974B2 publication Critical patent/JP6952974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for producing an amide compound which does not require severe reacting conditions without directly using hydroxylamine and its derivative.SOLUTION: There is provided a method for producing an amide compound which comprises: a step of transferring a ketone compound and an oxime compound to oxime in the presence of an organic solvent and an acid catalyst; and a step of subjecting the oxime to Beckmann rearrangement. The acid catalyst preferably is hydrochloric acid, sulfuric acid, methanesulfonic acid, tosyl acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethane sulfonimide, a boron trifluoride-diethyl ether complex, scandium trifluoromethanesulfonate (III), iron trifluoromethanesulfonate (III), copper trifluoromethanesulfonate (II), bismuth(III) trifluoromethanesulfonate, titanium tetrachloride or iron trichloride.SELECTED DRAWING: None

Description

本発明は、医薬品、農薬、化粧品、香料、合成繊維及びそれらの原材料として有用なアミド化合物の製造方法に関する。 The present invention relates to a method for producing amide compounds useful as pharmaceuticals, agricultural chemicals, cosmetics, fragrances, synthetic fibers, and raw materials thereof.

アミド化合物をケトン化合物から合成する方法としては、ケトオキシムを合成して単離し、高温かつ強酸性条件のもと、ベックマン転位させることによって合成する方法が知られている。しかしながら、ケトン化合物からアミド化合物を合成する際に、ケトオキシムを別途調整し、単離する必要があり、手間がかかるという問題がある。また、ケトオキシムからベックマン転位によってアミド化合物を合成する際に、高温かつ強酸性条件を必要とする。 As a method for synthesizing an amide compound from a ketone compound, a method is known in which ketoxime is synthesized and isolated, and synthesized by Beckmann rearrangement under high temperature and strong acidic conditions. However, when synthesizing an amide compound from a ketone compound, it is necessary to prepare and isolate the ketoxime separately, which is troublesome. Further, when an amide compound is synthesized from ketoxime by Beckmann rearrangement, high temperature and strong acid conditions are required.

アミド化合物をケトン化合物から直接的に変換する方法としては、爆発の危険性があるヒドロキシルアミンを高温条件で使用する方法や、同じく爆発性があり取扱に注意を要するヒドロキシルアミン誘導体を用いる方法(非特許文献1)、衝撃や加熱に対して爆発性を示すとともに、毒性が高いアジ化ナトリウムを用いるシュミット反応(非特許文献2)が知られている。しかしながら、高温下で危険なヒドロキシルアミンや、爆発性があり、保存や取扱いに注意を要するヒドロキシルアミン誘導体や、毒性が高いアジ化ナトリウムを用いる必要があった。 Methods for converting amide compounds directly from ketone compounds include the use of hydroxylamine, which is potentially explosive, at high temperatures, and the use of hydroxylamine derivatives that are also explosive and require careful handling. Patent Document 1), Schmidt reaction (Non-Patent Document 2) using sodium azide that exhibits explosive properties against impact and heating and has high toxicity is known. However, it has been necessary to use hydroxylamine which is dangerous at high temperature, hydroxylamine derivatives which are explosive and require careful storage and handling, and sodium azide which has high toxicity.

Y.Tamura,H.Fujiwara,K.Sumoto,M.Ikeda,Y.Kita、Synthesis,1973,215−216.Y. Tamura, H .; Fujiwara, K .; Sumoto, M .; Ikeda, Y .; Kita, Synthesis, 1973, 215-216. H.Eshghi、J.Chin.Chem.Soc.2006,53,987−990.H. Eshghi, J. et al. Chin. Chem. Soc. 2006, 53, 987-990.

本発明では、ヒドロキシルアミン及びその誘導体を直接用いることなく、過酷な反応条件も必要としない、新たなアミド化合物の製造方法を提供することを目的とする。 An object of the present invention is to provide a novel method for producing an amide compound which does not require harsh reaction conditions without directly using hydroxylamine and its derivatives.

本発明者らは、温和な条件のもとケトンからの直接的なアミド化合物の合成を目指して検討を進めたところ、酸触媒と水によって反応剤オキシムから原料ケトンへオキシム転位を起こし、その後ベックマン転位と続き、生じた転位体が水と反応し、アミド化合物が合成されることを見出し、本発明を完成した。 The inventors of the present invention have studied for the direct synthesis of amide compounds from ketones under mild conditions. As a result, acid catalyst and water cause oxime rearrangement from the reactant oxime to the raw material ketone, and then Beckmann. Following the rearrangement, it was found that the resulting rearrangement reacted with water to synthesize an amide compound, thereby completing the present invention.

すなわち、本発明は、ケトン化合物およびオキシム化合物を、有機溶媒と酸触媒の存在下、トランスオキシム化させる工程、および、ベックマン転位させる工程を含むアミド化合物の製造方法に関する。 That is, the present invention relates to a method for producing an amide compound including a step of transoximing a ketone compound and an oxime compound in the presence of an organic solvent and an acid catalyst, and a step of Beckmann rearrangement.

酸触媒が、塩酸、硫酸、メタンスルホン酸、トシル酸一水和物、トリフルオロメタンスルホン酸、ビストリフルオロメタンスルホンイミド、三フッ化ホウ素ジエチルエーテル錯体、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸鉄(III)、トリフルオロメタンスルホン酸銅(II)、トリフルオロメタンスルホン酸ビスマス(III)、四塩化チタン、または、三塩化鉄であることが好ましい。 Acid catalyst is hydrochloric acid, sulfuric acid, methanesulfonic acid, tosylic acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethanesulfonimide, boron trifluoride diethyl ether complex, scandium (III) trifluoromethanesulfonate, trifluoromethanesulfone It is preferably iron (III) acid, copper (II) trifluoromethanesulfonate, bismuth (III) trifluoromethanesulfonate, titanium tetrachloride, or iron trichloride.

有機溶媒が、塩化メチレン、クロロホルム、ヘキサン、または、アセトニトリルであることが好ましい。 The organic solvent is preferably methylene chloride, chloroform, hexane, or acetonitrile.

オキシム化合物が、下記化学式

Figure 2018135293
(式中、RはH、CF、または、OCHであり、RはCH、C、または、Cである。)
で表されるO−ベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体であることが好ましい。 The oxime compound has the following chemical formula
Figure 2018135293
(In the formula, R 1 is H, CF 3 , or OCH 3 , and R 2 is CH 3 , C 2 H 5 , or C 3 H 7. )
It is preferable that it is O-benzenesulfonyl-acetohydroxamic acid ester derivative represented by these.

本発明によれば、酸触媒と水によって反応剤オキシム化合物から原料ケトンへオキシム転位を起こし、その後ベックマン転位と続き、生じた転位体が水と反応し、アミド化合物が合成されるため、温和な反応条件で、アミド化合物を合成することができる。得られたアミド化合物は、医薬品、農薬、化粧品、香料、合成繊維およびそれらの原材料として有用である。 According to the present invention, an oxime rearrangement from a reactant oxime compound to a raw material ketone is caused by an acid catalyst and water, followed by a Beckmann rearrangement, and the resulting rearrangement reacts with water to synthesize an amide compound. An amide compound can be synthesized under reaction conditions. The obtained amide compounds are useful as pharmaceuticals, agricultural chemicals, cosmetics, fragrances, synthetic fibers, and raw materials thereof.

本発明のアミド化合物の製造方法は、ケトン化合物およびオキシム化合物を、有機溶媒と酸触媒の存在下、トランスオキシム化させる工程、および、ベックマン転位させる工程を含むことを特徴とする。酸素置換された安定なオキシム化合物を酸素置換されたヒドロキシルアミン等価体とみなし、簡便でかつ温和な条件のもとケトン化合物からアミド化合物を製造する。ブレンステッド酸触媒と触媒量の水によって酸素置換されたアセトヒドロキサム酸エチルからケトン化合物へのトランスオキシム化反応が進行し、酸素置換されたケトオキシム化合物が合成され、得られたケトオキシム中間体が酸触媒によってベックマン転位を起こし、最後に水によって補足されることでアミド化合物へと変化する。 The method for producing an amide compound of the present invention is characterized in that it comprises a step of transoximing a ketone compound and an oxime compound in the presence of an organic solvent and an acid catalyst, and a step of Beckmann rearrangement. An oxygen-substituted stable oxime compound is regarded as an oxygen-substituted hydroxylamine equivalent, and an amide compound is produced from a ketone compound under simple and mild conditions. The transoximation reaction from ethyl acetohydroxamic acid oxygen-substituted with a Bronsted acid catalyst and a catalytic amount of water to the ketone compound proceeds to synthesize the oxygen-substituted ketoxime compound, and the resulting ketoxime intermediate is the acid catalyst. Causes a Beckmann rearrangement, and finally becomes a amide compound by being supplemented with water.

ケトン化合物は、カルボニル基を有する限り特に限定されないが、たとえば、アセトフェノン、2−アセトナフトンなどのアセトナフトン、2−メチルアセトフェノン、3−メチルアセトフェノン、4−メチルアセトフェノンなどのメチルアセトフェン、4−メトキシアセトフェノンなどのメトキシアセトフェノン、4−クロロアセトフェノンなどのクロロアセトフェン、4−トリフルオロメチルアセトフェノンなどのトリフルオロメチルアセトフェノン、シクロドデカノン、プロピオフェノン、イソブチロフェノン、2−アセチルチオフェンなどのアセチルチオフェン、2−ドデカノンなどのドデカノンなどが挙げられる。なかでも、電子供与性置換基を有する基質の点で、メトキシアセトフェノンが好ましい。 The ketone compound is not particularly limited as long as it has a carbonyl group. For example, acetonaphthone such as acetophenone and 2-acetonaphthone, 2-methylacetophenone, 3-methylacetophenone, methylacetophene such as 4-methylacetophenone, 4-methoxyacetophenone Methoxyacetophenone, chloroacetophene such as 4-chloroacetophenone, trifluoromethylacetophenone such as 4-trifluoromethylacetophenone, cyclododecanone, propiophenone, isobutyrophenone, acetylthiophene such as 2-acetylthiophene, 2-dodecanone And dodecanone. Of these, methoxyacetophenone is preferable in terms of a substrate having an electron-donating substituent.

オキシム化合物は、>C=N−OHで表される構造を有する限り特に限定されないが、たとえば、下記化学式

Figure 2018135293
(式中、RはH、CF、または、OCHであり、RはCH、C、または、Cである。)
で表されるO−ベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体、O−4−トリフルオロメチルベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体、O−ジフェニルホスフィニル−アセトヒドロキサム酸エステル誘導体などが挙げられる。なかでも、反応収率の点で、上記化学式で表されるO−ベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体、O−4−トリフルオロメチルベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体が好ましい。 The oxime compound is not particularly limited as long as it has a structure represented by> C═N—OH.
Figure 2018135293
(In the formula, R 1 is H, CF 3 , or OCH 3 , and R 2 is CH 3 , C 2 H 5 , or C 3 H 7. )
O-benzenesulfonyl-acetohydroxamic acid ester derivatives, O-4-trifluoromethylbenzenesulfonyl-acetohydroxamic acid ester derivatives, O-diphenylphosphinyl-acetohydroxamic acid ester derivatives and the like represented by Among these, in terms of reaction yield, O-benzenesulfonyl-acetohydroxamic acid ester derivatives and O-4-trifluoromethylbenzenesulfonyl-acetohydroxamic acid ester derivatives represented by the above chemical formula are preferable.

有機溶媒は特に限定されないが、たとえば塩化メチレン、クロロホルム、ヘキサン、トルエン、ジエチルエーテル、ヘキサン、トルエン、アセトニトリル、メタノール、テトラヒドロフラン、酢酸エチル、アセトン、ジメチルホルムアルデヒドなどが挙げられる。これらの有機溶媒は、2種以上を混合して使用することもできる。なかでも、反応収率の点で、塩化メチレン、クロロホルム、ヘキサン、アセトニトリルが好ましい。 The organic solvent is not particularly limited, and examples thereof include methylene chloride, chloroform, hexane, toluene, diethyl ether, hexane, toluene, acetonitrile, methanol, tetrahydrofuran, ethyl acetate, acetone, dimethylformaldehyde and the like. These organic solvents can be used in a mixture of two or more. Of these, methylene chloride, chloroform, hexane, and acetonitrile are preferable in terms of reaction yield.

酸触媒は特に限定されず、酸そのものだけでなく、その金属塩も含まれる。たとえば、塩酸、硫酸、メタンスルホン酸、トシル酸一水和物、トリフルオロメタンスルホン酸、ビストリフルオロメタンスルホンイミド、三フッ化ホウ素ジエチルエーテル錯体、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸鉄(III)、トリフルオロメタンスルホン酸銅(II)、トリフルオロメタンスルホン酸ビスマス(III)、四塩化チタン、三塩化鉄などが挙げられる。なかでも、反応時間の点で、硫酸、メタンスルホン酸、トシル酸一水和物、トリフルオロメタンスルホン酸、ビストリフルオロメタンスルホンイミド、トリフルオロメタンスルホン酸ビスマス(III)、三塩化鉄が好ましい。 The acid catalyst is not particularly limited, and includes not only the acid itself but also a metal salt thereof. For example, hydrochloric acid, sulfuric acid, methanesulfonic acid, tosylic acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethanesulfonimide, boron trifluoride diethyl ether complex, scandium (III) trifluoromethanesulfonate, iron trifluoromethanesulfonate (III), copper (II) trifluoromethanesulfonate, bismuth (III) trifluoromethanesulfonate, titanium tetrachloride, iron trichloride and the like. Of these, sulfuric acid, methanesulfonic acid, tosylic acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethanesulfonimide, bismuth (III) trifluoromethanesulfonate, and iron trichloride are preferable in terms of reaction time.

ケトン化合物に対するオキシム化合物の添加量は、ケトン化合物1モルに対して1〜10モルが好ましく、1〜2モルがより好ましい。1モル未満では、反応が完結しなくなる傾向がある。 1-10 mol is preferable with respect to 1 mol of ketone compounds, and, as for the addition amount of the oxime compound with respect to a ketone compound, 1-2 mol is more preferable. If it is less than 1 mol, the reaction tends to be incomplete.

酸触媒の添加量は、ケトン化合物1モルに対して0.0025〜1モルが好ましく、0.025〜0.10モルがより好ましい。0.0025モル未満では、アミド化合物が生成しないため、反応が進まなくなる傾向がある。1モルを超えても、反応の促進効果は小さく、経済性を損なう傾向がある。 The addition amount of the acid catalyst is preferably 0.0025 to 1 mol, more preferably 0.025 to 0.10 mol, relative to 1 mol of the ketone compound. If the amount is less than 0.0025 mol, an amide compound is not generated, and thus the reaction tends not to proceed. Even if it exceeds 1 mol, the effect of promoting the reaction is small and tends to impair economic efficiency.

反応系中に水を加えることが好ましい。水の添加量は限定されないが、ケトン化合物1モルに対して1〜10当量が好ましく、1〜2当量がより好ましい。1当量未満では、反応は完結しなくなり、10当量を超えると反応の進行が遅くなる傾向がある。 It is preferable to add water to the reaction system. Although the addition amount of water is not limited, 1-10 equivalent is preferable with respect to 1 mol of ketone compounds, and 1-2 equivalent is more preferable. When the amount is less than 1 equivalent, the reaction is not completed, and when the amount exceeds 10 equivalents, the progress of the reaction tends to be slow.

反応温度は特に限定されないが、0〜40℃が好ましく、20〜30℃がより好ましい。0℃を下回ると、アミド化合物の収率が低下し、反応が完結しない傾向がある。40℃を超えても、収率の向上も小さく、エネルギーの消費を増大させる傾向がある。また、反応時間も特に限定されないが、1〜48時間が好ましく、24〜48時間がより好ましい。1時間未満では、反応が完結しない傾向がある。48時間を超えても、収率の向上も小さく、時間を消費するのみとなる傾向がある。 Although reaction temperature is not specifically limited, 0-40 degreeC is preferable and 20-30 degreeC is more preferable. When the temperature is lower than 0 ° C., the yield of the amide compound tends to decrease and the reaction tends not to be completed. Even if it exceeds 40 degreeC, the improvement of a yield is also small and there exists a tendency which increases consumption of energy. Moreover, although reaction time is not specifically limited, 1 to 48 hours are preferable and 24 to 48 hours are more preferable. If it is less than 1 hour, the reaction tends to be incomplete. Even if it exceeds 48 hours, the yield improvement is small, and there is a tendency that only time is consumed.

本発明の製造方法によって得られたアミド化合物は、医薬品、農薬、化粧品、香料、合成繊維およびそれらの原材料として有用である。 The amide compound obtained by the production method of the present invention is useful as pharmaceuticals, agricultural chemicals, cosmetics, fragrances, synthetic fibers and raw materials thereof.

以下、本発明の実施例について説明するが、本発明は、以下の実施例に限定されない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

合成例1 O−ベンゼンスルホニル−アセトヒドロキサム酸エチル(化合物2a)の合成
室温で、アルゴン雰囲気下、20mLフラスコ(撹拌子入)に アセトヒドロキサム酸エチル(200mg、1.94mmol、1.0eq.)、塩化ベンゼンスルホニル(0.33mL、2.62mmol、1.35eq.)、トリエチルアミン(0.39mL、2.81mmol、1.45eq.)、テトラヒドロフラン(6.4ml、0.30M)を加え、室温で1時間、撹拌した。その後、飽和塩化アンモニウム水溶液で反応を停止し、テトラヒドロフランを減圧留去後に、ジエチルエーテル(20mL×3回)を用いて抽出を行い、有機相を飽和食塩水で洗浄後、硫酸ナトリウムを用いて乾燥した。硫酸ナトリウムを綿栓濾過で濾別し、減圧下溶媒を留去してNMR(CDCl)を測定した。シリカゲルカラムクロマトグラフィー(関東化学 silica gel 60(40−50μm)、ヘキサン/酢酸エチル=95/5)で精製し、白色のO−ベンゼンスルホニル−アセトヒドロキサム酸エチル(化合物2a)を376mg(収率80%)得た。化合物2aのNMRデータは、以下の通りである。
Synthesis Example 1 Synthesis of ethyl O-benzenesulfonyl-acetohydroxamic acid (Compound 2a) In a 20 mL flask (with a stirring bar) at room temperature under an argon atmosphere, ethyl acetohydroxamic acid (200 mg, 1.94 mmol, 1.0 eq.), Benzenesulfonyl chloride (0.33 mL, 2.62 mmol, 1.35 eq.), Triethylamine (0.39 mL, 2.81 mmol, 1.45 eq.), Tetrahydrofuran (6.4 ml, 0.30 M) was added, and 1 at room temperature was added. Stir for hours. Thereafter, the reaction was stopped with a saturated aqueous ammonium chloride solution, and tetrahydrofuran was distilled off under reduced pressure, followed by extraction with diethyl ether (20 mL × 3 times). The organic phase was washed with saturated brine and then dried with sodium sulfate. did. Sodium sulfate was filtered off by cotton plug filtration, the solvent was distilled off under reduced pressure, and NMR (CDCl 3 ) was measured. Purification by silica gel column chromatography (Kanto Chemical Silica gel 60 (40-50 μm), hexane / ethyl acetate = 95/5) gave 376 mg (yield 80) of white O-benzenesulfonyl-acetohydroxamic acid ethyl (compound 2a). %)Obtained. The NMR data of compound 2a are as follows.

Figure 2018135293
Figure 2018135293

2a:H−NMR(400Hz、CDCl)δ1.22(t,J=7.1Hz,3H),2.02(s,3H),3.97(q,J=7.1Hz,2H),7.54(d,J=7.5Hz,2H),7.67(d,J=7.5Hz,1H),7.97(d,J=7.5Hz,2H);13C−NMR(CDCl,100MHz)δ14.8,15.8,64.7,129.6,134.6,136.3,170.8. 2a: 1 H-NMR (400 Hz, CDCl 3 ) δ 1.22 (t, J = 7.1 Hz, 3H), 2.02 (s, 3H), 3.97 (q, J = 7.1 Hz, 2H) , 7.54 (d, J = 7.5 Hz, 2H), 7.67 (d, J = 7.5 Hz, 1H), 7.97 (d, J = 7.5 Hz, 2H); 13 C-NMR (CDCl 3 , 100 MHz) δ 14.8, 15.8, 64.7, 129.6, 134.6, 136.3, 170.8.

実施例1 N−(2−ナフチル)アセトアミド(化合物3a)の合成
室温、アルゴン雰囲気下、試験管(撹拌子入)に2−アセトナフトン(85.1mg,0.50mmol,1.0eq.)、トシル酸一水和物(2.4mg,0.0125mmol,2.5mol%)、アセトニトリル(0.50mL,1.0M)、O−ベンゼンスルホニル−アセトヒドロキサム酸エチル(146mg,0.60mmol,1.2eq.)を加え、室温で24h撹拌した。その後、飽和炭酸水素ナトリウム水溶液3mlを加え、10分撹拌し、酢酸エチル10mLで3回抽出を行った。集めた有機相を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。その後、硫酸ナトリウムを除き、減圧下溶媒を留去してNMRを測定した。シリカゲルカラムクロマトグラフィー(関東化学silica gel 60(40−50μm)、ヘキサン/酢酸エチル=8/2から6/4)で精製し、白色のN−(2−ナフチル)アセトアミド(化合物3a)を83.3mg(収率90%)得た。化合物3aのNMRデータは、以下の通りである。
Example 1 Synthesis of N- (2-naphthyl) acetamide (Compound 3a) 2-acetonaphthone (85.1 mg, 0.50 mmol, 1.0 eq.), Tosyl in a test tube (with a stirring bar) at room temperature under an argon atmosphere Acid monohydrate (2.4 mg, 0.0125 mmol, 2.5 mol%), acetonitrile (0.50 mL, 1.0 M), ethyl O-benzenesulfonyl-acetohydroxamate (146 mg, 0.60 mmol, 1.2 eq) .) Was added and stirred at room temperature for 24 h. Thereafter, 3 ml of a saturated aqueous sodium hydrogen carbonate solution was added, stirred for 10 minutes, and extracted three times with 10 mL of ethyl acetate. The collected organic phase was washed with saturated brine and dried over sodium sulfate. Thereafter, sodium sulfate was removed, the solvent was distilled off under reduced pressure, and NMR was measured. Purification by silica gel column chromatography (Kanto Chemical silica gel 60 (40-50 μm), hexane / ethyl acetate = 8/2 to 6/4) gave white N- (2-naphthyl) acetamide (compound 3a) at 83. 3 mg (yield 90%) was obtained. The NMR data of compound 3a are as follows.

3a:H−NMR(CDCl,400MHz,ppm)δ8.17(s,1H),7.81−7.73(m,4H),7.46−7.36(m,3H),2.20(s,3H);13C NMR(CDCl,100MHz,ppm)δ168.5,135.5,133.9,130.7,128.8,127.8,127.6,126.5,125.1,120.1,116.9,24.7;LC−MS(ESI,positive)m/z calcd for C1212NO[M+H]:186.09,found 186.10. 3a: 1 H-NMR (CDCl 3 , 400 MHz, ppm) δ 8.17 (s, 1H), 7.81-7.73 (m, 4H), 7.46-7.36 (m, 3H), 2 .20 (s, 3H); 13 C NMR (CDCl 3 , 100 MHz, ppm) δ 168.5, 135.5, 133.9, 130.7, 128.8, 127.8, 127.6, 126.5 , 125.1,120.1,116.9,24.7; LC-MS (ESI , positive) m / z calcd for C 12 H 12 NO + [M + H]: 186.09, found 186.10.

実施例1の合成方法を利用して合成したアミド類を以下に示す(Scheme 1)。 Amides synthesized using the synthesis method of Example 1 are shown below (Scheme 1).

Figure 2018135293
Figure 2018135293

芳香族ケトンに対しては高収率で反応が進行した。置換基の位置や立体的に大きいナフタレン環についても良好な反応性を示した。電子的特性として電子供与性置換基の場合は、高い収率が得られるが、電子求引性置換基の時は転位が進みにくくなる傾向がある。脂肪族ケトンについては鎖状及び環状ともに反応が進行し、ナイロン−12の原料となるLaurolactamの合成にも適用可能である。 The reaction proceeded with high yield for aromatic ketones. Good reactivity was also observed for the position of the substituent and the sterically large naphthalene ring. In the case of an electron-donating substituent as an electronic property, a high yield can be obtained, but in the case of an electron-withdrawing substituent, rearrangement tends to be difficult to proceed. With regard to the aliphatic ketone, the reaction proceeds in both a chain form and a cyclic form, and can be applied to the synthesis of Laurolactam, which is a raw material for nylon-12.

実施例2
表1に保護基PGを変更した反応剤の検討結果を示す。芳香族スルホニル基を有するオキシムにて良好な結果が得られることが分かり、なかでもベンゼンスルホニル基や4−トリフルオロメチルベンゼンスルホニル基が最も優れた結果を示すことが分かる(entries 1、2)。
Example 2
Table 1 shows the results of investigation of the reactants with the protective group PG changed. It turns out that a favorable result is obtained with the oxime which has an aromatic sulfonyl group, and it turns out that a benzenesulfonyl group and 4-trifluoromethylbenzenesulfonyl group show the most excellent result (entries 1, 2).

Figure 2018135293
Figure 2018135293

実施例3
表2に、2−アセトナフトンからN−(2−ナフチル)アセトアミドを合成する反応における種々の触媒を検討した結果を示す。酸触媒としては塩酸、硫酸、メタンスルホン酸、トシル酸一水和物、トリフルオロメタンスルホン酸、ビストリフルオロメタンスルホンイミド、三フッ化ホウ素ジエチルエーテル錯体、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸鉄(III)、トリフルオロメタンスルホン酸銅(II)、トリフルオロメタンスルホン酸ビスマス(III)、四塩化チタン、三塩化鉄が優れた効果を示すことが分かる(Entries 2〜14)。
Example 3
Table 2 shows the results of examining various catalysts in the reaction of synthesizing N- (2-naphthyl) acetamide from 2-acetonaphthone. Acid catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, tosylic acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethanesulfonimide, boron trifluoride diethyl ether complex, scandium trifluoromethanesulfonate (III), trifluoromethanesulfone It can be seen that iron (III) acid, copper (II) trifluoromethanesulfonate, bismuth (III) trifluoromethanesulfonate, titanium tetrachloride, and iron trichloride show excellent effects (Entry 2-14).

Figure 2018135293
Figure 2018135293

実施例4
表3に、2−アセトナフトンからN−(2−ナフチル)アセトアミドを合成する反応における種々の溶媒を検討した結果を示す。塩化メチレン、クロロホルム、ヘキサン、アセトニトリルが効果があることがわかった(Entries 1、2、4、6)。
Example 4
Table 3 shows the results of examining various solvents in the reaction for synthesizing N- (2-naphthyl) acetamide from 2-acetonaphthone. Methylene chloride, chloroform, hexane, and acetonitrile were found to be effective (Entry 1, 2, 4, 6).

Figure 2018135293
Figure 2018135293

本発明によれば、温和な反応条件で、アミド化合物を合成することができる。得られたアミド化合物は、医薬品、農薬、化粧品、香料、合成繊維およびそれらの原材料として有用である。
According to the present invention, an amide compound can be synthesized under mild reaction conditions. The obtained amide compounds are useful as pharmaceuticals, agricultural chemicals, cosmetics, fragrances, synthetic fibers, and raw materials thereof.

Claims (4)

ケトン化合物およびオキシム化合物を、有機溶媒と酸触媒の存在下、トランスオキシム化させる工程、および、ベックマン転位させる工程を含むアミド化合物の製造方法。 A method for producing an amide compound comprising a step of transoximing a ketone compound and an oxime compound in the presence of an organic solvent and an acid catalyst, and a step of Beckmann rearrangement. 酸触媒が、塩酸、硫酸、メタンスルホン酸、トシル酸一水和物、トリフルオロメタンスルホン酸、ビストリフルオロメタンスルホンイミド、三フッ化ホウ素ジエチルエーテル錯体、トリフルオロメタンスルホン酸スカンジウム(III)、トリフルオロメタンスルホン酸鉄(III)、トリフルオロメタンスルホン酸銅(II)、トリフルオロメタンスルホン酸ビスマス(III)、四塩化チタン、または、三塩化鉄である請求項1に記載のアミド化合物の製造方法。 Acid catalyst is hydrochloric acid, sulfuric acid, methanesulfonic acid, tosylic acid monohydrate, trifluoromethanesulfonic acid, bistrifluoromethanesulfonimide, boron trifluoride diethyl ether complex, scandium (III) trifluoromethanesulfonate, trifluoromethanesulfone The method for producing an amide compound according to claim 1, which is iron (III) acid, copper (II) trifluoromethanesulfonate, bismuth (III) trifluoromethanesulfonate, titanium tetrachloride, or iron trichloride. 有機溶媒が、塩化メチレン、クロロホルム、ヘキサン、または、アセトニトリルである請求項1または2に記載のアミド化合物の製造方法。 The method for producing an amide compound according to claim 1 or 2, wherein the organic solvent is methylene chloride, chloroform, hexane, or acetonitrile. オキシム化合物が、下記化学式
Figure 2018135293
(式中、RはH、CF、または、OCHであり、RはCH、C、または、Cである。)
で表されるO−ベンゼンスルホニル−アセトヒドロキサム酸エステル誘導体である請求項1〜3のいずれかに記載のアミド化合物の製造方法。

The oxime compound has the following chemical formula
Figure 2018135293
(In the formula, R 1 is H, CF 3 , or OCH 3 , and R 2 is CH 3 , C 2 H 5 , or C 3 H 7. )
The method for producing an amide compound according to claim 1, which is an O-benzenesulfonyl-acetohydroxamic acid ester derivative represented by the formula:

JP2017030251A 2017-02-21 2017-02-21 Method for producing amide compound Active JP6952974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030251A JP6952974B2 (en) 2017-02-21 2017-02-21 Method for producing amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030251A JP6952974B2 (en) 2017-02-21 2017-02-21 Method for producing amide compound

Publications (2)

Publication Number Publication Date
JP2018135293A true JP2018135293A (en) 2018-08-30
JP6952974B2 JP6952974B2 (en) 2021-10-27

Family

ID=63365234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030251A Active JP6952974B2 (en) 2017-02-21 2017-02-21 Method for producing amide compound

Country Status (1)

Country Link
JP (1) JP6952974B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321669A (en) * 2020-02-28 2021-08-31 中国科学院上海有机化学研究所 Sulfimide metal salt, preparation method and application thereof
CN115368258A (en) * 2022-07-27 2022-11-22 浙江工业大学 Preparation process of amide compound

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HYODO, KENGO 他: "Bronsted acid catalyzed transoximation reaction: synthesis of aldoximes and ketoximes without use of", GREEN CHEMISTRY, vol. 18(21), JPN6021006499, 2016, pages 5788 - 5793, ISSN: 0004452956 *
RONCHIN, L.; VAVASORI, A.: "On the mechanism of the organo-catalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroa", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 313(1-2), JPN6021006502, 2009, pages 22 - 30, ISSN: 0004452959 *
ZHANG, JISONG 他: "Novel One-Step Synthesis Process from Cyclohexanone to Caprolactam in Trifluoroacetic Acid", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 52(19),, JPN6021006501, 2013, pages 6377 - 6381, ISSN: 0004452958 *
第4版 実験化学講座22 有機合成IV 酸・アミノ酸・ペプチド, JPN6021006500, 1994, pages 163 - 164, ISSN: 0004452957 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321669A (en) * 2020-02-28 2021-08-31 中国科学院上海有机化学研究所 Sulfimide metal salt, preparation method and application thereof
CN113321669B (en) * 2020-02-28 2023-03-24 中国科学院上海有机化学研究所 Sulfimide metal salt, preparation method and application thereof
CN115368258A (en) * 2022-07-27 2022-11-22 浙江工业大学 Preparation process of amide compound
CN115368258B (en) * 2022-07-27 2023-07-25 浙江工业大学 Preparation process of amide compound

Also Published As

Publication number Publication date
JP6952974B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
WO2008125592A1 (en) Improved process for preparing o-chloromethylphenylglyoxylic esters, improved process for preparing (e)-2-(2-chloromethylphenyl)-2-alkoximinoacetic esters, and novel intermediates for their preparation
JP2017149686A (en) Production method of ketoxime compound
JP6952974B2 (en) Method for producing amide compound
CA2802513C (en) Method for preparing aliskiren and intermediate thereof
Li et al. SmI2-mediated elimination reaction of Baylis–Hillman adducts controlled by temperature: a facile synthesis of trisubstituted alkenes and 1, 5-hexadiene derivatives with E-stereoselectivity
JP2008208111A (en) Bis(2-alkoxyethyl) azodicarboxylate ester compound and intermediate for producing the same
TWI500596B (en) Process for the synthesis of 3,4-dimethoxybicyclo(4.2.0)octa-1,3,5-triene-7-carbonitrile, and application in the synthesis of ivabradine and addition salts thereof with a pharmaceutically acceptable acid
CN111018807B (en) Method for synthesizing 1,2, 4-thiadiazole derivative
JP4956088B2 (en) Method for producing ω-bromo long chain carboxylic acid
JPS62289549A (en) Production of n-(alpha-alkoxyethyl)-carboxylic acid amide
CN108727323B (en) Method for catalytically synthesizing trifluoromethyl substituted homoisoflavone compound by using N-heterocyclic carbene
JP7031858B2 (en) Method for producing primary amine compound
KR20170003387A (en) Preparation method of benzoic acid amide compounds
JP5448572B2 (en) Acetyl compound, method for producing the acetyl compound, and method for producing a naphthol compound using the acetyl compound
JP2017149687A (en) O-benzenesulfonyl-acetohydroxamic acid ester derivative and manufacturing method of nitryl compound
EP2937331A1 (en) A process for preparing an intermediate of vitamin b1
CN106831528B (en) Synthetic method of pyrrole-3-formate compound
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP2009242243A (en) alpha-HYDROXYIMINO CARBOXYLIC ACID ESTER DERIVATIVE AND METHOD FOR PRODUCING alpha-AMINO-alpha-HALOALKYL CARBOXYLIC ACID ESTER DERIVATIVE BY USING THE SAME
CN113382982B (en) Preparation method of siponimod
CN106795080B (en) Process for the preparation of halogenated trifluoroacetophenones
JP5374085B2 (en) Process for producing 4-alkylresorcinol and 4-alkenylresorcinol
JP2008525507A (en) Process for producing substituted 2-alkoxycarbonyl-3-aminothiophenes
JP2016108332A (en) Method for producing amino compound
JP6660393B2 (en) Method for preparing 4-cyanopiperidine hydrochloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6952974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250