JP2018134722A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2018134722A
JP2018134722A JP2017032687A JP2017032687A JP2018134722A JP 2018134722 A JP2018134722 A JP 2018134722A JP 2017032687 A JP2017032687 A JP 2017032687A JP 2017032687 A JP2017032687 A JP 2017032687A JP 2018134722 A JP2018134722 A JP 2018134722A
Authority
JP
Japan
Prior art keywords
cutting
main body
high thermal
cutting tool
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017032687A
Other languages
Japanese (ja)
Other versions
JP6880820B2 (en
Inventor
友弥 青木
Tomoya Aoki
友弥 青木
貫一 角田
Kanichi Tsunoda
貫一 角田
良介 片岡
Ryosuke Kataoka
良介 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017032687A priority Critical patent/JP6880820B2/en
Publication of JP2018134722A publication Critical patent/JP2018134722A/en
Application granted granted Critical
Publication of JP6880820B2 publication Critical patent/JP6880820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a throw-away type cutting tool capable of decreasing an edge temperature.SOLUTION: A cutting tool includes: a body which has a cutting edge for cutting a material to be cut, a rake face continuing from the cutting edge to a rear side, and an inclined face continuing from a rear edge of the rake face to an internal rear side; and a high-heat conductor which is arranged by abutting on the inclined face without projecting from the rake face and has a heat conductivity higher than that of the body. Heat input from high-temperature chips to the cutting edge vicinity of the body can be efficiently removed and radiated by the high-heat conductor, and a cutting edge temperature can be greatly decreased with a simple structure. A heat conductivity ratio (Kh/Kt) as a ratio of a heat conductivity (Kh) of the high-heat conductor to a heat conductivity (Kt) of the body is preferably 4-20. A volume fraction (Vh/Vt+Vh) as a ratio of a volume of the high-heat conductor to the sum of a volume (Vt) of the body and a volume (Vh) of the high-heat conductor is preferably 40-80%.SELECTED DRAWING: Figure 1

Description

本発明は、高寿命化を図れるスローアウェイ式切削工具に関する。   The present invention relates to a throw-away type cutting tool capable of extending the life.

鋳物や金属素材などの被削材を切削する切削加工は、精度が要求される機械部品等の製造には欠かせない。このような切削加工品の品質安定化と低コスト化を両立するために、切削工具の高寿命化が求められる。   Cutting that cuts work materials such as castings and metal materials is indispensable for the manufacture of machine parts that require high precision. In order to achieve both quality stabilization and cost reduction of such a machined product, a long tool life is required.

工具寿命を短くする要因として、工具摩耗機構の一つである熱的摩耗がある。特に、難削材(例えば、Ti系材料、Ni系材料等)を切削加工するような場合、発生する切削熱により切削工具(チップ)が相当な高温となり、熱的摩耗が進行して工具寿命が短くなり易い(非特許文献1参照)。   A factor that shortens the tool life is thermal wear, which is one of the tool wear mechanisms. In particular, when cutting difficult-to-cut materials (for example, Ti-based materials, Ni-based materials, etc.), the cutting tool (chip) is heated to a considerably high temperature by the generated cutting heat, and thermal wear progresses, resulting in tool life. Tends to be short (see Non-Patent Document 1).

通常、刃先(加工点)へ加工液(クーラント)を供給して、切削工具の熱的摩耗の抑制等が図られているが、それ以外の方法も提案されている。例えば、下記の特許文献1に、それに関連した記載がある。   Usually, a cutting fluid (coolant) is supplied to the cutting edge (processing point) to suppress thermal wear of the cutting tool, but other methods have been proposed. For example, Patent Document 1 below has a description related thereto.

特表2012−522659号公報(WO2011/5340)Special table 2012-522659 gazette (WO2011-5340)

難削材の切削加工概論,鳴瀧則彦,精密工学会誌 58(12),1949-1952,1992Introduction to cutting of difficult-to-cut materials, Norihiko Naruto, Journal of Japan Society for Precision Engineering 58 (12), 1949-1952,1992

特許文献1は、切削工具の刃先温度を低下させるために、切削工具とそのホルダー(シャンク)との間に熱交換器を設けて、切削工具を冷却することを提案している。特許文献1は、液体窒素などの冷却剤を使用して切削工具全体を冷却することを意図しており、冷却剤や供給設備等の費用が嵩むため、加工コストの低減は図れない。   Patent Document 1 proposes to cool the cutting tool by providing a heat exchanger between the cutting tool and its holder (shank) in order to lower the cutting edge temperature of the cutting tool. Patent Document 1 intends to cool the entire cutting tool using a coolant such as liquid nitrogen, and the cost of the coolant and supply equipment increases, so the processing cost cannot be reduced.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、長寿命化を図れる新たなスローアウェイ式切削工具を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the new throw-away type cutting tool which can attain lifetime improvement by the method different from the past.

本発明者はこの課題を解決すべく鋭意研究した結果、高温となる切れ刃(工具刃先)の近傍に、高熱伝導材を配置することを着想した。この着想を具現化すると共に発展させることによって、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor has conceived of arranging a high thermal conductive material in the vicinity of a cutting edge (tool edge) that becomes high temperature. By realizing and developing this idea, the present invention described below has been completed.

《スローアウェイ式切削工具》
(1)本発明のスローアウェイ式切削工具は、被削材を切削する切れ刃と該切れ刃から後方へ連なるすくい面と該すくい面の後縁から内部後方へ連なる傾斜面とを有する本体と、該すくい面よりも突出することなく該傾斜面に接して配設されると共に該本体よりも熱伝導率が高い高熱伝導体とを備える。
《Throwaway cutting tool》
(1) A throw-away cutting tool of the present invention includes a main body having a cutting edge for cutting a work material, a rake face continuous from the cutting edge to the rear, and an inclined face continuous from the rear edge of the rake face to the inner rear side. And a high thermal conductor which is disposed in contact with the inclined surface without protruding from the rake face and has a higher thermal conductivity than the main body.

(2)本発明のスローアウェイ式切削工具(単に「切削工具」という。)によれば、切削加工時の工具刃先温度を低減でき、工具寿命の長期化による工具費用の抑制、ひいては切削品の製造(加工)コストの低減を図れる。 (2) According to the throw-away cutting tool of the present invention (simply referred to as “cutting tool”), the tool edge temperature at the time of cutting can be reduced, and the tool cost can be reduced by extending the tool life. Manufacturing (processing) costs can be reduced.

この理由は次のように推察される。切れ刃(「工具刃先」または単に「刃先」ともいう。)で切削された被削材から生じた切屑は、刃先から後方(切屑の流出方向)へ連なるすくい面(少なくとも刃先側領域)に接触しつつ流動する。この切屑は非常に高温であるため、すくい面の刃先近傍が特に相当な高温となる。   The reason is presumed as follows. Chips generated from the work material cut by the cutting edge (also referred to as “tool edge” or simply “blade edge”) contact the rake face (at least the edge area) continuous from the edge to the rear (chip flow direction). While flowing. Since this chip is very hot, the vicinity of the cutting edge of the rake face is particularly high.

本発明の場合、その刃先近傍の後方に高熱伝導体が配設されている。高熱伝導体は、刃先、すくい面等を構成する本体よりも、熱伝導率の高い材質(「高熱伝導材」という。)からなる。このため高熱伝導体は、刃先近傍の本体の高熱を他の領域へ効率的に伝導させて放熱させることができる。この結果、刃先近傍における熱の滞留や蓄熱が回避され、刃先近傍の温度(特に刃先温度)を効果的に低減できる。   In the case of the present invention, a high thermal conductor is disposed behind the vicinity of the blade edge. The high thermal conductor is made of a material having a higher thermal conductivity (referred to as “high thermal conductive material”) than the main body constituting the cutting edge, the rake face and the like. For this reason, the high heat conductor can efficiently conduct the high heat of the main body in the vicinity of the blade edge to other regions to dissipate heat. As a result, heat accumulation and heat storage in the vicinity of the cutting edge are avoided, and the temperature in the vicinity of the cutting edge (particularly the cutting edge temperature) can be effectively reduced.

ちなみに、本発明に係る高熱伝導体は、本体のすくい面よりも突出していないため、切屑の流れを妨げず、高温な切屑とも殆ど直接的には接触しない。このため本発明の高熱伝導体は、高温な切屑からの入熱が少なく、本体の刃先近傍からの入熱を外部へ効率的に伝導して、刃先近傍を効率的に冷却し得る。   Incidentally, since the high thermal conductor according to the present invention does not protrude from the rake face of the main body, it does not hinder the flow of chips, and hardly contacts any hot chips. For this reason, the high thermal conductor of the present invention has little heat input from high-temperature chips, and can efficiently conduct heat input from the vicinity of the cutting edge of the main body to the outside, thereby efficiently cooling the vicinity of the cutting edge.

なお、上述した作用効果は、クーラントの供給の有無と関係がないため、本発明の切削工具は、ウエット環境下で用いられても、ドライ環境下で用いられてもよい。   In addition, since the effect mentioned above has nothing to do with the presence or absence of supply of coolant, the cutting tool of the present invention may be used in a wet environment or a dry environment.

《加工方法》
本発明は、上述した切削工具としてのみならず、上述した切削工具を用いて被削材を切削することを特徴とする加工方法としても把握できる。本発明の加工方法は、種々の加工に有効であり、例えば、旋削加工のように、一つの切削工具と被削材または切屑と連続的に接触するような連続加工でも良いし、フライス加工のように、一つの切削工具と被削材または切屑が断続的に接触するような断続加工でも良い。なお、本発明は、上述した切削工具を用いて被削材を切削した切削品としても把握できる。
《Processing method》
The present invention can be grasped not only as the cutting tool described above but also as a processing method characterized by cutting a work material using the cutting tool described above. The processing method of the present invention is effective for various types of processing. For example, continuous processing such as turning, in which a single cutting tool and a work material or chips are continuously in contact with each other, or milling may be used. In this way, an intermittent process in which one cutting tool and a work material or chips are in intermittent contact may be used. In addition, this invention can be grasped | ascertained also as a cut product which cut the work material using the cutting tool mentioned above.

《その他》
(1)本明細書では、説明の便宜上、刃先近傍における切屑の流出方向(または刃先稜線に対して略直角方向)に沿って、上流側を「前」(前側、前方等)といい、下流側を「後」(後側、後方等)という。また、便宜上、すくい面から切削工具の内部に向かう方向(またはすくい面を境としてすくい角が増大する方向)を下方、その反対方向(またはすくい面を境としてすくい角が減少する方向)を上方ともいう。
<Others>
(1) In this specification, for convenience of explanation, the upstream side is referred to as “front” (front side, front side, etc.) along the outflow direction of chips in the vicinity of the blade edge (or a direction substantially perpendicular to the edge line of the blade edge), and downstream. The side is called “rear” (rear side, rear side, etc.). For convenience, the direction from the rake face to the inside of the cutting tool (or the direction in which the rake angle increases with the rake face as a boundary) is downward, and the opposite direction (or the direction in which the rake angle decreases with the rake face as a boundary) is upward. Also called.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

本発明の一形態である切削加工により、被削材を切削加工する様子を示す模式図である。It is a schematic diagram which shows a mode that a workpiece is cut by the cutting which is one form of this invention. 本体が略三角環状である切削工具を示す模式図である。It is a schematic diagram which shows the cutting tool whose main body is a substantially triangular ring. 本体が略三角状である切削工具を示す模式図である。It is a schematic diagram which shows the cutting tool whose main body is substantially triangular shape. 本体がC字状である切削工具を示す模式図である。It is a schematic diagram which shows the cutting tool whose main body is C-shaped. 本体が略方環状である切削工具を示す模式図である。It is a schematic diagram which shows the cutting tool whose main body is a substantially rectangular ring. 第1実施例でシミュレーションに供したチップモデルを示す模式図である。It is a schematic diagram which shows the chip model with which it used for simulation in 1st Example. その各モデルに係る工具刃先温度を示す棒グラフである。It is a bar graph which shows the tool edge temperature concerning each model. 第2実施例でシミュレーションに供したチップモデルを示す模式図である。It is a schematic diagram which shows the chip model used for the simulation in 2nd Example. その各モデルに係る工具刃先温度を示すグラフである。It is a graph which shows the tool cutting edge temperature which concerns on each model.

本明細書で説明する内容は、切削工具のみならず、それを用いた加工方法(製造方法)にも該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一以上の構成要素を付加し得る。方法に関する構成要素は、物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The contents described in this specification can be applied not only to a cutting tool but also to a processing method (manufacturing method) using the cutting tool. One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. A component relating to a method can also be a component relating to an object. Which embodiment is the best depends on the target, required performance, and the like.

《切削工具》
本発明の一形態である切削工具により、被削材を切削加工する様子を図1に示した。切削工具は、本体と高熱伝導体とを備え、両者が本体のすくい面後縁から下方へ連なる傾斜面で接している。本形態では、本体のすくい面と高熱伝導体の上面とが面一状になっている。なお、当然であるが、本発明の切削工具も従来の切削工具と同様に、すくい面の他に逃げ面を備え、外周側面、底面、ホルダーまたはシャンク等に固定される固定部(クランプ部)を備える。
"Cutting tools"
A state in which a work material is cut by a cutting tool according to one embodiment of the present invention is shown in FIG. The cutting tool includes a main body and a high thermal conductor, and both are in contact with each other at an inclined surface that continues downward from the rear edge of the rake face of the main body. In this embodiment, the rake face of the main body and the upper surface of the high thermal conductor are flush with each other. As a matter of course, the cutting tool of the present invention also has a relief surface in addition to the rake face, and is fixed to the outer peripheral side surface, the bottom surface, a holder, a shank or the like as in the conventional cutting tool. Is provided.

本発明の切削工具はスローアウェイ式であり、例えば、図2A〜図2Dに示すようなチップからなる。図2A〜図2Cは略三角状のチップであり、図2Dは略方形状のチップである。図2Aと図2Dは本体が連続した環状となっている場合であり、図2Bは本体が三角形の一つの頂点側(先端側)に設けられた略半円状となっている場合であり、図2Cは本体がその先端側に設けられた略C字状となっている場合である。図4Dには、環状の本体と円盤状の高熱伝導体とからなり、クーラントが流通できる穴(空隙)を四隅部分に有するチップを例示したが、このような穴はなくてもよい。なお、各図には、それぞれ刃先稜線に垂直な切断面から観た要部形状も併せて示した。   The cutting tool of the present invention is a throw-away type, and includes, for example, chips as shown in FIGS. 2A to 2D. 2A to 2C are substantially triangular chips, and FIG. 2D is a substantially square chip. 2A and 2D are cases where the main body has a continuous annular shape, and FIG. 2B is a case where the main body has a substantially semicircular shape provided on one apex side (tip side) of the triangle, FIG. 2C shows a case where the main body is substantially C-shaped provided on the tip side. Although FIG. 4D illustrates a chip that includes a ring-shaped main body and a disk-shaped high thermal conductor and has holes (voids) through which coolant can flow at four corners, such a hole may not be provided. In addition, each figure also showed the principal part shape seen from the cut surface perpendicular | vertical to a blade edge ridgeline, respectively.

《本体と高熱伝導体》
(1)材質
本体は、被削材に応じて、その切削加工に適した強度、剛性、耐熱性等を有する材質(工具材)からなる。例えば、超硬合金、高速度鋼、サーメット、セラミックス、CBN(Cubic boron nitride/立方晶窒化ホウ素)、ダイヤモンド等からなる。
<Main body and high thermal conductor>
(1) Material The main body is made of a material (tool material) having strength, rigidity, heat resistance and the like suitable for the cutting process according to the work material. For example, it is made of cemented carbide, high speed steel, cermet, ceramics, CBN (Cubic boron nitride), diamond or the like.

高熱伝導体の材質(高熱伝導材)は、本体に応じて適切に選択されると好ましい。特に、高熱伝導体も高温となることから、高熱伝導材は、工具材よりも熱伝導率が高いのみならず、融点や高温強度等に優れるものが好ましい。例えば、銅または銅合金、アルミニウムまたはアルミニウム合金、銀または銀合金、炭素繊維複合材料等が好ましい。   It is preferable that the material of the high thermal conductor (high thermal conductive material) is appropriately selected according to the main body. In particular, since the high thermal conductor also has a high temperature, it is preferable that the high thermal conductive material not only has a higher thermal conductivity than the tool material but also has an excellent melting point, high temperature strength, and the like. For example, copper or copper alloy, aluminum or aluminum alloy, silver or silver alloy, carbon fiber composite material and the like are preferable.

高熱伝導材は、本体の熱伝導率(Kt)に対する高熱伝導体の熱伝導率(Kh)の比である熱伝導比(Kh/Kt)が4〜20、5〜15さらには6〜10となるように選択されると好ましい。高熱伝導材を適切に選択することにより、高熱伝導体を設けない場合よりも刃先温度を、例えば、50〜200℃程度低減できる。   The heat conduction ratio (Kh / Kt), which is the ratio of the heat conductivity (Kh) of the high heat conductor to the heat conductivity (Kt) of the main body, is 4 to 20, 5 to 15, or 6 to 10 It is preferable that the selection is made. By appropriately selecting the high thermal conductive material, the blade edge temperature can be reduced by, for example, about 50 to 200 ° C., compared to the case where no high thermal conductor is provided.

(2)体積
本体の刃先近傍の熱を高熱伝導体へ効率的に誘導し、高熱伝導体を介して外部へ放出させるために、高熱伝導体は所定値以上の体積や熱容量を有すると好ましい。例えば、本体の体積(Vt)と高熱伝導体の体積(Vh)との合計に対する高熱伝導体の体積の割合である体積率(Vh/Vt+Vh)は、40〜80%、45〜70%さらには50〜60%であると好ましい。なお、体積率の上限値は高いほど好ましいが、切削工具(特に本体)の機能確保等のため、自ずと制限され得る。
(2) Volume In order to efficiently induce the heat in the vicinity of the blade edge of the main body to the high heat conductor and release it to the outside through the high heat conductor, the high heat conductor preferably has a volume or heat capacity equal to or greater than a predetermined value. For example, the volume ratio (Vh / Vt + Vh), which is the ratio of the volume of the high thermal conductor to the sum of the volume of the main body (Vt) and the volume of the high thermal conductor (Vh), is 40-80%, 45-70%, It is preferable that it is 50 to 60%. In addition, although the upper limit of a volume ratio is so preferable that it is high, in order to ensure the function of a cutting tool (especially main body) etc., it may restrict | limit naturally.

(3)補足
高熱伝導体は、材質または形状が異なる複数部分(部材)からなってもよい。また、高熱伝導体の熱伝導率は、刃先側から変化してもよい。この場合、刃先側ほど熱伝導率を高くすると好ましい。
(3) Supplement The high thermal conductor may be composed of a plurality of parts (members) having different materials or shapes. Further, the thermal conductivity of the high thermal conductor may vary from the blade edge side. In this case, it is preferable to increase the thermal conductivity toward the blade edge side.

本体と高熱伝導体は、両者が接触する傾斜面で接着されていると、切削工具の取扱いが容易となり好ましい。接着剤には熱伝導率や熱伝達率に優れるものを選択するとよい。   It is preferable that the main body and the high thermal conductor are bonded to each other by an inclined surface in contact with each other because handling of the cutting tool is facilitated. It is preferable to select an adhesive having excellent thermal conductivity and heat transfer coefficient.

切削工具は、高熱伝導体の後方側等に穴(トンネル)や溝等を有してもよい。穴や溝等を利用して切屑を外部へ誘導したり、クーラントを刃先側へ誘導したりできる。   The cutting tool may have a hole (tunnel), a groove, or the like on the rear side or the like of the high thermal conductor. Chips can be guided to the outside using holes, grooves, etc., and coolant can be guided to the cutting edge side.

切れ刃(工具刃先)は、直線状でも、曲線状(連続した環状を含む。)でもよい。本体と高熱伝導体が接する傾斜面も、平面、曲面、または波面等でもよい。   The cutting edge (tool edge) may be linear or curved (including a continuous ring shape). The inclined surface where the main body and the high thermal conductor are in contact with each other may be a flat surface, a curved surface, a wave surface, or the like.

高熱伝導体は、少なくとも、本体の刃先近傍(特に刃先の後方にあるすくい面付近)にあればよく、必ずしも、本体のすくい面から底面まで存在している必要はない。また、高熱伝導体は、表面に微細な凹凸模様等が設けられて、その表面積が増大していると好ましい。これにより加工雰囲気に暴露される表面積が増大し、高熱伝導体からの放熱性が高まる。   The high thermal conductor may be at least near the cutting edge of the main body (particularly near the rake face behind the cutting edge), and does not necessarily have to exist from the rake face to the bottom face of the main body. The high thermal conductor is preferably provided with a fine uneven pattern on the surface and its surface area is increased. This increases the surface area exposed to the processing atmosphere and increases the heat dissipation from the high thermal conductor.

切削工具のシャンクやホルダーへの取付けは、本体および高熱伝導体とは別に設けた固定部でなされてもよいし、高熱伝導体が固定部を兼ね備えてもよい。後者の場合、高温の切屑からの受熱は、本体の刃先近傍から高熱伝導体を通じてシャンクやホルダー等へ効率的に放熱され、また切削工具の簡素化を図れる。なお、切削工具の固定(クランプ)は、切削工具の上面または溝を押さえたり、切削工具に設けた穴にネジまたはピンを挿入等することにより行える。   The cutting tool may be attached to the shank or the holder by a fixing part provided separately from the main body and the high thermal conductor, or the high thermal conductor may also serve as the fixing part. In the latter case, the heat received from the high-temperature chips is efficiently radiated from the vicinity of the cutting edge of the main body to the shank, the holder, etc. through the high thermal conductor, and the cutting tool can be simplified. The cutting tool can be fixed (clamped) by pressing the upper surface or groove of the cutting tool or inserting a screw or a pin into a hole provided in the cutting tool.

切削工具自体が回転する場合、刃先稜線に垂直な面内で回転軸方向や径方向へ延在する高熱伝導体を、少なくとも一部(一箇所)に設けると好ましい。これにより、旋削加工のように切削工具自体が固定されている場合に限らず、切削工具自体が回転する場合でも刃先温度の低減を図れる。   When the cutting tool itself rotates, it is preferable to provide at least a part (one place) of a high thermal conductor that extends in the direction of the rotation axis or the radial direction in a plane perpendicular to the edge line of the cutting edge. Thus, the cutting edge temperature can be reduced not only when the cutting tool itself is fixed as in turning, but also when the cutting tool itself rotates.

本発明の切削工具は、クーラントが供給されるウエット環境下で使用されても、クーラントが供給されないドライ環境下で使用されてもよい。なお、本明細書でいうクーラント(冷却媒体)は、液体に限らず、エアーや特定ガス(不活性ガス等)などの気体でもよい。クーラントは、切削油(加工油)を兼ねると好ましく、また、水溶性であると取扱や後処理が容易となり好ましい。   The cutting tool of the present invention may be used in a wet environment where coolant is supplied or in a dry environment where coolant is not supplied. Note that the coolant (cooling medium) referred to in the present specification is not limited to a liquid, and may be a gas such as air or a specific gas (such as an inert gas). It is preferable that the coolant also serves as cutting oil (processing oil), and it is preferable that the coolant is water-soluble because handling and post-treatment are easy.

一辺に直線状の切れ刃が設けられたスローアウェイ式切削工具(単に「チップ」ともいう。)で二次元切削加工を行う場合を想定して、以下のような解析と実験を行った。この結果に基づいて本発明をより具体的に説明する。   The following analyzes and experiments were performed assuming a case where two-dimensional cutting is performed with a throw-away cutting tool (also simply referred to as “chip”) provided with a linear cutting edge on one side. Based on these results, the present invention will be described more specifically.

[第1実施例]
(1)モデル
高熱伝導体の有無等による刃先温度の影響を評価するため、図3Aに示す3種類のチップモデルを作成し、それぞれFEM解析によって刃先中央の温度(単に「刃先温度」という。)をシミュレーションした。
[First embodiment]
(1) Model In order to evaluate the influence of the cutting edge temperature due to the presence or absence of a high thermal conductor, etc., three types of tip models shown in FIG. Was simulated.

試料1は、平らなすくい面とそのすくい面の後縁から45°下方へ向かう平面状の傾斜面とを有する工具材からなる本体と、その傾斜面に密接している高熱伝導体とを有する略正三角形状のチップである。試料C1は、高熱伝導体を設けずに全体を工具材(本体)としたチップであり、概形は試料1と同じとした。試料C2は、試料1の本体部分のみとした仮想的なチップである。なお、いずれの場合も、すくい面の先端(刃先稜線)からすくい面の後端(傾斜面の前端縁)までの距離(すくい面長さ)は0.1mmとした。   The sample 1 has a main body made of a tool material having a flat rake face and a flat inclined face directed downward by 45 ° from the rear edge of the rake face, and a high thermal conductor closely in contact with the inclined face. It is a chip having a substantially equilateral triangle shape. Sample C1 is a chip having a tool material (main body) as a whole without providing a high thermal conductor, and has the same general shape as Sample 1. The sample C2 is a virtual chip having only the main body portion of the sample 1. In any case, the distance (rake face length) from the tip of the rake face (edge edge line) to the rear edge of the rake face (front edge of the inclined face) was 0.1 mm.

(2)解析
各試料の刃先温度のシミュレーションには、解析ソフト(Abaqus 6.12/Dassault Systemes製) を用いた。この際、二次元切削を想定して、切屑とすくい面の接触領域は刃先中央の2mm×0.1mmの範囲とし、この接触領域を加工時の切屑からの入熱範囲と仮定した。
(2) Analysis Analysis software (Abaqus 6.12 / Dassault Systemes) was used for the simulation of the blade temperature of each sample. At this time, assuming two-dimensional cutting, the contact area between the chip and the rake face was set to a range of 2 mm × 0.1 mm at the center of the blade edge, and this contact area was assumed to be a heat input range from the chip during machining.

シミュレーションに用いた解析パラメータは次の通りとした。
切屑温度 Tc:1000[℃]
切屑とすくい面間の熱伝達率 Hc:300000[W/(K・m)]
本体の熱伝導率 Kt:42[W/(K・m)]
本体の比熱 Ct:300[J/(kg・K)]
本体の密度 ρt:11700[kg/m
高熱伝導体の熱伝導率 Kh:386[W/(K・m)]
高熱伝導体の比熱 Ch:385[J/(kg・K)]
高熱伝導体の密度 ρh:8960[kg/m
雰囲気の熱伝達率(ウエット)Hw:10000[W/(K・m)]
(ドライ) Hd:13[W/(K・m)]
雰囲気の温度 T:26[℃]
The analysis parameters used in the simulation were as follows.
Chip temperature Tc: 1000 [° C.]
Heat transfer coefficient between chip and rake face Hc: 300000 [W / (K · m 2 )]
Thermal conductivity of main body Kt: 42 [W / (K · m)]
Specific heat of main body Ct: 300 [J / (kg · K)]
Density of body ρt: 11700 [kg / m 3 ]
Thermal conductivity of high thermal conductor Kh: 386 [W / (K · m)]
Specific heat of high thermal conductor Ch: 385 [J / (kg · K)]
Density of high thermal conductor ρh: 8960 [kg / m 3 ]
Atmospheric heat transfer coefficient (wet) Hw: 10000 [W / (K · m 2 )]
(Dry) Hd: 13 [W / (K · m 2 )]
Atmospheric temperature T 0 : 26 [° C.]

シミュレーションは、クーラントを供給しつつ切削加工を行う場合(ウエット環境下)と、クーラントを供給せずに切削加工を行う場合(ドライ環境下)との両方について行った。なお、本体と高熱伝導体との間の熱抵抗はゼロとした。   The simulation was performed both when the cutting process was performed while supplying the coolant (in a wet environment) and when the cutting process was performed without supplying the coolant (in a dry environment). The thermal resistance between the main body and the high thermal conductor was zero.

(3)評価
各試料に係る解析結果を図3Bにまとめて示した。先ず、試料C1と試料C2の比較から、本体部分の体積減少により、刃先温度は50〜100℃上昇することがわかった。この傾向は、ドライ環境でもウエット環境下でも同様であった。
(3) Evaluation The analysis results for each sample are summarized in FIG. 3B. First, it was found from the comparison between the sample C1 and the sample C2 that the cutting edge temperature increased by 50 to 100 ° C. due to the volume reduction of the main body portion. This tendency was the same in both dry and wet environments.

次に、その刃先温度が上昇した試料C2の本体に高熱伝導体を密着させた試料1は、試料C2に対して200〜300℃、試料C1に対しても150〜200℃程度、刃先温度が低下することがわかった。この傾向も、ドライ環境でもウエット環境下でも同様であった。   Next, the sample 1 in which the high thermal conductor is closely attached to the main body of the sample C2 whose blade edge temperature has increased is 200 to 300 ° C. with respect to the sample C2, and the blade edge temperature is about 150 to 200 ° C. with respect to the sample C1. It turns out that it falls. This tendency was the same in both dry and wet environments.

従って、本体を構成している工具材の一部を高熱伝導材で置換することにより、刃先温度が大幅に低減し得ることがわかった。なお、試料1に係る熱伝導比(Kh/Kt)は、386/42≒9.2であった。   Therefore, it has been found that the temperature of the cutting edge can be greatly reduced by replacing a part of the tool material constituting the main body with a high thermal conductive material. The heat conduction ratio (Kh / Kt) according to Sample 1 was 386 / 42≈9.2.

[第2実施例]
(1)モデル
高熱伝導体の形態による刃先温度の影響を評価するため、図4Aに示す3種類のチップモデルを作成し、それぞれFEM解析によって刃先中央の温度(単に「刃先温度」という。)をシミュレーションした。なお、図4Aは、刃先稜線に垂直な面における断面形状を示した。その他の概形は、第1実施例の試料1(図3A参照)に示したチップモデルと基本的に同じとした。
[Second Embodiment]
(1) Model In order to evaluate the influence of the cutting edge temperature depending on the form of the high thermal conductor, three types of tip models shown in FIG. 4A are created, and the temperature at the center of the cutting edge (simply referred to as “cutting edge temperature”) is obtained by FEM analysis. Simulated. In addition, FIG. 4A showed the cross-sectional shape in a surface perpendicular | vertical to a blade edge ridgeline. Other outlines are basically the same as those of the chip model shown in the sample 1 (see FIG. 3A) of the first embodiment.

試料11は、本体の傾斜面(傾斜角θt=45°)に密接している高熱伝導体の上面が、すくい面と面一状態となっている(先端角θh=45°となっている)略正三角形状のチップモデルであり、実質的に試料1と同じである。試料12は、高熱伝導体の上面が本体のすくい面から15°下方へ傾斜している(先端角θh=30°となっている)略正三角形状のチップモデルである。試料13は、高熱伝導体の上面が本体のすくい面から30°下方へ傾斜している(先端角θh=15°となっている)略正三角形状のチップモデルである。従って、試料12および試料13は、高熱伝導体の中央部分がすり鉢状に窪んだ形態となる。   In the sample 11, the upper surface of the high thermal conductor close to the inclined surface of the main body (inclination angle θt = 45 °) is flush with the rake surface (tip angle θh = 45 °). It is a chip model having a substantially equilateral triangle shape and is substantially the same as the sample 1. Sample 12 is a substantially equilateral triangular chip model in which the upper surface of the high thermal conductor is inclined 15 ° downward from the rake face of the main body (tip angle θh = 30 °). Sample 13 is a substantially equilateral triangular chip model in which the upper surface of the high thermal conductor is inclined 30 ° downward from the rake face of the main body (tip angle θh = 15 °). Therefore, the sample 12 and the sample 13 are in a form in which the central portion of the high thermal conductor is recessed in a mortar shape.

(2)解析
各試料の刃先温度を第1実施例の場合と同様にシミュレーションした。但し、高熱伝導体の熱伝導率(Kh)は、42、84、126、252または386[W/(K・m)]のいずれかとして変化させた。加工雰囲気はクーラントが供給されている環境下を想定して、雰囲気の熱伝達率(ウエット)Hw:10000[W/(K・m)]とした。
(2) Analysis The cutting edge temperature of each sample was simulated in the same manner as in the first example. However, the thermal conductivity (Kh) of the high thermal conductor was changed as either 42, 84, 126, 252 or 386 [W / (K · m)]. Assuming the environment in which the coolant is supplied, the processing atmosphere was set to an atmospheric heat transfer coefficient (wet) Hw: 10000 [W / (K · m 2 )].

(3)評価
各試料に係る解析結果を図4Bにまとめて示した。先ず、高熱伝導体の熱伝導率(Kh)が大きくなるほど、いずれの試料でも刃先温度がより低下することがわかった。特に、高熱伝導体の熱伝導率を126[W/(K・m)](熱伝導比3付近)より大きくすることにより、刃先温度を大きく低下させ得ることがわかった。
(3) Evaluation The analysis results for each sample are summarized in FIG. 4B. First, it was found that the temperature of the cutting edge was lower in any sample as the thermal conductivity (Kh) of the high thermal conductor was increased. In particular, it has been found that the cutting edge temperature can be greatly reduced by making the thermal conductivity of the high thermal conductor larger than 126 [W / (K · m)] (in the vicinity of a thermal conductivity ratio of 3).

次に、試料13よりも、試料11および試料12の方が、刃先温度が大きく低下した。この傾向は、上述したように、熱伝導比が3超さらには3.5以上となる範囲で顕著であった。例えば、刃先温度を切屑温度に対して10%以上低減させる場合を想定する。本実施例では切屑温度(Tc)を1000[℃]としているので、刃先温度を100℃以上低減させる必要がある。試料11、試料12の場合なら、熱伝導比を5.5倍以上さらには6倍以上とすることにより、刃先温度をほぼ100℃以上低減させることができる。   Next, the cutting edge temperature of the sample 11 and the sample 12 was significantly lower than that of the sample 13. As described above, this tendency is remarkable in the range where the heat conduction ratio is more than 3 or 3.5 or more. For example, it is assumed that the cutting edge temperature is reduced by 10% or more with respect to the chip temperature. In this embodiment, since the chip temperature (Tc) is 1000 [° C.], it is necessary to reduce the blade edge temperature by 100 ° C. or more. In the case of Sample 11 and Sample 12, the cutting edge temperature can be reduced by almost 100 ° C. or more by setting the heat conduction ratio to 5.5 times or more, further 6 times or more.

ところで、いずれの場合でも(モデル形態や熱伝導率が変化しても)、既述した刃先温度に対して、さらにその10%以下まで温度が低下している位置(領域)は、刃先(稜線)からx方向およびy方向(図4A参照)にそれぞれ2mm後退した位置(領域)であった。   By the way, in any case (even if the model form or the thermal conductivity is changed), the position (region) where the temperature is further reduced to 10% or less with respect to the above-described cutting edge temperature is the cutting edge (ridge line). ) From each other in the x direction and the y direction (see FIG. 4A).

このような領域(x=0〜2mm、y=0〜2mm/刃先:原点)における高熱伝導体の全体積(本体の体積:Vt+高熱伝導体の体積:Vh)に占める割合(Vh/Vt+Vh)を求めると、試料11:50%、試料12:42.3%、試料13:29.7%となる。但し、刃先稜線に垂直な断面形状は、z方向(刃先中央の2mm)に関して一定とした。   Ratio (Vh / Vt + Vh) in the total volume (volume of the main body: Vt + volume of the high thermal conductor: Vh) in such a region (x = 0-2 mm, y = 0-2 mm / cutting edge: origin) Are obtained as follows: Sample 11: 50%, Sample 12: 42.3%, Sample 13: 29.7%. However, the cross-sectional shape perpendicular to the edge of the cutting edge was constant in the z direction (2 mm at the center of the cutting edge).

上述したように試料11と試料12の場合、刃先温度の低減効果が大きいことから、高熱伝導体の体積率は35%以上さらには40%以上であると好ましいといえる。なお、体積率の上限値は、本実施例では50%となるが、本体の傾斜角(θt)を小さくすると高熱伝導体の体積率をさらに上昇させることができる。これにより刃先温度をより低下させ得る。   As described above, in the case of the sample 11 and the sample 12, since the effect of reducing the cutting edge temperature is great, it can be said that the volume ratio of the high thermal conductor is preferably 35% or more and further 40% or more. The upper limit of the volume ratio is 50% in this embodiment, but the volume ratio of the high thermal conductor can be further increased by reducing the inclination angle (θt) of the main body. Thereby, the blade edge temperature can be further reduced.

視点を変えると、高熱伝導体の上面と本体のすくい面の角度差(Δθ=90°−θt−θh)が、25°以下さらには20°以下であると好ましいともいえる。なお、その角度差の下限値は0°(試料11参照)とするとよい。高熱伝導体の上面が本体のすくい面よりも突出していてもよいが、その突出部分は流動する切屑によって摺り切られて、加工後に試料11のような形態に落ち着くからである。   From a different viewpoint, it can be said that the angle difference (Δθ = 90 ° −θt−θh) between the upper surface of the high thermal conductor and the rake face of the main body is preferably 25 ° or less, more preferably 20 ° or less. Note that the lower limit of the angle difference is preferably 0 ° (see Sample 11). This is because the upper surface of the high thermal conductor may protrude from the rake face of the main body, but the protruding portion is scraped off by the flowing chips and settles into a form like the sample 11 after processing.

Claims (4)

被削材を切削する切れ刃と該切れ刃から後方へ連なるすくい面と該すくい面の後縁から内部後方へ連なる傾斜面とを有する本体と、
該すくい面よりも突出することなく該傾斜面に接して配設されると共に該本体よりも熱伝導率が高い高熱伝導体と、
を備えるスローアウェイ式切削工具。
A main body having a cutting edge for cutting the work material, a rake face continuous from the cutting edge to the rear, and an inclined face continuous from the rear edge of the rake face to the inner rear;
A high thermal conductor disposed in contact with the inclined surface without protruding from the rake surface and having a higher thermal conductivity than the main body;
A throw-away cutting tool comprising
前記本体と前記高熱伝導体は、前記傾斜面で接着されている請求項1に記載のスローアウェイ式切削工具。   The throw-away cutting tool according to claim 1, wherein the main body and the high thermal conductor are bonded to each other at the inclined surface. 前記本体の熱伝導率(Kt)に対する前記高熱伝導体の熱伝導率(Kh)の比である熱伝導比(Kh/Kt)は、4〜20である請求項1または2に記載のスローアウェイ式切削工具。   The throwaway according to claim 1 or 2, wherein a heat conduction ratio (Kh / Kt), which is a ratio of a heat conductivity (Kh) of the high heat conductor to a heat conductivity (Kt) of the main body, is 4 to 20. Type cutting tool. 前記本体の体積(Vt)と前記高熱伝導体の体積(Vh)との合計に対する該高熱伝導体の体積の割合である体積率(Vh/Vt+Vh)は、40〜80%である請求項1〜3のいずれかに記載のスローアウェイ式切削工具。   The volume ratio (Vh / Vt + Vh), which is the ratio of the volume of the high thermal conductor to the sum of the volume (Vt) of the main body and the volume (Vh) of the high thermal conductor, is 40 to 80%. 4. The throw-away cutting tool according to any one of 3 above.
JP2017032687A 2017-02-23 2017-02-23 Cutting tools Active JP6880820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017032687A JP6880820B2 (en) 2017-02-23 2017-02-23 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017032687A JP6880820B2 (en) 2017-02-23 2017-02-23 Cutting tools

Publications (2)

Publication Number Publication Date
JP2018134722A true JP2018134722A (en) 2018-08-30
JP6880820B2 JP6880820B2 (en) 2021-06-02

Family

ID=63366370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017032687A Active JP6880820B2 (en) 2017-02-23 2017-02-23 Cutting tools

Country Status (1)

Country Link
JP (1) JP6880820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319532A (en) * 2022-08-19 2022-11-11 山东大学 Self-adaptive active control heat conduction cutting blade, cutter and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111702U (en) * 1979-02-02 1980-08-06
EP0100376A2 (en) * 1982-08-04 1984-02-15 Rockwell International Corporation Metal working tool
JP2010507742A (en) * 2006-10-25 2010-03-11 ティーディーワイ・インダストリーズ・インコーポレーテッド Articles with improved thermal crack resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111702U (en) * 1979-02-02 1980-08-06
EP0100376A2 (en) * 1982-08-04 1984-02-15 Rockwell International Corporation Metal working tool
JPS5942205A (en) * 1982-08-04 1984-03-08 ロツクウエル・インタ−ナシヨナル・コ−ポレ−シヨン Tool for machining metal
JP2010507742A (en) * 2006-10-25 2010-03-11 ティーディーワイ・インダストリーズ・インコーポレーテッド Articles with improved thermal crack resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319532A (en) * 2022-08-19 2022-11-11 山东大学 Self-adaptive active control heat conduction cutting blade, cutter and preparation method
CN115319532B (en) * 2022-08-19 2024-06-04 山东大学 Self-adaptive active control heat conduction cutting blade, cutter and preparation method

Also Published As

Publication number Publication date
JP6880820B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
KR0175177B1 (en) Throwaway tip for milling and milling cutter using this throwaway
EP0100376A2 (en) Metal working tool
JP6122341B2 (en) CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK
JP7049340B2 (en) Anvil with curved walkways for cutting tools
JPWO2015083716A1 (en) Cutting tools
US10478901B2 (en) Cutting insert, cutting tool, and method of manufacturing machined product
CN107030303A (en) Ceramic cutting insert and its manufacture method
CN106573314B (en) Cutting tool and method of making a cutting tool
JP2017189825A (en) Cutting tool
JP2018134722A (en) Cutting tool
CN105216120A (en) A kind of diamond cutter and preparation method thereof, diamond compound tool
JP2017087373A (en) Rotary Cutting Tool
JP6980320B2 (en) Laser machining method of workpiece and manufacturing method of cutting tool
JP2010094766A (en) Boring tool
CN109590496B (en) Tool carrier with recess, cutting insert and method of manufacturing the same
JPH11347807A (en) Cutting tool and cutting method for ductile cutting-resistant material
WO2020162581A1 (en) Cutting insert and cutting tool
JP6335654B2 (en) Fine tool
JPWO2018021335A1 (en) Cutting tool and method of manufacturing cut product
US11890684B2 (en) Anvil with curved passage for cutting tool
CN214867526U (en) Circular arc chip removal face MCD highlight twolip milling cutter
JP7407793B2 (en) drill tool
CN209521114U (en) Cutting tool
JP2563811Y2 (en) Cutting tool with breaker
JPS5850986Y2 (en) Bit for drilling firebrick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150