JP2018134597A - Water quality purification system - Google Patents

Water quality purification system Download PDF

Info

Publication number
JP2018134597A
JP2018134597A JP2017030982A JP2017030982A JP2018134597A JP 2018134597 A JP2018134597 A JP 2018134597A JP 2017030982 A JP2017030982 A JP 2017030982A JP 2017030982 A JP2017030982 A JP 2017030982A JP 2018134597 A JP2018134597 A JP 2018134597A
Authority
JP
Japan
Prior art keywords
water
water purification
basalt
sludge
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017030982A
Other languages
Japanese (ja)
Other versions
JP6977961B2 (en
Inventor
岳人 杉浦
Taketo Sugiura
岳人 杉浦
美智代 杉浦
Michiyo Sugiura
美智代 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seinen Co Ltd
Original Assignee
Seinen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seinen Co Ltd filed Critical Seinen Co Ltd
Priority to JP2017030982A priority Critical patent/JP6977961B2/en
Publication of JP2018134597A publication Critical patent/JP2018134597A/en
Application granted granted Critical
Publication of JP6977961B2 publication Critical patent/JP6977961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water quality purification method which can reduce a quantity of sludge in water to be treated by using microorganisms, a carrier used in the method or a water quality purification apparatus using the method.SOLUTION: A water quality purification method or an apparatus thereof for reducing volume and/or reducing biological sludge in water to be treated by passing the water to be treated through a carrier made of long basalt fiber disposed in a water circulation layer having a chemical treating agent including glutathione reduced form.SELECTED DRAWING: Figure 1

Description

本発明は、微生物を利用して汚泥を減量できる水質浄化方法、その方法に用いる担持体およびその方法を用いる水質浄化装置に関する。   The present invention relates to a water purification method that can reduce sludge using microorganisms, a carrier used in the method, and a water purification device that uses the method.

従来から行われている生物処理を用いた有機物含有廃水処理は、生物量に対して汚泥が増え続けると何れの処理法も汚泥を系外に排出することが必要になる。
具体的には、原水調整槽で被処理水の水量・負荷量を調整し、生物曝気槽へ送り、有機物は生物曝気槽で沈殿槽から移送された返送汚泥と攪拌混合する。返送汚泥と被処理水とを攪拌混合することで、被処理水中の有機物は微生物と同化、吸着および・または異化作用を起し、沈殿槽に導入すると被処理水中の有機物は沈降分離して、上澄水は処理水として排出され、沈降した有機物と微生物とは返送され曝気槽へ送られる。
送られた汚泥の量が、設定された溶存酸素 (DO)量・槽内浮遊生物量(MLSS、活性汚泥浮遊物質:mixed liquor suspended solids、SS(浮遊物質濃度をmg/Lで示したもの)として適切でない場合は、現状では脱水機で脱水処理して産業廃棄物として系外処分される。
また、返送された汚泥を多く保有する目的で接触材(ろ過材)である担体・生物膜を設置してMLSS容積負荷を上げる処理が運用されているが、生物処理法は生物量が増加しないと構築していけないシステムで、生物量に対して汚泥が増え続けると何れの処理法も汚泥を系外に排出することが必要になる。
Conventionally, organic matter-containing wastewater treatment using biological treatment requires that sludge be discharged out of the system when sludge continues to increase relative to the amount of biomass.
Specifically, the amount of water to be treated and the load amount are adjusted in the raw water adjustment tank and sent to the biological aeration tank, and the organic matter is stirred and mixed with the return sludge transferred from the sedimentation tank in the biological aeration tank. By stirring and mixing the returned sludge and the treated water, the organic matter in the treated water is assimilated, adsorbed and / or catabolized with microorganisms, and when introduced into the settling tank, the organic matter in the treated water settles and separates, The supernatant water is discharged as treated water, and the settled organic matter and microorganisms are returned and sent to the aeration tank.
The amount of sludge sent is the amount of dissolved oxygen (DO) and the amount of suspended matter in the tank (MLSS, activated sludge suspended solids: mixed liquor suspended solids, SS (suspended solids concentration in mg / L) If it is not appropriate, it is currently dehydrated with a dehydrator and disposed of as industrial waste.
In addition, for the purpose of retaining a large amount of returned sludge, a carrier / biological membrane that is a contact material (filter material) is installed to increase the MLSS volume load, but the biological treatment method does not increase the biomass. In a system that cannot be constructed, if sludge continues to increase relative to the biomass, any treatment method requires that sludge be discharged out of the system.

特許文献1には、請求項1、3に、「バサルト等の耐熱・不燃性の長繊維材をろ過装置内に充填し、被処理水をろ過装置内に通水する汚水ろ過装置」が記載されている。また、段落[0031]に、「バサルト長繊維は、耐熱温度が高く、不燃性(焼結温度は1000℃以上)で、再生時には強熱処理して汚濁物等の被濾過物を燃焼して減量ないしは除去することができる。」と記載されている。   Patent Document 1 describes, in claims 1 and 3, “a sewage filtration device that fills a filtration device with a heat-resistant and non-combustible long fiber material such as basalt and passes the treated water into the filtration device”. Has been. In paragraph [0031], “Basart long fiber has a high heat resistance, is nonflammable (sintering temperature is 1000 ° C. or higher), and is subjected to strong heat treatment at the time of regeneration to burn off an object to be filtered such as a pollutant to reduce the weight. Or can be removed. "

特許文献2には、請求項1,4に、「水循環路内にバサルト等の接触繊維からなる濾過材を複数個並列垂下させる、湖沼等の閉鎖水域内の水の水浄化システム」が記載されている。また、特許文献2では、段落[0047]に、「貯留堆積した汚泥はバキューム等の回収手段によって回収除去する。」ことが記載されている。   Patent Document 2 describes, in claims 1 and 4, “a water purification system for water in a closed water area such as a lake, in which a plurality of filter media made of contact fibers such as basalt are suspended in parallel in a water circulation path”. ing. In Patent Document 2, paragraph [0047] describes that “the accumulated sludge is collected and removed by a collecting means such as vacuum”.

しかし、特許文献1,2は、バサルト等をろ過材に用いる汚水の水浄化装置を記載しているが、どのような程度の汚水がろ過材によってどの程度浄化できるかについては、全く記載がない。
また、特許文献1は、ろ過材を再生する方法として被濾過物を強熱処理して焼成する方法が記載され、特許文献2では、貯留堆積した汚泥はバキューム等の回収手段によって回収除去する、ことが記載されている。いずれの方法も、ろ過材に堆積した汚泥を別の手段・工程を使って再生、回収除去することが記載され、嫌気性菌、通性嫌気性菌、好気生菌等の微生物を利用して汚泥を減量できる方法は記載されていない。
However, Patent Documents 1 and 2 describe a sewage water purification apparatus using basalt or the like as a filter medium, but there is no description about how much sewage can be purified by the filter medium. .
Further, Patent Document 1 describes a method of firing a material to be filtered by heat treatment as a method for regenerating the filter medium. Patent Document 2 collects and removes accumulated sludge by a collecting means such as vacuum. Is described. Both methods describe that sludge accumulated on the filter material is regenerated, recovered and removed using another means / process, and uses microorganisms such as anaerobic bacteria, facultative anaerobic bacteria, and aerobic bacteria. There is no description on how to reduce sludge.

特開2010−000403号公報JP 2010-000403 A 特開2010−042372号公報Japanese Patent Application Laid-Open No. 2010-042372

本発明の目的は、環境に優しい素材をもちいて、嫌気性菌、通性嫌気性菌、好気生菌等の微生物を利用して汚泥を減量できる水質浄化方法およびその方法を用いる水質浄化装置を提供する。   An object of the present invention is to provide a water purification method capable of reducing sludge using microorganisms such as anaerobic bacteria, facultative anaerobic bacteria, and aerobic bacteria using an environmentally friendly material, and a water quality purification apparatus using the method. I will provide a.

本発明は以下を提供する。
(1)バサルト長繊維担持体および、グルタチオン還元型を含む化学処理剤、を含有する水循環層を有する水質浄化装置。以下、バサルト長繊維からなる坦持体、および変性バサルト長繊維を一部または全部含む担持体を総称してバサルト担持体と記載することがある。
(2)フェライト鉄を含むバサルト長繊維担持体、を含有する水循環層を有する水質浄化装置。
(3)前記化学処理剤が、ヘキサメタリン酸塩と、グルタチオン還元型と、グリセロール脱水素酵素と、酵母溶解酵素と、グリセリンと、ペルオキソ二硫酸塩と、エチレンジアミン四酢酸と、水とを含有する水系組成物である(1)に記載の水質浄化装置。
(4)沈殿槽、返送汚泥設備、および汚泥処理設備からなる群から選択される少なくとも一つが不要である(1)ないし(3)のいずれか1に記載の水質浄化装置。
(5)前記水循環層が、水循環層内の酸化還元電位(ORP)、溶存酸素値(DO)、pHおよび浮遊物量(SS)からなる少なくとも一つの測定値を制御される(1)ないし(4)のいずれか1に記載の水質浄化装置。
(6)前記少なくとも一つの測定値が、前記化学処理剤の定量ポンプを制御して、所定範囲に保持される(5)に記載の水質浄化装置。
(7)グルタチオン還元型を含む化学処理剤を有する水循環層中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水して、被処理水中の生物汚泥を減容および・または減量する、水質浄化方法。
(8)前記被処理水の処理方法の前処理として、水循環層中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水する、(7)に記載の水質浄化方法。
(9)バサルト長繊維が、熱可塑性ポリマーおよびフェライト鉄粉体からなる群から選択される少なくとも一つを含む変性バサルト長繊維である(1)ないし(8)のいずれかに記載の水質浄化装置または水質浄化方法。
(10)水質浄化方法または水質浄化装置に用いられ、水循環層中で微生物を吸着できる坦持体であって、バサルト長繊維が、熱可塑性ポリマーおよびフェライト鉄粉体からなる群から選択される少なくとも一つを有する変性バサルト長繊維担持体。
The present invention provides the following.
(1) A water purification apparatus having a water circulation layer containing a basalt long fiber carrier and a chemical treatment agent including a glutathione reduction type. Hereinafter, a carrier composed of basalt long fibers and a carrier including part or all of modified basalt long fibers may be collectively referred to as a basalt carrier.
(2) A water purification apparatus having a water circulation layer containing a basalt long fiber carrier containing ferrite iron.
(3) An aqueous system in which the chemical treatment agent contains hexametaphosphate, glutathione reduced form, glycerol dehydrogenase, yeast lytic enzyme, glycerin, peroxodisulfate, ethylenediaminetetraacetic acid, and water. The water purification apparatus according to (1), which is a composition.
(4) The water purification apparatus according to any one of (1) to (3), wherein at least one selected from the group consisting of a sedimentation tank, a return sludge facility, and a sludge treatment facility is unnecessary.
(5) The water circulation layer is controlled with at least one measurement value comprising an oxidation-reduction potential (ORP), dissolved oxygen value (DO), pH, and suspended solids (SS) in the water circulation layer (1) to (4 The water purification apparatus according to any one of 1).
(6) The water purification apparatus according to (5), wherein the at least one measured value is maintained in a predetermined range by controlling a metering pump of the chemical treatment agent.
(7) Reduce the volume of biological sludge in the treated water by passing the treated water through a carrier consisting of basalt long fibers arranged in a water circulation layer having a chemical treatment agent containing a glutathione reduced form.・ Water quality purification method to reduce or reduce the weight.
(8) The water purification method according to (7), wherein the water to be treated is passed through a carrier composed of basalt long fibers disposed in the water circulation layer as a pretreatment of the method for treating the water to be treated. .
(9) The water purification apparatus according to any one of (1) to (8), wherein the basalt long fiber is a modified basalt long fiber containing at least one selected from the group consisting of a thermoplastic polymer and ferrite iron powder. Or water purification method.
(10) A carrier used in a water purification method or a water purification device and capable of adsorbing microorganisms in a water circulation layer, wherein the basalt long fiber is at least selected from the group consisting of a thermoplastic polymer and ferrite iron powder A modified basalt long fiber carrier having one.

本発明は、微生物を利用して、被処理水中の汚泥を減量できる水質浄化方法、その方法に用いる担持体およびその方法を用いる水質浄化装置のいずれかを提供する。   The present invention provides a water purification method capable of reducing sludge in water to be treated using microorganisms, a carrier used in the method, and a water purification device using the method.

図1は、本発明の水質浄化装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the water purification apparatus of the present invention. 図2は、実施例3の変性バサルト担持体および特定の化学処理剤による水質浄化方法の稼働後の状況を評価した測定結果を示すグラフである。FIG. 2 is a graph showing measurement results obtained by evaluating the state after operation of the water purification method using the modified basalt carrier and the specific chemical treatment agent of Example 3. 図3は、従来技術の活性汚泥法の水槽での汚泥の浮遊状態(上)と、本発明の水質浄化方法のバサルト担持体に汚泥が吸着した水槽(下)を比較した写真である。FIG. 3 is a photograph comparing the sludge floating state (top) in the water tank of the prior art activated sludge method and the water tank (bottom) in which sludge is adsorbed on the basalt carrier of the water purification method of the present invention. 図4は、従来技術の活性汚泥法のフロック(左)と、本発明の水質浄化方法の生物巣(右)とを比較する写真である。FIG. 4 is a photograph comparing the floc (left) of the activated sludge method of the prior art with the biological nest (right) of the water purification method of the present invention.

本発明の水質浄化装置は、
(1)バサルト長繊維担持体および、グルタチオン還元型を含む化学処理剤、を含有する水循環層を有する水質浄化装置、または
(2)フェライト鉄を含む変性バサルト長繊維担持体、を含有する水循環層を有する水質浄化装置、の二種類の水質浄化装置である。
上記二種類の水質浄化装置を組み合わせて、(3)フェライト鉄を含むバサルト長繊維担持体および、グルタチオン還元型を含む化学処理剤、を含有する水循環層を有する水質浄化装置としてもよい。
本発明の水質浄化方法は、グルタチオン還元型を含む化学処理剤を有する水系循環経路中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水して、被処理水中の生物汚泥を減容および・または減量する、水質浄化方法である。本発明の方法は、限定されないが本発明の水質浄化装置を用いて行うのが好ましい。
The water purification apparatus of the present invention is
A water circulation layer comprising a water purification device having a water circulation layer containing (1) a basalt long fiber carrier and a chemical treatment agent containing a glutathione reduced form, or (2) a modified basalt long fiber carrier containing ferrite iron. These are two types of water purification devices.
A combination of the above two types of water purification devices may be a water quality purification device having a water circulation layer containing (3) a basalt long fiber carrier containing ferrite iron and a chemical treatment agent containing a glutathione reduction type.
In the water purification method of the present invention, water to be treated is passed through a carrier consisting of basalt long fibers disposed in an aqueous circulation path having a chemical treatment agent containing a glutathione-reducing type, A water purification method that reduces and / or reduces biological sludge. Although the method of this invention is not limited, It is preferable to carry out using the water purification apparatus of this invention.

〔本発明の水質浄化方法〕
本発明の水質浄化方法は、生物汚泥処理システムの脱水装置・乾燥・それに伴う凝集剤等が必要ではなく、槽内にバサルト等の長繊維を担持体として敷設して、水槽内の酸化還元電位値(ORP)、溶存酸素値(DO)および浮遊物量 (SS)等の少なくとも一つの測定値をモニターしながらグルタチオン還元型を含む化学処理剤を添加して、増殖した生物汚泥(偏性嫌気性菌・通性嫌気性菌)を、生態学的レドック反応で減容および・または減量する処理法である。
(生物巣の形成)
被処理水は、バサルト長繊維で構成された担持体を設置された反応槽に送られ攪拌装置により混合される。被処理水中の有機物は反応槽内やバサルト長繊維に吸着され細胞***を繰り返し、偏性嫌気性菌に同化されバサルト長繊維表面に吸着して三次元の生物塊(巣)を構築する。その周りに酸素に対する耐性のある通性嫌気性菌、さらにその周りに好気性菌、さらにその周りに原生動物が生息する生物巣が多数形成される。反応槽内の担持体に生物巣が多数形成され、さらに連続的に被処理水が通水される状態で、槽内の浮遊MLSSが減容、減量され、好ましくはゼロになり、処理水として放流できる。
図4に、従来技術の活性汚泥法のフロック(左)と、本発明の水質浄化方法の生物巣(右)とを比較した写真を示す。フロックが巨大化したのが本発明の生物巣であるが、本発明の生物巣は、バサルト担持体を中心に偏性嫌気性菌、通性嫌気性菌および好気性菌が大きな生物巣を形成することが観察できる。図4では、フロックが楕円状に写っていると仮定してその長軸、または短軸の長さは、約110〜180mmであり、本発明方法の生物巣の大きさも同様に断面楕円体であると仮定してその長軸、または短軸の長さは、約100〜220mである。生物巣の大きさはバサルトの長さにより変動する。図4の生物巣はバサルト繊維の長さが160mmを使用した。したがって生物巣の大きさは使用するバサルト長さの50%から150%の長軸または短軸を有する大きさである。
本発明の装置又は方法では、従来の汚泥処理法で必要であった沈殿槽、返送汚泥設備、または汚泥処理設備が不要となる。好ましくはこれらのうち2つまたは3つが不要となる。
この生物巣が形成されることで、通常の活性汚泥処理法のBOD・MLSSに対する負荷を大幅に大きくすることが可能になり、反応槽の有効設置容積が少なくなり削減される。
(脱窒素処理)
バサルト長繊維担持体に形成された生物巣は、無機窒素化合物を異化的に硝酸還元し、脱窒素処理が行なえると考えられる。偏性嫌気性菌により、無機窒素化合物を、硝酸を電子受容体として一酸化窒素、亜酸化窒素、窒素等に変換し、大気へ放出する脱窒処理が可能である。その反応は、以下であると考えられる。
NO3 + e- → NO2
NO2 + e- → NO ↑
NO + e- → N2O ↑
N2O + e- → N2
[Water purification method of the present invention]
The water purification method of the present invention does not require a dewatering device for the biological sludge treatment system, drying, a coagulant associated therewith, etc., and a long fiber such as basalt is laid as a carrier in the tank, and the redox potential in the water tank Biological sludge (obligate anaerobic) grown by adding a chemical treatment containing glutathione-reducing type while monitoring at least one measured value (ORP), dissolved oxygen value (DO), suspended matter amount (SS), etc. This is a treatment method that reduces and / or reduces the volume of fungi and facultative anaerobes) by ecological redock reaction.
(Formation of living nests)
The water to be treated is sent to a reaction vessel provided with a carrier composed of basalt long fibers and mixed by a stirring device. The organic matter in the water to be treated is adsorbed in the reaction tank and basalt long fibers and repeats cell division, assimilated to obligate anaerobic bacteria, and adsorbed on the surface of the basalt long fibers to construct a three-dimensional biological mass (nest). There are many facultative anaerobes that are resistant to oxygen around them, aerobic bacteria around them, and protozoa around them. In the state where many biological nests are formed on the carrier in the reaction tank and the water to be treated is continuously passed through, the suspended MLSS in the tank is reduced and reduced, and preferably becomes zero. Can be released.
FIG. 4 shows a photograph comparing the floc (left) of the activated sludge method of the prior art with the organism nest (right) of the water purification method of the present invention. The organism nest of the present invention has a large floc, but the organism nest of the present invention forms a large nest of obligate anaerobic bacteria, facultative anaerobic bacteria and aerobic bacteria centering on the basalt carrier. Can be observed. In FIG. 4, assuming that the floc is reflected in an ellipse, the major axis or minor axis has a length of about 110 to 180 mm. Assuming that the length of the major axis or minor axis is about 100 to 220 mm . The size of the nest varies depending on the length of the basalt. The organism nest of FIG. 4 used basalt fiber length of 160 mm. Therefore, the size of the organism nest is a size having a major axis or minor axis of 50% to 150% of the basalt length to be used.
The apparatus or method of the present invention eliminates the need for a sedimentation tank, a return sludge facility, or a sludge treatment facility that is necessary in the conventional sludge treatment method. Preferably two or three of these are not required.
By forming this organism nest, it becomes possible to greatly increase the load on the BOD / MLSS of the normal activated sludge treatment method, reducing the effective installation volume of the reaction tank and reducing it.
(Denitrogenation treatment)
It is considered that the biological nest formed on the basalt long fiber carrier can catalyze nitrate reduction of an inorganic nitrogen compound and perform denitrification treatment. By an obligate anaerobic bacterium, an inorganic nitrogen compound can be denitrified by converting nitric acid into nitric oxide, nitrous oxide, nitrogen, etc. using nitric acid as an electron acceptor and releasing it into the atmosphere. The reaction is considered as follows.
NO 3 + e- → NO 2
NO 2 + e- → NO ↑
NO + e- → N 2 O ↑
N 2 O + e- → N 2

(生物巣の維持)
生物巣の嫌気性微生物類が増加し生物巣のバランスが崩れると、偏性嫌気性菌、通性嫌気性菌、さらにその周りに好気性菌が形成する生物巣の維持が困難になる。従来活性汚泥処理法で酸素を供給する酸素法は、長時間曝気処理が必要である。酸化池処理には、生物生態の消長である内生呼吸相を利用して自己消化する方法があるがいずれも膨大な設置容積が必要になり、生物を絡めた処理は必ず生物の増殖が優位でなければ成立しない。
本発明に用いるバサルト等の長繊維担持体も同様である。このため、増殖し続ける生物汚泥を常時モニターするセンサーを水槽に備えることが好ましい。酸化還元電位値(ORP)、溶存酸素値(DO)、pHおよび浮遊物量 (SS)等の少なくとも一つの測定値をモニターしながら好ましくはグルタチオン還元型を含む化学処理剤を添加して生物巣を適切な状態に維持する。グルタチオン還元型を含む化学処理剤を用いないで、フェライト鉄を含むバサルト長繊維担持体を含有する水循環層を有する水質浄化装置を用いる場合は、バサルト長繊維担持体と水循環層との関係を攪拌条件、送液条件を最適化するまたは適切化する方向に制御する。
図3に、従来技術の活性汚泥法の浮遊状態(上)と、本発明の水質浄化方法の水槽(下)を比較した写真を示す。図3から本発明の方法を用いる水槽では生物巣が十分成長し汚泥の減容、減量ができる。従来技術の汚泥の水槽は全体が汚泥で濁っているのに対し、本発明では生物巣以外では汚泥がほとんどなく水層が澄んで見えることが示される。水槽の外寸は300×160×235mmを用いている。図4に、従来技術の活性汚泥法のフロックの構造(左)と、本発明の水質浄化方法の生物巣の構成(右)とを比較した写真を示す。従来技術のフロックでは、偏性嫌気性菌、通性嫌気性菌は見られるが、好気生菌は集まっておらず生物巣が活発化している様子はない。本発明の水質浄化方法では、生物巣ができそれが活発に活動している様子がわかる。
(Maintenance of living nests)
If the anaerobic microorganisms in the organism nest increase and the balance of the organism nest is lost, it becomes difficult to maintain the organism nest formed by obligate anaerobes, facultative anaerobes, and aerobic bacteria around them. Conventional oxygen sludge treatment methods that supply oxygen require long-time aeration treatment. There are methods for self-digestion of the oxidation pond treatment using the endogenous respiration phase, which is the fate of biological ecology, but all of them require a huge installation volume, and the treatment involving the organisms always has an advantage in the growth of the organisms. Otherwise it will not hold.
The same applies to a long fiber carrier such as basalt used in the present invention. For this reason, it is preferable to equip a water tank with the sensor which always monitors the biological sludge which continues growing. While monitoring at least one measured value such as redox potential (ORP), dissolved oxygen (DO), pH and suspended solids (SS), preferably add a chemical treatment containing glutathione reduced form to Maintain proper condition. When using a water purification device that has a water circulation layer that contains a basalt long fiber carrier containing ferritic iron without using a chemical treatment containing glutathione reduced, the relationship between the basalt long fiber carrier and the water circulation layer is agitated. Control in the direction to optimize or optimize the conditions and liquid feeding conditions.
In FIG. 3, the photograph which compared the floating state (top) of the activated sludge method of a prior art and the water tank (bottom) of the water quality purification method of this invention is shown. From FIG. 3, in the water tank using the method of the present invention, the biological nest grows sufficiently, and sludge can be reduced in volume and reduced. The sludge tank of the prior art is entirely muddy with sludge, whereas the present invention shows that there is almost no sludge other than the biological nest and the water layer looks clear. The outer dimensions of the water tank are 300 × 160 × 235 mm. FIG. 4 shows a photograph comparing the floc structure (left) of the activated sludge method of the prior art with the structure of the organism nest (right) of the water purification method of the present invention. In the floc of the prior art, obligate anaerobic bacteria and facultative anaerobic bacteria are seen, but no aerobic bacteria are gathered and there is no appearance that the nest is activated. In the water purification method of the present invention, it can be seen that a living organism nest is formed and is active.

(水循環層の制御)
好ましくは、水循環層において、水槽内の酸化還元電位(ORP)、溶存酸素値(DO)、pHおよび浮遊物量(SS)からなる少なくとも一つの測定値が制御される。制御の方法は限定されず、例えば以下のような方法の一つ以上を用いることができる。
(1)水槽内の酸化還元電位(ORP)、溶存酸素値(DO)、pHまたは浮遊物量(SS)が所定範囲に入るように制御する。または、これらの制御を2つ以上組合わせる。
(2)溶存酸素値(DO)、活性汚泥量(MLSS)、生物学的酸素要求量(BOD)、全窒素量(TN)、全有機炭素(TOC)または浮遊物量(SS)がそれぞれ、または単独で減少する方向に制御する。または所定値になる方向に制御する。または、これらの制御を組合わせる。
(生物汚泥の減容および・または減量の機序)
生物巣を適切な状態に維持して、生物巣内の酸素(O2)に耐性を保有しない偏性嫌気性菌、耐性を保有する通性嫌気性菌は共に、後に説明する変性バサルト長繊維担持体または化学処理剤と処理水中の有機物の反応により供出される活性酸素種のスーパーオキシドアニオンイオン(O2 )が大量に生成され耐性の無い偏性嫌気性菌は細胞内のプロトン(水素)と生態的レドックス反応を行い電子(e-)の伝達が停止して存在が消滅する。また、細胞内に保有されていた炭素が解離された水層中の炭素は、スーパーオキシドアニオンイオン(O2 )により大気に二酸化炭素(CO2)として放出される。酸素(O2)耐性を持っている通性嫌気性菌は表層部に耐性をもつ細胞膜を、イオン体であるスーパーオキシドアニオンイオン(O2 )が水和物にして生態的レドックス反応により生物汚泥が減容・減量される。機序について発明者はこのように考えているが、本発明はこれらの機序に限定されない。
(Control of water circulation layer)
Preferably, in the water circulation layer, at least one measurement value comprising an oxidation-reduction potential (ORP), dissolved oxygen value (DO), pH, and suspended solids (SS) in the water tank is controlled. The control method is not limited, and for example, one or more of the following methods can be used.
(1) Control so that the oxidation-reduction potential (ORP), dissolved oxygen value (DO), pH, or suspended solid amount (SS) in the water tank is within a predetermined range. Alternatively, two or more of these controls are combined.
(2) dissolved oxygen level (DO), activated sludge volume (MLSS), biological oxygen demand (BOD), total nitrogen volume (TN), total organic carbon (TOC) or suspended solid volume (SS), or Control in the direction of decreasing alone. Or it controls to the direction which becomes a predetermined value. Or, these controls are combined.
(Volume reduction and / or reduction mechanism of biological sludge)
Both an obligate anaerobic bacterium that does not have resistance to oxygen (O 2 ) in the organism's nest and a facultative anaerobic bacterium that has resistance are modified basalt long fibers described later. An obligate anaerobic bacterium that produces a large amount of superoxide anion ions (O 2 ) of reactive oxygen species produced by the reaction of the support or the chemical treatment agent with organic substances in the treated water is an intracellular proton (hydrogen ) And an ecological redox reaction, the transmission of electrons (e-) stops and the existence disappears. In addition, carbon in the aqueous layer from which the carbon held in the cells has been dissociated is released as carbon dioxide (CO 2 ) into the atmosphere by superoxide anion ions (O 2 ). A facultative anaerobic bacterium having resistance to oxygen (O 2 ) is formed by biological redox reaction by converting a cell membrane having resistance to the surface layer into a hydrate of superoxide anion ion (O 2 ) which is an ionic form. Sludge volume is reduced and reduced. Although the inventor considers the mechanism in this way, the present invention is not limited to these mechanisms.

〔前処理方法〕
上記の水質浄化方法で必要な場合は、前処理方法として、好ましくは以下の方法を用いることができる。
水系循環経路中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水する方法で、処理時間の限定はないがおよそ1時間から50時間程度通水する。必要な場合は水中ミキサー等で攪拌を行なう。前処理を行うとバサルト長繊維に嫌気性細菌及び通性嫌気性菌が吸着・同化し易くなり、本発明の水質浄化方法の効率が良くなる。前処理方法では従来の汚泥処理法で既設されている曝気槽にバサルト長繊維からなる坦持体を設置して行うことができ、前処理により反応槽内の浮遊MLSS量が低減して沈殿槽へのMLSS負荷を低減することができ、汚泥沈降率(SV)が少なくなり改善され、本発明の水質処理方法の能力が向上して水質浄化能力の増産を実現させることが可能である。
[Pretreatment method]
When the above water purification method is necessary, the following method can be preferably used as the pretreatment method.
Although there is no limitation on the treatment time, the water to be treated is passed through a carrier consisting of basalt long fibers disposed in the water circulation route for about 1 to 50 hours. If necessary, stir with an underwater mixer. When pretreatment is performed, anaerobic bacteria and facultative anaerobic bacteria are easily adsorbed and assimilated on the basalt long fiber, and the efficiency of the water purification method of the present invention is improved. In the pretreatment method, a carrier consisting of basalt long fibers can be installed in the existing aeration tank in the conventional sludge treatment method, and the amount of suspended MLSS in the reaction tank is reduced by the pretreatment. MLSS load can be reduced, the sludge settling rate (SV) can be reduced and improved, and the capacity of the water quality treatment method of the present invention can be improved to achieve increased production of water purification capacity.

(バサルト長繊維)
バサルト長繊維の原料は天然の玄武岩で、玄武岩に含まれている成分は二酸化ケイ素(SiO2)が約50%で絶縁体で誘電体の性質を保有している。また、赤鉄鋼別名ヘムタイト及び酸化鉄(Fe2O3・Fe2O)が約15%含有しているため周辺がマイナスに帯電することにより磁性を示し、バサルト担持体の長繊維に電場が発生して水中に浮遊している生物汚泥(MLSS)やSS分・有機物を吸着できる。バサルト長繊維は、繊維径が極細で、マイクロミクロン(μm)であり、生物消長の対数増殖相の細胞***した微細な偏性嫌気性菌を電荷により吸着させることができる。
バサルト長繊維からなるバサルト担持体は、水循環層中で、バサルト長繊維を房状に吊り下げたり、緩い縄状に吊り下げたり、塊状、網状に設置したりして、偏性嫌気性菌、その周りに酸素に対する耐性のある通性嫌気性菌、さらにその周りに好気性菌、さらにその周りに原生動物が生息する生物巣が形成できるように水層内に設置される。
(Basalt long fiber)
The raw material of basalt long fiber is natural basalt, and the component contained in basalt is about 50% silicon dioxide (SiO 2 ), which is an insulator and possesses dielectric properties. In addition, it contains about 15% red iron steel, also known as hemite and iron oxide (Fe 2 O 3 · Fe 2 O), so it shows magnetism when it is negatively charged, and an electric field is generated in the long fibers of the basalt carrier. It can absorb biological sludge (MLSS), SS components and organic matter floating in water. The basalt long fiber has a very fine fiber diameter and is micromicron (μm), and can adsorb finely divided anaerobic bacteria in a logarithmic growth phase of biodegradation by charge.
The basalt carrier consisting of basalt long fibers is a terrestrial anaerobic bacterium that is suspended in tufts, slack ropes, lumps, or nets in the water circulation layer. It is installed in the water layer so that facultative anaerobic bacteria resistant to oxygen can be formed around it, aerobic bacteria can be formed around it, and nests around which protozoa can inhabit.

(変性バサルト長繊維)
バサルト長繊維は、上記のようにある程度を束ねてそのまま用いることもできる。また、フェライト鉄を含む変性バサルト長繊維担持体として用いることができる。フェライト鉄を含ませる方法は限定されないが、熱可塑性ポリマー樹脂を用いる変性は、樹脂繊維と撚って撚糸にしたり、樹脂と混合したり、樹脂で一部結着したり、樹脂をコーテイングしたりできる。樹脂変性するとバサルト長繊維は、水中で形状維持出来るので好ましい。熱可塑性樹脂はポリプロピレンが例示できるが、限定されない。さらに樹脂表面にポリビニルアルコール(PVA)を用いて、粉体のフェライト鉄(Fe3O4)を混合してもよい。フェライト鉄(Fe3O4)を装填した変性バサルト長繊維を用いた変性バサルト担持体は、被処理水中で電場を強化できるので、本発明の水質浄化方法または水質浄化装置に好ましく用いることができる。ここで、フェライトは酸化鉄を主成分とするセラミックスの総称であり、マグネタイトはFe3O4の特定の化合物をいう。変性バサルト長繊維を含むバサルト坦時体は、一部の長繊維が変性されていてもよいし全部の長繊維が変性されていてもよくいずれも変性バサルト担持体という。
(Modified basalt fiber)
The basalt long fibers can be used as they are after being bundled to some extent as described above. Further, it can be used as a modified basalt long fiber carrier containing ferrite iron. The method of including ferritic iron is not limited, but modification using a thermoplastic polymer resin can be twisted with resin fibers to form a twisted yarn, mixed with resin, partially bound with resin, or coated with resin. it can. When the resin is modified, the basalt long fiber is preferable because the shape can be maintained in water. The thermoplastic resin can be exemplified by polypropylene, but is not limited. Further, polyvinyl alcohol (PVA) may be used on the resin surface to mix powdered ferrite iron (Fe 3 O 4 ). Since the modified basalt carrier using the modified basalt long fiber loaded with ferritic iron (Fe 3 O 4 ) can enhance the electric field in the treated water, it can be preferably used in the water purification method or the water purification apparatus of the present invention. . Here, ferrite is a general term for ceramics mainly composed of iron oxide, and magnetite refers to a specific compound of Fe 3 O 4 . The basalt carrier containing the modified basalt long fibers may be that some of the long fibers may be modified or all of the long fibers may be modified, both of which are called modified basalt carriers.

(本発明に用いるグルタチオン還元型を含む化学処理剤)
本発明に用いるグルタチオン還元型を含む化学処理剤は、好ましくは、ヘキサメタリン酸塩と、グルタチオン還元型と、グリセロール脱水素酵素と、酵母溶解酵素と、グリセリンと、ペルオキソ二硫酸塩と、エチレンジアミン四酢酸と、水とを含有する水系組成物である。さらに好ましくは、特許第5194223号公報の請求項1に記載の「水4000質量部と、ヘキサメタリン酸ナトリウム800〜1600質量部と、グルタチオン還元型0.010〜1.000質量部と、50U/mgのグリセロール脱水素酵素0.001〜0.050質量部に相当するユニット数のグリセロール脱水素酵素とを混合し、さらに5日間以上インキュベートして混合液(A)を調製し、調製した混合液(A)5200質量部と、5000U/gの酵母溶解酵素10〜300質量部に相当するユニット数の酵母溶解酵素と、グリセリン500〜1600質量部とを混合し、さらに3日間以上インキュベートして混合液(B)を調製し、調製した混合液(B)800質量部と、ペルオキソ二硫酸ナトリウム1000〜4000質量部と、エチレンジアミン四酢酸10〜100質量部に相当するモル数のエチレンジアミン四酢酸および/またはその水溶性塩と、前記ペルオキソ二硫酸ナトリウムならびに前記エチレンジアミン四酢酸および/またはその水溶性塩を溶解できる量の水とを混合し、さらに5日間以上インキュベートして混合液(C)を調製し、調製した混合液(C)をそのままで、または水で希釈して得られる化学処理剤」である。この化学処理剤の製造方法および利用方法は、特許第5194223号公報に記載されている。
(Chemical treatment agent containing glutathione reduced form used in the present invention)
The chemical treatment agent containing glutathione reduced form used in the present invention is preferably hexametaphosphate, glutathione reduced form, glycerol dehydrogenase, yeast lytic enzyme, glycerin, peroxodisulfate, and ethylenediaminetetraacetic acid. And an aqueous composition containing water. More preferably, according to claim 1 of Japanese Patent No. 5194223, “4000 parts by weight of water, 800 to 1600 parts by weight of sodium hexametaphosphate, 0.010 to 1.000 parts by weight of glutathione reduced type, and 50 U / mg. A glycerol dehydrogenase having a unit number corresponding to 0.001 to 0.050 parts by mass of glycerol dehydrogenase was mixed, and further incubated for 5 days or more to prepare a mixed solution (A). A) 5200 parts by mass, a yeast lytic enzyme having a unit number corresponding to 10 to 300 parts by mass of 5000 U / g yeast lytic enzyme, and 500 to 1600 parts by mass of glycerin are further mixed and incubated for 3 days or more. (B) was prepared, 800 parts by mass of the prepared mixed liquid (B), and 1000 to 4000 sodium peroxodisulfate. Part, the ethylenediaminetetraacetic acid and / or its water-soluble salt in the number of moles corresponding to 10-100 parts by mass of ethylenediaminetetraacetic acid, and the amount capable of dissolving the sodium peroxodisulfate and the ethylenediaminetetraacetic acid and / or its water-soluble salt Is a chemical treatment agent obtained by mixing with water and further incubating for 5 days or more to prepare a mixed solution (C) and diluting the prepared mixed solution (C) as it is or with water. A method for producing and using this chemical treating agent is described in Japanese Patent No. 5194223.

〔本発明の水質浄化装置〕
本発明の水質浄化装置の一例である図1を用いて具体的に説明する。
生物曝気槽11、反応槽13、および沈殿槽15をこの順に配置し、それぞれの槽にはバサルト担持体10が設置されている。設置方法は限定されないが、バサルト長繊維を房状に吊り下げたり、緩い縄状に吊り下げたり、塊状、網状に設置したりすることが例示できる。生物曝気槽11、反応槽13、および沈殿槽15内には、水中攪拌ミキサー17が必要により設置されて槽内の水循環層を攪拌する。
生物曝気槽11には、被処理水流入ライン4から、被処理水が流入され、生物曝気槽11から反応槽13へは、移送ライン5で被処理水を移送する。反応槽13内へは、化学処理剤注入装置19から適宜グルタチオン還元型を含む化学処理剤が注入され、バサルト担持体と化学処理剤を用いて水質浄化が行なわれる。反応槽13で浄化された被処理水は、移送ライン6で、沈殿槽15へ送られる。必要な場合は沈殿槽15に設置された返送ライン7を使って、沈殿を含む処理水が反応槽13に返送される。沈殿槽15で沈殿と分離された処理水は放流ライン9から放流され取り出される。沈殿槽15の下部の沈殿を含む処理水は、適宜循環ライン8で、生物曝気槽11に戻されて循環処理される。
各処理槽内の適切な位置に、酸化還元電位計(ORP計)21、pH計22、その他溶存酸素計(DO)、浮遊物量計(SS)等が設置され、それらの測定値をモニターしながら循環層で水質浄化を行う。好ましくはそれらの測定値をモニターしながら化学処理剤注入装置19から化学処理剤を添加して水質浄化を制御する。
[Water purification apparatus of the present invention]
It demonstrates concretely using FIG. 1 which is an example of the water purification apparatus of this invention.
The biological aeration tank 11, the reaction tank 13, and the sedimentation tank 15 are arranged in this order, and the basalt carrier 10 is installed in each tank. Although the installation method is not limited, it can be exemplified that the basalt long fibers are suspended in a tuft shape, suspended in a loose rope shape, or installed in a lump shape or a net shape. In the biological aeration tank 11, the reaction tank 13, and the precipitation tank 15, an underwater stirring mixer 17 is installed as necessary to stir the water circulation layer in the tank.
To-be-treated water flows into the biological aeration tank 11 from the to-be-treated water inflow line 4, and the to-be-treated water is transferred from the biological aeration tank 11 to the reaction tank 13 through the transfer line 5. A chemical treatment agent containing a glutathione reduction type is appropriately injected into the reaction tank 13 from the chemical treatment agent injection device 19, and water purification is performed using the basalt carrier and the chemical treatment agent. The treated water purified in the reaction tank 13 is sent to the precipitation tank 15 through the transfer line 6. If necessary, treated water containing the precipitate is returned to the reaction tank 13 using the return line 7 installed in the settling tank 15. The treated water separated from the precipitate in the settling tank 15 is discharged from the discharge line 9 and taken out. The treated water containing the sediment in the lower part of the sedimentation tank 15 is returned to the biological aeration tank 11 through the circulation line 8 as appropriate and is circulated.
An oxidation-reduction potentiometer (ORP meter) 21, a pH meter 22, other dissolved oxygen meters (DO), suspended solids meters (SS), etc. are installed at appropriate positions in each treatment tank, and their measured values are monitored. However, water purification is performed in the circulation layer. Preferably, the chemical treatment agent is added from the chemical treatment agent injection device 19 while monitoring these measured values to control water purification.

(バサルト担持体の攪拌方法)
本発明の水質浄化システム(本発明の装置および方法)は、偏性嫌気性菌を主体に水処理をするため、生態系レドックス反応で菌類の消滅を避ける目的で、攪拌混合はミキサーを使用して流速・攪拌範囲等を回転数で適切に制御することが好ましい。また、ブロアー等の空気(酸素)をバサルト担持体に供給する場合は、振動付与手段として主流を避け副流を生物巣に送気する等の操作条件を選択することが好ましい。直接、生物巣に水流が当たると、不必要に生物巣が消滅する場合がある。本発明のバサルト担持体は、繊維径が10〜25μm、特に10〜15μm極細で吸着性に優れているため攪拌が満たされている水流の揺れや振動により静電動作作用により平衝を保つことにより酵素の生成量を向上させることができると考えている。
これに対して、従来の活性汚泥処理法などで通気攪拌が不十分であると水槽の底部の角などに生物汚泥が堆積し腐敗により大きな塊になり硫化還元細菌の温床になりその下部に炭素から隔離された汚泥が浮上して水質を悪化させる要因になる。
(Agitation method of basalt carrier)
Since the water purification system of the present invention (the apparatus and method of the present invention) performs water treatment mainly on obligate anaerobic bacteria, a mixer is used for stirring and mixing for the purpose of avoiding the disappearance of fungi in the ecosystem redox reaction. Thus, it is preferable to appropriately control the flow rate, the stirring range, and the like by the number of rotations. In addition, when supplying air (oxygen) such as a blower to the basalt carrier, it is preferable to select an operation condition such as avoiding the main flow and supplying the side flow to the organism nest as the vibration applying means. If the water stream directly hits the nest, the nest may disappear unnecessarily. The basalt carrier of the present invention has a fiber diameter of 10 to 25 μm, particularly 10 to 15 μm, and is excellent in adsorptivity, so that it keeps an equilibrium by electrostatic action due to shaking and vibration of a water flow filled with stirring. It is believed that the amount of enzyme produced can be improved.
On the other hand, if aeration and agitation are inadequate with the conventional activated sludge treatment method, biological sludge accumulates at the corners of the bottom of the aquarium and becomes a large mass due to rot, forming a hotbed of sulfidation-reducing bacteria, and carbon below it. The sludge isolated from the surface will rise and cause water quality to deteriorate.

本発明のシステムの使用は、従来行われている通常の生物処理法の余剰汚泥処理において、余剰になる汚泥を処理するために、適切な攪拌装置を組み込んだ水槽設備にバサルト担持体を適宜設置して、余剰の活性汚泥をバサルト担持体に吸着および・または同化させ、特定の化学処理剤を使用してレドックス反応にて生物汚泥の分解を行うことができる。この方法は、従来用いられている水槽等の装置設備をそのまま利用でき、さらに従来必要であった汚泥の脱水装置、それに伴う薬剤、動力費、また、産業廃棄物の処分費用が抑制でき、好ましくは無くなりコスト低減ができる。   The use of the system of the present invention is to appropriately install a basalt carrier in a water tank facility incorporating an appropriate stirring device in order to treat surplus sludge in the conventional surplus sludge treatment of a conventional biological treatment method. Then, surplus activated sludge can be adsorbed and / or assimilated on the basalt support, and biological sludge can be decomposed by a redox reaction using a specific chemical treatment agent. This method can utilize the equipment such as a conventional water tank as it is, and can further reduce the sludge dewatering device, the chemicals associated therewith, the power cost, and the disposal cost of industrial waste. Cost can be reduced.

以下に実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。   EXAMPLES The present invention will be specifically described below using examples, but the present invention is not limited to these examples.

(実施例1)
(グルタチオン還元型を含む化学処理剤を使用せず、フェライト鉄を含む変性バサルト長繊維担持体を含有する水循環層を用いる方法)
食品工場排水処理施設の全嫌気槽汚泥と流入原水混合液を使用して、以下の条件で本発明の水質浄化方法を行った。実験水槽25リットル を用い、攪拌方法 水中ミキサーで、バサルト長繊維30g有するバサルト担持体1(比較例1)を用いた。別に、このバサルト長繊維を水中の形状を維持するためにポリプロピレン樹脂繊維の表面にPVAでフェライト鉄(Fe3O4)を装填して電場を強化して変性バサルト担持体として組み付けた。使用したマグネタイトを含むフェライト鉄は、化学処理剤を使用した常温フェライト法(特許第 5194223号公報の8、18/51頁の記載参照)で硫酸第一鉄(FeSO4・7H2O)と苛性ソーダ(48%)を反応させて製造した。出来上がったフェライト化した鉄(Fe3O4)の粒子径は0.3〜1.1μmでマイナス電荷で強磁性体を示した。製造したフェライト鉄を30gのバサルトに2質量%添加した変性バサルト担持体2および4質量%添加した変性バサルト担持体3を表1に示すように用いた。
超微細なフェライト鉄をバサルト長繊維の担持体製造工程でバサルトに含有させ、生物汚泥の吸着性と生物巣の形成状況を観察しながら攪拌、通水条件を制御した。浮遊MLSS、および処理水(TOC・COD・pH)を分析した。結果を表1に示す。
ここで、MLSS(浮遊物質汚泥量の濃度)、COD(化学的酸素要求量, Chemical Oxygen Demand)、TOC(全有機炭素)である。
Example 1
(Method of using a water circulation layer containing a modified basalt long fiber carrier containing ferritic iron without using a chemical treating agent containing a glutathione reduced form)
The water quality purification method of the present invention was performed under the following conditions using all anaerobic tank sludge and inflow raw water mixed solution in a food factory wastewater treatment facility. A basalt support 1 (Comparative Example 1) having 30 g of basalt long fibers was used with an underwater mixer using 25 liters of an experimental water tank. Separately, in order to maintain the shape of the basalt long fiber in water, ferrite iron (Fe 3 O 4 ) was loaded with PVA on the surface of the polypropylene resin fiber to strengthen the electric field and assembled as a modified basalt carrier. Ferrite iron containing magnetite used is ferrous sulfate (FeSO4 · 7H 2 O) and caustic soda (using the normal temperature ferrite method using a chemical treating agent (see description on pages 8 and 18 of Patent No. 5194223)) 48%). The finished ferritic iron (Fe 3 O 4 ) has a particle size of 0.3-1.1 μm and shows a ferromagnet with a negative charge. As shown in Table 1, the modified basalt carrier 2 in which 2% by mass of the ferritic iron produced was added to 30 g of basalt and the modified basalt carrier 3 in which 4% by mass was added were used.
Ultrafine ferritic iron was incorporated into the basalt during the production process of the basalt long fiber carrier, and the agitation and water flow conditions were controlled while observing the biological sludge adsorptivity and the formation of biological nests. Airborne MLSS and treated water (TOC / COD / pH) were analyzed. The results are shown in Table 1.
Here, MLSS (concentration of suspended solids sludge amount), COD (chemical oxygen demand), TOC (total organic carbon).

(実施例2)
(グルタチオン還元型を含む化学処理剤を使用せず、フェライト鉄を含む変性バサルト長繊維担持体を含有する水循環層を用いる方法)
化学工場排水処理施設の全嫌気槽汚泥と流入原水混合液を使用して、以下の条件で本発明の水質浄化方法を行った。実験水槽25リットル を用い、攪拌方法 水中ミキサーで、バサルト長繊維40g有するバサルト担持体4(比較例4)を用いた。別に、このバサルト長繊維を水中の形状維持するポリプロピレン樹脂繊維の表面にPVAでフェライト鉄(Fe3O4)を装填して電場を強化した繊維を組み付けた。使用したマグネタイトを含むフェライト鉄は、硫酸第一鉄(FeSO4・7H2O)と苛性ソーダ(48%)を反応させて製造した実施例1で用いたものと同様とした。製造したフェライト鉄を40gのバサルトに2質量%添加した変性バサルト担持体5、4質量%添加した変性バサルト担持体6および5質量%添加した変性バサルト担持体7を用いた。
生物汚泥の吸着性と生物巣の形成状況を観察しながら攪拌、通水条件を制御した。浮遊MLSS、および処理水(TOC・COD・pH)を分析した。結果を表2に示す。
(Example 2)
(Method of using a water circulation layer containing a modified basalt long fiber carrier containing ferritic iron without using a chemical treating agent containing a glutathione reduced form)
The water purification method of the present invention was performed under the following conditions using all the anaerobic tank sludge and the influent raw water mixed solution of the chemical factory wastewater treatment facility. A basalt support 4 (Comparative Example 4) having 40 g of basalt long fibers was used with an underwater mixer using 25 liters of an experimental water tank. Separately, a ferrite resin (Fe 3 O 4 ) was charged with PVA on the surface of a polypropylene resin fiber that maintained the shape of the basalt long fiber in water, and a fiber with an enhanced electric field was assembled. The ferritic iron containing magnetite used was the same as that used in Example 1 produced by reacting ferrous sulfate (FeSO 4 .7H 2 O) with caustic soda (48%). A modified basalt carrier 5 in which 2% by mass of the ferritic iron produced was added to 40 g of basalt, a modified basalt carrier 6 in which 4% by mass was added, and a modified basalt carrier 7 in which 5% by mass was added were used.
Stirring and water flow conditions were controlled while observing the biological sludge adsorptivity and the formation of biological nests. Airborne MLSS and treated water (TOC / COD / pH) were analyzed. The results are shown in Table 2.

(実施例3)
(グルタチオン還元型を含む化学処理剤を使用する方法)
図1に示す設備を有する染色加工工場の既設連続活性汚泥処理による廃水施設の生物曝気槽11に変成バサルト担持体10(超微細なフェライト鉄の含有量は4〜5%である)を敷設し、他の水槽にも同様にバサルト担持体10を敷設しpH・酸化還元電位計(ORP)を設置して特定の化学処理剤の定量ポンプとON/OFF制御(設定値入力)を行い水質および槽内浮遊MLSS値の調査を行った。
攪拌の主動力としてブロワーを使用せず、水中ミキサーによる低酸素運転により嫌気性菌と通性嫌気性菌・好気性菌の三次元の生物巣をバサルト担持体に形成させ、酸素不足時はORP計に連動した化学処理剤Yの量を制御して自動的に酸素(スーパーオキシドイオン)補給を行い、処理水質を確保した。また、廃水の無負荷日を検知して槽内の浮遊MLSS値が設定値より高い(平衡状態が崩れる)場合は、生物巣の吸着汚泥(嫌気性細菌及び通性嫌気性菌)を生態学的レドックス反応で消滅させ、生物巣の吸着保有量を適切状態に制御した。以下に流入原水の水量・水質をおよび変性バサルト担持体設置内容を表3に示す。
(Example 3)
(Method of using chemical treatment agent containing glutathione reduced form)
1 is installed in the biological aeration tank 11 of the wastewater facility by the continuous activated sludge treatment of the dyeing and processing plant having the equipment shown in FIG. 1 (the content of ultrafine ferritic iron is 4-5%). In the same way, basalt carrier 10 is installed in other tanks, and a pH / redox potential meter (ORP) is installed, and a metering pump for specific chemical treatment agents and ON / OFF control (setting value input) are performed to control water quality and The MLSS value in the tank was investigated.
A blower is not used as the main power of stirring, and a three-dimensional organism nest of anaerobic bacteria and facultative anaerobic and aerobic bacteria is formed on the basalt carrier by low oxygen operation with an underwater mixer. The amount of chemical treatment agent Y linked to the meter was controlled to automatically supply oxygen (superoxide ions) to ensure the quality of the treated water. In addition, when the no-load day of wastewater is detected and the suspended MLSS value in the tank is higher than the set value (equilibrium state is lost), the biological sludge (anaerobic bacteria and facultative anaerobes) ecologically It was extinguished by an artificial redox reaction, and the adsorption retention amount of the organism nest was controlled to an appropriate state. Table 3 shows the amount and quality of inflow raw water and the contents of the modified basalt carrier.

使用したバサルト長繊維は13μmの極細繊維である。バサルト長繊維の成分中には、プラスの電荷を持つ成分とマイナスの電荷をもつ成分がありそれらの物質間で揺れる事で、静電気が発生し、電子が移動し帯電が発生、プラスに帯電した部位から順に負に帯電した嫌気性微生物を誘導し、高速的な吸着作用をもたらす。好ましい態様であるこの働きを任意的に保有した強磁性を示すマグネタイト(Fe3O4)を含むフェライト鉄をポリプロピレン繊維に混入させ、水中の形状維持のポリプロピレン繊維に装着し電場と静電気作用を活発化したものが変性バサルト担持体である。また、必要な振動を発生させるために好ましく且つ省エネルギーである水中ミキサーをメイン動力として利用した。 The basalt long fibers used are 13 μm ultrafine fibers. Among the components of the basalt long fiber, there are a component having a positive charge and a component having a negative charge, and by shaking between these substances, static electricity is generated, electrons move and charge is generated, and is charged positively. It induces negatively charged anaerobic microorganisms in order from the site, resulting in a fast adsorption action. Ferrite iron containing magnetite (Fe 3 O 4 ) exhibiting ferromagnetism that optionally possesses this function, which is a preferred mode, is mixed in polypropylene fiber, and is attached to polypropylene fiber that maintains its shape underwater, and actively acts on electric field and electrostatic action. A modified basalt support is obtained. In addition, an underwater mixer that is preferable and energy-saving for generating necessary vibrations was used as the main power.

化学処理剤Yは、特許第 5194223号公報の実施例1で製造したものであり、以下の配合組成である。   The chemical treatment agent Y was produced in Example 1 of Japanese Patent No. 5194223 and has the following composition.

図2に実施例3の稼働後の状況を評価した測定結果をグラフで表示する。COD(mn):mnは、JIS規格のCOD測定法で過マンガン酸を使用した表記である。COD(mn)は、沈殿槽から分離した放流水で測定し、SV30・浮遊MLSSは、図1の最終バサルト設置槽(沈殿槽15)の放流ライン9の手前で採取した試料で測定した値である。ここで、SV(活性汚泥沈殿率:sludge volume)であり一般にSV30が用いられ、30分静置して沈殿する活性汚泥の比率%を示す。
バサルト担持体の汚泥を保有する優劣は、比表面積の差と投入量による。バサルト担持体と化学処理剤とを使用すれば何れの材質においても半永久的に浄化機能が維持される。生物収支から考えて汚泥による浄化機能が閉塞されずに維持できる結果が得られた。バサルト長繊維生物担持体の優れた水質浄化能力と化学処理剤による担持体維持に効果的な結果が得られた。化学処理剤の添加を制御してバサルト担持体に吸着した生物汚泥の平衡状態の変動に対し浮遊MLSS量を把握することによりコントロールが可能であることが判明した。また、稼働開始より11ケ月現在に至るまで系外への余剰生物汚泥の廃棄処分は行われていない。
FIG. 2 is a graph showing the measurement results obtained by evaluating the situation after operation of Example 3. COD (mn): mn is a notation using permanganic acid in the JIS standard COD measurement method. COD (mn) is measured with the discharged water separated from the settling tank, and SV30 / floating MLSS is the value measured with the sample collected before the discharge line 9 of the final basalt installation tank (settling tank 15) in FIG. is there. Here, it is SV (activated sludge sedimentation rate: sludge volume), and generally SV30 is used, and indicates the percentage of activated sludge that settles after standing for 30 minutes.
The superiority or inferiority of the sludge of the basalt carrier depends on the difference in specific surface area and the input amount. If a basalt carrier and a chemical treatment agent are used, the purification function is maintained semi-permanently in any material. The result that the purification function by the sludge can be maintained without being obstructed considering the biological balance. The effective results of water purification ability of basalt long fiber biological support and maintenance of support by chemical treatment agent were obtained. It was found that it was possible to control the amount of suspended MLSS with respect to the fluctuation of the equilibrium state of biological sludge adsorbed on the basalt support by controlling the addition of chemical treatment agent. In addition, no surplus biological sludge has been disposed of outside the system until 11 months from the start of operation.

(実施例4)
(グルタチオン還元型を含む化学処理剤を使用する方法)
〔汚泥減容実験〕
食品加工工場の活性汚泥処理システムの汚泥濃縮槽の濃縮汚泥(MLSS16000mg/L)を使用してバサルト長繊維に吸着・同化させマロックス剤を添加してレドックス反応により汚泥を減容・減量を行った。
実験方法は、10リットル容量のビーカーを使用し、攪拌方法は水中ミキサーを使用した。汚泥を8リットル容量入れ、最初にバサルト長繊維(30g)に吸着・同化するためシーデイングを10時間行った。水温は24℃に保った。
その結果得られた測定値を以下の表1に示す。
ここでTOC(mg/L):全有機炭素量 Total organic carbon、
ORP(mv):酸化還元電位Oxidation-reduction Potential、である。
Example 4
(Method of using chemical treatment agent containing glutathione reduced form)
[Sludge reduction experiment]
Concentrated sludge (MLSS16000mg / L) of sludge concentration tank of activated sludge treatment system of food processing factory was adsorbed and assimilated on basalt long fiber, and added Marox agent to reduce and reduce sludge by redox reaction. .
The experiment method used a 10 liter beaker, and the stirring method used an underwater mixer. 8 liters of sludge was added and seeding was carried out for 10 hours to adsorb and assimilate the basalt long fibers (30 g) first. The water temperature was kept at 24 ° C.
The measured values obtained as a result are shown in Table 1 below.
Where TOC (mg / L): Total organic carbon,
ORP (mv): Oxidation-reduction potential.

上記の方法で得た10時間後の試料を使用して実施例3で用いたと同様の化学処理剤Yを1000mg/lを添加して汚泥量の減容・減量実験を行った。結果を表6に示す。   Using the sample after 10 hours obtained by the above method, 1000 mg / l of the same chemical treatment agent Y as used in Example 3 was added, and sludge volume reduction / reduction experiments were conducted. The results are shown in Table 6.

上記実験に使用したバサルト長繊維をビーカーより取り出し乾燥させ重量を計測した。結果を表7に示す。(なお、使用したバサルト担持体は、フェライト鉄を含んでいない)   The basalt long fiber used in the above experiment was taken out of the beaker and dried, and the weight was measured. The results are shown in Table 7. (The basalt carrier used does not contain ferritic iron)

上記実験結果よりバサルト長繊維による吸着は10時間で約92%、5時間後汚泥減容・減量97.3%(バサルト吸着汚泥分97%)が達成された。
ここで、(16000−1300)/16000≒ 92%、5時間後汚泥減容・減量(16000−430)/16000≒ 97.3%の計算式である。
From the above experimental results, adsorption by basalt long fibers was about 92% in 10 hours, and sludge volume reduction / reduction of 97.3% (basalt adsorption sludge content 97%) was achieved after 5 hours.
Here, (16000-1300) / 16000≈92%, sludge volume reduction / reduction after 5 hours (16000-430) /16000≈97.3%.

本発明の水質浄化方法は、生態学的レドックス反応を利用しているので、従来の活性汚泥法に比べて、曝気槽の容積がコンパクト化でき、電力費用が大幅減になりエネルギー消費が少なくて済み、ミキサーを使用するため騒音がない、返送汚泥、沈殿槽が不要である場合は、薬品、汚泥処分の費用が削減できる等の少なくとも一つの効果があり、産業上有用である。
この理由から、従来の活性汚泥法の運転で問題となってきた、夏場の溶存酸素不足に対処でき、被処理水の負荷変動による溶存酸素不足に対応でき、停電時の酸素補給にも対処できる。また槽内の酸素不足や堆積物の腐敗で発生する硫化水素対策が可能であり、電力費の削減ができ、生物巣の膜や担持体の洗浄を容易にすることもできる等の少なくとも一つの効果があり、被処理水の水質浄化に有用である。
Since the water purification method of the present invention uses an ecological redox reaction, the volume of the aeration tank can be made smaller, the power cost can be greatly reduced, and the energy consumption can be reduced compared to the conventional activated sludge method. If there is no noise because a mixer is used, and there is no need for return sludge and sedimentation tank, there is at least one effect such as reduction in costs for chemicals and sludge disposal, which is industrially useful.
For this reason, it is possible to cope with the shortage of dissolved oxygen in summer, which has been a problem in the operation of the conventional activated sludge method, it is possible to cope with the shortage of dissolved oxygen due to fluctuations in the load of treated water, and it is also possible to cope with oxygen supplementation during power outages . In addition, it is possible to take measures against hydrogen sulfide generated due to oxygen shortage in the tank or decay of deposits, reducing power costs, and facilitating cleaning of biological nest films and carriers. There is an effect, and it is useful for purification of the quality of treated water.

4、被処理水流入ライン 5、6、移送ライン 7、返送ライン
8、循環ライン 9、放流ライン 10、バサルト担持体
11、生物曝気槽 13、反応槽 15、沈殿槽
16、散気管 17、水中攪拌ミキサー 19、化学処理剤注入装置
21、ORP計 22、pH計
4, treated water inflow line 5, 6, transfer line 7, return line 8, circulation line 9, discharge line 10, basalt carrier 11, biological aeration tank 13, reaction tank 15, precipitation tank 16, aeration pipe 17, underwater Stir mixer 19, Chemical treatment agent injection device 21, ORP meter 22, pH meter

Claims (10)

バサルト長繊維担持体および、グルタチオン還元型を含む化学処理剤、を含有する水循環層を有する水質浄化装置。   A water purification apparatus having a water circulation layer containing a basalt long fiber carrier and a chemical treatment agent containing a glutathione reduction type. フェライト鉄を含むバサルト長繊維担持体、を含有する水循環層を有する水質浄化装置。   The water purification apparatus which has a water circulation layer containing the basalt long fiber carrier containing ferritic iron. 前記化学処理剤が、ヘキサメタリン酸塩と、グルタチオン還元型と、グリセロール脱水素酵素と、酵母溶解酵素と、グリセリンと、ペルオキソ二硫酸塩と、エチレンジアミン四酢酸と、水とを含有する水系組成物である請求項1に記載の水質浄化装置。   The chemical treatment agent is an aqueous composition containing hexametaphosphate, glutathione reduced form, glycerol dehydrogenase, yeast lytic enzyme, glycerin, peroxodisulfate, ethylenediaminetetraacetic acid, and water. 2. The water purification apparatus according to claim 1. 沈殿槽、返送汚泥設備、および汚泥処理設備からなる群から選択される少なくとも一つが不要である請求項1または3に記載の水質浄化装置。   The water purification apparatus according to claim 1 or 3, wherein at least one selected from the group consisting of a sedimentation tank, a return sludge facility, and a sludge treatment facility is unnecessary. 前記水循環層が、水循環層内の酸化還元電位(ORP)、溶存酸素値(DO)、pHおよび浮遊物量(SS)からなる少なくとも一つの測定値を制御される請求項1ないし4のいずれか1項に記載の水質浄化装置。   5. The water circulation layer according to claim 1, wherein at least one measurement value comprising an oxidation-reduction potential (ORP), dissolved oxygen value (DO), pH, and suspended solids (SS) in the water circulation layer is controlled. The water purification apparatus according to item. 前記少なくとも一つの測定値が、前記化学処理剤の定量ポンプを制御して、所定範囲に保持される請求項5に記載の水質浄化装置。   The water purification apparatus according to claim 5, wherein the at least one measured value is maintained in a predetermined range by controlling a metering pump of the chemical treatment agent. グルタチオン還元型を含む化学処理剤を有する水循環層中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水して、被処理水中の生物汚泥を減容および・または減量する、水質浄化方法。   Reduce the volume and / or volume of biological sludge in the treated water by passing the treated water through a carrier consisting of basalt long fibers arranged in a water circulation layer with a chemical treatment containing glutathione-reducing type. Water purification method. 前記被処理水の処理方法の前処理として、水循環層中に配設されたバサルト長繊維からなる坦時体に、被処理水を通水する、請求項7に記載の水質浄化方法。   The water purification method according to claim 7, wherein the water to be treated is passed through a carrier composed of basalt long fibers disposed in a water circulation layer as a pretreatment of the method for treating the water to be treated. バサルト長繊維が、熱可塑性ポリマーおよびフェライト鉄粉体からなる群から選択される少なくとも一つを含む変性バサルト長繊維である請求項1ないし8のいずれかに記載の水質浄化装置または水質浄化方法。   9. The water purification device or the water purification method according to claim 1, wherein the basalt long fiber is a modified basalt long fiber containing at least one selected from the group consisting of a thermoplastic polymer and ferrite iron powder. 水質浄化装置または水質浄化方法に用いられ、水循環層中で微生物を吸着できる坦持体であって、バサルト長繊維が、熱可塑性ポリマーおよびフェライト鉄粉体からなる群から選択される少なくとも一つを有する変性バサルト長繊維担持体。   A carrier used in a water purification device or a water purification method and capable of adsorbing microorganisms in a water circulation layer, wherein the basalt long fiber is at least one selected from the group consisting of a thermoplastic polymer and ferrite iron powder. A modified basalt long fiber carrier.
JP2017030982A 2017-02-22 2017-02-22 Water purification system Active JP6977961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030982A JP6977961B2 (en) 2017-02-22 2017-02-22 Water purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030982A JP6977961B2 (en) 2017-02-22 2017-02-22 Water purification system

Publications (2)

Publication Number Publication Date
JP2018134597A true JP2018134597A (en) 2018-08-30
JP6977961B2 JP6977961B2 (en) 2021-12-08

Family

ID=63365038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030982A Active JP6977961B2 (en) 2017-02-22 2017-02-22 Water purification system

Country Status (1)

Country Link
JP (1) JP6977961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095999A1 (en) * 2018-11-09 2020-05-14 株式会社セイネン Water treating agent, method for producing water treating agent, method for treating water of interest using water treating agent, and kit for production of water treating agent
JP7010525B1 (en) 2021-06-14 2022-01-26 日本エコシステム株式会社 Crude oil sludge treatment agent, crude oil sludge treatment method, and crude oil sludge treatment agent kit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621497A (en) * 1985-06-25 1987-01-07 Sumitomo Heavy Ind Ltd Methane fermentation method
WO1993025485A1 (en) * 1992-06-10 1993-12-23 Paques B.V. System and process for purifying waste water which contains nitrogenous compounds
JP2008050214A (en) * 2006-08-25 2008-03-06 Denki Kagaku Kogyo Kk Cement composition and method of repair using it
JP2009050750A (en) * 2007-08-23 2009-03-12 Ihi Corp Fluidized-bed method and facility for treating waste water aerobically
CN102963987A (en) * 2012-12-04 2013-03-13 艾特克控股集团有限公司 Basalt fibre carrier for water treatment
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
JP2016204551A (en) * 2015-04-24 2016-12-08 Dic株式会社 Long fiber reinforced resin pellet, long fiber reinforced resin molded article and manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621497A (en) * 1985-06-25 1987-01-07 Sumitomo Heavy Ind Ltd Methane fermentation method
WO1993025485A1 (en) * 1992-06-10 1993-12-23 Paques B.V. System and process for purifying waste water which contains nitrogenous compounds
JPH07507714A (en) * 1992-06-10 1995-08-31 パキ・ベー・ブイ Purification system and method for wastewater containing nitrogen compounds
JP2008050214A (en) * 2006-08-25 2008-03-06 Denki Kagaku Kogyo Kk Cement composition and method of repair using it
JP2009050750A (en) * 2007-08-23 2009-03-12 Ihi Corp Fluidized-bed method and facility for treating waste water aerobically
JP5194223B1 (en) * 2012-03-05 2013-05-08 株式会社セイネン Chemical treatment agent
CN102963987A (en) * 2012-12-04 2013-03-13 艾特克控股集团有限公司 Basalt fibre carrier for water treatment
JP2016204551A (en) * 2015-04-24 2016-12-08 Dic株式会社 Long fiber reinforced resin pellet, long fiber reinforced resin molded article and manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095999A1 (en) * 2018-11-09 2020-05-14 株式会社セイネン Water treating agent, method for producing water treating agent, method for treating water of interest using water treating agent, and kit for production of water treating agent
JPWO2020095999A1 (en) * 2018-11-09 2021-02-15 株式会社セイネン A water treatment agent, a method for producing a water treatment agent, a method for treating water to be treated using a water treatment agent, and a kit for producing a water treatment agent.
US11186508B2 (en) 2018-11-09 2021-11-30 Seinen Inc. Water treating agent and kit and methods for producing and using
JP7010525B1 (en) 2021-06-14 2022-01-26 日本エコシステム株式会社 Crude oil sludge treatment agent, crude oil sludge treatment method, and crude oil sludge treatment agent kit
EP4105183A1 (en) 2021-06-14 2022-12-21 Japan Ecosystem Co., Ltd. Crude oil sludge treatment agent, crude oil sludge treatment method and crude oil sludge treatment agent kit
JP2022190279A (en) * 2021-06-14 2022-12-26 日本エコシステム株式会社 Treatment agent for crude oil sludge, method for treating crude oil sludge, and treatment agent kit for crude oil sludge
US11618703B2 (en) 2021-06-14 2023-04-04 Japan Ecosystem Co., Ltd. Crude oil sludge treatment agent, crude oil sludge treatment method and crude oil sludge treatment agent kit

Also Published As

Publication number Publication date
JP6977961B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
US10501355B2 (en) Method for treating and recycling organic wastewater and apparatus
CN102276107B (en) Acrylic fiber sewage treatment technology through PHAOB method
CN110697895B (en) Wastewater treatment method and device for simultaneously removing ammonia nitrogen, nitrate nitrogen and phosphate
Heidari et al. Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment
CN103086574A (en) Waste water treatment equipment for processing aquatic product
Yi et al. Effect of salt on anammox process
CN107265764A (en) Landfill leachate treatment is to its in line method up to standard
Qian et al. Advanced treatment of dye wastewater using a novel integrative Fenton-like/MnO2-filled upward flow biological filter bed system equipped with modified ceramsite
CN109626524A (en) A kind of coking wastewater processing system and method comprising electrocatalytic oxidation unit
JP6977961B2 (en) Water purification system
Zhang et al. Effects of Al 3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions
KR101167488B1 (en) Simultaneous eliminating system of phosphorous and nitrogen in wastewater
Yang et al. Effect of electric current intensity on performance of polycaprolactone/FeS2-based mixotrophic biofilm–electrode reactor
CN113735227A (en) Aeration type three-dimensional electro-Fenton fluidized bed
CN110563134B (en) Anaerobic membrane bioreactor and application thereof in sewage treatment
Jiang et al. Performance of a ceramsite-enhanced gravity-driven ceramic membrane (GDCM) for simultaneous manganese ion and ammonia removal
CN108911373A (en) A kind for the treatment of process of dyeing and printing sewage
JP6497763B1 (en) Water purification system
Wang et al. Enhanced phosphorus removal by microbial-collaborating sponge iron
Li et al. Composite carrier enhanced bacterial adhesion and nitrogen removal in partial nitrification/anammox process
Mohammadi et al. Drinking water denitrification with autotrophic denitrifying bacteria in a fluidized bed bioreactor (FBBR)
CN204779236U (en) Coking wastewater's high -efficient low -cost processing system
Han et al. A novel γ-Fe3O4-N-BC combined membrane bioreactor for wastewater treatment: Performance and mechanism
CN210855712U (en) Black and odorous water body treatment system
Liu et al. Environmental Pollution Control

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6977961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350