JP2018125270A - DC power system safety switchgear - Google Patents

DC power system safety switchgear Download PDF

Info

Publication number
JP2018125270A
JP2018125270A JP2017029460A JP2017029460A JP2018125270A JP 2018125270 A JP2018125270 A JP 2018125270A JP 2017029460 A JP2017029460 A JP 2017029460A JP 2017029460 A JP2017029460 A JP 2017029460A JP 2018125270 A JP2018125270 A JP 2018125270A
Authority
JP
Japan
Prior art keywords
contact
switch
mosfet
switchgear
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017029460A
Other languages
Japanese (ja)
Inventor
嶋田 隆一
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017029460A priority Critical patent/JP2018125270A/en
Publication of JP2018125270A publication Critical patent/JP2018125270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase reliability of a non-arc switch with a semiconductor switch and a mechanical switch in parallel used in a DC power system.SOLUTION: In a switch obtained by combining a semiconductor switch and a mechanical switch, the switches are connected in parallel by using two series of mechanical contacts to eliminate problems due to contact failure. Furthermore, a control circuit for turning on and off the semiconductor switch at high speed is added in order to increase withstand current capacity and withstand voltage capacity by connecting the semiconductor switches in series and parallel and to prevent inrush current when the capacitor load is turned on.SELECTED DRAWING: Figure 1

Description

本発明は、直流電力系の安全装置に関し、太陽電池モジュールを多数直列接続した太陽電池ストリングのような高圧定電流電源,および高電圧の2次電池のような電圧源や、電気自動車、スマートハウス、スマートグリッド等の直流電力系の設備に関し、その直流電流を安全に開閉・遮断させることを確実に行うことが可能な開閉装置に関する。  The present invention relates to a DC power system safety device, a high voltage constant current power source such as a solar cell string in which a large number of solar cell modules are connected in series, a voltage source such as a high voltage secondary battery, an electric vehicle, and a smart house. The present invention relates to a DC power system facility such as a smart grid, and relates to a switchgear that can securely open and close the DC current.

本発明は、直流電流の開閉装置に関し、直流電力系統、太陽光発電、電気鉄道、電気自動車、屋内配線等において必要な電流の開閉、接続装置に属し、直流電流を通電中において遮断するにアークを発生すること無く遮断可能になるように半導体スイッチで開閉して、導通損失の低い金属接点スイッチで連続通電するように構成される直流開閉装置に関する。  The present invention relates to a DC current switching device, which belongs to a DC power system, photovoltaic power generation, electric railway, electric vehicle, indoor wiring, etc., which belongs to a current switching and connection device, and is used to cut off a DC current during energization. The present invention relates to a DC switchgear configured to be opened and closed with a semiconductor switch so as to be able to be cut off without generating electric current and to be continuously energized with a metal contact switch with low conduction loss.

近年、半導体スイッチの進歩により、絶縁ゲートを持ったパワー用MOSFETやIGBTなどでは,高電圧・大電流のオン・オフが可能になったが、半導体デバイスはまだ、金属接点に較べれば、通電中の電気抵抗が大きく、発熱が生じ、連続通電では冷却装置が必要である。一方、直流電流の10A程度以上の遮断を金属接点の開極で行うと電流が遮断されずにアーク放電となって電流が連続する。開極時に発生する高温のアークプラズマにより接点金属を溶かし消耗するので、アークを短時間で消滅させなければ電流は遮断できない。例えば、アークを消弧するにはアーク長を磁気によって伸長して、冷却して消弧する方法があるが、電極が消耗して接点の寿命が短くなってしまう。  In recent years, with the advancement of semiconductor switches, power MOSFETs and IGBTs with insulated gates can be turned on and off at high voltages and large currents, but semiconductor devices are still energized compared to metal contacts. The electric resistance is large, heat is generated, and a cooling device is necessary for continuous energization. On the other hand, if the interruption of the direct current of about 10 A or more is performed by opening the metal contact, the electric current is not interrupted but arc discharge occurs and the current continues. Since the contact metal is melted and consumed by the high-temperature arc plasma generated at the time of opening, the current cannot be interrupted unless the arc is extinguished in a short time. For example, in order to extinguish the arc, there is a method in which the arc length is extended by magnetism and the arc is extinguished by cooling, but the electrode is consumed and the contact life is shortened.

近年シリコン・カーバイド系の半導体が実用化されて、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)で数kVの高耐電圧の半導体スイッチが実用化されようとしている。この高耐圧の半導体スイッチを使って、これまで金属接点では困難であったアークなしの高電圧の直流電力系の開閉器が提供できるようになった。しかし、まだまだ、半導体スイッチの通電損は金属接点より大きく、連続通電では半導体スイッチの冷却装置が必要となり、大型になってしまうのが欠点である。そこで、両方の利点を組み合わせて、通電は金属接点で、遮断時のみ半導体スイッチで通電し、そして遮断するハイブリッドな無アーク開閉器、遮断器が望まれている。  In recent years, silicon carbide semiconductors have been put into practical use, and high-withstand-voltage semiconductor switches of several kV are being put into practical use in MOSFETs (Metal Oxide Field Effect Effect Transistors). Using this high-breakdown-voltage semiconductor switch, it has become possible to provide a high-voltage DC power system switch without arc, which has been difficult with metal contacts. However, the energization loss of the semiconductor switch is still larger than that of the metal contact, and the continuous energization requires a cooling device for the semiconductor switch, resulting in a large size. Therefore, by combining both advantages, a hybrid arc-free switch and circuit breaker are desired which are energized with a metal contact and energized with a semiconductor switch only at the time of interruption.

本発明は特許5864006で開示された金属接点と半導体スイッチの並列接続による無アーク開閉器の信頼性を増す改良に関するものである。  The present invention relates to an improvement that increases the reliability of an arc-free switch by parallel connection of a metal contact and a semiconductor switch disclosed in Japanese Patent No. 5864006.

特許5864006号 「直流電力系の安全装置」Patent 5864006 "DC power system safety device" 特願2015−199768 「再起電圧制御装置」Japanese Patent Application No. 2015-199768 “Restart Voltage Control Device” 特願2016−13814 「無アーク開閉装置」Japanese Patent Application No. 2016-13814 “Arc-free switchgear”

先記特許文献1に示された機械接点と半導体スイッチの並列による直流電流の開閉回路は、半導体スイッチを短時間のみ通電するとして、冷却手段が特別には無いので、機械接点の接触不良は即,半導体スイッチの連続通電状態になって、加熱され半導体スイッチは長時間の通電は不可能である。金属接点の接触不良は半導体の連続通電状態になって、半導体スイッチが発熱破壊されるため信頼性が問題になる。  The DC current switching circuit in parallel with the mechanical contact and the semiconductor switch shown in Patent Document 1 assumes that the semiconductor switch is energized only for a short time and has no special cooling means. The semiconductor switch is continuously energized and heated, and the semiconductor switch cannot be energized for a long time. The contact failure of the metal contact becomes a continuous energization state of the semiconductor, and the semiconductor switch is destroyed due to heat generation, and reliability becomes a problem.

機械スイッチの金属接点の接触不良は、接点の酸化被膜や気中のダストを挿んで絶縁されるなどの影響で発生し、接点間に電圧がある程度あれば、それを破壊して通電状態に移ることもあるが、先記特許文献1で開示されているが(図10に引用するが)示された機械接点と半導体スイッチの並列による直流電流の開閉回路は、電圧と電流がほとんど無い状態で閉極するので接触不良の可能性が解決できない可能性がある。  The contact failure of the metal contact of the mechanical switch occurs due to the effect of insulation by inserting the oxide film of the contact or dust in the air, and if there is some voltage between the contacts, it will break and move to the energized state However, although disclosed in the above-mentioned Patent Document 1 (cited in FIG. 10), the direct current switching circuit formed by paralleling the mechanical contact and the semiconductor switch has almost no voltage and current. Since it is closed, the possibility of poor contact may not be solved.

本発明は上記の点に鑑みなされたものであり、その目的は従来のハイブリッドスイッチなどにおける信頼性を低下するゲート駆動電源、タイマー回路など不要で、先記特許文献1に示された機械接点と半導体スイッチの並列で双投スイッチ回路の構成、先記特許文献2に示された再起電圧の制御と開閉サージの抑制、別途高信頼の絶縁電源を用意して半導体ゲートで過電圧・過電流対策とするなどを用いてさらに信頼性を上げる手段を提供することにある。  The present invention has been made in view of the above points, and its purpose is to eliminate the need for a gate drive power supply, a timer circuit, or the like that lowers reliability in a conventional hybrid switch, etc. The structure of the double throw switch circuit in parallel with the semiconductor switch, the control of the regenerative voltage and the suppression of the switching surge shown in the above-mentioned Patent Document 2, and the provision of a separate highly reliable isolated power supply to prevent overvoltage / overcurrent with the semiconductor gate. It is an object to provide a means for further improving reliability by using, for example.

諜題を解決するための手段Means to solve the problem

上記目的を達成するために、本発明に係る、直流電力系の信頼性を増して無アーク開閉させ安全装置とするために、(1)接点を2重化する(2)直列にする(3)その両方を行うことを特徴とする。  In order to achieve the above object, in order to increase the reliability of the DC power system according to the present invention and to make an arc-free switching and to make a safety device, (1) double contacts (2) in series (3 ) It is characterized by doing both.

(1)接点を2重化する:機械接点の接触不良は、偶発的にある確率で起こるものは、例えば接点の接触部にダストが付着して導通しないなどが考えられる。接点不良の確率を例えば1000回に1回、確率p=0.001とすれば、2つの接点を並列に使えば、同時に接触不良になることは考えなくても良く接点不良の確率はpの2乗になる。機械接点の機械が寿命100万回であれば、接点不良事故は100万回に1回となって、接点の機械寿命と同じならば、ほぼ無くすることができると言える。
(2)直列にする:半導体スイッチの動作不良は導通状態と解放状態に陥ることが考えられる。導通状態で止まった場合の対策は直列接続が良い。片方が導通状態になっているので健全な方で、オン・オフすることができる。10A以上の直流遮断は金属接点では困難なので、本発明の無アーク開閉器を2台直列にするのが小型でよい。2極双投スイッチの2極を直列に使用するなどである。
(3)電源と負荷の開閉では、インダクタンス的負荷の場合、遮断時過電圧が発生する、またコンデンサ的負荷の場合、投入時ラッシュ電流が発生するが、半導体スイッチの制御でこれを制御して、さらに半導体スイッチの温度管理、通信機能を介して高度な判断を行う制御回路を持ってさらに信頼性が増すと考えられる。
このように、接点を2重化する、直列にする、その両方を行うことで、さらに電圧電流検出して半導体スイッチの制御を行う回路を付加して信頼度を増した無アークの直流開閉装置を実現する。
(1) Duplicating a contact: If a contact failure of a mechanical contact occurs with a certain probability, for example, it may be considered that dust adheres to the contact portion of the contact and does not conduct. If the probability of contact failure is, for example, once every 1000 times and the probability p = 0.001, if two contacts are used in parallel, there is no need to consider that contact failure occurs at the same time. Becomes a square. If the machine of the mechanical contact has a life of 1 million times, it can be said that the contact failure accident occurs once in 1 million times, and can be almost eliminated if it is the same as the mechanical life of the contact.
(2) In series: It is conceivable that the malfunction of the semiconductor switch falls into a conduction state and a release state. A series connection is good as a countermeasure when stopping in a conductive state. Since one of them is in a conductive state, it can be turned on and off with a healthy one. Since direct current interruption of 10 A or more is difficult with a metal contact, it is sufficient to make two arcless switches of the present invention in series. For example, two poles of a two pole double throw switch are used in series.
(3) In the switching of the power supply and the load, an overvoltage occurs when shutting off in the case of an inductive load, and a rush current is generated in the case of a capacitor load, but this is controlled by the control of the semiconductor switch, Furthermore, it is considered that the reliability is further increased by having a control circuit that performs advanced judgment through the temperature management and communication function of the semiconductor switch.
In this way, the arc-less DC switchgear with increased reliability by adding a circuit for detecting the voltage and current and controlling the semiconductor switch by performing double contact or serial connection. To realize.

発明の効果Effect of the invention

このような構成の直流電流の開閉装置を用いて電気的安全装置にすれば、太陽光発電装置など直流電力系を高い信頼性をもって、安全かつ簡便に接続、解放することが可能となる。接点の接触不良問題は(1)で問題ない。1つの半導体スイッチの導通状態での故障は(2)の2直列化で開閉動作不良にはならないが修理が必要である。交流用途では、金属接点として、2連、4連の双投開閉を行う手動の開閉スイッチや電磁リレー、電磁開閉器があるので、それに本発明の半導体スイッチ回路を付加することで高信頼直流開閉器が実現できる。  If an electrical safety device is formed using a DC current switching device having such a configuration, a DC power system such as a solar power generation device can be connected and released safely and simply with high reliability. There is no problem with the contact failure of (1). A failure in the conduction state of one semiconductor switch does not cause a switching operation failure by the serialization of (2), but repair is necessary. In AC applications, there are manual open / close switches, electromagnetic relays, and electromagnetic switches that perform two- and four-double-throw open / close as metal contacts. Can be realized.

本発明に係る直流電力系の安全開閉装置の第1実施形態を示す回路図である。1 is a circuit diagram showing a first embodiment of a DC power system safety switching device according to the present invention; FIG. 本発明に係る直流電力系の安全開閉装置の第1実施形態に再起電圧の制御機能を付加した回路図である。It is a circuit diagram which added the control function of the regenerative voltage to 1st Embodiment of the safe switching apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の安全開閉装置の第2実施形態を示す回路図である。It is a circuit diagram which shows 2nd Embodiment of the safe switching apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の安全開閉装置の第3実施形態を示す回路図である。It is a circuit diagram which shows 3rd Embodiment of the safety switch apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の安全開閉装置の第4実施形態を示す回路図である。It is a circuit diagram which shows 4th Embodiment of the safe switching apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の安全装開閉置の第5実施形態を示す回路図である。It is a circuit diagram which shows 5th Embodiment of the safety equipment switching device of the DC power type | system | group which concerns on this invention. 本発明に係る直流電力系の安全開閉装置の第6実施形態を示す回路図である。It is a circuit diagram which shows 6th Embodiment of the safe switching apparatus of the DC power type | system | group which concerns on this invention. 本発明に係る第7実施形態の直流電源開閉器の構成図と投入時、遮断時のシーケンスを説明する図である。It is a figure explaining the block diagram of the DC power supply switch of 7th Embodiment which concerns on this invention, and the sequence at the time of closing and interruption | blocking. 特許文献1の双投スイッチによる直流無アーク開閉器の動作説明図である。It is operation | movement explanatory drawing of the direct-current arc-less switch by the double throw switch of patent document 1. FIG.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。
〔第1実施形態:図1〕図1は、本発明に係る直流電力系の安全装置の第1実施形態を示す回路図である。(請求項1)
図1において、参照符号1で示すものは、高圧の直流電力回路において、本開閉器は2線間に挿入する。まず電流が電流方向にa接点で流れているとすると、MOSFETより電気抵抗が小さい場合は、MOSFETには電流がほとんど流れない。双投スイッチがa接点から離れるとするとそのとき、2のMOSFETは高抵抗R1(例えば数100kΩを想定しているが)、でゲートGとドレインDとを接続してあるのでオン状態である。MOSFETのシュレスフォルド電圧Vthは、約3Vであるので、高抵抗R1でドレインと接続するとソース―ドレイン間の電圧はVth程度である。さらに電流によるオンドロップを加えてもドレインーソース間電圧は10V以下である。この電圧ではa接点開極時にアークを発生することなく開極することができ、無アークにて電流は2のMOSFETに転流する。双投スイッチはb接点に移動するが、接触するまでの間はMOSFETに電流が流れ、b接点が接触するとゲート電位がソースに対してゼロにすることで電流を遮断する。これが図9の先行発明文献1の図6、図7に開示されている電流を無アークで開閉できる手動スイッチである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment: FIG. 1] FIG. 1 is a circuit diagram showing a first embodiment of a DC power system safety device according to the present invention. (Claim 1)
In FIG. 1, what is indicated by reference numeral 1 is a high-voltage DC power circuit, and this switch is inserted between two wires. First, assuming that a current flows through the contact point a in the current direction, almost no current flows through the MOSFET when the electrical resistance is smaller than that of the MOSFET. If the double throw switch is separated from the contact a, then the two MOSFETs are in the ON state because the gate G and the drain D are connected by a high resistance R1 (for example, several hundred kΩ is assumed). Since the shresh-fold voltage Vth of the MOSFET is about 3V, the voltage between the source and the drain is about Vth when connected to the drain with the high resistance R1. Furthermore, the drain-source voltage is 10 V or less even when on-drop due to current is applied. This voltage can be opened without generating an arc when the contact a is opened, and the current is commutated to the MOSFET 2 without arc. Although the double throw switch moves to the b contact, a current flows through the MOSFET until the contact is made, and when the b contact comes into contact, the gate potential is made zero with respect to the source to cut off the current. This is a manual switch that can open and close the currents disclosed in FIGS. 6 and 7 of Prior Art Document 1 of FIG. 9 without arcing.

先行発明文献1の安全装置の欠点は、接点の接触不良である。とくにa接点の電流の熱による酸化被膜、b接点での絶縁物の微小個体、ゴミなどの付着によるが考えられる。a接点の接点不良は、MOSFETの連続通電となってやがてMOSFETの高温破壊になり、b接点の接点不良も同様に連続通電となる。ともに安全スイッチとして遮断機能不全から、MOSFETの破壊につながる重大事故である。
図1のように2極双投スイッチのa接点、b接点、コモン電極を並列接続して用いれば、偶発的に発生する接触不良による問題は心配しなくても良いと言える。2極双投スイッチを用いて確実に開極して電流を遮断できる安全スイッチとすることができる。
The drawback of the safety device of Prior Art Document 1 is poor contact of the contacts. In particular, it is conceivable that the oxide film is caused by the heat of the current at the a contact, the minute insulator of the insulator at the b contact, and the adhesion of dust. The contact failure of the a contact results in continuous energization of the MOSFET and eventually causes high-temperature destruction of the MOSFET, and the contact failure of the b contact also becomes continuous energization. Both are serious accidents that lead to destruction of the MOSFET due to failure of the shut-off function as a safety switch.
If the a-contact, b-contact, and common electrode of the double-pole double-throw switch are connected in parallel as shown in FIG. 1, it can be said that there is no need to worry about problems due to accidental contact failure. It is possible to provide a safety switch that can be reliably opened using a two-pole double-throw switch to cut off the current.

図2は先行特許文献2で開示されているミラー積分回路、またはブート・ストラップ回路として知られている回路とし、を付加した実施例1の応用例である。2のMOSFETのゲートは高い増幅度を持つことから、このようなCm−Rgのミラー積分回路を付加して遮断後に発生する再起電圧を数マイクロ秒程度の立ち上がりにして開閉サージを抑えることができる。直流電力系1の電流遮断特性が再起電圧の波形に多くの影響を及ぼすが、MOSFETが数10ナノ秒で遮断すると線路のわずかなインダクタンスで過電圧を発生して問題になる場合がある。その場合、本回路で再起電圧を数マイクロ秒の立ち上がりにして再起電圧の跳ね上がりを抑えることができるが、MOSFETのスイッチング損失が増えるので注意が必要である。本発明の開閉装置と並列にコンデンサと抵抗のサージ吸収回路やバリスタなど過電圧吸収回路で再起電圧のピークをカットすることは有益である。  FIG. 2 shows an application example of the first embodiment to which a Miller integrating circuit disclosed in the prior art document 2 or a circuit known as a boot strap circuit is added. Since the gate of the MOSFET 2 has a high amplification degree, it is possible to suppress a switching surge by adding a Cm-Rg Miller integration circuit as described above and setting the re-emergence voltage generated after the interruption to a rise of about several microseconds. . Although the current interruption characteristic of the DC power system 1 has many influences on the waveform of the regenerated voltage, if the MOSFET is interrupted in several tens of nanoseconds, an overvoltage may be generated due to a slight inductance of the line, which may be a problem. In that case, the reactivation voltage can be raised by several microseconds in this circuit to suppress the rebound voltage jump, but care must be taken because the switching loss of the MOSFET increases. It is beneficial to cut the peak of the regenerative voltage with an overvoltage absorption circuit such as a capacitor and resistance surge absorption circuit or varistor in parallel with the switchgear of the present invention.

〔第2実施形態:図3〕(請求項2)
図3は図1の接点不良事故に対処した安全開閉器を2直列にしたものである。2直列にすることでユニット1とユニット2の2直列は4連の双投スイッチでほぼ同時に開閉される。ここで、ほぼ同時とは、少なくとも同期して開閉されることが重要だが、b接点がオンの間にa接点がオフしなければ良い程度である。
この方式では、ユニットの1または2の片方が故障しても他方が健全であれば遮断は可能である。これはMOSFETの故障は短絡状態になる場合が多いからである。
[Second Embodiment: FIG. 3] (Claim 2)
FIG. 3 is a series of two safety switches that deal with the contact failure accident of FIG. By making two series, the two series of units 1 and 2 are opened and closed almost simultaneously by four double throw switches. Here, “substantially simultaneous” means that it is important to open and close at least synchronously. However, if the a contact is not turned off while the b contact is on, it is sufficient.
In this system, even if one of the units 1 or 2 fails, it can be shut off if the other is healthy. This is because a failure of the MOSFET often results in a short circuit.

〔第3実施形態:図4〕
図4は本発明の実施例3の直流大電流用の装置の回路図である。(請求項3)
実施例3では通電電流に余裕を与えて、過電流の耐量を増す方法を示す。MOSFETを並列駆動するがシュレシュフォルド電圧Vthの温度特性が負特性であるので、電流の分流が暴走する。(熱暴走)これを是正するために分流を助ける必要がある。均質な分流を促進するためにソースに抵抗Rs入れる。この場合、Rsに発生する電圧がゲート電圧に足されるため、ゲート―ソース電圧にフィードバックされるので自動的に分流される。
[Third Embodiment: FIG. 4]
FIG. 4 is a circuit diagram of the apparatus for direct current large current according to the third embodiment of the present invention. (Claim 3)
Example 3 shows a method of increasing the withstand capability of overcurrent by giving a margin to the energization current. Although the MOSFETs are driven in parallel, the shuntfold voltage Vth has a negative temperature characteristic, so the current shunts run away. (Thermal runaway) It is necessary to help divert to correct this. In order to promote a homogeneous shunt, a resistance Rs is introduced into the source. In this case, since the voltage generated at Rs is added to the gate voltage, the voltage is fed back to the gate-source voltage, so that it is automatically shunted.

〔第4実施形態:図5〕
図5は本発明の実施例4の直流高電圧開閉器の構造図である。(請求項4)
実施例4では、MOSFETを直列接続して、高電圧の開閉を安全に確実に行う。また再起電圧の上昇率を制御してインダクタンス電流による過電圧を低減するためのCm−Rgのミラー積分回路7を追加した。これは再起電圧の立ち上げ時間を数マイクロ秒以上と、遅くする効果がある。高電圧の再起電圧に耐える2直列のMOSFETのゲートを4のR1の高抵抗で接続することで同時にオン・オフをすることができる。これはトーテムポール回路の変形である。実施例ではCmは0.005μFでRgは10Ωで電流遮断時間が10マイクロ秒程度になる。オンを早くするにはCmと直列にダイオードを入れるなどしてゲート電圧の立ち上がりを速くするとよい。
[Fourth Embodiment: FIG. 5]
FIG. 5 is a structural diagram of a DC high-voltage switch according to Embodiment 4 of the present invention. (Claim 4)
In the fourth embodiment, MOSFETs are connected in series to perform high-voltage switching safely and reliably. In addition, a Cm-Rg Miller integrating circuit 7 for reducing the overvoltage due to the inductance current by controlling the rate of increase of the regenerative voltage is added. This has the effect of delaying the rise time of the reactivation voltage to several microseconds or more. By connecting the gates of the two series MOSFETs that can withstand a high regenerative voltage with a high resistance of 4 R1, they can be turned on and off at the same time. This is a modification of the totem pole circuit. In the embodiment, Cm is 0.005 μF, Rg is 10Ω, and the current interruption time is about 10 microseconds. In order to speed up the turn-on, it is preferable to increase the rise of the gate voltage by inserting a diode in series with Cm.

〔第5実施形態:図6〕
図6は本発明の実施例5の直流高電圧開閉器の構造図である。(請求項5)
図6は実施例1の回路構成を直流電流双方向にも、さらに交流電流にも適用可能な第5実施形態の回路構成を示す。機械接点a接点の間にダイオード整流器8を接続して直流化してMOSFETが半導体スイッチとして使用される。接点の不良を回避するために2接点を並列に接続するには、4回路の4連双投スイッチ5を必要とする。もちろん、再起電圧の上昇を制御するために必要に応じてミラー積分回路を付加してもよい。4連の双投スイッチでは一動作でオン・オフできるが、連動する機構があれば独立した2つの2連スイッチでこれを代用することもできる。b接点側は弱電流用のスイッチで良いので弱電用の補助接点が最適である。これも2連を並列に用いることで信頼性が増す。
[Fifth Embodiment: FIG. 6]
FIG. 6 is a structural diagram of a DC high-voltage switch according to Embodiment 5 of the present invention. (Claim 5)
FIG. 6 shows a circuit configuration of the fifth embodiment in which the circuit configuration of Example 1 can be applied to both direct current and alternating current. A diode rectifier 8 is connected between the mechanical contacts a and converted into a direct current to use the MOSFET as a semiconductor switch. In order to connect two contacts in parallel in order to avoid contact failure, a four-circuit double double-throw switch 5 is required. Of course, a Miller integrating circuit may be added as necessary to control the rise of the re-emergence voltage. Four double throw switches can be turned on and off with a single operation, but if there is a mechanism that works together, two independent double switches can be used instead. Since the b-contact side may be a weak current switch, an auxiliary contact for weak electricity is optimal. This also increases reliability by using two units in parallel.

〔第6実施形態:図7〕
図7は本発明の実施例6の無アークで開閉する交流・直流用電磁開閉器の構造図である。
(請求項6)
図7は本発明の実施例5を電磁リレーで駆動する実施例を示す。(請求項6)
電磁リレーの不動作による信頼性の低下はあるが、また、リレー駆動電源があるのでMOSFETの駆動用電圧をDC/DC絶縁電源10によって供給するのは良い方法である。この場合、MOSFETのゲートGに、シュレシュフォルド電圧Vthより高い電圧を与えて飽和領域で駆動できればMOSFETの通電損失を低減でき、MOSFETの並列動作が、この場合温度特性が正特性なので、容易に電流容量を増やすことができる。
電磁リレー駆動は先行特許文献3で開示されているが、さらに長寿命の電池や太陽電池、高耐圧のDC/DC絶縁電源などの高信頼性ゲート駆動電源が必要である。
[Sixth Embodiment: FIG. 7]
FIG. 7 is a structural diagram of an AC / DC electromagnetic switch that opens and closes without arcing according to Embodiment 6 of the present invention.
(Claim 6)
FIG. 7 shows an embodiment in which the fifth embodiment of the present invention is driven by an electromagnetic relay. (Claim 6)
Although there is a decrease in reliability due to the inoperability of the electromagnetic relay, it is a good method to supply the MOSFET driving voltage by the DC / DC insulated power supply 10 since there is a relay driving power supply. In this case, if a voltage higher than the threshold voltage Vth can be applied to the gate G of the MOSFET to drive it in the saturation region, the conduction loss of the MOSFET can be reduced, and the parallel operation of the MOSFET is easy because the temperature characteristic is positive in this case. The current capacity can be increased.
Electromagnetic relay driving is disclosed in the prior patent document 3, but further requires a highly reliable gate driving power source such as a long-life battery, a solar cell, and a high withstand voltage DC / DC insulated power source.

〔第7実施形態:図8〕
図8は直流電源と負荷とのあいだに挿入する電源開閉装置として用いた場合の本発明の実施例を示す。(請求項7)
第7実施形態:図8は実施例1のMOSFETをダイオードの下アームの2段構成としたDCダウン回路14を高度な制御装置13によって制御・駆動される、直流電源11と直流負荷12との間に入れる無アーク直流ハイブリッド電源開閉器である。直流負荷12が例えば、大きなコンデンサ負荷である場合、オン時にラッシュ電流が定常の数倍から数十倍流れるので半導体スイッチの過電流対策が必要である。または、インダクタンス負荷である場合、電流遮断で大きな過電圧が発生する。さらに負荷投入時に負荷短絡する場合が多いが、半導体スイッチが過電流で破壊される。これは開閉サージ電圧とラッシュ電流対策を高速なゲート制御で可能にした電源開閉器である。第7実施形態:図8ではMOSFETのゲートをMOSFETのD−S間電圧とソース電流を検出して高速にオン・オフして再起電圧とラッシュ電流を制御するが、これは近年開発が進んでいるSiC(シリコンカーバイド)のMOSFETであれば高速に、マイクロ秒以内での動作が可能である。また外部との通信機能もあれば、開閉器の遠隔操作も可能とするのが制御回路13である。オン・オフのデューティ制御によってD−S間の平均電圧を制御してソフトな投入をする。DCダウン回路14はMOSFETとダイオードからなるダウンコンバータ回路でゲートをオン・オフすることでエネルギーを失うことなく電圧を下げてソフトな電源投入を行う。
[Seventh embodiment: FIG. 8]
FIG. 8 shows an embodiment of the present invention when used as a power switchgear inserted between a DC power supply and a load. (Claim 7)
FIG. 8 shows a DC down circuit 14 having a two-stage configuration of the lower arm of the diode of the MOSFET according to the first embodiment. The DC power supply 11 and the DC load 12 are controlled and driven by an advanced controller 13. It is an arc-free direct current hybrid power switch. When the DC load 12 is, for example, a large capacitor load, the rush current flows several times to several tens of times of the steady state at the time of turning on, so it is necessary to take measures against overcurrent of the semiconductor switch. Or, in the case of an inductance load, a large overvoltage occurs due to current interruption. In addition, when the load is turned on, the load is often short-circuited, but the semiconductor switch is destroyed by overcurrent. This is a power switch that enables switching surge voltage and rush current countermeasures by high-speed gate control. Seventh Embodiment: In FIG. 8, the MOSFET gate and D-S voltage and source current are detected and the MOSFET is turned on and off at high speed to control the re-start voltage and rush current. This has been developed recently. A SiC (silicon carbide) MOSFET can be operated at a high speed within a microsecond. In addition, the control circuit 13 enables remote control of the switch if it has a communication function with the outside. The on-off duty control is used to control the average voltage between D and S, and soft input is performed. The DC down circuit 14 is a down converter circuit composed of a MOSFET and a diode, and by turning on and off the gate, the voltage is lowered without losing energy and soft power-on is performed.

また、制御回路13は、安全対策として電源オフ指令時に、機械接点、半導体スイッチの誤動作による負荷への電圧印加を防ぐため、下段のダイオードをMOSFETにしてゲートをオン状態にするなども良い。双投スイッチの2重化したb接点からの信号、または補助接点のb接点からは、a接点の状態を確実に検出して、駆動機構と同期して半導体スイッチのオン・オフを制御できる。投入、遮断のシーケンスを図8に示す。この電源開閉装置の通信機能については、重複の無いアドレスを付与すれば、遠方から中央制御装置でオン・オフ制御できる。十分な安全対策、誤動作対策が必要なのは当然である。機械接点とその駆動機構も無アークで開閉可能ならば、密閉された空間中での静粛な駆動、または絶縁油中で小型高耐圧な開閉装置が可能である。  In addition, as a safety measure, the control circuit 13 may use a lower diode as a MOSFET to turn on the gate in order to prevent voltage application to the load due to a malfunction of a mechanical contact or a semiconductor switch when a power-off command is issued. The state of the a contact can be reliably detected from the signal from the double contact b of the double throw switch or the b contact of the auxiliary contact, and the on / off of the semiconductor switch can be controlled in synchronization with the drive mechanism. FIG. 8 shows the sequence of turning on and off. About the communication function of this power switchgear, if a non-overlapping address is given, it can be turned on / off from a distance by the central control unit. Naturally, sufficient safety measures and malfunction countermeasures are necessary. If the mechanical contact and its drive mechanism can be opened and closed without arcing, a quiet drive in a sealed space, or a small and high withstand voltage switching device in insulating oil is possible.

安全に係わる電流の開閉装置は他の電子装置より更なる高い信頼性が必要である。本発明は直流電流の開閉に関して、MOSFETと双投スイッチのa接点、b接点を使って、機械接点を開極時、無アークで開閉することが可能である。しかし、接点の偶発的接点不良によって、MOSFETが連続通電状態になることが懸念される。機械接点を2連にして接触不良のないようにできる。また、MOSFETの電流容量を増やすためにMOSFETを並列接続して片方が動作しなくても機能する方法、耐電圧を増やすための直列接続する方法を示した。また、動作状態によって電流方向の変わる直流や交流電流でも適用可能な方法、さらにラッシュ電流制御機能、再起電圧の制御も行い、さらに外部制御装置と通信を行うインテリジェントな電源開閉器を示した。このように半導体スイッチと機械接点のハイブリッド開閉器はアークによる溶融、欠損がないので開閉器の開閉寿命を延ばし、電気的にもノイズのない静粛な駆動機構によって電源開閉器の信頼性を上げることができる。  The safety current switchgear requires higher reliability than other electronic devices. The present invention can open and close a mechanical contact with no arc at the time of opening by using a contact and b contact of a MOSFET and a double throw switch with respect to opening and closing of a direct current. However, there is a concern that the MOSFET is continuously energized due to an accidental contact failure of the contact. The mechanical contact can be doubled so that there is no contact failure. In addition, a method of connecting MOSFETs in parallel to increase the current capacity of the MOSFET and functioning even if one of them does not operate, and a method of connecting in series to increase the withstand voltage are shown. In addition, a method that can be applied to direct current or alternating current whose current direction changes depending on the operating state, a rush current control function, a regenerative voltage control, and an intelligent power switch that communicates with an external control device are shown. In this way, the hybrid switch between the semiconductor switch and the mechanical contact is not melted or broken by an arc, thus extending the switching life of the switch and increasing the reliability of the power switch by a quiet drive mechanism that is electrically and noise-free. Can do.

本発明の半導体スイッチと機械接点とのハイブリッドスイッチは、直流電力用開閉装置の種々な問題を解決して耐久性、信頼性があがるので、太陽光発電、電池貯蔵、直流配電、電気自動車など直流電力の応用がさらに進展すると考えられる。  Since the hybrid switch of the semiconductor switch and the mechanical contact of the present invention solves various problems of the DC power switchgear and is durable and reliable, it can be used for solar power generation, battery storage, DC power distribution, electric vehicles, etc. It is thought that the application of electric power will further advance.

1:直流電力系(直流電源と負荷)
2:MOSFET
3:2連双投スイッチ
4:抵抗R1
5:4連双投スイッチ
6:分流抵抗Rs
7:ミラー積分回路Cm−Rg
8:ダイオード整流器
9:電磁駆動リレー、駆動機構
10:DC/DC絶縁電源
11:直流電源
12:直流負荷
13:電圧、電流検出、ゲート制御、外部との通信機能
14:DCダウン回路
1: DC power system (DC power supply and load)
2: MOSFET
3: Double double throw switch 4: Resistor R1
5: Quadruple double throw switch 6: Shunt resistance Rs
7: Miller integrating circuit Cm-Rg
8: Diode rectifier 9: Electromagnetic drive relay, drive mechanism 10: DC / DC isolated power supply 11: DC power supply 12: DC load 13: Voltage and current detection, gate control, external communication function 14: DC down circuit

Claims (7)

直流電力系の端子間に挿入する開閉器であって、該開閉装置は、
2連の双投スイッチの接点を2並列で用いて、一つのMOSFETと並列接続し、前記MOSFETのドレイン−ゲート間に接続された抵抗器と、前記MOSFETのソース−ゲート間に前記2連の双投スイッチのコモン接点とb接店をそれぞれ2並列にして接続され、さらに、前記MOSFETの前記ドレインを前記直流電力系のプラス出力端子に、前記ソースを前記直流電力系のマイナス出力端子にそれぞれ接続することを特徴とする直流電力系の開閉装置。
A switch inserted between terminals of a DC power system, the switchgear being
The contacts of two double-throw switches are used in parallel, and are connected in parallel with one MOSFET, the resistor connected between the drain and gate of the MOSFET, and the two series between the source and gate of the MOSFET. The double-throw switch common contact and b-contact are connected in parallel, and the drain of the MOSFET is connected to the positive output terminal of the DC power system, and the source is connected to the negative output terminal of the DC power system. DC power system switchgear characterized by being connected.
請求項1に記載の開閉装置を2直列にすることで片方が遮断不能時にも他方が機能するが、請求項1の開閉装置の接点は4連の双投スイッチで開閉される開閉装置。  The switchgear according to claim 1, wherein when the switchgear according to claim 1 is arranged in series, the other functions even when one of the switchgears cannot be cut off, the contact of the switchgear of claim 1 is opened and closed by four double throw switches. 請求項1に記載の開閉装置の電流容量を倍増するために、MOSFETを並列駆動するがソース抵抗RsをそれぞれのMOSFETのソースに直列接続した開閉装置。  A switchgear in which MOSFETs are driven in parallel but source resistance Rs is connected in series to the source of each MOSFET in order to double the current capacity of the switchgear according to claim 1. 請求項1に記載の開閉装置のMOSFETを2段以上直列接続して、最上段のMOSFETのドレインーゲート間に、その下段の直列のMOSFETのゲート間を高抵抗R1で接続し、最下段のMOSFETのゲートのみ抵抗Rgを介してb接点に接続することで直列のMOSFETを同時にオン・オフする開閉装置。  Two or more stages of MOSFETs of the switchgear according to claim 1 are connected in series, the drains and gates of the uppermost MOSFET are connected by a high resistance R1 between the gates of the lower series MOSFETs, and the lowermost stage MOSFET is connected. A switchgear that turns on and off a series of MOSFETs simultaneously by connecting only the gate of the MOSFET to the b-contact through a resistor Rg 請求項1に記載の開閉装置を直流電流の双方向にも、さらに交流電流にも適用可能にするために、通電接点と並列にダイオード整流器を介して半導体スイッチ部を接続する開閉装置。  A switchgear in which a semiconductor switch unit is connected via a diode rectifier in parallel with a current-carrying contact so that the switchgear according to claim 1 can be applied to both directions of direct current and also to alternating current. MOSFETのゲート電圧をDC/DC絶縁電源によって供給することで飽和領域の駆動をして導通損失を低減して、2連双投開閉器、もしくは4連双投開閉器の機械スイッチ部を電磁力などの駆動機構で駆動する請求項1から5に記載の開閉装置。  The MOSFET gate voltage is supplied by a DC / DC isolated power supply to drive the saturation region and reduce conduction loss, and the mechanical switch part of the double double throw switch or quadruple double throw switch 6. The opening / closing device according to claim 1, wherein the opening / closing device is driven by a drive mechanism. 直流電源と負荷との間に請求項1の開閉装置を接続して電源の投入・遮断をする電源開閉装置であって、半導体スイッチ部はMOSFETによってDCダウン回路を構成し、投入時は負荷電圧をDCダウン回路でゼロから徐々に上げることで投入時のラッシュ電流を制限し、電圧上限に達してから主接点のa接点をオンして発熱なく通電される、遮断時はまず主接点を開極してb接点に転移した後、遮断動作を開始するが、半導体スイッチのDCダウン回路によって、負荷への電圧を徐々に下げてゼロにして電流を停止して遮断完了する、接点は駆動機構と連係して制御され、さらに外部との通信機能を有する電源開閉装置。  A power switchgear for switching on / off the power supply by connecting the switchgear according to claim 1 between a DC power supply and a load, wherein the semiconductor switch part constitutes a DC down circuit by a MOSFET, and the load voltage at the time of switch-on Is gradually increased from zero with a DC down circuit to limit the rush current at the time of turning on, and after reaching the upper voltage limit, the a contact of the main contact is turned on and energized without heat generation. After switching to the b contact, the shutoff operation is started, but the DC switch down circuit of the semiconductor switch gradually lowers the voltage to the load to zero to stop the current and complete the shutoff. A power supply switchgear that is controlled in conjunction with the computer and further has a communication function with the outside.
JP2017029460A 2017-02-02 2017-02-02 DC power system safety switchgear Pending JP2018125270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029460A JP2018125270A (en) 2017-02-02 2017-02-02 DC power system safety switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029460A JP2018125270A (en) 2017-02-02 2017-02-02 DC power system safety switchgear

Publications (1)

Publication Number Publication Date
JP2018125270A true JP2018125270A (en) 2018-08-09

Family

ID=63111582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029460A Pending JP2018125270A (en) 2017-02-02 2017-02-02 DC power system safety switchgear

Country Status (1)

Country Link
JP (1) JP2018125270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071933A (en) * 2018-10-30 2020-05-07 嶋田 隆一 Dc cutoff device
JP7323878B1 (en) * 2022-11-24 2023-08-09 隆一 嶋田 current switchgear
CN116914750A (en) * 2023-09-12 2023-10-20 联合瓦特技术有限公司 Power distribution cabinet safety protection circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020071933A (en) * 2018-10-30 2020-05-07 嶋田 隆一 Dc cutoff device
JP7323878B1 (en) * 2022-11-24 2023-08-09 隆一 嶋田 current switchgear
CN116914750A (en) * 2023-09-12 2023-10-20 联合瓦特技术有限公司 Power distribution cabinet safety protection circuit
CN116914750B (en) * 2023-09-12 2023-12-05 联合瓦特技术有限公司 Power distribution cabinet safety protection circuit

Similar Documents

Publication Publication Date Title
US8742828B2 (en) Disconnector switch for galvanic direct current interruption
US9948089B2 (en) DC circuit breaker device
CN105830344B (en) For being switched on and off the switching device of electric current
CN106663557B (en) For interrupting the separating switch of DC current
US10910817B2 (en) DC circuit breaker
RU2592640C2 (en) Linear dc voltage protective automatic device
US10483072B2 (en) Interrupter device for interrupting a direct current
US11108320B2 (en) Method and voltage multiplier for converting an input voltage, and disconnector
CN104779593A (en) Direct-current solid circuit breaker and control method thereof
JP6713660B2 (en) Arc-free current switchgear
CN108718193A (en) A kind of Drive Protecting Circuit and its control method of power semiconductor
JP2017191764A (en) Silence arc current connection device
JP2018125270A (en) DC power system safety switchgear
CN113257597A (en) Hybrid direct current breaker based on composite current conversion mode and control method thereof
JP2021034124A (en) DC current switchgear
JP4955363B2 (en) Inverter device
CN115065039A (en) Hybrid circuit breaker
JP6694177B2 (en) DC breaker
CN113922330A (en) Generator outlet circuit breaker based on composite current conversion mode and control method thereof
JP2015230849A (en) Switch
JP7250266B1 (en) DC current interrupter
KR102234244B1 (en) Dc circuit breaker
CN217467504U (en) Power supply circuit and electrical equipment
CN217063668U (en) A turn-off circuit for photovoltaic system
CN213152022U (en) Power semiconductor device drive protection circuit