JP2018124266A - Method for evaluating processing state of, device for evaluating processing state of, and method for manufacturing directional electromagnetic steel sheet - Google Patents

Method for evaluating processing state of, device for evaluating processing state of, and method for manufacturing directional electromagnetic steel sheet Download PDF

Info

Publication number
JP2018124266A
JP2018124266A JP2017195775A JP2017195775A JP2018124266A JP 2018124266 A JP2018124266 A JP 2018124266A JP 2017195775 A JP2017195775 A JP 2017195775A JP 2017195775 A JP2017195775 A JP 2017195775A JP 2018124266 A JP2018124266 A JP 2018124266A
Authority
JP
Japan
Prior art keywords
steel sheet
processing
magnetic domain
magnetic
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017195775A
Other languages
Japanese (ja)
Other versions
JP6607242B2 (en
Inventor
腰原 敬弘
Takahiro Koshihara
敬弘 腰原
淳一 四辻
Junichi Yotsutsuji
淳一 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018124266A publication Critical patent/JP2018124266A/en
Application granted granted Critical
Publication of JP6607242B2 publication Critical patent/JP6607242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating the processing state of and a device for evaluating the processing state of a directional electromagnetic steel sheet that can evaluate the processing state of a directional electromagnetic steel sheet by measuring electromagnetic characteristics of the directional electromagnetic steel sheet with a simple configuration without requiring a large amount of time and cost.SOLUTION: A method for evaluating the processing state of a directional electromagnetic steel sheet according to the present invention includes: a magnetization step of applying, to a directional electromagnetic steel sheet on which magnetic domain segmentation processing is performed in a direction perpendicular to an axis of easy magnetization, a direct or alternating magnetic field with a size in which a magnetic wall of a magnetic domain in an area on which the magnetic domain segmentation processing is not performed moves, but a magnetization direction of a magnetic domain in an area on which the magnetic domain segmentation processing is performed does not become parallel to the axis of easy magnetization; a detection step of detecting a leakage flux generated in the directional electromagnetic steel sheet in association with the application of the magnetic field; and a processing step of evaluating the processing state of the area on which the magnetic domain segmentation processing is performed on the basis of the leakage flux detected in the detection step.SELECTED DRAWING: Figure 1

Description

本発明は、方向性電磁鋼板の加工状態評価方法、加工状態評価装置、及び製造方法に関する。   The present invention relates to a processing state evaluation method, a processing state evaluation device, and a manufacturing method for grain-oriented electrical steel sheets.

電磁鋼板の電磁気特性は、製品性能を左右する重要な特性の一つであり、その評価項目としては、鉄損、最大透磁率、磁歪等がある。ここで、鉄損とは、電磁鋼板に交流磁場を印加した際、磁気ヒステリシスや渦電流によって磁気エネルギーが熱エネルギーとして消費されるために、エネルギーの損失が生じる性質のことを意味する。従って、鉄損が小さい電磁鋼板は、エネルギー変換効率がより高くなるために鉄損が大きい電磁鋼板に比べて有利である。なお、方向性電磁鋼板については、鉄損を低減する技術が開発されており、その一つとして、物理的な手法によって表層に圧延方向に周期的に局所的な不均一性を導入することにより磁区の幅を細分化して鉄損を低減する磁区細分化加工プロセスがある。   The electromagnetic characteristics of the electrical steel sheet are one of the important characteristics that influence the product performance, and evaluation items include iron loss, maximum magnetic permeability, magnetostriction, and the like. Here, the iron loss means a property in which energy loss occurs because magnetic energy is consumed as thermal energy by magnetic hysteresis or eddy current when an alternating magnetic field is applied to the electromagnetic steel sheet. Therefore, the electrical steel sheet having a small iron loss is advantageous compared to the electrical steel sheet having a large iron loss because the energy conversion efficiency becomes higher. In addition, for grain-oriented electrical steel sheets, technology to reduce iron loss has been developed, and as one of them, by introducing local non-uniformity periodically in the rolling direction to the surface layer by a physical method. There is a magnetic domain refinement process that reduces the iron loss by subdividing the width of the magnetic domain.

この磁区細分化加工プロセスでは、表層に不均一性を導入すればよく、必ずしも穴や溝等の形状の変化を表層に設ける手法に限らず、表層に形状の変化を伴わない不均一性を導入する手法であればよい。これは、例えば、熱や圧力等を加える手法で実現することができる。より具体的には、レーザ、電子ビーム、プラズマジェット等を照射する方法によって表層に不均一性を加えることができる。方向性電磁鋼板には磁化容易軸に平行な圧延方向に磁化した磁区が形成されている。しかしながら、これらの磁区細分化加工プロセスによって加えられた表層の不均一部には、何らかの傷や形状の変化はなくとも、圧延方向とは異なる方向に磁化した磁区が局所的に形成されており、この磁化の不連続性が磁区細分化を生じさせている。   In this magnetic domain subdivision process, non-uniformities need only be introduced into the surface layer, not necessarily the method of providing shape changes such as holes and grooves on the surface layer, but non-uniformities that do not involve shape changes are introduced into the surface layer. Any technique can be used. This can be realized by, for example, a method of applying heat or pressure. More specifically, nonuniformity can be added to the surface layer by a method of irradiating a laser, an electron beam, a plasma jet, or the like. A magnetic domain magnetized in the rolling direction parallel to the easy magnetization axis is formed on the grain-oriented electrical steel sheet. However, the magnetic domain magnetized in a direction different from the rolling direction is locally formed in the non-uniform portion of the surface layer added by these magnetic domain subdivision processing processes, even if there is no scratch or shape change, This discontinuity of magnetization causes domain subdivision.

ところで、電磁鋼板の電磁気特性を測定する方法として、特許文献1,2に記載の方法が知られている。具体的には、特許文献1に記載の方法は、B−H曲線を測定することによって磁気ヒステリシスを求めると共に励磁信号に高周波成分を含ませることによって微分透磁率を求めている。また、特許文献2に記載の方法は、磁化容易軸方向に電磁鋼板を直流磁化すると共に磁化容易軸方向に対して垂直な方向に電磁鋼板を交流磁化することによって、交流磁化の影響度合いから電磁鋼板の電磁気特性を測定する。   By the way, the method of patent document 1, 2 is known as a method of measuring the electromagnetic property of an electromagnetic steel plate. Specifically, in the method described in Patent Document 1, the magnetic permeability is obtained by measuring the BH curve, and the differential permeability is obtained by including a high frequency component in the excitation signal. In addition, the method described in Patent Document 2 is a method in which the electromagnetic steel sheet is DC magnetized in the easy axis direction and the magnetic steel sheet is AC magnetized in a direction perpendicular to the easy axis direction, thereby reducing the electromagnetic force from the degree of influence of AC magnetization. Measure the electromagnetic properties of the steel sheet.

特開2011−226840号公報JP 2011-226840 A 特開2010−54254号公報JP 2010-54254 A

しかしながら、特許文献1記載の方法では、B−H曲線を測定するために電磁鋼板を飽和状態まで磁化する必要がある。このため、特許文献1記載の方法によれば、B−H曲線の1ループ分の測定時間が最低でも必要であり、電磁鋼板の電磁気特性の測定に多くの時間を要する。一方、特許文献2記載の方法では、磁化容易軸方向に磁区を固定するために直流磁化を磁気飽和レベルに近づける必要がある。このため、特許文献2記載の方法によれば、電磁鋼板の電磁気特性の測定に多くの電力が必要となると共に、直流磁化と交流磁化とを行うために装置の大型化及び複雑化が避けられない。   However, in the method described in Patent Document 1, it is necessary to magnetize the electrical steel sheet to a saturated state in order to measure the BH curve. For this reason, according to the method of patent document 1, the measurement time for 1 loop of a BH curve is required at the minimum, and much time is required for the measurement of the electromagnetic property of an electromagnetic steel plate. On the other hand, in the method described in Patent Document 2, it is necessary to bring DC magnetization close to the magnetic saturation level in order to fix the magnetic domain in the direction of the easy axis of magnetization. For this reason, according to the method described in Patent Document 2, a large amount of electric power is required to measure the electromagnetic characteristics of the electrical steel sheet, and an increase in size and complexity of the apparatus can be avoided in order to perform DC magnetization and AC magnetization. Absent.

本発明は、上記課題に鑑みてなされたものであって、その目的は、多くの時間及びコストを要することなく簡素な構成で方向性電磁鋼板の電磁気特性を測定することによって方向性電磁鋼板の加工状態を評価可能な方向性電磁鋼板の加工状態評価方法及び加工状態評価装置を提供することにある。また、本発明の他の目的は、方向性電磁鋼板の製造歩留まりを向上可能な方向性電磁鋼板の製造方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to measure the electromagnetic properties of the grain-oriented electrical steel sheet with a simple configuration without requiring much time and cost. An object of the present invention is to provide a machining state evaluation method and a machining state evaluation apparatus for grain-oriented electrical steel sheets capable of evaluating the machining state. Another object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet capable of improving the production yield of the grain-oriented electrical steel sheet.

本発明に係る方向性電磁鋼板の加工状態評価方法は、磁化容易軸方向に対して垂直な方向に磁区細分化加工が施された方向性電磁鋼板に対して、前記磁区細分化加工が施されていない領域にある磁区の磁壁は移動するが前記磁区細分化加工が施された領域にある磁区の磁化方向が前記磁化容易軸方向に対して平行にならない大きさの直流又は交流の磁場を印加する磁化ステップと、前記磁場の印加に伴い前記方向性電磁鋼板に発生する漏洩磁束を検出する検出ステップと、前記検出ステップにおいて検出された漏洩磁束に基づいて前記磁区細分化加工が施された領域の加工状態を評価する処理ステップと、を含むことを特徴とする。   In the method for evaluating a machining state of a grain-oriented electrical steel sheet according to the present invention, the magnetic domain refinement process is performed on a grain-oriented electrical steel sheet that has been subjected to a domain refinement process in a direction perpendicular to the easy axis direction. The domain wall of the magnetic domain in the non-moving region moves, but a DC or AC magnetic field of a magnitude that does not make the magnetization direction of the magnetic domain in the domain subdivided region parallel to the easy axis direction is applied. Magnetizing step, detecting step for detecting leakage magnetic flux generated in the grain-oriented electrical steel sheet with application of the magnetic field, and region subjected to the magnetic domain subdivision processing based on the leakage magnetic flux detected in the detecting step And a processing step for evaluating the machining state.

本発明に係る方向性電磁鋼板の加工状態評価方法は、上記発明において、前記処理ステップは、複数のチャンネルの漏洩磁束の時系列信号に対して高速フーリエ変換演算処理を施すことにより各チャンネルの周波数分布を算出し、各チャンネルの周波数分布を加算し、加算された各チャンネルの周波数分布を用いて磁区細分化加工が施された領域の加工状態を評価するステップを含むことを特徴とする。   The processing state evaluation method for grain-oriented electrical steel sheets according to the present invention is the above-described invention, wherein the processing step performs a fast Fourier transform operation process on a time-series signal of leakage magnetic flux of a plurality of channels, to thereby determine the frequency of each channel. The method includes the steps of calculating the distribution, adding the frequency distribution of each channel, and evaluating the processing state of the domain subdivided region using the added frequency distribution of each channel.

本発明に係る方向性電磁鋼板の加工状態評価装置は、磁化容易軸方向に対して垂直な方向に磁区細分化加工が施された方向性電磁鋼板に対して、前記磁区細分化加工が施されていない領域にある磁区の磁壁は移動するが前記磁区細分化加工が施された領域にある磁区の磁化方向が前記磁化容易軸方向に対して平行にならない大きさの直流又は交流の磁場を印加する磁化器と、前記磁場の印加に伴い前記方向性電磁鋼板に発生する漏洩磁束を検出する磁気センサと、前記磁気センサによって検出された漏洩磁束に基づいて前記磁区細分化加工が施された領域の加工状態を評価する信号処理部と、を備えることを特徴とする。   An apparatus for evaluating a processing state of a grain-oriented electrical steel sheet according to the present invention, wherein the magnetic domain refinement process is performed on a grain-oriented electrical steel sheet subjected to a domain refinement process in a direction perpendicular to the easy axis direction. The domain wall of the magnetic domain in the non-moving region moves, but a DC or AC magnetic field of a magnitude that does not make the magnetization direction of the magnetic domain in the domain subdivided region parallel to the easy axis direction is applied. A magnetic sensor for detecting a leakage magnetic flux generated in the grain-oriented electrical steel sheet upon application of the magnetic field, and a region subjected to the magnetic domain subdivision processing based on the leakage magnetic flux detected by the magnetic sensor And a signal processing unit that evaluates the processing state of.

本発明に係る方向性電磁鋼板の製造方法は、本発明に係る方向性電磁鋼板の加工状態評価方法による前記磁区細分化加工が施された領域の加工状態の評価結果に基づいて前記磁区細分化加工の条件を変更し、変更した条件に従って前記磁区細分化加工を行うことにより方向性電磁鋼板を製造するステップを含むことを特徴とする。   The method for producing a grain-oriented electrical steel sheet according to the present invention is based on the evaluation result of the machining state of the region subjected to the domain refinement processing by the machining state evaluation method for the grain-oriented electrical steel sheet according to the present invention. It includes a step of manufacturing a grain-oriented electrical steel sheet by changing the processing conditions and performing the magnetic domain subdivision processing according to the changed conditions.

本発明に係る方向性電磁鋼板の加工状態評価方法及び加工状態評価装置によれば、多くの時間及びコストを要することなく簡素な構成で方向性電磁鋼板の電磁気特性を測定することによって方向性電磁鋼板の加工状態を評価することができる。また、本発明に係る方向性電磁鋼板の製造方法によれば、方向性電磁鋼板の製造歩留まりを向上させることができる。   According to the processing state evaluation method and the processing state evaluation apparatus for a grain-oriented electrical steel sheet according to the present invention, it is possible to measure directionality electromagneticity by measuring the electromagnetic characteristics of the grain-oriented electrical steel sheet with a simple configuration without requiring much time and cost. The processing state of the steel sheet can be evaluated. Moreover, according to the manufacturing method of the grain-oriented electrical steel sheet according to the present invention, the production yield of the grain-oriented electrical steel sheet can be improved.

図1は、本発明に係る方向性電磁鋼板の加工状態評価装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a machined state evaluation apparatus for grain-oriented electrical steel sheets according to the present invention. 図2は、磁区細分化加工状態の良い方向性電磁鋼板及び悪い方向性電磁鋼板から検出された漏洩磁束の2次元マップを示す図である。FIG. 2 is a diagram showing a two-dimensional map of leakage flux detected from a directional electromagnetic steel sheet having a good magnetic domain subdivision processing state and a bad directional electromagnetic steel sheet. 図3は、磁区細分化加工状態の良い方向性電磁鋼板について、外部磁化レベルを強くした場合に得られた漏洩磁束の2次元マップを示す図である。FIG. 3 is a diagram showing a two-dimensional map of leakage magnetic flux obtained when the external magnetization level is increased for a grain-oriented electrical steel sheet having a good magnetic domain subdivision processing state. 図4は、外部磁化によって磁壁が移動する様子を示す模式図である。FIG. 4 is a schematic diagram showing how the domain wall moves due to external magnetization. 図5は、本発明の一実施形態である方向性電磁鋼板の加工状態評価装置の構成を示す模式図である。FIG. 5 is a schematic diagram showing a configuration of a processing state evaluation apparatus for grain-oriented electrical steel sheets according to an embodiment of the present invention. 図6は、磁区細分化加工が十分である方向性電磁鋼板及び不十分である方向性電磁鋼板について、磁気センサにより50mm×50mmの領域の漏洩磁束を検出した例を示す図である。FIG. 6 is a diagram showing an example in which a leakage magnetic flux in a 50 mm × 50 mm region is detected by a magnetic sensor for a directional electromagnetic steel sheet that is sufficiently magnetic domain refined and a directional electromagnetic steel sheet that is insufficient. 図7は、実施例における磁気センサの構成を示す模式図である。FIG. 7 is a schematic diagram illustrating the configuration of the magnetic sensor in the embodiment. 図8は、チャンネル1及びチャンネル2の磁気センサの出力信号を時系列に示した図である。FIG. 8 is a diagram showing the output signals of the magnetic sensors of channel 1 and channel 2 in time series. 図9は、図6に示した磁区細分化加工が十分である方向性電磁鋼板及び不十分である方向性電磁鋼板の漏洩磁束測定結果を磁化容易軸方向に高速フーリエ変換演算処理して4チャンネル分の値を加えた結果を示す図である。FIG. 9 shows the results of measuring the leakage magnetic flux of the directional electrical steel sheet with sufficient magnetic domain fragmentation shown in FIG. It is a figure which shows the result which added the value of minute. 図10は、高速フーリエ変換演算処理結果の強度レベルと鉄損との相関係数を漏洩磁束計測を実施する面積に対してプロットした図である。FIG. 10 is a diagram in which the correlation coefficient between the strength level of the fast Fourier transform calculation processing result and the iron loss is plotted with respect to the area where leakage magnetic flux measurement is performed. 図11は、本発明の一実施形態である加工状態評価処理の流れを示すフローチャートである。FIG. 11 is a flowchart showing a flow of machining state evaluation processing according to an embodiment of the present invention.

本発明に係る方向性電磁鋼板の加工状態評価方法及び加工状態評価装置は、漏洩磁束法を利用して方向性電磁鋼板の漏洩磁束を非破壊、且つ、非接触で測定することによって方向性電磁鋼板の加工状態を評価する。方向性電磁鋼板の製造過程において、磁区細分化加工プロセスは、その原理的にも方向性電磁鋼板の磁性を局所的に変化させることを意味する。従って、磁区細分化加工が施された領域(以下、磁区細分化加工部と表記)を局所的な磁性の不連続部分と考えれば、磁区細分化加工部から漏洩する磁束(漏洩磁束)が存在するので、漏洩磁束法によって漏洩磁束を測定することによって方向性電磁鋼板の加工状態を評価することができる。   The processing state evaluation method and processing state evaluation apparatus for a grain-oriented electrical steel sheet according to the present invention uses a leakage flux method to measure the leakage flux of a grain-oriented electrical steel sheet in a non-destructive and non-contact manner. Evaluate the processing state of the steel sheet. In the manufacturing process of the grain-oriented electrical steel sheet, the magnetic domain fragmentation process means that the magnetism of the grain-oriented electrical steel sheet is locally changed in principle. Therefore, if the region subjected to magnetic domain subdivision processing (hereinafter referred to as the magnetic domain subdivision processing portion) is considered as a local magnetic discontinuity portion, there is magnetic flux (leakage magnetic flux) leaking from the magnetic domain subdivision processing portion. Therefore, the processing state of the grain-oriented electrical steel sheet can be evaluated by measuring the leakage magnetic flux by the leakage magnetic flux method.

ところで、一般に、漏洩磁束を多く発生させることを主目的とする場合、外部磁化レベルを強くし、磁気飽和レベルに近いレベルまで方向性電磁鋼板を磁化させる。しかしながら、探傷試験等とは異なり、磁区細分化のための局所的な加工部には形状の変化がないため、このように外部磁化レベルが強すぎる場合、ほぼ全ての磁区が磁化容易軸方向に揃ってしまい、磁区細分化加工部から漏洩する磁束と磁区細分化加工部以外の領域から漏洩する磁束との間に差が無くなることにより、方向性電磁鋼板の加工状態を評価できなくなる。そこで、本発明では、磁化容易軸方向への磁化レベルを、磁化方向が磁化容易軸方向に平行な磁区の磁壁は移動するが、磁区細分化加工部における磁区の磁化方向が磁化容易軸方向に平行にならない程度の弱い外部磁化レベルとする。これにより、磁区細分化加工部から漏洩する磁束と磁区細分化加工部以外の領域から漏洩する磁束との間に差が生じるので、例えば磁区細分化加工部からの漏洩磁束量が小さければ磁区細分化加工が不十分であると判断する等して、方向性電磁鋼板の加工状態を評価することができる。   By the way, generally, when the main purpose is to generate a large amount of leakage magnetic flux, the external magnetization level is increased and the grain-oriented electrical steel sheet is magnetized to a level close to the magnetic saturation level. However, unlike the flaw detection test etc., there is no change in the shape of the locally processed part for magnetic domain subdivision, so if the external magnetization level is too strong in this way, almost all the magnetic domains are in the direction of the easy axis of magnetization. As a result, there is no difference between the magnetic flux leaking from the magnetic domain subdivided portion and the magnetic flux leaking from a region other than the magnetic domain subdivided portion, so that the processing state of the grain-oriented electrical steel sheet cannot be evaluated. Therefore, in the present invention, the domain level of the magnetic domain in which the magnetization direction is parallel to the easy magnetization axis direction moves the magnetization level in the easy magnetization axis direction, but the magnetization direction of the magnetic domain in the magnetic domain subdivision processing section is in the easy magnetization axis direction. The external magnetization level is weak enough not to be parallel. As a result, there is a difference between the magnetic flux leaking from the magnetic domain subdivision processing unit and the magnetic flux leaking from the region other than the magnetic domain subdivision processing unit. The processing state of the grain-oriented electrical steel sheet can be evaluated by determining that the forming process is insufficient.

図1は、本発明に係る方向性電磁鋼板の加工状態評価装置の構成を示す模式図である。図1に示すように、本発明に係る方向性電磁鋼板の加工状態評価装置1は、漏洩磁束検出部2及び信号処理部3を主な構成要素として備えている。漏洩磁束検出部2は、磁化容易軸方向に方向性電磁鋼板Sを磁化する電磁石等の磁化器2aと、磁気センサ2bと、を備えている。漏洩磁束検出部2は、方向性電磁鋼板S上に非接触で設置され、漏洩磁束検出部2の下方を通過する方向性電磁鋼板Sに対して外部磁化を印加すると共に方向性電磁鋼板Sの漏洩磁束を検出する。そして、信号処理部3は、漏洩磁束検出部2によって検出された漏洩磁束に基づいて方向性電磁鋼板Sの加工状態を評価する。   FIG. 1 is a schematic diagram showing a configuration of a machined state evaluation apparatus for grain-oriented electrical steel sheets according to the present invention. As shown in FIG. 1, the processing state evaluation apparatus 1 for grain-oriented electrical steel sheets according to the present invention includes a leakage magnetic flux detection unit 2 and a signal processing unit 3 as main components. The leakage flux detector 2 includes a magnetizer 2a such as an electromagnet that magnetizes the directional electromagnetic steel sheet S in the easy axis direction, and a magnetic sensor 2b. Leakage magnetic flux detection unit 2 is installed on directional electromagnetic steel sheet S in a non-contact manner, applies external magnetization to directional electromagnetic steel sheet S passing under leakage magnetic flux detection unit 2, and Detect leakage magnetic flux. Then, the signal processing unit 3 evaluates the processing state of the grain-oriented electrical steel sheet S based on the leakage magnetic flux detected by the leakage magnetic flux detection unit 2.

図2(a),(b)はそれぞれ、磁区細分化加工状態の良い方向性電磁鋼板及び悪い方向性電磁鋼板から検出された漏洩磁束の2次元マップを示す図である。図2(a)に示すように、磁区細分化加工状態の良い方向性電磁鋼板では、筋状の磁区細分化加工部が検出された。しかしながら、図2(b)に示すように、磁区細分化加工状態の悪い方向性電磁鋼板では、筋状の磁区細分化加工部をはっきりと確認することができなかった。なお、磁区細分化加工状態が良い方向性電磁鋼板の鉄損値は、磁区細分化加工状態が悪い方向性電磁鋼板の鉄損値よりも低い。従って、筋状の磁区細分化加工部の検出状況によって方向性電磁鋼板の鉄損値を推定することもできる。   2A and 2B are diagrams showing two-dimensional maps of leakage magnetic fluxes detected from a directional electromagnetic steel sheet having a good magnetic domain subdivision processing state and a bad directional electromagnetic steel sheet, respectively. As shown in FIG. 2A, a streak-like magnetic domain subdivision processed portion was detected in the grain-oriented electrical steel sheet having a good magnetic domain subdivision state. However, as shown in FIG. 2B, in the grain-oriented electrical steel sheet having a poor magnetic domain subdivision state, the streak-like magnetic domain subdivision portion could not be clearly confirmed. In addition, the iron loss value of the grain-oriented electrical steel sheet having a good magnetic domain refinement state is lower than the iron loss value of the grain-oriented electrical steel sheet having a poor magnetic domain refinement state. Therefore, the iron loss value of the grain-oriented electrical steel sheet can also be estimated based on the detection status of the streak-like magnetic domain subdivision processing portion.

ところが、磁区細分化加工状態が良い場合であっても、外部磁化レベルが強すぎる場合には図3に示すように筋状の磁区細分化加工部を検出することができない。図3は、磁区細分化加工状態の良い方向性電磁鋼板について、外部磁化レベルを強くした場合に得られた漏洩磁束の2次元マップを示す図である。従って、方向性電磁鋼板の加工状態を評価する際には適切な外部磁化レベルが必要となる。この現象は、次のように説明できる。図4(a)〜(c)は、外部磁化によって磁壁が移動する様子を示す模式図であり、磁壁の移動によって磁化容易軸方向の磁化状態が強まることを表している。なお、図4(a)〜(c)において、符号SPは磁区細分化加工部、符号MDは磁区、符号DWは磁壁を示している。   However, even when the magnetic domain subdivision processing state is good, when the external magnetization level is too strong, the streak-like magnetic domain subdivision processing unit cannot be detected as shown in FIG. FIG. 3 is a diagram showing a two-dimensional map of leakage magnetic flux obtained when the external magnetization level is increased for a grain-oriented electrical steel sheet having a good magnetic domain subdivision processing state. Therefore, when evaluating the processing state of the grain-oriented electrical steel sheet, an appropriate external magnetization level is required. This phenomenon can be explained as follows. FIGS. 4A to 4C are schematic diagrams showing how the domain wall moves due to external magnetization, and shows that the magnetization state in the easy axis direction is strengthened by the domain wall movement. 4A to 4C, reference numeral SP denotes a magnetic domain subdivision processing unit, reference numeral MD denotes a magnetic domain, and reference numeral DW denotes a domain wall.

一般に、磁区細分化加工プロセスは、磁化容易軸方向に対して垂直な方向へ施工される。従って、図4(a),(b)に示すように、磁化容易軸方向の外部磁化レベルが強まると、磁化方向が磁化容易軸方向に平行な方向である磁区MDの磁壁DWは移動するが、磁区細分化加工部SPが磁化容易軸方向の磁束の妨げとなり、磁場が漏洩磁束として方向性電磁鋼板の外部に漏洩しやすくなる。よって、磁気センサ2bによって漏洩磁束を検出することができる。しかしながら、磁化容易軸方向の外部磁化レベルが強くなりすぎると、図4(c)に示すように、磁区細分化加工部SPの磁区MDの磁化方向が磁化容易軸方向に揃ってしまい、漏洩磁束が逆に小さくなってしまう。   Generally, the magnetic domain fragmentation process is performed in a direction perpendicular to the easy axis direction. Therefore, as shown in FIGS. 4A and 4B, when the external magnetization level in the easy axis direction increases, the domain wall DW of the magnetic domain MD whose magnetization direction is parallel to the easy axis direction moves. The magnetic domain subdivision processing part SP obstructs the magnetic flux in the easy magnetization axis direction, and the magnetic field easily leaks to the outside of the grain-oriented electrical steel sheet as a leakage magnetic flux. Therefore, the leakage magnetic flux can be detected by the magnetic sensor 2b. However, if the external magnetization level in the easy axis direction becomes too strong, as shown in FIG. 4C, the magnetization directions of the magnetic domains MD of the magnetic domain subdivision processed portion SP are aligned with the easy axis direction, and the leakage flux Conversely, it becomes smaller.

このため、方向性電磁鋼板の加工状態を評価する際には、磁化方向が磁化容易軸方向に平行な磁区の磁壁は移動するが、磁区細分化加工部の磁区の磁化方向が磁化容易軸方向に平行にならない大きさの直流又は交流の磁場を印加する。具体的には、方向性電磁鋼板の加工状態を評価する際には、磁化方向が磁化容易軸方向に平行な磁区の幅が磁区細分化加工部の磁区の幅になる磁場より小さい磁場を印加する。なお、実運用上では、方向性電磁鋼板の成分や厚みに応じて印加する磁場の大きさを実験やシミュレーションにより予め定めておき、加工状態を評価する際には評価対象の方向性電磁鋼板の成分や厚みに対応する磁場を印加する。   For this reason, when evaluating the machining state of the grain-oriented electrical steel sheet, the domain wall of the magnetic domain whose magnetization direction is parallel to the easy magnetization axis direction moves, but the magnetization direction of the magnetic domain of the magnetic domain subdivision processing part is the easy magnetization axis direction. Apply a direct or alternating magnetic field that is not parallel to Specifically, when evaluating the processing state of a grain-oriented electrical steel sheet, a magnetic field smaller than the magnetic field in which the width of the magnetic domain is parallel to the easy axis direction and the width of the magnetic domain subdivision processing part is applied. To do. In actual operation, the magnitude of the magnetic field to be applied according to the component and thickness of the grain-oriented electrical steel sheet is determined in advance by experiments and simulations. A magnetic field corresponding to the component and thickness is applied.

そして、評価の結果、方向性電磁鋼板の加工状態が所望の状態にない場合、加工機へフィードバックして早期に加工状態を修正することにより、仕様の外れた方向性電磁鋼板を製造することを避けることができ、歩留まりも向上する。具体的には、レーザや電子線を用いて方向性電磁鋼板に歪みを導入することによって磁区細分化加工部を形成する場合には、レーザや電子線の出力、フォーカス、走査速度、長手方向の歪みの繰り返し間隔(線間隔)等を調整することにより、方向性電磁鋼板の加工状態を所望の状態に調整する。   And, as a result of the evaluation, when the processing state of the grain-oriented electrical steel sheet is not in a desired state, it is possible to produce a grain-oriented electrical steel sheet out of specification by feeding back to the processing machine and correcting the machining state at an early stage. It can be avoided and the yield is also improved. Specifically, when a magnetic domain subdivision processed part is formed by introducing strain into a grain-oriented electrical steel sheet using a laser or electron beam, the output of the laser or electron beam, focus, scanning speed, longitudinal direction The processing state of the grain-oriented electrical steel sheet is adjusted to a desired state by adjusting the strain repetition interval (line interval) and the like.

以下、本発明の一実施形態である方向性電磁鋼板の加工状態評価装置の構成及び動作について説明する。   Hereinafter, the structure and operation | movement of the processing-state evaluation apparatus of the grain-oriented electrical steel sheet which is one Embodiment of this invention are demonstrated.

図5(a),(b)は、本発明の一実施形態である方向性電磁鋼板の加工状態評価装置の構成を示す模式図である。図5(a),(b)に示すように、本発明の一実施形態である方向性電磁鋼板の加工状態評価装置10は、漏洩磁束検出部12、信号処理部13、及び励磁電源14を主な構成要素として備えている。なお、本実施形態では、信号処理部13と励磁電源14とを別体で構成したが、信号処理部13と励磁電源14とを一体で構成してもよい。   5 (a) and 5 (b) are schematic views showing the configuration of a machined state evaluation apparatus for grain-oriented electrical steel sheets according to an embodiment of the present invention. As shown in FIGS. 5A and 5B, the grain-oriented electrical steel sheet processing state evaluation apparatus 10 according to an embodiment of the present invention includes a leakage magnetic flux detection unit 12, a signal processing unit 13, and an excitation power source 14. It is provided as a main component. In the present embodiment, the signal processing unit 13 and the excitation power source 14 are configured separately, but the signal processing unit 13 and the excitation power source 14 may be configured integrally.

漏洩磁束検出部12は、磁化器12a及び磁気センサ12bを備え、方向性電磁鋼板Sの上面に対向配置されている。   The leakage magnetic flux detection unit 12 includes a magnetizer 12a and a magnetic sensor 12b, and is disposed opposite to the upper surface of the directional electromagnetic steel sheet S.

磁化器12aは、励磁電源14から供給される励磁電力(交流の場合は励磁周波数)を利用して方向性電磁鋼板Sに外部磁化を印加する。本実施形態では、磁区細分化加工が施されていない領域にある磁区の磁壁は移動するが、磁区細分化加工が施された領域にある磁区の磁化方向が磁化容易軸方向に対して平行にならない大きさの外部磁化として0〜100AT(100AT:1000巻きコイルに0.1Aの電流を通電することにより得られる外部磁化の大きさ)の範囲内とした。このとき、方向性電磁鋼板Sの磁束密度は0〜1.7mTであった。磁化器12aは、電磁石でもよいし、永久磁石を用いたものであってもよい。方向性電磁鋼板Sの板厚やリフトオフの微調整等を考慮すると、電磁石の方が調整が容易と考えられる。但し、永久磁石を用いたものであっても、磁気センサ12bと永久磁石との相対位置を別途調整可能な構造にすることにより適用可能である。   The magnetizer 12a applies external magnetization to the grain-oriented electrical steel sheet S using excitation power (excitation frequency in the case of alternating current) supplied from the excitation power supply 14. In this embodiment, the domain wall of the magnetic domain in the region that has not been subjected to magnetic domain subdivision processing moves, but the magnetization direction of the magnetic domain in the region that has undergone magnetic domain subdivision processing is parallel to the easy axis direction. The external magnetization having a magnitude that does not become within the range of 0 to 100 AT (100 AT: the magnitude of external magnetization obtained by applying a current of 0.1 A to a 1000-winding coil). At this time, the magnetic flux density of the grain-oriented electrical steel sheet S was 0 to 1.7 mT. The magnetizer 12a may be an electromagnet or a permanent magnet. Considering the fine adjustment of the thickness of the grain-oriented electrical steel sheet S, lift-off, etc., the electromagnet is considered to be easier to adjust. However, even if a permanent magnet is used, it can be applied by making a structure in which the relative position between the magnetic sensor 12b and the permanent magnet can be adjusted separately.

磁気センサ12bは、外部磁化が印加されることに伴い発生する方向性電磁鋼板Sの漏洩磁束を検出する。なお、方向性電磁鋼板Sに印加する外部磁化が交流である場合には、励磁周波数に従って検波することによって方向性電磁鋼板Sの漏洩磁束を検出する。また、その際、検出信号の位相を調整することが望ましい。本実施形態では、磁気センサ12bは、TMR(トンネル効果型)センサによって構成され、方向性電磁鋼板Sの表面に対して平行な漏洩磁束成分を検出する構成とした。なお、磁気センサ12bとしては、高感度のものを用いることが望ましく、SQUID、MI(磁気インピーダンス型)、ホール素子、GMR(磁気抵抗型)、E型の強磁性体コアにコイルを巻いたE型センサ等を用いることができる。   The magnetic sensor 12b detects the leakage magnetic flux of the grain-oriented electrical steel sheet S that is generated when external magnetization is applied. In addition, when the external magnetization applied to the directional electrical steel sheet S is alternating current, the leakage magnetic flux of the directional electrical steel sheet S is detected by detecting according to the excitation frequency. At that time, it is desirable to adjust the phase of the detection signal. In the present embodiment, the magnetic sensor 12b is configured by a TMR (tunnel effect type) sensor and detects a leakage magnetic flux component parallel to the surface of the grain-oriented electrical steel sheet S. As the magnetic sensor 12b, it is desirable to use a high-sensitivity sensor, and an SQUID, MI (magnetic impedance type), Hall element, GMR (magnetic resistance type), and E type ferromagnetic core wound with an E coil. A type sensor or the like can be used.

信号処理部13は、増幅器13a、複数チャンネルのバンドパスフィルタ(BPF)13b、及び情報処理部13cを備えている。増幅器13aは、磁気センサ12bの出力信号を増幅して複数チャンネルのBPF13bに出力する。各チャンネルのBPF13bは、増幅器13aの出力信号から設定された周波数帯の出力信号を抽出し、抽出した出力信号を情報処理部13cに出力する。情報処理部13cは、各チャンネルのBPF13bの出力信号を用いて方向性電磁鋼板Sの磁区細分化加工部の加工状態を評価する。   The signal processing unit 13 includes an amplifier 13a, a multi-channel band pass filter (BPF) 13b, and an information processing unit 13c. The amplifier 13a amplifies the output signal of the magnetic sensor 12b and outputs the amplified signal to the BPF 13b having a plurality of channels. The BPF 13b of each channel extracts an output signal in a set frequency band from the output signal of the amplifier 13a, and outputs the extracted output signal to the information processing unit 13c. The information processing unit 13c evaluates the processing state of the magnetic domain subdivision processing unit of the grain-oriented electrical steel sheet S using the output signal of the BPF 13b of each channel.

なお、表皮効果を利用して方向性電磁鋼板の厚さ方向に磁束分布を発生させる場合には、交流電流による交流漏洩磁束法も適用可能である。但し、この場合には、別途交流処理回路が必要である。交流処理回路としては、出力信号の振幅値のみの評価であれば、絶対値回路とローパスフィルタがあればよい。出力信号の振幅値と位相とを評価するのであれば、励磁周波数で検波を行う必要があるので、検波回路が必要となる。   In addition, when generating a magnetic flux distribution in the thickness direction of a grain-oriented electrical steel sheet using a skin effect, the alternating current leakage magnetic flux method by an alternating current is also applicable. In this case, however, a separate AC processing circuit is required. As an AC processing circuit, an absolute value circuit and a low-pass filter may be used if only the amplitude value of the output signal is evaluated. If the amplitude value and phase of the output signal are to be evaluated, it is necessary to perform detection at the excitation frequency, and thus a detection circuit is required.

磁化器と磁気センサとを方向性電磁鋼板に対して相対的に移動、走査することにより、方向性電磁鋼板の加工状態を評価した。図6(a),(b)はそれぞれ、磁区細分化加工が十分である方向性電磁鋼板及び不十分である方向性電磁鋼板について、磁気センサにより50mm×50mmの領域の漏洩磁束を検出した例を示す図である。図6(a)に示すように、磁区細分化加工が十分である方向性電磁鋼板では、筋状の磁区細分化加工部SPを確認することができた。これに対して、磁区細分化加工が不十分である方向性電磁鋼板では、筋状の磁区細分化加工部SPが不明確であった。なお、このような磁区細分化加工は、5〜10mm程度の間隔で行われるため、一定間隔で筋が見える特徴がある。本例では、磁区細分化加工部SPの間隔は8mmであった。   The processing state of the directional electrical steel sheet was evaluated by moving and scanning the magnetizer and the magnetic sensor relative to the directional electrical steel sheet. FIGS. 6A and 6B are examples in which leakage magnetic flux in a region of 50 mm × 50 mm is detected by a magnetic sensor with respect to a directional electromagnetic steel sheet in which magnetic domain subdivision processing is sufficient and a directional electromagnetic steel sheet in which magnetic domain subdivision is insufficient. FIG. As shown in FIG. 6 (a), in the grain-oriented electrical steel sheet in which the magnetic domain subdivision processing is sufficient, the streak-like magnetic domain subdivision processing portion SP could be confirmed. On the other hand, in the grain-oriented electrical steel sheet in which the magnetic domain refinement processing is insufficient, the streak-like magnetic domain refinement processing portion SP is unclear. In addition, since such magnetic domain subdivision processing is performed at intervals of about 5 to 10 mm, there is a feature that the streaks can be seen at regular intervals. In this example, the interval between the magnetic domain subdivided portions SP was 8 mm.

このような筋状の磁区細分化加工部SPを検出するにあたっては、磁気センサの出力信号を処理する必要がある。例えば図6(a),(b)に示すような漏洩磁束の2次元マップを測定するためには、磁化器及び磁気センサに対して方向性電磁鋼板が相対的に移動する必要があるが、本例では、図7に示すように複数の磁気センサ12bを基板12c上に固定し、方向性電磁鋼板が移動する場合を考える。具体的には、磁気センサ12bのリフトオフ量(磁気センサ12bと方向性電磁鋼板との間の距離)を0.3〜3mmの範囲内とし、方向性電磁鋼板の幅方向に4mm間隔で4個の磁気センサ12bを配置した。リフトオフの大きさは好ましくは0.5〜2mmの範囲内である。   In detecting such a streak-like magnetic domain subdivision processing part SP, it is necessary to process the output signal of the magnetic sensor. For example, in order to measure a two-dimensional map of leakage magnetic flux as shown in FIGS. 6 (a) and 6 (b), the directional electrical steel sheet needs to move relative to the magnetizer and the magnetic sensor. In this example, as shown in FIG. 7, a case is considered where a plurality of magnetic sensors 12b are fixed on a substrate 12c, and a grain-oriented electrical steel sheet moves. Specifically, the lift-off amount of the magnetic sensor 12b (distance between the magnetic sensor 12b and the directional electromagnetic steel sheet) is within a range of 0.3 to 3 mm, and four pieces are provided at intervals of 4 mm in the width direction of the directional electromagnetic steel sheet. The magnetic sensor 12b was arranged. The size of the lift-off is preferably in the range of 0.5 to 2 mm.

加工状態が不安定になる兆候を捉える際には、方向性電磁鋼板の全幅について測定を行う必要はないと仮定し、方向性電磁鋼板の幅が1500mmである場合、例えば4mm間隔4チャンネルを1ユニット、ユニット間隔を100mmとして、14〜15ユニット配置することで対応可能と考えた。なお、全幅もれなく測定する場合には、磁気センサやユニットの間隔を細かくすることにより対応可能であるが、チャンネル数が増えると共に装置規模も大きくなるので、使い方に応じた規模設計が必要である。   When capturing the signs that the processing state becomes unstable, it is assumed that it is not necessary to measure the entire width of the grain-oriented electrical steel sheet, and when the width of the grain-oriented electrical steel sheet is 1500 mm, for example, 4 channels with 4 mm intervals are set to 1 channel. It was thought that it was possible to cope by arranging 14 to 15 units with a unit and unit interval of 100 mm. It should be noted that the full width measurement can be performed by reducing the interval between the magnetic sensor and the unit. However, since the number of channels increases and the scale of the apparatus increases, a scale design corresponding to the usage is required.

図8(a),(b)はそれぞれ、チャンネル1(ch1)及びチャンネル2(ch2)の磁気センサの出力信号を時系列に示した図である。図8(a),(b)に示すように、方向性電磁鋼板の速度が1m/sであったため、8mm間隔の磁区細分化加工部が8msの間隔の信号変化として検出された。このような出力信号の評価指標例として周波数解析を使用する。具体的には、各チャンネルの一定時間内の時系列信号に対して高速フーリエ変換(FFT)演算処理を施すことにより各チャンネルの周波数分布を求め、各チャンネルの周波数分布を加算する。   FIGS. 8A and 8B are diagrams showing the output signals of the magnetic sensors of channel 1 (ch1) and channel 2 (ch2) in time series, respectively. As shown in FIGS. 8 (a) and 8 (b), the speed of the grain-oriented electrical steel sheet was 1 m / s, and therefore, the magnetic domain subdivided portion with an interval of 8 mm was detected as a signal change at an interval of 8 ms. Frequency analysis is used as an example of such an output signal evaluation index. Specifically, the frequency distribution of each channel is obtained by performing fast Fourier transform (FFT) arithmetic processing on the time series signal within a certain time of each channel, and the frequency distribution of each channel is added.

通常は、演算量低減のため各チャンネルの時系列信号を加算してからFFT演算処理により各チャンネルの周波数分布を求める。しかしながら、加工によって生じる筋状の磁区細分化加工部SPが斜めになった場合には、先に時系列信号を加算すると磁区細分化加工部SPの位置が不明瞭になる。これに対して、本方式のように、先にFFT演算処理を行うことによって、加工によって生じる筋状の磁区細分化加工部SPが磁化容易軸方向に対して斜めになった場合であっても、精度を落とさずに磁区細分化加工部SPの位置を計測することができる。   Normally, the frequency distribution of each channel is obtained by FFT calculation processing after adding the time series signals of each channel to reduce the amount of calculation. However, when the streak-like magnetic domain subdivision processing part SP generated by processing is slanted, the position of the magnetic domain subdivision processing part SP becomes unclear if the time series signal is added first. On the other hand, even if the streak-like magnetic domain subdivision processing part SP generated by processing is inclined with respect to the easy axis direction of magnetization by performing the FFT calculation process first as in this method. It is possible to measure the position of the magnetic domain subdivision processing portion SP without reducing accuracy.

図9は、図6(a),(b)に示した磁区細分化加工が十分である方向性電磁鋼板及び不十分である方向性電磁鋼板の漏洩磁束測定結果を磁化容易軸方向にFFT演算処理して4チャンネル分の値を加えた結果を示す図である。縦軸はFFT演算処理結果の複素数を絶対値で表した値(以下、強度レベルと呼称することがある)を示し、横軸はFFT演算処理の結果得られた周波数を波長に換算した値を示す。磁区細分化加工部が8mm間隔である場合、波長8mmの強度レベルを評価対象とする。図9に示すように、磁区細分化加工が不十分な方向性電磁鋼板では、波長8mmの強度レベルが小さく、磁区細分化加工が十分な方向性電磁鋼板では、波長8mmの強度レベルが大きくなり、この値を磁区細分化加工の指標とすることができる。   FIG. 9 shows an FFT calculation of the magnetic flux leakage measurement results of the directional electromagnetic steel sheet and the directional electromagnetic steel sheet in which the magnetic domain subdivision processing shown in FIGS. It is a figure which shows the result of having processed and added the value for 4 channels. The vertical axis indicates the value representing the complex number of the FFT operation processing result as an absolute value (hereinafter sometimes referred to as intensity level), and the horizontal axis indicates the value obtained by converting the frequency obtained as a result of the FFT operation processing into a wavelength. Show. When the magnetic domain subdivided parts are 8 mm apart, the intensity level of the wavelength of 8 mm is the evaluation target. As shown in FIG. 9, the strength level at a wavelength of 8 mm is small for a grain-oriented electrical steel sheet with insufficient magnetic domain refinement processing, and the strength level at a wavelength of 8 mm is large for a grain-oriented electrical steel sheet with sufficient magnetic domain refinement processing. This value can be used as an index for magnetic domain refinement processing.

また、このFFT演算処理結果の強度レベルは、鉄損と高い相関をもつことが確認できた。図10は、FFT演算処理結果の強度レベルと鉄損との相関係数を漏洩磁束計測を実施する面積に対してプロットした図である。図10に示すように、5000mm以上の面積を計測すると相関係数が0.8以上と良い相関があり、7000mm以上の面積を計測すると相関係数が0.82以上となりより良い相関が得られることがわかる。このように、FFT演算処理結果の強度レベルを基準とすることにより、磁区細分化加工の状況の評価、ひいては鉄損の評価が可能になる。例えば強度レベル基準を3段階に分け、加工状態の健全・要注意・要補修を判断する。具体的な加工状態の評価処理の流れを図11に示す。図11は、本発明の一実施形態である加工状態評価処理の流れを示すフローチャートである。 It was also confirmed that the intensity level of the FFT operation processing result has a high correlation with the iron loss. FIG. 10 is a diagram in which the correlation coefficient between the strength level of the FFT operation processing result and the iron loss is plotted against the area where leakage magnetic flux measurement is performed. As shown in FIG. 10, when an area of 5000 mm 2 or more is measured, the correlation coefficient is 0.8 or more, and when an area of 7000 mm 2 or more is measured, the correlation coefficient is 0.82 or more and a better correlation is obtained. It turns out that it is obtained. In this way, by using the strength level of the FFT operation processing result as a reference, it is possible to evaluate the state of magnetic domain subdivision processing, and thus to evaluate the iron loss. For example, the strength level standard is divided into three stages, and the soundness of the processing state, caution and repair are determined. FIG. 11 shows a flow of a specific processing state evaluation process. FIG. 11 is a flowchart showing a flow of machining state evaluation processing according to an embodiment of the present invention.

図11に示すように、本発明の一実施形態である加工状態評価処理では、まず、方向性電磁鋼板の所定長さ区間、磁気センサの出力信号のデータを採取し(ステップS1)、採取したデータに対してFFT演算処理を施すことにより各チャンネルの周波数分布を求める(ステップS2)。次に、4チャンネル分の周波数分布を加算し、所定周波数における周波数の強度レベルに基づいて分類する(ステップS3)。そして、強度レベルが0〜0.4である場合(ステップS4)、赤ランプを警告情報として点灯し(ステップS5)、加工機をメンテナンスすることを促す(ステップS6)。一方、強度レベルが0.4〜1.0である場合には(ステップS7)、黄ランプを注意情報として点灯し(ステップS8)、カウントを注視して加工機の定期修理までの期間により対応を検討することを促す(ステップS9)。また、強度レベルが1.0より大きい場合には(ステップS10)、緑ランプを点灯して評価は合格であるとし(ステップS11)、オペレータは何もしない(ステップS12)。以後、同様の処理を繰り返し実行する。   As shown in FIG. 11, in the machining state evaluation process according to an embodiment of the present invention, first, data of a predetermined length section of a grain-oriented electrical steel sheet and an output signal of a magnetic sensor are collected (step S <b> 1). The frequency distribution of each channel is obtained by performing FFT calculation processing on the data (step S2). Next, the frequency distributions for the four channels are added and classified based on the frequency intensity level at a predetermined frequency (step S3). When the intensity level is 0 to 0.4 (step S4), the red lamp is turned on as warning information (step S5), and the maintenance of the processing machine is urged (step S6). On the other hand, when the intensity level is 0.4 to 1.0 (step S7), the yellow lamp is turned on as caution information (step S8), and the time until the periodic repair of the processing machine is observed by watching the count. (Step S9). If the intensity level is greater than 1.0 (step S10), the green lamp is turned on and the evaluation is passed (step S11), and the operator does nothing (step S12). Thereafter, the same processing is repeatedly executed.

なお、本例では、FFT演算処理を用いたが、同じ時刻の信号を加算し、所定のチャンネル数の合計値をその時刻の値とする方法を用いてもよい。但し、この場合には、磁区細分化加工部が各磁気センサを通過する時刻に合わせるために、磁気センサの並びを磁区細分化加工部と平行になるようにするか、データ測定後に各チャンネルのデータの時刻補正を行う必要がある。また、漏洩磁束信号を磁化容易軸方向に自己相関する、磁区細分化加工の周期の信号でフィルタリングする等、ほかの磁化容易軸方向の信号の周期性を評価する演算を用いても磁区細分化加工の状況を評価することができる。   In this example, FFT calculation processing is used. However, a method may be used in which signals at the same time are added and a total value of a predetermined number of channels is used as the value at that time. However, in this case, in order to adjust the time when the magnetic domain subdivision processing unit passes each magnetic sensor, the magnetic sensor is arranged in parallel with the magnetic domain subdivision processing unit, or after data measurement, It is necessary to correct the time of the data. In addition, magnetic domain subdivision can be performed using other operations that evaluate the periodicity of signals in the easy axis direction, such as filtering the leakage flux signal with the signal of the magnetic domain subdivision processing period, which is autocorrelated in the easy axis direction. The processing status can be evaluated.

また、オフラインでの評価であれば、磁化器及び磁気センサを移動させて方向性電磁鋼板を固定しておいてもよい。また、複数チャンネルでなくても、磁化器及び磁気センサを2次元に走査することによって図6(a),(b)に示すような漏洩磁束の2次元マップが得られる。信号処理及び評価方法は前述した方法と同じである。   For offline evaluation, the directional electromagnetic steel sheet may be fixed by moving the magnetizer and the magnetic sensor. Even if it is not a plurality of channels, a two-dimensional map of leakage flux as shown in FIGS. 6A and 6B can be obtained by two-dimensionally scanning the magnetizer and the magnetic sensor. The signal processing and evaluation method is the same as described above.

また、方向性電磁鋼板の磁界の不連続部分を検出する方法であるために、結晶粒界や磁壁に反応する場合がある。しかしながら、結晶粒界や磁壁は一定間隔では存在しないため、繰り返し性を加味した評価方法であれば弁別できる。一方、磁区細分化加工部以外の反応が大きい部分を記録し、より広い範囲(5m毎等)での分布を評価することにより、磁区細分化加工前の材質評価に使用可能である。これらをより前工程にフィードバックすることにより、材質改善が可能となる。   Moreover, since it is a method of detecting the discontinuous portion of the magnetic field of the grain-oriented electrical steel sheet, it may react to a grain boundary or a domain wall. However, since crystal grain boundaries and domain walls do not exist at regular intervals, any evaluation method that takes repeatability into account can be distinguished. On the other hand, by recording a portion having a large reaction other than the magnetic domain subdivision processing portion and evaluating the distribution in a wider range (such as every 5 m), it can be used for material evaluation before the magnetic subdivision processing. By feeding these back to the previous process, the material can be improved.

また、磁気センサを方向性電磁鋼板に近接させる程、漏洩磁束の検出精度が上がるが、方向性電磁鋼板のばたつきによる接触等があるために、磁気センサと方向性電磁鋼板との間の距離(リフトオフ量)は実際には0.3〜3mm程度である。リフトオフ量の変動によって検出信号がばらつく場合には、リフトオフ量の補正が必要である。磁気センサと電磁鋼板との間の距離を測定する距離計(レーザや渦電流式)を併設することも漏洩磁束の検出精度の維持には重要である。   In addition, the closer the magnetic sensor is to the directional electromagnetic steel sheet, the higher the detection accuracy of the leakage magnetic flux. However, because there is contact due to flapping of the directional electromagnetic steel sheet, the distance between the magnetic sensor and the directional electromagnetic steel sheet ( The lift-off amount is actually about 0.3 to 3 mm. When the detection signal varies due to a variation in the lift-off amount, it is necessary to correct the lift-off amount. It is also important to maintain a leakage magnetic flux detection accuracy by providing a distance meter (laser or eddy current type) that measures the distance between the magnetic sensor and the magnetic steel sheet.

方向性電磁鋼板のばたつきが大きい場合には、搬送ロールを新設したり、既設のロールに磁化器を隣接させたり、既設のロールの中に磁化器を配置してもよい。また、方向性電磁鋼板に印加する磁化レベルは小さいので、磁化器として空芯コイルを用いてもよい。   When the fluttering of the grain-oriented electrical steel sheet is large, a transfer roll may be newly installed, a magnetizer may be adjacent to an existing roll, or a magnetizer may be disposed in an existing roll. Moreover, since the magnetization level applied to the grain-oriented electrical steel sheet is small, an air-core coil may be used as the magnetizer.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 方向性電磁鋼板の加工状態評価装置
2 漏洩磁束検出部
2a 磁化器
2b 磁気センサ
3 信号処理部
S 方向性電磁鋼板
SP 磁区細分化加工部
DESCRIPTION OF SYMBOLS 1 Processing direction evaluation apparatus of directionality electrical steel sheet 2 Leakage magnetic flux detection part 2a Magnetizer 2b Magnetic sensor 3 Signal processing part S Directional electrical steel sheet SP Magnetic domain subdivision processing part

Claims (4)

磁化容易軸方向に対して垂直な方向に磁区細分化加工が施された方向性電磁鋼板に対して、前記磁区細分化加工が施されていない領域にある磁区の磁壁は移動するが前記磁区細分化加工が施された領域にある磁区の磁化方向が前記磁化容易軸方向に対して平行にならない大きさの直流又は交流の磁場を印加する磁化ステップと、
前記磁場の印加に伴い前記方向性電磁鋼板に発生する漏洩磁束を検出する検出ステップと、
前記検出ステップにおいて検出された漏洩磁束に基づいて前記磁区細分化加工が施された領域の加工状態を評価する処理ステップと、
を含むことを特徴とする方向性電磁鋼板の加工状態評価方法。
With respect to a grain-oriented electrical steel sheet that has been subjected to magnetic domain subdivision processing in a direction perpendicular to the easy axis direction, the domain wall of the magnetic domain in the region that has not been subjected to magnetic domain subdivision processing moves, but the magnetic domain subdivision A magnetization step of applying a direct current or alternating current magnetic field having a magnitude such that the magnetization direction of the magnetic domain in the region subjected to the processing is not parallel to the easy axis direction;
A detection step of detecting leakage magnetic flux generated in the grain-oriented electrical steel sheet with application of the magnetic field;
A processing step for evaluating a processing state of the region subjected to the magnetic domain subdivision processing based on the leakage magnetic flux detected in the detection step;
The processing state evaluation method of the grain-oriented electrical steel sheet characterized by including these.
前記処理ステップは、複数のチャンネルの漏洩磁束の時系列信号に対して高速フーリエ変換演算処理を施すことにより各チャンネルの周波数分布を算出し、各チャンネルの周波数分布を加算し、加算された各チャンネルの周波数分布を用いて磁区細分化加工が施された領域の加工状態を評価するステップを含むことを特徴とする請求項1に記載の方向性電磁鋼板の加工状態評価方法。   The processing step calculates the frequency distribution of each channel by performing a fast Fourier transform operation process on the time series signal of the leakage magnetic flux of a plurality of channels, adds the frequency distribution of each channel, and adds each channel The method for evaluating a machining state of a grain-oriented electrical steel sheet according to claim 1, further comprising a step of evaluating a machining state of a region subjected to magnetic domain subdivision processing using a frequency distribution of the magnetic domain. 磁化容易軸方向に対して垂直な方向に磁区細分化加工が施された方向性電磁鋼板に対して、前記磁区細分化加工が施されていない領域にある磁区の磁壁は移動するが前記磁区細分化加工が施された領域にある磁区の磁化方向が前記磁化容易軸方向に対して平行にならない大きさの直流又は交流の磁場を印加する磁化器と、
前記磁場の印加に伴い前記方向性電磁鋼板に発生する漏洩磁束を検出する磁気センサと、
前記磁気センサによって検出された漏洩磁束に基づいて前記磁区細分化加工が施された領域の加工状態を評価する信号処理部と、
を備えることを特徴とする方向性電磁鋼板の加工状態評価装置。
With respect to a grain-oriented electrical steel sheet that has been subjected to magnetic domain subdivision processing in a direction perpendicular to the easy axis direction, the domain wall of the magnetic domain in the region that has not been subjected to magnetic domain subdivision processing moves, but the magnetic domain subdivision A magnetizer for applying a direct current or alternating current magnetic field having a magnitude such that the magnetization direction of the magnetic domain in the region subjected to the processing is not parallel to the easy axis direction;
A magnetic sensor for detecting leakage magnetic flux generated in the grain-oriented electrical steel sheet with application of the magnetic field;
A signal processing unit that evaluates a processing state of the region subjected to the magnetic domain subdivision processing based on the leakage magnetic flux detected by the magnetic sensor;
A machined state evaluation apparatus for grain-oriented electrical steel sheets, comprising:
請求項1又は2に記載の方向性電磁鋼板の加工状態評価方法による前記磁区細分化加工が施された領域の加工状態の評価結果に基づいて前記磁区細分化加工の条件を変更し、変更した条件に従って前記磁区細分化加工を行うことにより方向性電磁鋼板を製造するステップを含むことを特徴とする方向性電磁鋼板の製造方法。   The condition of the magnetic domain subdivision processing is changed and changed based on the evaluation result of the processing state of the region subjected to the magnetic domain subdivision processing by the processing state evaluation method for the grain-oriented electrical steel sheet according to claim 1 or 2. A method for producing a grain-oriented electrical steel sheet, comprising the step of producing a grain-oriented electrical steel sheet by performing the magnetic domain subdivision processing according to conditions.
JP2017195775A 2017-01-31 2017-10-06 Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet Active JP6607242B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017015079 2017-01-31
JP2017015079 2017-01-31

Publications (2)

Publication Number Publication Date
JP2018124266A true JP2018124266A (en) 2018-08-09
JP6607242B2 JP6607242B2 (en) 2019-11-20

Family

ID=63109048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017195775A Active JP6607242B2 (en) 2017-01-31 2017-10-06 Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6607242B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116188A1 (en) * 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor
WO2022004613A1 (en) 2020-07-03 2022-01-06 Jfeスチール株式会社 Sensitivity calibration method, inspection device, and magnetic sensor group

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311165A (en) * 1987-06-12 1988-12-19 Kawasaki Steel Corp Method and apparatus for finding flaw with magnetism
JP2004205380A (en) * 2002-12-25 2004-07-22 Mayekawa Mfg Co Ltd Magnetic flaw detection apparatus
JP2006220610A (en) * 2005-02-14 2006-08-24 Jfe Engineering Kk Defect detector
JP2007101519A (en) * 2005-09-07 2007-04-19 Nippon Steel Corp Device for observing particle shape of magnetic material
JP2010054254A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Magnetic measuring method and device
JP2011021904A (en) * 2009-07-13 2011-02-03 Chugoku Electric Power Co Inc:The Non-destructive inspection device
JP2013185229A (en) * 2012-03-09 2013-09-19 Jfe Steel Corp Method for working grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
JP2014070972A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Steel plate inspection apparatus, steel plate inspection method, and steel plate manufacturing method
JP2014070975A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting magnetic domain discontinuous portion
CN104330462A (en) * 2014-11-07 2015-02-04 西红柿科技(武汉)有限公司 Dual-excitation unit for magnetic flux leakage detection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311165A (en) * 1987-06-12 1988-12-19 Kawasaki Steel Corp Method and apparatus for finding flaw with magnetism
JP2004205380A (en) * 2002-12-25 2004-07-22 Mayekawa Mfg Co Ltd Magnetic flaw detection apparatus
JP2006220610A (en) * 2005-02-14 2006-08-24 Jfe Engineering Kk Defect detector
JP2007101519A (en) * 2005-09-07 2007-04-19 Nippon Steel Corp Device for observing particle shape of magnetic material
JP2010054254A (en) * 2008-08-27 2010-03-11 Jfe Steel Corp Magnetic measuring method and device
JP2011021904A (en) * 2009-07-13 2011-02-03 Chugoku Electric Power Co Inc:The Non-destructive inspection device
JP2013185229A (en) * 2012-03-09 2013-09-19 Jfe Steel Corp Method for working grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
JP2014070972A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Steel plate inspection apparatus, steel plate inspection method, and steel plate manufacturing method
JP2014070975A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting magnetic domain discontinuous portion
CN104330462A (en) * 2014-11-07 2015-02-04 西红柿科技(武汉)有限公司 Dual-excitation unit for magnetic flux leakage detection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116188A1 (en) * 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor
JP6747627B1 (en) * 2018-12-05 2020-08-26 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing the same
KR20210088666A (en) * 2018-12-05 2021-07-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
KR102500997B1 (en) 2018-12-05 2023-02-16 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of producing same
US11923116B2 (en) 2018-12-05 2024-03-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same
WO2022004613A1 (en) 2020-07-03 2022-01-06 Jfeスチール株式会社 Sensitivity calibration method, inspection device, and magnetic sensor group
KR20230014782A (en) 2020-07-03 2023-01-30 제이에프이 스틸 가부시키가이샤 Sensitivity calibration method, inspection device and magnetic sensor group

Also Published As

Publication number Publication date
JP6607242B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
KR101941241B1 (en) Electromagnetic sensor and calibration thereof
JP5262436B2 (en) Magnetic measurement method and apparatus
Caldas-Morgan et al. Fast detection of the magnetic easy axis on steel sheet using the continuous rotational Barkhausen method
CN103499636B (en) Based on the lossless detection method of microdefect in the thin plate class ferromagnetic material of the magnetostatic power of survey
JP6562055B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP5332474B2 (en) Magnetic characteristic measuring apparatus and magnetic characteristic measuring method
RU2759507C2 (en) Method and devices for monitoring magnetic field in material volume, as well as application of this device
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP2008122138A (en) Method and instrument for measuring magnetic characteristics and mechanical strength of steel sheet
JP5550617B2 (en) Magnetic flux leakage inspection device
JP5544962B2 (en) Magnetic flux leakage flaw detection method and magnetic flux leakage inspection device
JP5266695B2 (en) Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet
JP2011123081A (en) Complex permeability measuring device of magnetic body, and crystal grain size measuring method of magnetic body using the same
JP3707547B2 (en) Method for measuring Si concentration in steel material and method for producing electrical steel sheet
JP4192708B2 (en) Magnetic sensor
KR20140117983A (en) Apparatus for detecting defect of rolled coil
JP2007187551A (en) Apparatus for measuring complex magnetic characteristics and method for measuring crystal particle size of magnetic substance
KR101143054B1 (en) Apparatus and method for measuring the strength of quality of steel plate
Wang et al. Displacement measurement for ferromagnetic materials based on the double-layer parallel-cable-based probe
Aguila-Munoz et al. Crack detection in steel using a GMR-based MFL probe with radial magnetization
JPH08193980A (en) Method and device for magnetic flaw detection
JPH09166582A (en) Electromagnetic flaw detection method
JPH05264508A (en) Method and apparatus for nondestructive measurement of quenched and hardened range
CN103940902A (en) Method for detecting discontinuity of nonmetallic material by utilizing eddy current impedance plane detector
US6850056B2 (en) Flaw detection device for steel bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6607242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250