JP2018123109A - Antibacterial member and production method thereof - Google Patents

Antibacterial member and production method thereof Download PDF

Info

Publication number
JP2018123109A
JP2018123109A JP2017018620A JP2017018620A JP2018123109A JP 2018123109 A JP2018123109 A JP 2018123109A JP 2017018620 A JP2017018620 A JP 2017018620A JP 2017018620 A JP2017018620 A JP 2017018620A JP 2018123109 A JP2018123109 A JP 2018123109A
Authority
JP
Japan
Prior art keywords
copper
film
antibacterial
plating
antibacterial member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017018620A
Other languages
Japanese (ja)
Inventor
福本 和広
Kazuhiro Fukumoto
和広 福本
鈴木 賢一郎
Kenichiro Suzuki
賢一郎 鈴木
好久 鶴田
Yoshihisa Tsuruta
好久 鶴田
詔平 加藤
Shohei Kato
詔平 加藤
真一 梶野
Shinichi Kajino
真一 梶野
麻生 康弘
Yasuhiro Aso
康弘 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2017018620A priority Critical patent/JP2018123109A/en
Publication of JP2018123109A publication Critical patent/JP2018123109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antibacterial member including a copper coating having superior antibacterial performance in comparison with a normal copper foil, a copper coating (electrolytic Cu plating film) formed by electrolytic plating, and a copper coating (Cu sputtering film) formed by sputtering.SOLUTION: An antibacterial member includes a substrate, and a copper coating formed on the surface of the substrate, in which the intensity ratio (111)/(200) between a peak derived from (111) plane and a peak derived from (200) plane in an X-ray diffraction pattern is 3.0 or higher.SELECTED DRAWING: None

Description

本発明は、抗菌性部材及びその製造方法に関し、より詳しくは、基材表面に銅皮膜を有する抗菌性部材及びその製造方法に関する。   The present invention relates to an antibacterial member and a method for producing the same, and more particularly to an antibacterial member having a copper film on the surface of a substrate and a method for producing the same.

近年、飲食・衛生関連用品や医療・福祉関連用品のみならず、自動車用品や住宅・建築用品、生活必需品等に至る様々な分野において、抗菌性を有する製品が求められており、銅や銀等の抗菌性を示す金属からなる皮膜を基材の表面に形成することによって、抗菌性が付与されている。例えば、伸銅技術研究会誌、2001年、第40巻、第1号、122〜127ページ(非特許文献1)には、炭素鋼(基材)に銅メッキ処理を施して形成した銅メッキ表面が抗菌性を示すことが記載されている。しかしながら、前記銅メッキ処理は電解Cuメッキ処理であり、これにより形成された銅メッキ表面の抗菌性は必ずしも十分なものではなかった。   In recent years, antibacterial products have been demanded not only for food / hygiene-related products and medical / welfare-related products, but also for automobiles, housing / building products, daily necessities, etc., such as copper and silver Antibacterial properties are imparted by forming a film made of a metal exhibiting antibacterial properties on the surface of the substrate. For example, the Journal of Copper Roll Technology, 2001, Vol. 40, No. 1, pages 122-127 (Non-Patent Document 1) includes a copper plating surface formed by subjecting carbon steel (base material) to copper plating treatment. Shows that it exhibits antibacterial properties. However, the copper plating process is an electrolytic Cu plating process, and the antibacterial property of the copper plating surface formed thereby is not always sufficient.

また、特開2000−198709号公報(特許文献1)には、銅以外の金属を用いた抗菌部材として、Ni及びCo又は水素を含有する抗菌性皮膜を表面に有する抗菌部材が開示されており、抗菌性皮膜の表面層のNi含有量及びCo含有量又は水素含有量を特定の範囲に調整することによって抗菌性を発現することが記載されている。しかしながら、NiやCoは人体や環境に対して必ずしも安全であるとは言えず、また、前記抗菌性皮膜の抗菌性も必ずしも十分なものではなかった。   Japanese Patent Laid-Open No. 2000-198709 (Patent Document 1) discloses an antibacterial member having an antibacterial film containing Ni and Co or hydrogen on its surface as an antibacterial member using a metal other than copper. In addition, it is described that antibacterial properties are expressed by adjusting the Ni content and Co content or hydrogen content of the surface layer of the antibacterial film to a specific range. However, Ni and Co are not necessarily safe for the human body and the environment, and the antibacterial property of the antibacterial film is not always sufficient.

特開2000−198709号公報JP 2000-198709 A

熊田ら、伸銅技術研究会誌、2001年、第40巻、第1号、122〜127ページKumada et al, Journal of Copper and Copper Technology, 2001, Vol. 40, No. 1, pages 122-127

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、通常の銅箔、電解メッキにより形成された銅皮膜(電解Cuメッキ膜)、及びスパッタリングにより形成された銅皮膜(Cuスパッタ膜)に比べて優れた抗菌性能を有する銅皮膜を備えている抗菌性部材及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and includes a normal copper foil, a copper film formed by electrolytic plating (electrolytic Cu plating film), and a copper film formed by sputtering (Cu sputtering). An object of the present invention is to provide an antibacterial member provided with a copper film having antibacterial performance superior to that of a film and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、基材と、この基材の表面に無電解メッキにより形成された銅皮膜が、通常の銅箔、電解Cuメッキ膜及びCuスパッタ膜に比べて、優れた抗菌性能を示すことを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a base material and a copper film formed on the surface of the base material by electroless plating are a normal copper foil, an electrolytic Cu plating film, and The inventors have found that the antibacterial performance is superior to that of a Cu sputtered film, and have completed the present invention.

すなわち、本発明の抗菌性部材は、基材と、該基材の表面に形成されており、X線回折パターンにおける(111)面に由来するピークと(200)面に由来するピークとの強度比(111)/(200)が3.0以上である銅皮膜と、を備えていることを特徴とするものである。前記銅皮膜は、平均粒子径が20〜200nmの銅微粒子により形成されていることが好ましく、前記銅微粒子は凝集体を形成していることがより好ましい。   That is, the antibacterial member of the present invention is formed on the base material and the surface of the base material, and the intensity of the peak derived from the (111) plane and the peak derived from the (200) plane in the X-ray diffraction pattern. And a copper film having a ratio (111) / (200) of 3.0 or more. The copper film is preferably formed of copper fine particles having an average particle diameter of 20 to 200 nm, and more preferably, the copper fine particles form an aggregate.

また、本発明の抗菌性部材の製造方法は、基材の表面に、貴金属コロイド粒子を用いて活性化処理を施した後、無電解メッキ処理を施して銅皮膜を形成することを特徴とする方法である。   In addition, the method for producing an antibacterial member of the present invention is characterized in that the surface of the base material is subjected to an activation treatment using noble metal colloid particles and then subjected to an electroless plating treatment to form a copper film. Is the method.

なお、本発明の抗菌性部材が優れた抗菌性能を示す理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、銅による殺菌・抗菌作用は、銅表面から溶出したCu2+イオンにより殺菌される効果は小さく、菌体が銅表面に直接接触することによって殺菌される効果が格段に大きいことが報告されている(非特許文献1)。銅表面での抗菌作用発現のメカニズムは、図1に示すように、銅表面で生成する活性酸素(H、O 、OHラジカル等)によって菌体が死滅するメカニズムが提唱されている(非特許文献1)。 The reason why the antibacterial member of the present invention exhibits excellent antibacterial performance is not necessarily clear, but the present inventors speculate as follows. In other words, it has been reported that the sterilization / antibacterial action by copper has a small effect of being sterilized by Cu 2+ ions eluted from the copper surface, and the effect of being sterilized by direct contact of the bacterial cells with the copper surface has been reported. (Non-Patent Document 1). As shown in FIG. 1, the mechanism of the antibacterial action expression on the copper surface is proposed as a mechanism that kills cells by active oxygen (H 2 O 2 , O 2 , OH radical, etc.) generated on the copper surface. (Non-Patent Document 1).

本発明の抗菌性部材における銅皮膜は、無電解メッキにより形成されたものであり、(111)面が優先的に配向している。(111)面が優先的に配向した銅皮膜は活性酸素の生成能に優れているため、本発明の抗菌性部材においては、銅皮膜表面に接触した菌体が迅速に死滅し、高い抗菌性能が発現すると推察される。一方、スパッタリングにより形成された銅皮膜(Cuスパッタ膜)は、無電解メッキにより形成された銅皮膜(無電解Cuメッキ膜)に比べて、(111)面の優先配向が少なく、活性酸素の生成能に劣っているため、抗菌性能が低下すると推察される。また、電解メッキにより形成された銅皮膜(電解Cuメッキ膜)は、無電解Cuメッキ膜やCuスパッタ膜に比べて、(111)面の優先配向が更に少なく、活性酸素の生成能も更に劣っているため、抗菌性能がより低下すると推察される。通常の銅箔は、(220)面が優先的に配向しているため、活性酸素が生成しにくく、無電解Cuメッキ膜やCuスパッタ膜、電解Cuメッキ膜に比べて、抗菌性能が非常に低くなると推察される。   The copper film in the antibacterial member of the present invention is formed by electroless plating, and the (111) plane is preferentially oriented. Since the copper film with the (111) plane preferentially oriented is excellent in the ability to generate active oxygen, in the antibacterial member of the present invention, the cells contacting the surface of the copper film are quickly killed and have high antibacterial performance. Is presumed to be expressed. On the other hand, the copper film (Cu sputtered film) formed by sputtering has less preferred orientation on the (111) plane than the copper film (electroless Cu plated film) formed by electroless plating, and generates active oxygen. It is inferred that the antibacterial performance decreases because of poor performance. In addition, the copper film (electrolytic Cu plating film) formed by electrolytic plating has less preferred orientation of the (111) plane and is inferior in the ability to generate active oxygen than the electroless Cu plating film or Cu sputtered film. Therefore, it is presumed that the antibacterial performance is further lowered. Since normal copper foil has a preferential orientation of the (220) plane, it is difficult to generate active oxygen, and antibacterial performance is much higher than electroless Cu plating film, Cu sputtered film, and electrolytic Cu plating film. Presumed to be lower.

また、本発明の抗菌性部材における銅皮膜は、平均粒子径が20〜200nmの銅微粒子の凝集体からなるものであり、大きな比表面積を有しており、活性酸素を生成すると考えられる活性サイトが多く存在すると推察される。このことも、本発明の抗菌性部材における銅皮膜が活性酸素の生成能に優れ、高い抗菌性能を発現する要因の一つであると推察される。一方、電解Cuメッキ膜は、微細な銅結晶粒子からなる平滑なものであり、無電解Cuメッキ膜に比べて、比表面積が小さく、活性酸素を生成すると考えられる活性サイトが少ないと推察される。このことも、電解Cuメッキ膜が、無電解Cuメッキ膜に比べて、活性酸素の生成能に劣り、抗菌性能が低下する要因の一つであると推察される。また、通常の銅箔は、表面が平滑であり、無電解Cuメッキ膜や電解Cuメッキ膜に比べて、比表面積が更に小さく、活性酸素を生成すると考えられる活性サイトが更に少ないと推察される。このことも、通常の銅箔が、無電解Cuメッキ膜や電解Cuメッキ膜に比べて、活性酸素の生成能が更に劣り、抗菌性能がより低下する要因の一つであると推察される。   Further, the copper film in the antibacterial member of the present invention is composed of an aggregate of copper fine particles having an average particle diameter of 20 to 200 nm, has a large specific surface area, and is an active site that is considered to generate active oxygen. It is assumed that there are many. This is also presumed that the copper film in the antibacterial member of the present invention is one of the factors that are excellent in the ability to generate active oxygen and exhibit high antibacterial performance. On the other hand, the electrolytic Cu plating film is smooth and composed of fine copper crystal particles, and has a specific surface area smaller than that of the electroless Cu plating film, and is presumed to have fewer active sites that are considered to generate active oxygen. . This is also presumed that the electrolytic Cu plating film is inferior in the ability to generate active oxygen as compared with the electroless Cu plating film, and is one of the causes for the decrease in antibacterial performance. Moreover, it is surmised that the normal copper foil has a smooth surface, has a smaller specific surface area, and has fewer active sites that are thought to generate active oxygen than electroless Cu plating films and electrolytic Cu plating films. . This is also presumed that the normal copper foil is one of the factors that the active oxygen generation ability is further inferior and the antibacterial performance is further lowered as compared with the electroless Cu plating film and the electrolytic Cu plating film.

本発明によれば、通常の銅箔、電解Cuメッキ膜及びCuスパッタ膜に比べて優れた抗菌性能を有する銅皮膜を備えている抗菌性部材を得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the antibacterial member provided with the copper film which has the antibacterial performance excellent compared with the normal copper foil, the electrolytic Cu plating film, and the Cu sputtered film.

銅表面での抗菌作用発現のメカニズムを示す概念図である。It is a conceptual diagram which shows the mechanism of the antibacterial action expression on the copper surface. 実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3のX線回折パターンを示すグラフである。It is a graph which shows the X-ray-diffraction pattern of the antibacterial member obtained in Example 1, and the comparative members 1-3 obtained in Comparative Examples 1-3. 実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3の表面の状態を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the surface state of the antibacterial member obtained in Example 1, and the comparative members 1-3 obtained by Comparative Examples 1-3. 実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3の抗菌性能試験における生菌数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the number of living bacteria in the antibacterial performance test of the antibacterial member obtained in Example 1 and the comparative members 1 to 3 obtained in Comparative Examples 1 to 3.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の抗菌性部材について説明する。本発明の抗菌性部材は、基材と、この基材の表面に形成されている銅皮膜とを備えるものである。前記銅皮膜においては、X線回折パターンにおける(111)面に由来するピークと(200)面に由来するピークとの強度比(111)/(200)が3.0以上である。ピーク強度比(111)/(200)が前記範囲内にある銅皮膜は抗菌性能に優れている。また、このようなピーク強度比(111)/(200)を有する銅皮膜は、例えば、基材の表面に、後述する無電解メッキ処理を施すことによって製造することができる。一方、前記ピーク強度比(111)/(200)が前記下限未満になると、銅皮膜の抗菌性能が低下する。また、銅皮膜の抗菌性能が向上するという観点から、前記ピーク強度比(111)/(200)としては4.0以上が好ましく、6.0以上がより好ましい。前記ピーク強度比(111)/(200)の上限としては特に制限はないが、10.0以下が好ましい。なお、本発明の抗菌性部材において、銅皮膜は金属銅からなるものであるが、本発明の効果を損なわない範囲において酸化銅を含んでいてもよい。   First, the antibacterial member of the present invention will be described. The antibacterial member of the present invention comprises a base material and a copper film formed on the surface of the base material. In the copper film, the intensity ratio (111) / (200) between the peak derived from the (111) plane and the peak derived from the (200) plane in the X-ray diffraction pattern is 3.0 or more. A copper film having a peak intensity ratio (111) / (200) within the above range is excellent in antibacterial performance. Moreover, the copper film which has such a peak intensity ratio (111) / (200) can be manufactured by performing the electroless-plating process mentioned later on the surface of a base material, for example. On the other hand, when the peak intensity ratio (111) / (200) is less than the lower limit, the antibacterial performance of the copper film is lowered. Further, from the viewpoint of improving the antibacterial performance of the copper film, the peak intensity ratio (111) / (200) is preferably 4.0 or more, and more preferably 6.0 or more. The upper limit of the peak intensity ratio (111) / (200) is not particularly limited, but is preferably 10.0 or less. In the antibacterial member of the present invention, the copper film is made of metallic copper, but may contain copper oxide as long as the effects of the present invention are not impaired.

また、本発明の抗菌性部材において、前記銅皮膜は、平均粒子径が20〜200nmの銅微粒子により形成されていることが好ましい。これにより、抗菌性能が向上する傾向にある。このような平均粒子径を有する銅微粒子により形成されている銅皮膜は、例えば、基材の表面に、後述する無電解メッキ処理を施すことによって製造することができる。一方、銅微粒子の平均粒子径が前記下限未満になると、析出する銅微粒子が球状になって平滑に堆積し、銅皮膜の表面が平滑になるため、抗菌性能が低下する傾向にあり、他方、前記上限を超えると、表面積が減少して銅皮膜の抗菌性能が低下する傾向にある。また、銅皮膜の抗菌性能が更に向上するという観点から、銅微粒子の平均粒子径としては50〜150nmがより好ましく、75〜100nmが更に好ましい。   Moreover, the antibacterial member of this invention WHEREIN: It is preferable that the said copper film is formed with the copper fine particle with an average particle diameter of 20-200 nm. This tends to improve antibacterial performance. A copper film formed of copper fine particles having such an average particle diameter can be produced, for example, by subjecting the surface of the base material to an electroless plating process described later. On the other hand, when the average particle diameter of the copper fine particles is less than the lower limit, the deposited copper fine particles become spherical and smoothly deposit, and the surface of the copper film becomes smooth, so that the antibacterial performance tends to decrease, If the upper limit is exceeded, the surface area tends to decrease and the antibacterial performance of the copper film tends to be reduced. Moreover, from a viewpoint that the antibacterial performance of a copper membrane | film | coat improves further, as an average particle diameter of copper fine particle, 50-150 nm is more preferable, and 75-100 nm is still more preferable.

更に、本発明の抗菌性部材において、前記銅皮膜の厚さとしては特に制限はないが、200〜10000nmが好ましく、500〜3000nmがより好ましい。銅皮膜の厚さが前記下限未満になると、腐食や摩耗により耐久性が短くなる傾向にあり、他方、前記上限を超えると、銅皮膜の物性が低下する傾向にある。   Furthermore, in the antibacterial member of the present invention, the thickness of the copper film is not particularly limited, but is preferably 200 to 10,000 nm, and more preferably 500 to 3000 nm. When the thickness of the copper film is less than the lower limit, the durability tends to be shortened due to corrosion or wear. On the other hand, when the thickness exceeds the upper limit, the physical properties of the copper film tend to be lowered.

また、本発明の抗菌性部材において、前記銅微粒子は凝集体を形成していることがより好ましい。これにより、表面積が増加し、菌体との接触効率が向上する傾向にある。また、前記銅微粒子の形状としては特に制限はないが、主として歪な形状(すなわち、真球状及び楕円球状以外の形状)であることが好ましい。これにより、抗菌活性が向上する傾向にある。このような銅微粒子の凝集体からなる銅皮膜や歪な形状の銅微粒子からなる銅皮膜は、例えば、基材の表面に、後述する無電解メッキ処理を施すことによって製造することができる。なお、本発明の抗菌性部材において、前記銅微粒子は金属銅からなるものであるが、本発明の効果を損なわない範囲において酸化銅を含んでいてもよい。   In the antibacterial member of the present invention, it is more preferable that the copper fine particles form an aggregate. Thereby, a surface area increases and it exists in the tendency for contact efficiency with a microbial cell to improve. Further, the shape of the copper fine particles is not particularly limited, but is preferably mainly a distorted shape (that is, a shape other than a true spherical shape and an elliptic spherical shape). This tends to improve antibacterial activity. A copper film made of such an aggregate of copper fine particles or a copper film made of distorted copper fine particles can be produced, for example, by subjecting the surface of the base material to an electroless plating treatment to be described later. In the antibacterial member of the present invention, the copper fine particles are made of metallic copper, but may contain copper oxide as long as the effects of the present invention are not impaired.

本発明に用いられる基材としては無電解メッキ処理により表面に銅皮膜を形成できるものであれば特に制限はなく、例えば、無機材料及び/又は有機材料からなるものが挙げられる。このような基材を構成する無機材料としては、例えば、鉄、アルミニウム、ステンレス鋼等の金属材料;セメント、コンクリート、モルタル、ガラス、レンガ、無機多孔体;アルミナ、ジルコニア等のセラミック材料;マイカ、シリカ等の粉末材料が挙げられる。また、基材としてアルミニウム製の基材を用いる場合には、基材表面に熱水又は熱水蒸気中でベーマイト処理を施して基材の表面積を増大させることが好ましい。前記基材を構成する有機材料としては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ABS樹脂、ポリスチレン、熱可塑性ポリエステル樹脂、ポリビニルアルコール、ポリカーボネート、ポリアミド等の熱可塑性樹脂;フェノール樹脂、尿素樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン樹脂等の熱硬化性樹脂;木材や紙等のセルロース系材料;各種ゴム剤;綿等の天然繊維;合成繊維等が挙げられる。更に、前記基材を構成する有機無機複合材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア等の無機成分を含む有機−無機ポリマーハイブリッド材料が挙げられる。   The substrate used in the present invention is not particularly limited as long as a copper film can be formed on the surface by electroless plating treatment, and examples thereof include those made of inorganic materials and / or organic materials. Examples of the inorganic material constituting the base material include metal materials such as iron, aluminum, and stainless steel; cement, concrete, mortar, glass, brick, inorganic porous material; ceramic materials such as alumina and zirconia; mica, Examples thereof include powder materials such as silica. In addition, when an aluminum base material is used as the base material, it is preferable to increase the surface area of the base material by subjecting the base material surface to a boehmite treatment in hot water or hot steam. Examples of the organic material constituting the substrate include thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, ABS resin, polystyrene, thermoplastic polyester resin, polyvinyl alcohol, polycarbonate, and polyamide; phenol resin, Thermosetting resins such as urea resin, epoxy resin, melamine resin and polyurethane resin; cellulosic materials such as wood and paper; various rubber agents; natural fibers such as cotton; synthetic fibers and the like. Furthermore, as an organic inorganic composite material which comprises the said base material, the organic-inorganic polymer hybrid material containing inorganic components, such as a silica, an alumina, a titania, a zirconia, is mentioned, for example.

また、前記基材の形態としては無電解メッキ処理により表面に銅皮膜を形成できるものであれば特に制限はなく、例えば、鉗子、ハサミ等の医療用具;スプーン、ナイフ等の食器類;アルミホイール、金属バンパーや樹脂バンパー、ダッシュボード等の自動車用品;窓ガラス、アルミサッシ、便器、壁紙等の住宅用品;モルタルスレート、ALC板、フレキシブルボード、防音壁等の建築材料;パソコン等各種電気製品のケーシングやキーボード;電車の吊り輪;プラスチックフィルム等の各種用途のプラスチック成形品;エアコン等の熱交換器;空気清浄機のフィルターが挙げられる。   In addition, the form of the substrate is not particularly limited as long as a copper film can be formed on the surface by electroless plating. For example, medical tools such as forceps and scissors; tableware such as spoons and knives; aluminum wheels Automotive parts such as metal bumpers, resin bumpers, and dashboards; Housing parts such as window glass, aluminum sashes, toilets, and wallpaper; Building materials such as mortar slate, ALC plates, flexible boards, and soundproof walls; Examples include casings and keyboards; train suspension rings; plastic molded articles for various uses such as plastic films; heat exchangers such as air conditioners; and air cleaner filters.

次に、本発明の抗菌性部材の製造方法について説明する。本発明の抗菌性部材の製造方法は、基材の表面に、貴金属コロイド粒子を用いて活性化処理を施した後、無電解メッキ処理を施して銅皮膜を形成し、前記基材の表面に銅皮膜を有する抗菌性部材を得る方法である。   Next, the manufacturing method of the antibacterial member of this invention is demonstrated. In the method for producing an antibacterial member of the present invention, the surface of the base material is subjected to an activation treatment using noble metal colloid particles, and then subjected to an electroless plating treatment to form a copper film, on the surface of the base material. This is a method for obtaining an antibacterial member having a copper film.

本発明の抗菌性部材の製造方法においては、先ず、基材の表面に貴金属コロイド粒子を付着させ、前記基材の表面を活性化させる(活性化処理)。前記貴金属コロイド粒子は、後述する無電解メッキ処理において、銅を析出させる触媒(トリガー)として作用するものであり、付着した貴金属コロイド粒子を核にして無電解メッキが速やかに開始し、均一かつ密着性に優れた銅皮膜を形成することが可能となる。一方、前記基材の表面を活性化させずに無電解メッキ処理を施しても、前記基材の表面には銅皮膜が形成されない。   In the method for producing an antibacterial member of the present invention, first, noble metal colloidal particles are attached to the surface of the substrate to activate the surface of the substrate (activation treatment). The precious metal colloidal particles act as a catalyst (trigger) for depositing copper in the electroless plating process to be described later, and the electroless plating starts immediately with the precious metal colloidal particles adhering to the core, and is uniform and adherent. It is possible to form a copper film having excellent properties. On the other hand, even if an electroless plating process is performed without activating the surface of the base material, a copper film is not formed on the surface of the base material.

このような貴金属コロイド粒子としては、Pt、Ru、Rh、Pd、Ag、Au、Os等の貴金属のコロイド粒子が挙げられ、トリガーとしての機能に優れているという観点から、Pt、Ru、Rh、Pd、Auのコロイド粒子が好ましい。また、このような貴金属コロイド粒子の平均粒子径としては特に制限はないが、50nm以下が好ましい。このような平均粒子径の貴金属コロイド粒子は比表面積が大きく、トリガーとして十分に作用する傾向にある。   Examples of such noble metal colloidal particles include colloidal particles of noble metals such as Pt, Ru, Rh, Pd, Ag, Au, Os, etc. From the viewpoint of excellent function as a trigger, Pt, Ru, Rh, Pd and Au colloidal particles are preferred. The average particle size of such noble metal colloid particles is not particularly limited, but is preferably 50 nm or less. Noble metal colloidal particles having such an average particle size have a large specific surface area and tend to function sufficiently as a trigger.

貴金属コロイド粒子を基材の表面に付着させる方法としては、例えば、界面活性剤で被覆して安定化した貴金属コロイド粒子を含むコロイド溶液に基材を浸漬し、必要に応じて洗浄及び乾燥を施して前記貴金属コロイド粒子を吸着させる方法や、前記貴金属コロイド粒子を含むコロイド溶液を基材の表面に噴霧し、必要に応じて洗浄及び乾燥を施して前記貴金属コロイド粒子を吸着させる方法等が挙げられる。   As a method for adhering the noble metal colloid particles to the surface of the substrate, for example, the substrate is immersed in a colloid solution containing the stabilized noble metal colloid particles coated with a surfactant, and washed and dried as necessary. A method of adsorbing the noble metal colloidal particles, a method of spraying a colloidal solution containing the noble metal colloidal particles onto the surface of the base material, washing and drying as necessary, and adsorbing the noble metal colloidal particles. .

前記界面活性剤としては、アルキルベンゼンスルホン酸塩等の公知のアニオン系界面活性剤、アルキルアンモニウム塩等の公知のカチオン系界面活性剤、ポリオキシエチレンアルキルエーテル等の公知のノニオン系界面活性剤が挙げられる。   Examples of the surfactant include known anionic surfactants such as alkylbenzene sulfonates, known cationic surfactants such as alkyl ammonium salts, and known nonionic surfactants such as polyoxyethylene alkyl ethers. It is done.

前記コロイド溶液の調製方法としては特に制限はないが、例えば、前記貴金属の塩を溶媒に溶解して貴金属溶液を調製し、これに前記界面活性剤と還元剤とを添加して、界面活性剤で被覆された貴金属コロイド粒子を析出させることによって、前記コロイド溶液を調製することができる。前記溶媒としては前記貴金属の塩を溶解するものであれば特に制限はないが、貴金属塩の溶解度が大きく、安全性が高く、安価であるという観点から、水が好ましい。また、水以外の溶媒としては、メタノール、エタノール、アセトン等の有機溶媒も使用可能であり、水と有機溶媒とを任意の割合で混合した混合溶媒も使用することができる。   The method for preparing the colloidal solution is not particularly limited. For example, the noble metal salt is dissolved in a solvent to prepare a noble metal solution, and the surfactant and the reducing agent are added to the surfactant. The colloidal solution can be prepared by precipitating the noble metal colloidal particles coated with. The solvent is not particularly limited as long as it dissolves the salt of the noble metal, but water is preferable from the viewpoint that the solubility of the noble metal salt is high, the safety is high, and the cost is low. Moreover, as solvents other than water, organic solvents, such as methanol, ethanol, and acetone, can also be used, and the mixed solvent which mixed water and the organic solvent in arbitrary ratios can also be used.

また、前記貴金属の塩の種類としては特に制限はないが、前記溶媒への溶解性が高く、安価であるという観点から硫酸塩、硝酸塩、塩化物等が好ましい。また、前記還元剤についても特に制限はないが、水素化ホウ素ナトリウム等の水素化合物、次亜リン酸化合物等のリン化合物、硫化ナトリウム等のイオウ化合物、水和ヒドラジン等のヒドラジン誘導体、ホルムアルデヒド等のアルデヒド類といった従来公知の還元剤を使用することができる。前記貴金属溶液中の貴金属塩の濃度としては0.01〜2g/Lが好ましく、前記界面活性剤の濃度としては0.05〜1g/Lが好ましく、前記還元剤の濃度としては0.01〜1g/Lが好ましい。   Further, the kind of the noble metal salt is not particularly limited, but sulfate, nitrate, chloride and the like are preferable from the viewpoint of high solubility in the solvent and low cost. The reducing agent is not particularly limited, but may be a hydrogen compound such as sodium borohydride, a phosphorus compound such as hypophosphorous acid compound, a sulfur compound such as sodium sulfide, a hydrazine derivative such as hydrated hydrazine, formaldehyde or the like. Conventionally known reducing agents such as aldehydes can be used. The concentration of the noble metal salt in the noble metal solution is preferably 0.01-2 g / L, the concentration of the surfactant is preferably 0.05-1 g / L, and the concentration of the reducing agent is 0.01- 1 g / L is preferred.

また、本発明の抗菌性部材の製造方法においては、基材を、例えば、塩化スズ水溶液に浸漬し、水洗した後、塩化パラジウム水溶液に浸漬することにより、前記基材にPdコロイド粒子を付着させることも可能である。   In the method for producing an antibacterial member of the present invention, the base material is immersed in an aqueous solution of tin chloride, washed with water, and then immersed in an aqueous solution of palladium chloride, so that the Pd colloid particles are attached to the base material. It is also possible.

貴金属コロイド粒子の付着量は、コロイド溶液中の貴金属塩の濃度等を調整することにより適宜調整することができるが、過剰量の貴金属コロイド粒子が付着すると無電解メッキ処理において過剰なメッキ反応が起こり、先に基材の外面が無電解メッキされるため、基材の凹凸部の内部まで無電解メッキされず、銅皮膜の密着力が低下する傾向にある。なお、貴金属コロイドの付着量は、質量変化を測定できない程度の極微量である。   The amount of precious metal colloid particles deposited can be adjusted as appropriate by adjusting the concentration of the precious metal salt in the colloid solution. However, if an excessive amount of precious metal colloid particles is deposited, an excessive plating reaction occurs in the electroless plating process. Since the outer surface of the base material is electrolessly plated first, electroless plating is not performed up to the inside of the concavo-convex portion of the base material, and the adhesion of the copper film tends to be reduced. In addition, the adhesion amount of the noble metal colloid is a very small amount so that a change in mass cannot be measured.

次に、本発明の抗菌性部材の製造方法においては、表面を活性化させた前記基材の表面に無電解メッキにより銅皮膜を形成させる(無電解メッキ処理)。銅皮膜を形成させる方法としては、銅塩と還元剤とを含有するメッキ溶液に前記基材を浸漬し、必要に応じて洗浄及び乾燥を施す方法が挙げられる。これにより、X線回折パターンにおける前記ピーク強度比(111)/(200)が所定の範囲にあり、抗菌作用を発現する銅皮膜が基材表面に形成される。   Next, in the method for producing an antibacterial member of the present invention, a copper film is formed by electroless plating on the surface of the substrate whose surface has been activated (electroless plating treatment). Examples of the method for forming a copper film include a method in which the substrate is immersed in a plating solution containing a copper salt and a reducing agent, and washed and dried as necessary. Thereby, the peak intensity ratio (111) / (200) in the X-ray diffraction pattern is in a predetermined range, and a copper film that exhibits antibacterial action is formed on the substrate surface.

前記メッキ溶液に用いられる溶媒としては前記銅塩を溶解するものであれば特に制限はないが、銅塩の溶解度が大きく、安全性が高く、安価であるという観点から水が好ましい。また、水以外の溶媒としては、メタノール、エタノール、アセトン等の有機溶媒も使用可能であり、水と有機溶媒とを任意の割合で混合した混合溶媒を使用することもできる。   The solvent used in the plating solution is not particularly limited as long as it dissolves the copper salt, but water is preferred from the viewpoint of high solubility of the copper salt, high safety, and low cost. Moreover, as solvents other than water, organic solvents, such as methanol, ethanol, and acetone, can also be used, and the mixed solvent which mixed water and the organic solvent in arbitrary ratios can also be used.

前記銅塩の種類としては特に制限はないが、前記溶媒への溶解性が高く、安価であるという観点から硫酸銅、硝酸銅、塩化銅等が好ましい。また、前記還元剤についても特に制限はないが、水素化ホウ素ナトリウム等の水素化合物、次亜リン酸化合物等のリン化合物、硫化ナトリウム等のイオウ化合物、水和ヒドラジン等のヒドラジン誘導体、ホルムアルデヒド等のアルデヒド類といった従来公知の還元剤を使用することができる。   Although there is no restriction | limiting in particular as a kind of said copper salt, Copper sulfate, copper nitrate, copper chloride, etc. are preferable from a viewpoint that the solubility to the said solvent is high and it is cheap. The reducing agent is not particularly limited, but may be a hydrogen compound such as sodium borohydride, a phosphorus compound such as hypophosphorous acid compound, a sulfur compound such as sodium sulfide, a hydrazine derivative such as hydrated hydrazine, formaldehyde or the like. Conventionally known reducing agents such as aldehydes can be used.

本発明に用いられるメッキ溶液中の銅塩の濃度としては5〜150g/Lが好ましく、前記還元剤の濃度としては1〜100g/Lが好ましい。また、この前記メッキ溶液には、必要に応じて、pH調整剤、緩衝剤、錯化剤、促進剤、安定剤、改良剤等の各種添加剤を更に配合することも可能である。これらの添加剤の配合量としては特に制限はないが、一般的に50g/L以下であることが好ましい。   The concentration of the copper salt in the plating solution used in the present invention is preferably 5 to 150 g / L, and the concentration of the reducing agent is preferably 1 to 100 g / L. In addition, various additives such as a pH adjusting agent, a buffering agent, a complexing agent, an accelerator, a stabilizer, and an improving agent may be further added to the plating solution as necessary. Although there is no restriction | limiting in particular as a compounding quantity of these additives, Generally it is preferable that it is 50 g / L or less.

本発明の抗菌性部材の製造方法における無電解メッキ処理の条件としては、浸漬温度が20〜90℃であることが好ましい。浸漬温度が前記下限未満になると、メッキ反応の制御が困難となり、膜厚の制御が困難となる傾向にあり、他方、前記上限を超えると、メッキ反応が速くなり過ぎる傾向にある。ただし、メッキ反応が速くなり過ぎた場合には浸漬温度を低下させてメッキ反応を停止させることによって対応することが可能である。また、浸漬時間としては5分間〜6時間が好ましく、10分間〜3時間がより好ましく、15分間〜60分間が特に好ましい。この浸漬時間を調整することによって銅皮膜の厚さを調整することができる。   As conditions for the electroless plating treatment in the method for producing an antibacterial member of the present invention, the immersion temperature is preferably 20 to 90 ° C. When the immersion temperature is less than the lower limit, it is difficult to control the plating reaction and the film thickness tends to be difficult to control. On the other hand, when the upper limit is exceeded, the plating reaction tends to be too fast. However, if the plating reaction becomes too fast, it can be dealt with by lowering the immersion temperature to stop the plating reaction. Moreover, as immersion time, 5 minutes-6 hours are preferable, 10 minutes-3 hours are more preferable, and 15 minutes-60 minutes are especially preferable. The thickness of the copper film can be adjusted by adjusting the immersion time.

また、本発明の抗菌性部材の製造方法においては、前記無電解メッキ処理によって形成された銅皮膜に洗浄処理を施して銅皮膜の表面に残留した銅塩や還元剤等の不純物を除去することが好ましい。この洗浄処理に用いる溶媒としては前記金属塩や還元剤等の不純物を溶解するものであれば特に制限されないが、金属塩の溶解度が大きく、安全性が高く、安価であるという観点から水が好ましい。また、水以外の溶媒としては、メタノール、エタノール、アセトン等の有機溶媒も使用可能であり、水と有機溶媒とを任意の割合で混合した混合溶媒を使用することもできる。   In the method for producing an antibacterial member of the present invention, the copper film formed by the electroless plating process is subjected to a cleaning process to remove impurities such as a copper salt and a reducing agent remaining on the surface of the copper film. Is preferred. The solvent used for the washing treatment is not particularly limited as long as it dissolves impurities such as the metal salt and the reducing agent, but water is preferable from the viewpoint of high solubility of the metal salt, high safety, and low cost. . Moreover, as solvents other than water, organic solvents, such as methanol, ethanol, and acetone, can also be used, and the mixed solvent which mixed water and the organic solvent in arbitrary ratios can also be used.

本発明の抗菌性部材中の銅皮膜は、無電解メッキにより形成された層であるため、基材にナノオーダーのアンカー効果によりコーティングされ、基材に対する密着性に優れている。また、本発明の抗菌性部材の製造方法においては、無機系または有機系バインダーを用いずに基材の表面に銅皮膜を形成しているため、耐水性に優れた抗菌性部材を得ることができる。さらに、前記銅皮膜は熱伝導率が高く、また、無電解メッキにより形成されたものであるため、その厚さが非常に薄いことから、放熱性能に優れている。   Since the copper film in the antibacterial member of the present invention is a layer formed by electroless plating, the substrate is coated with a nano-order anchor effect and has excellent adhesion to the substrate. In the method for producing an antibacterial member of the present invention, since a copper film is formed on the surface of the substrate without using an inorganic or organic binder, an antibacterial member having excellent water resistance can be obtained. it can. Further, since the copper film has a high thermal conductivity and is formed by electroless plating, the thickness thereof is very thin, and thus the heat dissipation performance is excellent.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
〔基材表面の活性化処理〕
アルミニウム合金箔(添加金属:Fe及びSi、25mm×25mm×0.05mm)に沸騰水中でベーマイト処理を施した。また、塩化パラジウム(II)162mgを1Lのイオン交換水に溶解し、得られた水溶液に、攪拌しながら1質量%のステアリルトリメチルアンモニウムクロライド水溶液10mlを加え、更に0.15質量%の水素化ホウ素ナトリウム水溶液50mlを加えてパラジウムコロイド溶液を調製した。このパラジウムコロイド溶液100mlに、ベーマイト処理を施した前記アルミニウム合金箔を1時間浸漬した。その後、アルミニウム合金箔を引き上げ、表面をイオン交換水で十分に洗浄し、105℃で1時間乾燥することによって、パラジウムコロイド粒子が吸着して表面が活性化されたアルミニウム合金箔を得た。
Example 1
[Substrate surface activation treatment]
An aluminum alloy foil (added metals: Fe and Si, 25 mm × 25 mm × 0.05 mm) was subjected to boehmite treatment in boiling water. Further, 162 mg of palladium (II) chloride was dissolved in 1 L of ion exchange water, and 10 ml of a 1% by mass stearyltrimethylammonium chloride aqueous solution was added to the resulting aqueous solution while stirring, and further 0.15% by mass of borohydride. A colloidal palladium solution was prepared by adding 50 ml of an aqueous sodium solution. The aluminum alloy foil subjected to boehmite treatment was immersed in 100 ml of this palladium colloid solution for 1 hour. Thereafter, the aluminum alloy foil was pulled up, the surface was sufficiently washed with ion-exchanged water, and dried at 105 ° C. for 1 hour to obtain an aluminum alloy foil whose surface was activated by adsorption of palladium colloidal particles.

〔活性化された基材表面の無電解Cuメッキ処理〕
水1Lに硫酸銅(II)五水和物30.0gとホルマリン69.0gと酒石酸ナトリウムカリウム四水和物141.1gと水酸化ナトリウム40gと炭酸ナトリウム25.4gとエチレンジアミン四酢酸(EDTA)16.7gとを添加して溶解し、銅化学メッキ液を調製した。この銅化学メッキ液200mlに、表面が活性化された前記アルミニウム合金箔を室温(27℃)で7分間浸漬した。その後、アルミニウム合金箔を引き上げ、表面をイオン交換水で十分に洗浄し、105℃で1時間乾燥することによって、表面に無電解Cuメッキ膜を有するアルミニウム合金箔(本発明の抗菌性部材)を得た。前記無電解Cuメッキ膜の厚さを、無電解Cuメッキ処理前後のアルミニウム合金箔の質量差から求めたところ、1μmであった。
[Electroless Cu plating treatment of activated substrate surface]
In 1 L of water, 30.0 g of copper (II) sulfate pentahydrate, 69.0 g of formalin, 141.1 g of sodium potassium tartrate tetrahydrate, 40 g of sodium hydroxide, 25.4 g of sodium carbonate, and ethylenediaminetetraacetic acid (EDTA) 16 0.7 g was added and dissolved to prepare a copper chemical plating solution. The aluminum alloy foil whose surface was activated was immersed in 200 ml of this copper chemical plating solution at room temperature (27 ° C.) for 7 minutes. Thereafter, the aluminum alloy foil is pulled up, the surface is sufficiently washed with ion-exchanged water, and dried at 105 ° C. for 1 hour to obtain an aluminum alloy foil (an antibacterial member of the present invention) having an electroless Cu plating film on the surface. Obtained. When the thickness of the electroless Cu plating film was determined from the mass difference between the aluminum alloy foils before and after the electroless Cu plating treatment, it was 1 μm.

(比較例1)
銅箔(株式会社ニラコ製、品番:CU−113263、厚さ:0.05mm)を25mm×25mmの大きさに切出し、表面をアセトンで洗浄することによって、比較用部材1を得た。
(Comparative Example 1)
A comparative member 1 was obtained by cutting a copper foil (manufactured by Niraco Co., Ltd., product number: CU-113263, thickness: 0.05 mm) into a size of 25 mm × 25 mm and washing the surface with acetone.

(比較例2)
〔電解メッキ処理による銅皮膜形成〕
銅箔(株式会社ニラコ製、品番:CU−113263、35mm×25mm×0.05mm)の表面をアセトンで洗浄した後、一方の面をテープで被覆した。この銅箔に、5質量%の硫酸銅水溶液200ml中で、直流電源及び対極としてPt板(50mm×50mm×0.1mm)を用いて電流0.2Aで電解Cuメッキ処理を30分間施した。その後、銅箔を引き上げ、表面をイオン交換水で十分に洗浄し、105℃で1時間乾燥することによって、表面に電解Cuメッキ膜を有する銅箔を得た。前記電解Cuメッキ膜の厚さを、電解Cuメッキ処理前後の銅箔の質量差から求めたところ、15μmであった。得られた電解Cuメッキ膜を有する銅箔のクリップで挟んだ部分を切断して比較用部材2(25mm×25mm、基材厚さ:0.05mm、電解Cuメッキ膜厚さ:15μm)を作製した。
(Comparative Example 2)
[Copper film formation by electroplating]
The surface of a copper foil (manufactured by Niraco Co., Ltd., product number: CU-113263, 35 mm × 25 mm × 0.05 mm) was washed with acetone, and then one surface was covered with a tape. This copper foil was subjected to an electrolytic Cu plating treatment at a current of 0.2 A for 30 minutes in 200 ml of a 5% by mass aqueous copper sulfate solution using a Pt plate (50 mm × 50 mm × 0.1 mm) as a DC power source and a counter electrode. Thereafter, the copper foil was pulled up, the surface was sufficiently washed with ion exchange water, and dried at 105 ° C. for 1 hour to obtain a copper foil having an electrolytic Cu plating film on the surface. It was 15 micrometers when the thickness of the said electrolytic Cu plating film | membrane was calculated | required from the mass difference of the copper foil before and behind an electrolytic Cu plating process. The portion sandwiched between the obtained copper foil clips having the electrolytic Cu plating film was cut to produce a comparative member 2 (25 mm × 25 mm, substrate thickness: 0.05 mm, electrolytic Cu plating film thickness: 15 μm). did.

(比較例3)
〔スパッタリングによる銅皮膜形成〕
アルミニウム合金箔(添加金属:Fe及びSi、25mm×25mm×0.05mm)の表面に、高周波マグネトロンスパッタ法により、投入電力30W、アルゴンガス圧3×10−3torr(0.4Pa)、ベース真空度3×10−6torr(0.0004Pa)、室温(基板加熱なし)の条件で、銅板をターゲットとしてスパッタリングを15分40秒間行い、表面に厚さ300nmのCuスパッタ膜を有するアルミニウム合金箔(比較用部材3)を得た。
(Comparative Example 3)
[Copper film formation by sputtering]
On the surface of an aluminum alloy foil (additional metals: Fe and Si, 25 mm × 25 mm × 0.05 mm), an input power of 30 W, an argon gas pressure of 3 × 10 −3 torr (0.4 Pa), a base vacuum is applied by high-frequency magnetron sputtering. Sputtering was performed for 15 minutes and 40 seconds using a copper plate as a target under conditions of 3 × 10 −6 torr (0.0004 Pa) and room temperature (no substrate heating), and an aluminum alloy foil having a Cu sputtered film with a thickness of 300 nm on the surface ( A comparative member 3) was obtained.

(比較例4)
〔活性化されていない基材表面の無電解Cuメッキ処理〕
実施例1と同様にアルミニウム合金箔に沸騰水中でベーマイト処理を施した。表面が活性化された前記アルミニウム合金箔の代わりに、このベーマイト処理のみを施したアルミニウム合金箔(すなわち、表面が活性化されていない(具体的には、表面にパラジウムコロイド粒子が吸着していない)アルミニウム合金箔)を用いた以外は実施例1と同様にして無電解Cuメッキ処理を行なったが、前記アルミニウム合金箔の表面に無電解Cuメッキ膜は形成されなかった。
(Comparative Example 4)
[Electroless Cu plating treatment of non-activated substrate surface]
In the same manner as in Example 1, the aluminum alloy foil was subjected to boehmite treatment in boiling water. Instead of the aluminum alloy foil whose surface is activated, an aluminum alloy foil which has been subjected only to this boehmite treatment (that is, the surface is not activated (specifically, palladium colloid particles are not adsorbed on the surface). The electroless Cu plating treatment was performed in the same manner as in Example 1 except that (a) aluminum alloy foil) was used, but no electroless Cu plating film was formed on the surface of the aluminum alloy foil.

<X線回折測定>
実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3のX線回折パターンを、試料水平型多目的X線回折装置(株式会社リガク製「Ultima IV」)を用い、線源:Cu−Kα、管電圧:40kV、管電流:40mA、スキャン速度:20deg/分の条件で測定した。その結果を図2に示す。
<X-ray diffraction measurement>
The X-ray diffraction patterns of the antibacterial member obtained in Example 1 and the comparative members 1 to 3 obtained in Comparative Examples 1 to 3 were subjected to a sample horizontal multipurpose X-ray diffractometer ("Ultima IV" manufactured by Rigaku Corporation). ), Radiation source: Cu-Kα, tube voltage: 40 kV, tube current: 40 mA, scan speed: 20 deg / min. The result is shown in FIG.

図2に示した結果から明らかなように、比較例1の市販の銅箔は(220)面が優先的に配向したものであるのに対して、実施例1の無電解Cuメッキ膜、比較例2の電解Cuメッキ膜及び比較例3のCuスパッタ膜は、(111)面が優先的に配向したものであることがわかった。そこで、各銅皮膜のX線回折パターンにおける(111)面に由来するピークと(200)面に由来するピークとの強度比(111)/(200)を求めたところ、実施例1の無電解Cuメッキ膜では6.90、比較例2の電解Cuメッキ膜では1.77、比較例3のCuスパッタ膜では2.67であった。なお、比較例1の市販の銅箔では0.344であった。これらの結果から、無電解メッキ処理により形成された銅皮膜膜(実施例1)は、電解メッキ処理により形成された銅皮膜(比較例2)及びスパッタリングにより形成された銅皮膜(比較例3)に比べて、(111)面が特に優先的に配向したものであることがわかった。   As is clear from the results shown in FIG. 2, the commercially available copper foil of Comparative Example 1 has the (220) plane preferentially oriented, whereas the electroless Cu plated film of Example 1 is compared with It was found that the electrolytic Cu plating film of Example 2 and the Cu sputtered film of Comparative Example 3 had the (111) plane preferentially oriented. Therefore, the intensity ratio (111) / (200) between the peak derived from the (111) plane and the peak derived from the (200) plane in the X-ray diffraction pattern of each copper film was determined. The Cu plating film was 6.90, the electrolytic Cu plating film of Comparative Example 2 was 1.77, and the Cu sputtering film of Comparative Example 3 was 2.67. In addition, in the commercially available copper foil of the comparative example 1, it was 0.344. From these results, a copper film formed by electroless plating (Example 1) is a copper film formed by electrolytic plating (Comparative Example 2) and a copper film formed by sputtering (Comparative Example 3). It was found that the (111) plane was particularly preferentially oriented compared to.

<電子顕微鏡観察>
実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3の表面を、走査型電子顕微鏡(SEM、株式会社日立ハイテクノロジーズ製「S−5500」)を用い、加速電圧:2kVで観察した。その結果を図3に示す。
<Electron microscope observation>
The surface of the antibacterial member obtained in Example 1 and the comparative members 1 to 3 obtained in Comparative Examples 1 to 3 was subjected to a scanning electron microscope (SEM, “S-5500” manufactured by Hitachi High-Technologies Corporation). Used and observed at an acceleration voltage of 2 kV. The result is shown in FIG.

図3に示した結果から明らかなように、比較例1の市販の銅箔は表面が平滑なものであり、比較例2の電解Cuメッキ膜は大きな銅結晶がところどころに見られるが、全体的には微細な銅結晶粒子からなる平滑なものであり、比較例3のCuスパッタ膜は銅微粒子が比較的均一に堆積したものであるのに対して、実施例1の無電解Cuメッキ膜は銅微粒子が凝集したものであることがわかった。また、実施例1の無電解Cuメッキ膜及び比較例3のCuスパッタ膜のSEM像において、それぞれ無作為に抽出した100個の銅微粒子の粒子径を測定し、その平均値(平均粒子径)を求めたところ、実施例1の無電解Cuメッキ膜では75nm、比較例3のCuスパッタ膜では15nmであった。   As is clear from the results shown in FIG. 3, the commercially available copper foil of Comparative Example 1 has a smooth surface, and the electrolytic Cu plating film of Comparative Example 2 shows large copper crystals in some places. The Cu sputtered film of Comparative Example 3 is a film in which copper fine particles are deposited relatively uniformly, whereas the electroless Cu plated film of Example 1 is a smooth film made of fine copper crystal particles. It was found that the copper fine particles were aggregated. Moreover, in the SEM images of the electroless Cu plating film of Example 1 and the Cu sputtered film of Comparative Example 3, the particle diameters of 100 randomly extracted copper fine particles were measured, and the average value (average particle diameter) was measured. Was found to be 75 nm for the electroless Cu plating film of Example 1 and 15 nm for the Cu sputtering film of Comparative Example 3.

<抗菌性能評価試験>
実施例1で得られた抗菌性部材及び比較例1〜3で得られた比較用部材1〜3の抗菌性能試験をJIS Z2801:2010に準じた方法で実施した。ただし、試験片(部材)の寸法は規格の1/4の大きさ(25mm×25mm、基材の厚さ:0.05mm)で実施した。先ず、試験片(部材)の全面を、エタノールを吸収させた局方ガーゼ又は脱脂綿で軽く2〜3回拭いた後、十分に乾燥させた。この試験片を滅菌済シャーレ内に置き、その表面に、1ml中に大腸菌10個を含む菌液200μlを滴下し、その上にポリエチレン製フィルム(20mm×20mm)を密着させた後、シャーレの蓋を被せ、35℃の温度下に放置した。所定時間経過後、試験片及び前記ポリエチレン製フィルムに付着している菌液を2mlのリン酸緩衝液で洗出し、菌液を全て回収した。得られた洗出し液1mlを標準寒天培地に塗布し、35℃で24時間培養した後、コロニー数をカウントして前記洗出し液1ml中の生菌数(単位:CFU/ml)を算出した。図4には、各試験片における生菌数の経時変化を示す。なお、図4中のブランクは、試験片(部材)の代わりに、前記ポリエチレン製フィルムを用いて試験した結果を示す。
<Antimicrobial performance evaluation test>
The antibacterial performance test of the antibacterial member obtained in Example 1 and the comparative members 1 to 3 obtained in Comparative Examples 1 to 3 was carried out by a method according to JIS Z2801: 2010. However, the dimension of the test piece (member) was carried out at 1/4 the size of the standard (25 mm × 25 mm, substrate thickness: 0.05 mm). First, the entire surface of the test piece (member) was lightly wiped with a pharmacopoeia gauze or absorbent cotton that had absorbed ethanol, and then sufficiently dried. Place the test specimen in sterilized petri dish, on its surface, after which was added dropwise a bacterial solution 200μl containing 106 E. coli in 1 ml, was on are brought into close contact with polyethylene film (20 mm × 20 mm) to the Petri dish of The lid was put on and left at a temperature of 35 ° C. After a predetermined time, the bacterial solution adhering to the test piece and the polyethylene film was washed out with 2 ml of a phosphate buffer solution, and all the bacterial solution was collected. 1 ml of the obtained washing solution was applied to a standard agar medium and cultured at 35 ° C. for 24 hours, and then the number of colonies was counted to calculate the number of viable bacteria (unit: CFU / ml) in 1 ml of the washing solution. . In FIG. 4, the time-dependent change of the viable count in each test piece is shown. In addition, the blank in FIG. 4 shows the result of having tested using the said polyethylene film instead of a test piece (member).

図4に示した結果から明らかなように、実施例1で得られた無電解Cuメッキ膜を有するアルミニウム合金箔(本発明の抗菌性部材)は、比較例1で得られた市販の銅箔(比較用部材)、比較例2で得られた電解Cuメッキ膜を有する銅箔、比較例3で得られたCuスパッタ膜を有するアルミニウム合金箔に比べて、抗菌性能に優れていることがわかった。   As is clear from the results shown in FIG. 4, the aluminum alloy foil (antibacterial member of the present invention) having the electroless Cu plating film obtained in Example 1 is a commercially available copper foil obtained in Comparative Example 1. (Comparative member), copper foil having an electrolytic Cu plating film obtained in Comparative Example 2, and aluminum alloy foil having a Cu sputtered film obtained in Comparative Example 3 are found to have superior antibacterial performance. It was.

以上説明したように、本発明によれば、通常の銅箔、電解Cuメッキ膜及びCuスパッタ膜に比べて優れた抗菌性能を有する銅皮膜を基材の表面に形成することが可能となる。   As described above, according to the present invention, a copper film having antibacterial performance superior to that of a normal copper foil, an electrolytic Cu plating film, and a Cu sputtered film can be formed on the surface of the substrate.

したがって、本発明の抗菌性部材は、飲食・衛生関連用品、医療・福祉関連用品、自動車用品、住宅・建築用品、生活必需品等の様々な分野における製品に適用可能であり、汎用性に優れた抗菌性部材として有用である。   Therefore, the antibacterial member of the present invention can be applied to products in various fields such as food / beverage / hygiene related products, medical / welfare related products, automobile supplies, housing / building supplies, daily necessities, etc., and has excellent versatility. It is useful as an antibacterial member.

Claims (4)

基材と、該基材の表面に形成されており、X線回折パターンにおける(111)面に由来するピークと(200)面に由来するピークとの強度比(111)/(200)が3.0以上である銅皮膜と、を備えていることを特徴とする抗菌性部材。   The intensity ratio (111) / (200) between the base and the peak derived from the (111) plane and the peak derived from the (200) plane in the X-ray diffraction pattern is 3 An antibacterial member comprising: a copper film having a thickness of 0.0 or more. 前記銅皮膜が、平均粒子径が20〜200nmの銅微粒子により形成されていることを特徴とする請求項1に記載の抗菌性部材。   The antibacterial member according to claim 1, wherein the copper film is formed of copper fine particles having an average particle diameter of 20 to 200 nm. 前記銅微粒子が凝集体を形成していることを特徴とする請求項2に記載の抗菌性部材。   The antibacterial member according to claim 2, wherein the copper fine particles form an aggregate. 基材の表面に、貴金属コロイド粒子を用いて活性化処理を施した後、無電解メッキ処理を施して銅皮膜を形成することを特徴とする抗菌性部材の製造方法。   A method for producing an antibacterial member, comprising subjecting a surface of a base material to an activation treatment using noble metal colloidal particles, followed by an electroless plating treatment to form a copper film.
JP2017018620A 2017-02-03 2017-02-03 Antibacterial member and production method thereof Pending JP2018123109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017018620A JP2018123109A (en) 2017-02-03 2017-02-03 Antibacterial member and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017018620A JP2018123109A (en) 2017-02-03 2017-02-03 Antibacterial member and production method thereof

Publications (1)

Publication Number Publication Date
JP2018123109A true JP2018123109A (en) 2018-08-09

Family

ID=63110116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018620A Pending JP2018123109A (en) 2017-02-03 2017-02-03 Antibacterial member and production method thereof

Country Status (1)

Country Link
JP (1) JP2018123109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846362A (en) * 2021-10-27 2021-12-28 河海大学 Preparation method of composite coating for inhibiting concrete corrosion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379975A (en) * 1986-09-22 1988-04-09 Agency Of Ind Science & Technol Production of metal plated inorganic particles
JPS63222100A (en) * 1987-03-10 1988-09-14 Otsuka Chem Co Ltd Antimicrobial metal-containing whisker and production thereof
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH09124424A (en) * 1995-11-06 1997-05-13 Toyo Ink Mfg Co Ltd Antibacterial and antifungal composition, coating material containing the same and plastic molded article
JPH09165310A (en) * 1995-12-18 1997-06-24 Nakagawa Masako Production of antimicrobial agent
JP2014104376A (en) * 2012-11-22 2014-06-09 Nbc Meshtec Inc Antiviral filter with conductivity for dust collection part
JP2016050338A (en) * 2014-08-29 2016-04-11 キヤノン・コンポーネンツ株式会社 Resin product with plated film, production method thereof, and conductive film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379975A (en) * 1986-09-22 1988-04-09 Agency Of Ind Science & Technol Production of metal plated inorganic particles
JPS63222100A (en) * 1987-03-10 1988-09-14 Otsuka Chem Co Ltd Antimicrobial metal-containing whisker and production thereof
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH09124424A (en) * 1995-11-06 1997-05-13 Toyo Ink Mfg Co Ltd Antibacterial and antifungal composition, coating material containing the same and plastic molded article
JPH09165310A (en) * 1995-12-18 1997-06-24 Nakagawa Masako Production of antimicrobial agent
JP2014104376A (en) * 2012-11-22 2014-06-09 Nbc Meshtec Inc Antiviral filter with conductivity for dust collection part
JP2016050338A (en) * 2014-08-29 2016-04-11 キヤノン・コンポーネンツ株式会社 Resin product with plated film, production method thereof, and conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846362A (en) * 2021-10-27 2021-12-28 河海大学 Preparation method of composite coating for inhibiting concrete corrosion
CN113846362B (en) * 2021-10-27 2023-10-27 河海大学 Preparation method of composite coating for inhibiting concrete corrosion

Similar Documents

Publication Publication Date Title
JP5806698B2 (en) Novel antimicrobial substrate and use thereof
JP5602260B2 (en) Method for producing nickel-coated nanocarbons using electroless plating
Djokić et al. Electroless deposition: theory and applications
WO2008047810A1 (en) Antibacterial substratum and process for producing the same
EP3844325B1 (en) Metal-cnt composite, production method and materials therefor
CN105612272B (en) Pretreatment liquid and method for non-electric plating for electroless-plating
US3597266A (en) Electroless nickel plating
Chen et al. Role of Cu2+ as an Additive in an Electroless Nickel− Phosphorus Plating System: A Stabilizer or a Codeposit?
JP2018123109A (en) Antibacterial member and production method thereof
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
JP5303483B2 (en) Ozone decomposition removal catalyst, method for producing the same, and ozone decomposition removal method using the same
Gharde et al. The importance of electroless metallic build-up on surface modified substrates for multifunctional engineering applications: a recent progress update
WO2015111291A1 (en) Conductive film-forming bath
CN115376757B (en) Antioxidant copper nanowire transparent electrode and preparation method and application thereof
CN101476122B (en) Method for solid support of modified nano titanium dioxide by chemically plating nickel-zinc-phosphor alloy
JP4328850B2 (en) Control method of coating structure of zinc oxide film
JP6076249B2 (en) Coated fibrous copper fine particles, and conductive coating agent and conductive film containing the coated fibrous copper fine particles
CN104532215B (en) A kind of no palladium chemical plating method of polyether-ether-ketone and polyether-ether-ketone/carbon nano tube compound material
JP4092385B2 (en) Plated palm fiber and method for producing the plated palm fiber
CN108677171A (en) A kind of preparation method of antibacterial aluminium product
JPH02153076A (en) Production of copper-silver two-layer coated powder
Kondawar et al. Electrospun Nanofibers for Coating and Corrosion
JP5498420B2 (en) Ozone decomposition removal catalyst, method for producing the same, and ozone decomposition removal method using the same
JPS6237301A (en) Production of metal holding particle
CN101476123B (en) Method for solid support of modified nano titanium dioxide by chemically plating nickel-copper-phosphor alloy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210506