JP2018118225A - Sulfur compound adsorbent and method for producing the same - Google Patents

Sulfur compound adsorbent and method for producing the same Download PDF

Info

Publication number
JP2018118225A
JP2018118225A JP2017012648A JP2017012648A JP2018118225A JP 2018118225 A JP2018118225 A JP 2018118225A JP 2017012648 A JP2017012648 A JP 2017012648A JP 2017012648 A JP2017012648 A JP 2017012648A JP 2018118225 A JP2018118225 A JP 2018118225A
Authority
JP
Japan
Prior art keywords
adsorbent
sulfur compound
adsorption
range
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017012648A
Other languages
Japanese (ja)
Inventor
充司 沖田
Mitsushi Okita
充司 沖田
千尋 小島
Chihiro Kojima
千尋 小島
一規 本田
Kazunori Honda
一規 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2017012648A priority Critical patent/JP2018118225A/en
Publication of JP2018118225A publication Critical patent/JP2018118225A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sulfur compound adsorbent that adsorbs a sulfur compound with a high rate, and also features a relatively small content of copper supported thereon and low cost.SOLUTION: A sulfur compound adsorbent is an adsorbent having a copper compound supported on a porous alumina support. The adsorbent has a pore structure in which a total pore volume (PV) measured by nitrogen adsorption method is 0.3-1.0 ml/g, and a volume of small pores (PV) with a pore size of 5-7 nm is 0.04-0.2 ml/g.SELECTED DRAWING: Figure 2

Description

本発明は、様々なプロセス中に含まれる硫黄化合物を吸着除去するための吸着剤及びその製造方法に関する。   The present invention relates to an adsorbent for adsorbing and removing sulfur compounds contained in various processes and a method for producing the same.

硫黄化合物は、石油精製プロセスや石油化学プロセス等において、プロセス中で使用する設備や触媒を劣化させ、あるいは燃焼した際に発生する硫黄酸化物が酸性雨を引き起こすので、これらのプロセスにおいて使用される原料に含まれる硫黄化合物は問題視されている。そこで、これらの硫黄化合物を除去するために、種々の方法が検討されている。   Sulfur compounds are used in petroleum refining processes, petrochemical processes, etc., because the sulfur oxides that are generated when the equipment and catalysts used in the process are deteriorated or burnt cause acid rain. Sulfur compounds contained in raw materials are regarded as a problem. Therefore, various methods have been studied for removing these sulfur compounds.

プロセスにおいて使用される原料に含まれる硫黄化合物を除去する方法は、主に、触媒を用いて硫黄化合物を分解し硫黄として回収する方法、吸着剤に硫黄化合物を吸着させて除去する方法等がある。   Methods for removing sulfur compounds contained in raw materials used in the process mainly include a method in which sulfur compounds are decomposed and recovered as sulfur using a catalyst, a method in which sulfur compounds are adsorbed and removed by an adsorbent, and the like. .

触媒を用いて硫黄化合物を分解する方法として、例えば、水素化脱硫法がある。水素化脱硫法は、高温および触媒の存在下で、水素によって硫黄化合物を分解する方法であり、高濃度の硫黄化合物を含む原料を処理する方法として有用である。しかし、この方法は、水素を供給する設備を使用すること、300〜400℃の高温度を必要とすること、接触反応に伴う触媒の取り扱いが煩雑になることなどの問題が指摘されている(特許文献1)。また、原料と水素が反応して別の化合物(副生成物)が生成する可能性があり、このような反応を嫌うプロセスでは使用できないという問題もある。このような理由から、水素化脱硫法は一般的に石油精製プロセスで広く使用されている。   As a method of decomposing a sulfur compound using a catalyst, for example, there is a hydrodesulfurization method. The hydrodesulfurization method is a method of decomposing a sulfur compound with hydrogen at a high temperature and in the presence of a catalyst, and is useful as a method for treating a raw material containing a high concentration of a sulfur compound. However, this method has been pointed out as problems such as using equipment for supplying hydrogen, requiring a high temperature of 300 to 400 ° C., and complicated handling of the catalyst accompanying the catalytic reaction ( Patent Document 1). In addition, there is a possibility that the raw material and hydrogen react to produce another compound (by-product), and there is a problem that it cannot be used in a process that dislikes such a reaction. For these reasons, hydrodesulfurization is generally widely used in petroleum refining processes.

一方、吸着剤に硫黄化合物を吸着させて除去する方法は、吸着剤が充填された塔内に室温〜400℃の条件下で硫黄化合物を含む原料を流通させるといったシンプルな方法で除去が可能であり、水素供給設備が不要、ppm以下のオーダーまで除去が可能といった特徴を有している。硫黄化合物の吸着剤としては、物理吸着により除去する剤と化学吸着により除去する剤が知られており、物理吸着型としてはアルミナが、また、化学吸着型としては高温で使用する酸化亜鉛、常温から使用可能な酸化銅が知られている。
しかし、高濃度の硫黄化合物を含む原料を処理する場合、吸着剤の交換頻度が多くなること、硫黄化合物の種類によって吸着力が異なる等の問題もある。このような理由から、吸着剤を用いる方法は、一般的に石油化学プロセスで広く使用されている。
On the other hand, the method of removing the sulfur compound by adsorbing it to the adsorbent can be removed by a simple method such as circulating a raw material containing the sulfur compound in a tower packed with the adsorbent at room temperature to 400 ° C. There is a feature that hydrogen supply equipment is unnecessary and removal to the order of ppm or less is possible. As an adsorbent for sulfur compounds, an agent that is removed by physical adsorption and an agent that is removed by chemical adsorption are known. As the physical adsorption type, alumina is used. As the chemical adsorption type, zinc oxide is used at a high temperature. Copper oxide that can be used is known.
However, when a raw material containing a high-concentration sulfur compound is processed, there are problems that the frequency of replacement of the adsorbent is increased and the adsorption power varies depending on the type of sulfur compound. For this reason, the method using an adsorbent is generally widely used in petrochemical processes.

硫黄化合物の吸着剤は、一般的に、硫黄化合物の吸着速度が大きいこと、硫黄化合物の吸着量が多いことが求められる。特に、硫黄化合物の吸着速度は、硫黄化合物の吸着剤に求められる重要な性能の一つである。この吸着速度が小さいと、硫黄化合物が吸着剤に十分に吸着されずにリークしてしまうことがある。このようなリークを避けるために、処理速度を下げたり、吸着剤の充填量を増やすなどの対策が検討されるが、処理速度を下げると生産性の低下につながり、充填量の増加はコスト高になるので好ましくない。   The sulfur compound adsorbent is generally required to have a high sulfur compound adsorption rate and a large sulfur compound adsorption amount. In particular, the sulfur compound adsorption rate is one of the important performances required for sulfur compound adsorbents. If the adsorption rate is low, the sulfur compound may leak without being sufficiently adsorbed by the adsorbent. In order to avoid such leaks, measures such as reducing the processing speed or increasing the amount of adsorbent filling are considered, but lowering the processing speed leads to a decrease in productivity, and increasing the amount of filling is costly. This is not preferable.

そこで、硫黄化合物の吸着剤について、硫黄化合物の吸着速度を増加させる方法が検討されている。例えば、特許文献2には、担体に酸化銅が担持された吸着剤を用いて硫黄化合物の一種である硫化カルボニルを液体から除去する方法が開示されており、この吸着剤の銅含有量、細孔半径、細孔容積、および比表面積を所定の範囲に制御することによって、硫化カルボニルの除去率を飛躍的に高めることができるとされている。   Therefore, methods for increasing the adsorption rate of sulfur compounds have been studied for sulfur compound adsorbents. For example, Patent Document 2 discloses a method for removing carbonyl sulfide, which is a kind of sulfur compound, from a liquid using an adsorbent in which copper oxide is supported on a carrier. It is said that the removal rate of carbonyl sulfide can be remarkably increased by controlling the pore radius, pore volume, and specific surface area within predetermined ranges.

特開平7−118668号公報JP-A-7-118668 特開平3−213115号公報JP-A-3-213115

特許文献2の実施例で調製される吸着剤の硫化カルボニルに対する吸着速度は、現状で求められている吸着速度には足りない。また、この吸着剤は銅化合物の含有量が30〜55重量%と多く、吸着剤のコストが高いという課題があった。   The adsorption rate for the carbonyl sulfide of the adsorbent prepared in the example of Patent Document 2 is insufficient for the adsorption rate currently required. Moreover, this adsorbent had the subject that there was much content of a copper compound with 30 to 55 weight%, and the cost of adsorbent was high.

本発明は、硫黄化合物の吸着速度が低いという従来の吸着剤が抱える課題を解決したものであり、硫黄化合物の吸着速度が高く、また担持される銅化合物の含有量が比較的少なく、低コストであるという利点をも有する硫黄化合物吸着剤を提供する。   The present invention solves the problem of the conventional adsorbent that the adsorption rate of sulfur compounds is low, the adsorption rate of sulfur compounds is high, the content of supported copper compounds is relatively low, and the cost is low. The sulfur compound adsorbent also has the advantage of being.

本発明の硫黄化合物吸着剤は、銅化合物がアルミナ担体に担持された吸着剤において、窒素吸着法により測定される全細孔容積(PV)が0.3〜1.0ml/gの範囲であって、細孔径が5〜7nmの範囲の小細孔容積(PV)が0.04〜0.2ml/gの範囲である細孔構造を有することを特徴とする硫黄化合物吸着剤である。 The sulfur compound adsorbent of the present invention has a total pore volume (PV) measured by the nitrogen adsorption method in the range of 0.3 to 1.0 ml / g in an adsorbent in which a copper compound is supported on an alumina carrier. And a sulfur compound adsorbent characterized by having a pore structure in which the small pore volume (PV a ) in the pore diameter range of 5 to 7 nm is in the range of 0.04 to 0.2 ml / g.

本発明の硫黄化合物吸着剤(以下、本発明の吸着剤とも云う)は、全細孔容積(PV)および小細孔容積(PV)が前記範囲の細孔構造を有することによって、従来の前記課題を解決し、硫黄化合物の吸着速度を高めた硫黄化合物吸着剤である。 The sulfur compound adsorbent of the present invention (hereinafter also referred to as the adsorbent of the present invention) has a conventional pore structure in which the total pore volume (PV) and the small pore volume (PV a ) are in the above ranges. It is a sulfur compound adsorbent that solves the above problems and has an increased adsorption rate of sulfur compounds.

本発明の吸着剤は下記(イ)〜(ニ)の態様を含む。
(イ)細孔径3nm以下の微細孔容積(PV)が0.05ml/g以下である硫黄化合物吸着剤。
(ロ)銅化合物の含有量がCuO換算で1〜25重量%の範囲であって、銅化合物の分散度が0.08〜0.2の範囲である硫黄化合物吸着剤。
(ハ)硫化カルボニルの吸着速度定数が0.15〜0.30sec−1の範囲である硫黄化合物吸着剤。
(ニ)CO吸着量が25mol/g以上である硫黄化合物吸着剤。
The adsorbent of the present invention includes the following aspects (a) to (d).
(A) A sulfur compound adsorbent having a fine pore volume (PV b ) having a pore diameter of 3 nm or less and 0.05 ml / g or less.
(B) A sulfur compound adsorbent in which the content of the copper compound is in the range of 1 to 25% by weight in terms of CuO and the dispersity of the copper compound is in the range of 0.08 to 0.2.
(C) A sulfur compound adsorbent having an adsorption rate constant of carbonyl sulfide in the range of 0.15 to 0.30 sec −1 .
(D) A sulfur compound adsorbent having a CO adsorption amount of 25 mol / g or more.

本発明の吸着剤は、銅化合物がアルミナ担体に担持された構成において、全細孔容積(PV)および小細孔容積(PV)を前記範囲内にすることによって、例えば、銅化合物の含有量がCuO換算で1〜25重量%の範囲であって銅化合物の分散度が0.08〜0.2の範囲で、硫化カルボニルの吸着速度定数が0.15〜0.30sec−1の高い吸着速度を有することができる。 The adsorbent of the present invention has a structure in which the copper compound is supported on an alumina support, and the total pore volume (PV) and the small pore volume (PV a ) are within the above ranges. The amount is in the range of 1 to 25% by weight in terms of CuO, the dispersity of the copper compound is in the range of 0.08 to 0.2, and the adsorption rate constant of carbonyl sulfide is as high as 0.15 to 0.30 sec- 1 . It can have an adsorption rate.

本発明は、前記吸着剤について、以下の製造方法を含む。
アルミナ担体に銅化合物を担持させた後に焼成して吸着剤を製造する方法において、細孔径が10nm以下の細孔容積が0.3ml/g以下のアルミナ担体を用い、450℃以上〜700℃以下の温度で焼成することを特徴とする硫黄化合物吸着剤の製造方法。
The present invention includes the following production method for the adsorbent.
In a method for producing an adsorbent by supporting a copper compound on an alumina carrier and firing, an alumina carrier having a pore diameter of 10 nm or less and a pore volume of 0.3 ml / g or less is used, and 450 ° C. or more and 700 ° C. or less. A method for producing a sulfur compound adsorbent, characterized by firing at a temperature of 5 ° C.

本発明の製造方法では、銅化合物が担持されたアルミナ担体を、従来よりも高い温度で焼成することによって、細孔径が5〜7nmの範囲の小細孔容積(PV)の割合を多くし、細孔径が5nmより小さい微細孔容積(PV)の割合を低くして、PVとPVが前記範囲の細孔構造を有する硫黄化合物吸着剤を製造する。 In the production method of the present invention, the ratio of the small pore volume (PV a ) in the pore diameter range of 5 to 7 nm is increased by firing the alumina support carrying the copper compound at a higher temperature than before. The ratio of the fine pore volume (PV b ) with a pore diameter smaller than 5 nm is lowered to produce a sulfur compound adsorbent in which PV and PV a have a pore structure in the above range.

本発明の吸着剤は、単位時間当たりに多量の硫黄化合物を吸着することができ、また、該吸着剤を使用するプロセスにおいて、吸着剤の交換頻度が少ないので、硫黄化合物を除去する処理効率を高めることができる。   The adsorbent of the present invention can adsorb a large amount of sulfur compound per unit time, and in the process of using the adsorbent, the adsorbent needs to be replaced less frequently. Can be increased.

実施例1の活性アルミナのX線回折パターンのグラフ。2 is a graph of an X-ray diffraction pattern of activated alumina of Example 1. FIG. 実施例1の活性アルミナを窒素吸着法で測定し、得られた細孔分布のグラフ。The graph of the pore distribution obtained by measuring the activated alumina of Example 1 by the nitrogen adsorption method. 実施例1の吸着剤を窒素吸着法で測定し、得られた細孔分布のグラフ。The adsorption agent of Example 1 was measured by the nitrogen adsorption method, and the obtained pore distribution graph. 実施例2の吸着剤を窒素吸着法で測定し、得られた細孔分布のグラフ。The graph of the pore distribution obtained by measuring the adsorbent of Example 2 by the nitrogen adsorption method. 実施例3の吸着剤を窒素吸着法で測定し、得られた細孔分布のグラフ。The adsorption agent of Example 3 was measured by the nitrogen adsorption method, and the graph of the obtained pore distribution was obtained. 実施例4の吸着剤を窒素吸着法で測定し、得られた細孔分布のグラフ。The adsorption agent of Example 4 was measured by the nitrogen adsorption method, and the obtained pore distribution graph. 比較例1の吸着剤を窒素吸着法で測定し、得られた細孔分布のグラフ。The graph of the pore distribution obtained by measuring the adsorption agent of the comparative example 1 by the nitrogen adsorption method.

以下、本発明を実施形態に基づいて具体的に説明する。
〔本発明の吸着剤〕
本発明の吸着剤は、銅化合物がアルミナ担体に担持されたものである。本発明の吸着剤に含まれる銅化合物は、酸化銅又は銅−アルミナ複合酸化物の何れかの状態で存在しているものと考えられるが、その結晶子サイズが小さいためか、X線回折分析で銅化合物の状態を特定することが困難である。従って、本発明においては、X線回折分析等で銅化合物が特定できない場合は、高周波誘導結合プラズマ発光分光分析法(ICP)や蛍光X線分析(XRF)等の組成分析により、吸着剤から銅が検出されれば、銅化合物が含まれるものと判断する。また、アルミナ担体も同様に、X線回折分析等でアルミナが特定できない場合は、上述の組成分析により吸着剤からアルミニウムが検出されれば、アルミナ担体が含まれるものと判断する。
Hereinafter, the present invention will be specifically described based on embodiments.
[Adsorbent of the present invention]
The adsorbent of the present invention is one in which a copper compound is supported on an alumina carrier. The copper compound contained in the adsorbent of the present invention is considered to exist in the state of either copper oxide or copper-alumina composite oxide. X-ray diffraction analysis may be due to its small crystallite size. It is difficult to specify the state of the copper compound. Therefore, in the present invention, when a copper compound cannot be identified by X-ray diffraction analysis or the like, the copper from the adsorbent is analyzed by composition analysis such as high frequency inductively coupled plasma emission spectroscopy (ICP) or fluorescent X-ray analysis (XRF). If is detected, it is determined that a copper compound is contained. Similarly, in the case where alumina cannot be identified by X-ray diffraction analysis or the like, the alumina support is determined to contain an alumina support if aluminum is detected from the adsorbent by the composition analysis described above.

本発明の吸着剤は、窒素吸着法により測定される全細孔容積(PV)が0.3〜1.0ml/gの範囲にあり、0.35〜0.8ml/gの範囲にあることが好ましく、0.35〜0.6ml/gの範囲にあることが特に好ましい。全細孔容積がこの範囲にあると、吸着剤の内部に硫黄化合物を含む原料が拡散されやすくなり、硫黄化合物の吸着速度が高くなるので好ましい。特に、気相に比べて拡散が遅い液相で使用しても、高い吸着速度を維持することができる。一方、全細孔容積がこの範囲よりも小さいと、吸着剤の内部に硫黄化合物を含む原料が拡散しにくくなり、硫黄化合物の吸着速度が低くなるので好ましくない。また、全細孔容積がこの範囲よりも大きいと、硫黄化合物を含む原料の拡散は良好になるものの、吸着剤の強度が低下する問題があるので好ましくない。   The adsorbent of the present invention has a total pore volume (PV) measured by a nitrogen adsorption method in the range of 0.3 to 1.0 ml / g, and in the range of 0.35 to 0.8 ml / g. Is preferable, and is particularly preferably in the range of 0.35 to 0.6 ml / g. When the total pore volume is within this range, the raw material containing the sulfur compound is easily diffused inside the adsorbent, which is preferable because the adsorption rate of the sulfur compound is increased. In particular, a high adsorption rate can be maintained even when used in a liquid phase in which diffusion is slower than in the gas phase. On the other hand, if the total pore volume is smaller than this range, the raw material containing the sulfur compound is difficult to diffuse inside the adsorbent, which is not preferable because the adsorption rate of the sulfur compound is reduced. On the other hand, if the total pore volume is larger than this range, although the diffusion of the raw material containing the sulfur compound is improved, there is a problem in that the strength of the adsorbent is lowered, which is not preferable.

本発明の吸着剤は、細孔径が5〜7nm以下の範囲の小細孔容積(PV)が0.04〜0.2ml/gの範囲にあり、0.045〜0.12ml/gの範囲にあることが好ましい。また、全細孔容積(PV)に対する小細孔容積(PV)の比(PV/PV)は0.12〜0.3の範囲にあることが好ましい。 The adsorbent of the present invention has a small pore volume (PV a ) having a pore diameter in the range of 5 to 7 nm or less in the range of 0.04 to 0.2 ml / g, and 0.045 to 0.12 ml / g. It is preferable to be in the range. Further, the ratio (PV a / PV) of the small pore volume (PV a ) to the total pore volume (PV) is preferably in the range of 0.12 to 0.3.

細孔径5〜7nm以下の小細孔は硫黄化合物の拡散に適しており、PVがこの範囲にあると、硫黄化合物の吸着速度が高くなり、特に硫化カルボニルの吸着速度が高くなる。また、PV/PVが高いほうが硫黄化合物の吸着速度が高くなりやすく、この傾向は、表1からも読み取ることができる。 The following small pore pore size 5~7nm is suitable for diffusion of the sulfur compounds, the PV a is in this range, the adsorption rate of the sulfur compounds is increased, particularly adsorption rate of the carbonyl sulfide is high. Moreover, the higher the PV a / PV, the higher the adsorption rate of the sulfur compound, and this tendency can also be read from Table 1.

本発明の吸着剤は、細孔径が3nm以下の範囲の微細孔容積(PV)が0.05ml/g以下であることが好ましく、0.01〜0.05ml/gの範囲にあることが特に好ましい。微細孔容積(PV)がこの範囲にあると、硫黄化合物が拡散し難い微細な細孔が少なくなるため、硫黄化合物の吸着速度が高くなる傾向がある。また、PVとPVの比(PV/PV)は0.15以下が好ましく、0.05〜0.1の範囲が特に好ましい。全細孔容積(PV)に対する微細孔容積(PV)の比が低いほうが硫黄化合物の吸着速度が高くなりやすく、この傾向は、後述する表1からも読み取ることができる。 The adsorbent of the present invention preferably has a fine pore volume (PV b ) having a pore diameter of 3 nm or less in a range of 0.05 ml / g or less, and may be in a range of 0.01 to 0.05 ml / g. Particularly preferred. When the fine pore volume (PV b ) is within this range, the fine pores in which the sulfur compound is difficult to diffuse are reduced, and the adsorption rate of the sulfur compound tends to increase. The ratio of PV to PV b (PV b / PV) is preferably 0.15 or less, and particularly preferably in the range of 0.05 to 0.1. The lower the ratio of the fine pore volume (PV b ) to the total pore volume (PV), the higher the adsorption rate of the sulfur compound, and this tendency can also be read from Table 1 described later.

このような細孔構造の吸着剤に含まれる銅化合物の含有量は、CuOに換算して1〜25重量%の範囲にあることが好ましく、5〜15重量%の範囲にあることがより好ましい。銅化合物の含有量がこの範囲であれば、硫黄化合物について十分な吸着量が得られる。一方、この含有量が多すぎると銅化合物の分散度が低下するので、銅化合物の単位重量当たりの硫黄化合物の吸着量が低下する。また、その含有量が少なすぎても、硫黄化合物の吸着量が低下するので好ましくない。   The content of the copper compound contained in the adsorbent having such a pore structure is preferably in the range of 1 to 25% by weight and more preferably in the range of 5 to 15% by weight in terms of CuO. . If content of a copper compound is this range, sufficient adsorption amount will be obtained about a sulfur compound. On the other hand, when the content is too large, the dispersity of the copper compound is lowered, so that the adsorption amount of the sulfur compound per unit weight of the copper compound is lowered. Moreover, since the adsorption amount of a sulfur compound falls even if the content is too small, it is not preferable.

吸着剤に含まれる銅化合物の分散度は0.08〜0.2の範囲にあることが好ましく、0.1〜0.2の範囲が特に好ましい。この分散度が前述の範囲にあると、硫黄化合物の吸着速度が増加する傾向がある。ここで、銅化合物の分散度とは、吸着剤に含まれる銅化合物の中で表面に存在する銅化合物の割合を表す指標であり、吸着剤に含まれる銅化合物の全てが吸着剤の表面に露出した場合を1とする。なお、この分散度は、NO吸着によって測定することができる。吸着剤のNO吸着量を測定し、吸着剤に含まれる銅化合物がすべて表面に露出したと仮定した場合のNOの理論吸着量で割ることによって、分散度を算出することができる。分散度の具体的な測定方法及び算出方法は、実施例で後述する。 The degree of dispersion of the copper compound contained in the adsorbent is preferably in the range of 0.08 to 0.2, and particularly preferably in the range of 0.1 to 0.2. If the degree of dispersion is in the above range, the adsorption rate of the sulfur compound tends to increase. Here, the degree of dispersion of the copper compound is an index representing the ratio of the copper compound present on the surface among the copper compound contained in the adsorbent, and all of the copper compound contained in the adsorbent is on the surface of the adsorbent. When exposed, it is 1. This degree of dispersion can be measured by N 2 O adsorption. The N 2 O adsorption amount of the adsorbent was determined by dividing by the theoretical amount of adsorption of N 2 O on the assumption that the copper compound contained in the adsorbent is exposed to all surfaces, it is possible to calculate the degree of dispersion . A specific method for measuring and calculating the degree of dispersion will be described later in Examples.

本発明の吸着剤の比表面積は、100〜250m/gの範囲にあることが好ましく、150〜199 m/gの範囲にあることが特に好ましい。一般的に、吸着剤は、その比表面積の大きいほうが吸着量および吸着速度が高いと云う傾向があるが、本発明の吸着剤は、前記範囲の比表面積において、比表面積が低くても、吸着速度が高いという特異的な傾向がある。例えば、この傾向は、後述する表1から読み取ることができる。 The specific surface area of the adsorbent of the present invention is preferably in the range of 100 to 250 m 2 / g, and particularly preferably in the range of 150~199 m 2 / g. In general, the adsorbent tends to have a higher adsorption amount and adsorption rate when its specific surface area is larger. However, the adsorbent of the present invention is capable of adsorbing even if the specific surface area is low. There is a specific tendency of high speed. For example, this tendency can be read from Table 1 described later.

本発明の吸着剤は、その圧壊強度が、1ペレット当たり40N以上の範囲にあることが好ましく、60〜200Nの範囲にあることが特に好ましい。この圧壊強度が前述の範囲より小さいと、吸着剤を充填する際に割れ等の原因になり、吸着剤が割れて生成したかけら等が後段のプロセスに混入する可能性があるので好ましくない。   The adsorbent of the present invention preferably has a crushing strength in the range of 40 N or more per pellet, and particularly preferably in the range of 60 to 200 N. If the crushing strength is smaller than the above range, it is not preferable because it causes cracking when filling the adsorbent, and fragments generated by cracking the adsorbent may be mixed in a subsequent process.

本発明の吸着剤は、一般的な硫黄化合物の吸着除去に使用することができ、特に、硫化カルボニル(COS)の吸着速度が高い利点を有している。具体的には、例えば、硫化カルボニルの吸着速度定数は0.15〜0.30sec−1、好ましくは0.18〜0.29sec−1である。本発明の吸着剤は従来の吸着剤よりも吸着速度が格段に高い。 The adsorbent of the present invention can be used for adsorption removal of general sulfur compounds, and has an advantage that the adsorption rate of carbonyl sulfide (COS) is particularly high. Specifically, for example, adsorption rate constant carbonyl sulfide 0.15~0.30Sec -1, preferably 0.18~0.29sec -1. The adsorbent of the present invention has a significantly higher adsorption rate than conventional adsorbents.

本発明の吸着剤は、硫黄化合物の他に、一酸化炭素の吸着能力を有しており、その吸着量(CO吸着量)は、好ましくは25μmol/g以上の範囲であり、より好ましくは30〜150μmol/gの範囲である。本発明の吸着剤は、硫黄化合物を吸着すると同時に一酸化炭素を吸着することができるので、硫黄化合物と一酸化炭素を含む原料を処理するプロセスにおいて、これらを一緒に除去できることは大きな利点の一つである。硫黄化合物と一酸化炭素を含む原料を処理するプロセスの例としては、ポリプロピレン合成用の原料プロピレンを処理するプロセスが挙げられる。   The adsorbent of the present invention has an ability to adsorb carbon monoxide in addition to a sulfur compound, and its adsorption amount (CO adsorption amount) is preferably in the range of 25 μmol / g or more, more preferably 30. It is in the range of ˜150 μmol / g. Since the adsorbent of the present invention can adsorb sulfur monoxide and carbon monoxide at the same time, it is one of the great advantages that they can be removed together in a process for treating a raw material containing sulfur compound and carbon monoxide. One. An example of a process for treating a raw material containing a sulfur compound and carbon monoxide is a process for treating a raw material propylene for synthesis of polypropylene.

本発明の吸着剤は、気相または液相の何れにおいて使用することができる。そして、本発明の吸着剤は、吸着速度が高いので、気相に比べて拡散性の悪い液相で使用しても効率よく硫黄化合物を吸着除去することができる。特に、本発明の吸着剤は、FCC装置やナフサクラッカー等により得られるC留分やC留分に含まれる硫黄化合物を吸着除去することに適している。なお、本発明の吸着剤は、使用する際に予備還元を必要とせず、予備還元のための設備が不要で予備還元に要する手間がかからないので、コストパフォーマンスに優れるとともにその取扱いも容易である。 The adsorbent of the present invention can be used in either the gas phase or the liquid phase. And since the adsorption agent of this invention has a high adsorption rate, even if it uses it in a liquid phase with a bad diffusibility compared with a gaseous phase, it can adsorb and remove a sulfur compound efficiently. In particular, the adsorbent of the present invention is suitable for adsorbing and removing sulfur compounds contained in a C 3 fraction or a C 4 fraction obtained by an FCC apparatus, a naphtha cracker, or the like. The adsorbent of the present invention does not require pre-reduction when used, does not require pre-reduction equipment, and does not require labor for pre-reduction, so that it has excellent cost performance and is easy to handle.

本発明の吸着剤は、例えば、ペレット状、押出形状、球状などの一般的な形状で使用することができる。このうち球状では、容器に充填した際に吸着剤どうしの接触による摩耗や欠けが発生し難い。また、そのサイズは、直径が1〜6mmであることが好ましい。そのサイズが1mm未満の場合、密に充填されて吸着剤どうしの隙間が少なくなるので、硫黄化合物を含む原料を流通する際に差圧が大きくなる傾向があり好ましくない。そのサイズが大きすぎても、差圧が大きくなることは避けられるものの、充填できる吸着剤の量が減るため好ましくない。なお、前記吸着剤のサイズとは1個の吸着剤の形状を測定して最も長い径に基づく大きさである。   The adsorbent of the present invention can be used in a general shape such as a pellet shape, an extruded shape, and a spherical shape. Of these, the spherical shape hardly causes wear or chipping due to contact between the adsorbents when the container is filled. Moreover, it is preferable that the diameter is 1-6 mm in diameter. When the size is less than 1 mm, the gap between adsorbents is reduced due to dense packing, and this is not preferable because the differential pressure tends to increase when a raw material containing a sulfur compound is distributed. If the size is too large, an increase in the differential pressure can be avoided, but this is not preferable because the amount of adsorbent that can be filled is reduced. The size of the adsorbent is a size based on the longest diameter obtained by measuring the shape of one adsorbent.

〔製造方法〕
本発明の吸着剤は、アルミナ担体に銅化合物を担持した後に焼成して吸着剤を製造する方法において、細孔径が10nm以下の細孔容積が0.3ml/g以下のアルミナ担体を用い、銅化合物を担持した後に450℃以上、700℃以下の温度で焼成することによって、全細孔容積(PV)が0.3〜1.0ml/gの範囲であって、小細孔容積(PV)が0.04〜0.2ml/gの範囲である細孔構造を形成することによって製造することができる。
〔Production method〕
The adsorbent of the present invention is a method for producing an adsorbent by carrying a copper compound on an alumina support and then firing it, and using an alumina support having a pore diameter of 10 nm or less and a pore volume of 0.3 ml / g or less, By firing at a temperature of 450 ° C. or higher and 700 ° C. or lower after supporting the compound, the total pore volume (PV) is in the range of 0.3 to 1.0 ml / g, and the small pore volume (PV a ) Is in the range of 0.04 to 0.2 ml / g.

本発明の吸着剤に用いる多孔質のアルミナ担体として、活性アルミナを用いることができる。活性アルミナは、γやθ等の様々な結晶構造を取ることが知られているが、本発明の吸着剤には非晶質アルミナを用いることが好ましい。特に、細孔径が10nm以下の細孔容積が小さい非晶質アルミナを用いることが好ましい。細孔径が10nm以下の細孔容積は0.3ml/g以下が好ましい。   Activated alumina can be used as the porous alumina carrier used in the adsorbent of the present invention. Activated alumina is known to have various crystal structures such as γ and θ, but it is preferable to use amorphous alumina for the adsorbent of the present invention. In particular, it is preferable to use amorphous alumina having a pore diameter of 10 nm or less and a small pore volume. The pore volume with a pore diameter of 10 nm or less is preferably 0.3 ml / g or less.

この非晶質アルミナは、X線回折パターンにおいて半値全幅が0.5°以下のピークを有さないアルミナであり、例えば、図1に示されるようなX線回折パターンを有する非晶質アルミナを用いることができる。また、図2に示されるような細孔分布を有し、細孔径が10nm以下の細孔容積が小さい活性アルミナを担体として用いると、細孔径が3nm以下の範囲の微細孔容積(PV)が減少するので好ましい。 This amorphous alumina is an alumina that does not have a peak with a full width at half maximum of 0.5 ° or less in the X-ray diffraction pattern. For example, amorphous alumina having an X-ray diffraction pattern as shown in FIG. Can be used. Further, when activated alumina having a pore distribution as shown in FIG. 2 and having a pore diameter of 10 nm or less and a small pore volume is used as a carrier, a fine pore volume (PV b ) having a pore diameter of 3 nm or less is used. Is preferable.

銅化合物を担持する前のアルミナ担体の比表面積は、250〜450m/gの範囲であることが好ましく、300〜450m/gの範囲が特に好ましい。比表面積がこの範囲にあるアルミナ担体は、銅化合物の分散度が高くなる傾向がある。 The specific surface area before the alumina carrier carrying a copper compound is preferably in the range of 250~450m 2 / g, the range of 300~450m 2 / g is particularly preferred. An alumina support having a specific surface area in this range tends to increase the degree of dispersion of the copper compound.

本発明の吸着剤に含まれる銅化合物は、酸化銅または銅−アルミナ複合酸化物の何れかである。アルミナ担体に銅化合物を担持させる方法としては、(イ)銅化合物とアルミナ担体を物理的に混合する方法、(ロ)アルミナ担体を含むスラリーに溶解性の銅化合物を溶解し、pH調整剤を添加してアルミナ担体表面に沈殿を生成させる沈殿法、(ハ)アルミナ担体に硝酸銅等の分解しやすい銅化合物を含浸させた後に焼成して生成した銅分解物を担持させる含浸担持法などを用いることができる。   The copper compound contained in the adsorbent of the present invention is either copper oxide or a copper-alumina composite oxide. As a method of supporting the copper compound on the alumina carrier, (a) a method of physically mixing the copper compound and the alumina carrier, (b) dissolving a soluble copper compound in a slurry containing the alumina carrier, and adding a pH adjuster (C) an impregnation supporting method for supporting a copper decomposition product produced by firing after impregnating a copper compound such as copper nitrate into an alumina support. Can be used.

なかでも、本発明の吸着剤は含浸担持法によって製造することが好ましい。含浸担持法によれば、焼成前のアルミナ担体の細孔分布が焼成後にもある程度引き継がれるので、吸着剤の細孔分布のコントロールが他の方法に比べて容易であり、銅化合物の分散度が高くなるので好ましい。   Among these, the adsorbent of the present invention is preferably produced by an impregnation support method. According to the impregnation support method, the pore distribution of the alumina carrier before firing is inherited to some extent even after firing, so the control of the pore distribution of the adsorbent is easier than other methods, and the degree of dispersion of the copper compound is increased. Since it becomes high, it is preferable.

物理的混合法では、例えば、粉末のアルミナ担体と銅化合物を乳鉢等で物理的に混合した後、成型剤等を加えて所望の形状に成型し、焼成して成型剤を除去する方法を用いることができる。
沈殿法では、例えば、粉末のアルミナ担体を水に分散させたスラリーを調製し、そのスラリーに硝酸銅を溶解し、その後塩基性水溶液を添加して生成した沈殿物を取り出し、成型剤等を加えて所望の形状に成型し、焼成する方法を用いることができる。
含浸担持法では、例えば、球状のアルミナ担体に硝酸銅水溶液を噴霧担持した後、焼成する方法を用いることができる。
In the physical mixing method, for example, a powdered alumina carrier and a copper compound are physically mixed in a mortar and the like, and then a molding agent is added to form a desired shape, followed by firing to remove the molding agent. be able to.
In the precipitation method, for example, a slurry in which a powdered alumina carrier is dispersed in water is prepared, copper nitrate is dissolved in the slurry, and then a basic aqueous solution is added to remove the generated precipitate, and a molding agent is added. Then, a method of forming into a desired shape and baking can be used.
In the impregnation supporting method, for example, a method of spraying and supporting a copper nitrate aqueous solution on a spherical alumina carrier and then firing can be used.

本発明の製造方法では、銅化合物を担持させたアルミナ担体を、全細孔容積(PV)が0.3〜1.0ml/gの範囲であって、小細孔容積(PV)が0.04〜0.2ml/gの範囲になるように焼成する。具体的には450℃より高い温度で焼成することが好ましく、500℃以上の温度で焼成することがより好ましく、500℃〜700℃の温度で焼成することが特に好ましい。 In the production method of the present invention, the alumina carrier carrying a copper compound has a total pore volume (PV) in the range of 0.3 to 1.0 ml / g and a small pore volume (PV a ) of 0. Baking to a range of 0.04 to 0.2 ml / g. Specifically, firing at a temperature higher than 450 ° C. is preferable, baking at a temperature of 500 ° C. or higher is more preferable, and baking at a temperature of 500 ° C. to 700 ° C. is particularly preferable.

本発明の製造方法において、焼成は重要な工程であり、銅化合物を担持させたアルミナ担体を、従来の製造方法よりも高い温度で焼成することによって、細孔分布を調整し、PV、およびPVが前記範囲内にある細孔構造を形成する。 In the production method of the present invention, calcination is an important step, and the pore distribution is adjusted by calcining an alumina carrier supporting a copper compound at a temperature higher than that of the conventional production method, so that PV and PV a form a pore structure within the range.

一般的に焼成工程では、焼成する温度が高いほど焼成体の比表面積は低下する傾向があり、比表面積が低下すれば硫黄化合物の吸着量が少なくなるので、本発明のような高温で焼成することは一般的ではない。しかし、本発明においては、焼成によって、細孔径が3nm以下の微細孔容積(PV)が減少し、細孔径が5〜7nmの範囲の小細孔容積(PV)が増加する傾向があるので、この傾向を利用して目的の細孔構造になるよう細孔分布を調節するとよい。 In general, in the firing step, the higher the firing temperature, the lower the specific surface area of the fired body, and the lower the specific surface area, the lower the amount of sulfur compound adsorbed. That is not common. However, in the present invention, by firing, the fine pore volume (PV b ) having a pore diameter of 3 nm or less is decreased, and the small pore volume (PV a ) having a pore diameter in the range of 5 to 7 nm tends to be increased. Therefore, it is preferable to adjust the pore distribution so as to obtain the desired pore structure by utilizing this tendency.

本発明の実施例を比較例と共に以下に示す。なお、本発明はこれらの実施例に限定されない。また、組成の測定方法、水銀圧入法による細孔分布の測定方法、CO吸着量の測定方法、分散度の測定方法、比表面積の測定方法、X線回折の測定方法及び硫化カルボニル吸着試験の測定方法を以下に示す。   Examples of the present invention are shown below together with comparative examples. The present invention is not limited to these examples. In addition, a composition measurement method, a pore distribution measurement method by mercury porosimetry, a CO adsorption amount measurement method, a dispersion degree measurement method, a specific surface area measurement method, an X-ray diffraction measurement method, and a carbonyl sulfide adsorption test measurement The method is shown below.

製造した吸着剤について、Cu、Alの含有量を下記の条件で測定した。各成分の含有量は、酸化物換算で質量%として算出した。
<組成の測定方法>
測定方法:ICP発光分析
装置 :ICP730−ES(株式会社VARIAN製)
試料溶解:酸溶解
About the manufactured adsorbent, content of Cu and Al was measured on condition of the following. The content of each component was calculated as mass% in terms of oxide.
<Method for measuring composition>
Measuring method: ICP emission analyzer: ICP730-ES (manufactured by VARIAN Co., Ltd.)
Sample dissolution: acid dissolution

製造した吸着剤および銅化合物担持前のアルミナ担体について、細孔分布を下記の条件で測定した。得られた細孔分布から、PV、PV及びPVを算出した。
<窒素吸着法による細孔分布の測定方法>
吸着剤を、細孔容積測定装置(マイクロトラックベル株式会社製、Belsorp miniII)を用いてBJH法により測定した。具体的には、吸着剤を整粒し、約0.1gをセルに充填した。その後、吸着剤を250℃で3時間、真空加熱前処理を行った。前処理後の吸着剤の重量を測定し、相対圧0〜1.0で窒素を吸着させ、BJH法の吸着側で測定した。
The pore distribution of the produced adsorbent and the alumina support before supporting the copper compound was measured under the following conditions. PV, PV a and PV b were calculated from the obtained pore distribution.
<Measurement method of pore distribution by nitrogen adsorption method>
The adsorbent was measured by the BJH method using a pore volume measuring device (manufactured by Microtrack Bell Co., Ltd., Belsorb mini II). Specifically, the adsorbent was sized and about 0.1 g was filled in the cell. Thereafter, the adsorbent was subjected to vacuum heating pretreatment at 250 ° C. for 3 hours. The weight of the adsorbent after the pretreatment was measured, nitrogen was adsorbed at a relative pressure of 0 to 1.0, and measurement was performed on the adsorption side of the BJH method.

製造した吸着剤について、CO吸着量を下記の条件で測定した。
<CO吸着量の測定方法>
顆粒状にした吸着剤0.5gを内径4mmのステンレス管に充填し、吸着管を作製した。吸着管に窒素(50Ncc/分)を流通させながら、140℃に加熱し、30分間保持し、脱水処理を行った。吸着管を20℃まで冷却した後にCOと窒素の混合ガス(体積分率でCOが5.03%、窒素94.97%)1ccを窒素気流下の吸着剤に供給した。吸着管出口ガスをTCD検出器付きのガスクロマトグラフ(島津製作所製、型式;GC−2014)で分析した。吸着管入口と出口のCO量の差分から、吸着剤に吸着したCO量を算出した。そして、吸着剤に吸着したCO量を吸着剤の重量で割って、単位重量当たりのCO吸着量を算出した。
About the manufactured adsorbent, CO adsorption amount was measured on condition of the following.
<Measurement method of CO adsorption amount>
A stainless steel tube having an inner diameter of 4 mm was filled with 0.5 g of the granulated adsorbent to produce an adsorption tube. While flowing nitrogen (50 Ncc / min) through the adsorption tube, it was heated to 140 ° C. and held for 30 minutes for dehydration treatment. After the adsorption tube was cooled to 20 ° C., 1 cc of a mixed gas of CO and nitrogen (volume ratio of CO: 5.03%, nitrogen: 94.97%) was supplied to the adsorbent under a nitrogen stream. The gas at the outlet of the adsorption tube was analyzed by a gas chromatograph equipped with a TCD detector (manufactured by Shimadzu Corporation, model: GC-2014). The amount of CO adsorbed to the adsorbent was calculated from the difference between the CO amount at the inlet and the outlet of the adsorption tube. Then, the amount of CO adsorbed per unit weight was calculated by dividing the amount of CO adsorbed by the adsorbent by the weight of the adsorbent.

製造した吸着剤について、銅化合物の分散度を下記の条件で測定した。
<分散度の測定方法>
顆粒状にした吸着剤0.3gを内径4mmのステンレス管に充填し、反応管を作製した。反応管に水素(30Ncc/分)を流通させながら、300℃に加熱し、30分間保持し、還元処理を行った。反応管を0℃まで冷却した後に亜酸化窒素ガスを供給した。反応管出口ガスをTCD検出器付きのガスクロマトグラフ(島津製作所製、型式;GC−2014)で分析した。反応管出口で検出された窒素の量から、表面の銅原子の量を算出した。亜酸化窒素と銅は、2Cu+NO → CuO+Nの反応式で反応が進行するため、吸着剤表面の銅原子と反応管出口の窒素の量論比は2となる。そして、得られた表面の銅原子の量を吸着剤に含まれる銅原子の量で割って、酸化銅の分散度を算出した。
About the manufactured adsorbent, the dispersion degree of the copper compound was measured on condition of the following.
<Method of measuring dispersity>
A stainless steel tube having an inner diameter of 4 mm was filled with 0.3 g of the granulated adsorbent to prepare a reaction tube. While flowing hydrogen (30 Ncc / min) through the reaction tube, it was heated to 300 ° C. and held for 30 minutes to perform a reduction treatment. After cooling the reaction tube to 0 ° C., nitrous oxide gas was supplied. The gas at the outlet of the reaction tube was analyzed by a gas chromatograph equipped with a TCD detector (manufactured by Shimadzu Corporation, model: GC-2014). From the amount of nitrogen detected at the outlet of the reaction tube, the amount of copper atoms on the surface was calculated. Since the reaction of nitrous oxide and copper proceeds by the reaction formula 2Cu + N 2 O → Cu 2 O + N 2 , the stoichiometric ratio of copper atoms on the adsorbent surface to nitrogen at the outlet of the reaction tube is 2. Then, the amount of copper atoms on the surface obtained was divided by the amount of copper atoms contained in the adsorbent to calculate the degree of dispersion of copper oxide.

製造した吸着剤および焼成前のアルミナ担体について、比表面積を下記の条件で測定した。
<比表面積の測定方法>
窒素流通下にて前処理を行い、全自動比表面積測定装置(マウンテック製、型式;MacsorbHM model−1220)にセットし、窒素吸着法(BET法)を用いて、窒素の脱離量から、BET1点法により比表面積を算出した。具体的には、試料0.1gを測定セルに充填し、窒素流通下にて250℃−40min.で前処理を行い、窒素混合ガス(体積分率で窒素が30%、ヘリウムが70%)気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量をTCDで検出した。最後に純窒素を1ccパルスで流通させ、先の窒素脱離量との比から比表面積を算出した。
The specific surface area of the produced adsorbent and the alumina support before firing was measured under the following conditions.
<Method for measuring specific surface area>
Pre-treatment under nitrogen flow, set in a fully automatic specific surface area measuring device (Mounttech, model; MacsorbHM model-1220), and using the nitrogen adsorption method (BET method), from the nitrogen desorption amount, BET1 The specific surface area was calculated by the point method. Specifically, 0.1 g of a sample is filled in a measurement cell, and 250 ° C.-40 min. The sample was pretreated, and the liquid nitrogen temperature was maintained in a stream of nitrogen mixed gas (30% by volume and 70% helium) in a nitrogen gas mixture, and nitrogen was adsorbed to the sample in an equilibrium manner. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, and the amount of nitrogen desorbed during that time was detected by TCD. Finally, pure nitrogen was circulated with a 1 cc pulse, and the specific surface area was calculated from the ratio to the previous nitrogen desorption amount.

銅化合物を担持する前のアルミナ担体について、X線回折測定を以下の条件で行い、非晶質であるかを確認した。
<X線回折測定条件>
装置 :MiniFlex(株式会社リガク製)
操作軸 :2θ/θ
線源 :CuKα
測定方法 :連続式
電圧 :40kV
電流 :20mA
開始角度 :2θ=20°
終了角度 :2θ=70°
サンプリング幅:0.020°
スキャン速度 :4.000°/min
<半値全幅の算出方法>
X線回折測定により、得られたデータについて解析ソフト(株式会社リガク製、JADE)で求めた。具体的には、解析ソフトに測定データを読み込み、半値全幅を求めたいピークについて操作軸の範囲を指定することで求めた。
About the alumina support | carrier before carry | supporting a copper compound, the X-ray-diffraction measurement was performed on the following conditions, and it was confirmed whether it was amorphous.
<X-ray diffraction measurement conditions>
Device: MiniFlex (manufactured by Rigaku Corporation)
Operation axis: 2θ / θ
Radiation source: CuKα
Measurement method: Continuous voltage: 40 kV
Current: 20 mA
Starting angle: 2θ = 20 °
End angle: 2θ = 70 °
Sampling width: 0.020 °
Scan speed: 4.000 ° / min
<Calculation method of full width at half maximum>
By X-ray diffraction measurement, the obtained data was obtained by analysis software (manufactured by Rigaku Corporation, JADE). Specifically, it was obtained by reading the measurement data into the analysis software and specifying the range of the operation axis for the peak for which the full width at half maximum was to be obtained.

製造した吸着剤について、圧壊強度を以下のように測定した。
<圧壊強度の測定方法>
吸着剤の強度は、圧壊強度計(インストロン社製、型式3365)を用いて測定し、吸着剤10個の圧壊強度の平均値を採用した。
The crushing strength of the produced adsorbent was measured as follows.
<Measurement method of crushing strength>
The strength of the adsorbent was measured using a crushing strength meter (manufactured by Instron, model 3365), and the average value of the crushing strength of 10 adsorbents was adopted.

製造した吸着剤について、硫化カルボニルの吸着試験を以下の条件で行い、硫化カルボニルの吸着速度(速度定数)を算出した。
<硫化カルボニルの吸着速度>
初めに、硫化カルボニル溶存1−ヘキセン液(硫化カルボニル濃度約10質量ppm)を準備した。次に吸着剤を層高が8cmになるように反応管にセットし、該反応管を硫化カルボニル吸着試験装置に取り付けた。次に窒素流通下にて150℃1時間前処理を行ったのち、室温まで冷却した。次にあらかじめ準備しておいた硫化カルボニル溶存1−ヘキセン液を反応管へ3.2g/minの供給速度で流通させた。所定時間ごとに反応管の入口と出口の液をサンプリングし、SCD検出器を備えたガスクロマトグラフ(アジレント・テクノロジー社製、型式7890B)を用いて硫化カルボニル濃度を分析した。所定流通時間ごとの入口硫化カルボニル濃度と出口硫あっカルボニル濃度の差分から速度定数を算出し、流通時間における速度定数の経時変化を観察した。
The produced adsorbent was subjected to a carbonyl sulfide adsorption test under the following conditions to calculate the carbonyl sulfide adsorption rate (rate constant).
<Adsorption rate of carbonyl sulfide>
First, a carbonyl sulfide-dissolved 1-hexene solution (carbonyl sulfide concentration of about 10 mass ppm) was prepared. Next, the adsorbent was set in a reaction tube so that the layer height was 8 cm, and the reaction tube was attached to a carbonyl sulfide adsorption test apparatus. Next, after pretreatment at 150 ° C. for 1 hour under a nitrogen flow, the mixture was cooled to room temperature. Next, the carbonyl sulfide-dissolved 1-hexene solution prepared in advance was circulated through the reaction tube at a supply rate of 3.2 g / min. The liquid at the inlet and outlet of the reaction tube was sampled every predetermined time, and the carbonyl sulfide concentration was analyzed using a gas chromatograph (manufactured by Agilent Technologies, model 7890B) equipped with an SCD detector. A rate constant was calculated from the difference between the inlet carbonyl sulfide concentration and the outlet carbonyl concentration for each predetermined flow time, and the change over time in the flow time was observed.

〔実施例1〕
はじめに、市販の活性アルミナ(比表面積及びサイズ等は表1の通り)、イオン交換水、市販の硝酸銅3水和物を用意した。この活性アルミナのX線回折パターンを図1、その細孔分布を図2に示す。
次に、イオン交換水66.7gに硝酸銅3水和物124gを溶解させて、含浸液を調製した。次に活性アルミナ299gを回転ドラム式の噴霧含浸装置に充填し、ドラムを回転させて流動状態とした。その後、調製した含浸液を、流動状態の活性アルミナに霧状に噴霧させて、全量含浸させた。含浸後の活性アルミナを1晩静置したのち、マッフル炉を用いて450℃で5時間焼成し、CuO含有量11.9質量%の吸着剤を得た。
各種分析および吸着試験を行うため、該吸着剤を破砕して355〜710μmの顆粒状態にした。顆粒状の吸着剤について、前述の方法に従って各種測定を行った。その結果を表1に示す。また、細孔分布を図3に示す
[Example 1]
First, commercially available activated alumina (specific surface area and size, etc. are as shown in Table 1), ion-exchanged water, and commercially available copper nitrate trihydrate were prepared. The X-ray diffraction pattern of this activated alumina is shown in FIG. 1, and its pore distribution is shown in FIG.
Next, 124 g of copper nitrate trihydrate was dissolved in 66.7 g of ion-exchanged water to prepare an impregnation solution. Next, 299 g of activated alumina was filled in a rotary drum type spray impregnation apparatus, and the drum was rotated to be in a fluid state. Thereafter, the prepared impregnating solution was sprayed in the form of a mist onto the activated alumina in a fluidized state to impregnate the whole amount. The impregnated activated alumina was allowed to stand overnight and then calcined at 450 ° C. for 5 hours using a muffle furnace to obtain an adsorbent having a CuO content of 11.9% by mass.
In order to carry out various analyzes and adsorption tests, the adsorbent was crushed into granules of 355 to 710 μm. Various measurements were performed on the granular adsorbent according to the method described above. The results are shown in Table 1. The pore distribution is shown in FIG.

〔実施例2〜実施例4、比較例1〕
焼成温度を500℃、550℃、600℃、360℃とした以外は実施例1と同様の方法で吸着剤を製造した。この結果を表1に示した。実施例2〜実施例4の吸着剤について、窒素吸着法で測定した細孔分布のグラフを図4〜図6に示した。比較例1の吸着剤について、窒素吸着法で測定した細孔分布のグラフを図7に示した。
[Examples 2 to 4, Comparative Example 1]
An adsorbent was produced in the same manner as in Example 1 except that the firing temperature was 500 ° C, 550 ° C, 600 ° C, and 360 ° C. The results are shown in Table 1. The pore distribution graphs measured by the nitrogen adsorption method for the adsorbents of Examples 2 to 4 are shown in FIGS. A graph of the pore distribution measured by the nitrogen adsorption method for the adsorbent of Comparative Example 1 is shown in FIG.

〔実施例5〜実施例6〕
銅化合物の重量がそれぞれ1.4質量%、25質量%となるようにした以外は、実施例3と同様の方法で吸着剤を製造した。なお、25質量%の場合は、複数回銅化合物を含浸担持した。この結果を表1に示した。
[Examples 5 to 6]
An adsorbent was produced in the same manner as in Example 3, except that the weight of the copper compound was 1.4% by mass and 25% by mass, respectively. In the case of 25% by mass, the copper compound was impregnated and supported multiple times. The results are shown in Table 1.

〔実施例7〕
表1の実施例7に記載の製造条件とした以外は、実施例3と同様の方法で吸着剤を製造した。この結果を表1に示した。
Example 7
An adsorbent was produced in the same manner as in Example 3, except that the production conditions described in Example 7 in Table 1 were used. The results are shown in Table 1.

Figure 2018118225
Figure 2018118225

Claims (6)

銅化合物がアルミナ担体に担持された吸着剤において、窒素吸着法により測定される全細孔容積(PV)が0.3〜1.0ml/gの範囲であって、細孔径が5〜7nmの範囲の小細孔容積(PV)が0.04〜0.2ml/gの範囲である細孔構造を有することを特徴とする硫黄化合物吸着剤。 In an adsorbent in which a copper compound is supported on an alumina carrier, the total pore volume (PV) measured by the nitrogen adsorption method is in the range of 0.3 to 1.0 ml / g, and the pore diameter is 5 to 7 nm. A sulfur compound adsorbent characterized by having a pore structure having a small pore volume (PV a ) in the range of 0.04 to 0.2 ml / g. 細孔径3nm以下の微細孔容積(PV)が0.05ml/g以下である請求項1に記載する硫黄化合物吸着剤。 2. The sulfur compound adsorbent according to claim 1, wherein a fine pore volume (PV b ) having a pore diameter of 3 nm or less is 0.05 ml / g or less. 銅化合物の含有量がCuO換算で1〜25重量%の範囲であって、銅化合物の分散度が0.08〜0.2の範囲である請求項1又は請求項2に記載する硫黄化合物吸着剤。 The sulfur compound adsorption according to claim 1 or 2, wherein the content of the copper compound is in the range of 1 to 25% by weight in terms of CuO, and the degree of dispersion of the copper compound is in the range of 0.08 to 0.2. Agent. 硫化カルボニルの吸着速度定数が0.15〜0.30sec−1の範囲である請求項1〜請求項3の何れかに記載する硫黄化合物吸着剤。 The sulfur compound adsorbent according to any one of claims 1 to 3, wherein the adsorption rate constant of carbonyl sulfide is in the range of 0.15 to 0.30 sec- 1 . CO吸着量が25μmol/g以上である請求項1〜請求項4の何れかに記載する硫黄化合物吸着剤。 The sulfur compound adsorbent according to any one of claims 1 to 4, wherein the CO adsorption amount is 25 µmol / g or more. アルミナ担体に銅化合物を担持させた後に焼成して吸着剤を製造する方法において、細孔径が10nm以下の細孔容積が0.3ml/g以下のアルミナ担体を用い、450℃以上、700℃以下の温度で焼成することを特徴とする硫黄化合物吸着剤の製造方法。
In the method for producing an adsorbent by supporting a copper compound on an alumina carrier and firing, an alumina carrier having a pore diameter of 10 nm or less and a pore volume of 0.3 ml / g or less is used, and 450 ° C. or more and 700 ° C. or less. A method for producing a sulfur compound adsorbent, characterized by firing at a temperature of 5 ° C.
JP2017012648A 2017-01-27 2017-01-27 Sulfur compound adsorbent and method for producing the same Pending JP2018118225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012648A JP2018118225A (en) 2017-01-27 2017-01-27 Sulfur compound adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012648A JP2018118225A (en) 2017-01-27 2017-01-27 Sulfur compound adsorbent and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018118225A true JP2018118225A (en) 2018-08-02

Family

ID=63044651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012648A Pending JP2018118225A (en) 2017-01-27 2017-01-27 Sulfur compound adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018118225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189550A1 (en) * 2018-03-29 2019-10-03 日揮触媒化成株式会社 Adsorbent
JP2020006319A (en) * 2018-07-09 2020-01-16 日揮触媒化成株式会社 Sulfur compound adsorbent comprising carbon-containing compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189550A1 (en) * 2018-03-29 2019-10-03 日揮触媒化成株式会社 Adsorbent
JPWO2019189550A1 (en) * 2018-03-29 2020-04-30 日揮触媒化成株式会社 Adsorbent
JP2020006319A (en) * 2018-07-09 2020-01-16 日揮触媒化成株式会社 Sulfur compound adsorbent comprising carbon-containing compounds
JP7185993B2 (en) 2018-07-09 2022-12-08 日揮触媒化成株式会社 Sulfur compound adsorbent and method for producing the same

Similar Documents

Publication Publication Date Title
Wang et al. Highly porous copper oxide sorbent for H2S capture at ambient temperature
Piumetti et al. Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: From powder catalysts to structured reactors
Liu et al. Study on removal of elemental mercury over MoO3-CeO2/cylindrical activated coke in the presence of SO2 by Hg-temperature-programmed desorption
Pu et al. Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts
Ma et al. Catalytic oxidation of 1, 2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
Tian et al. High surface area La 2 Sn 2 O 7 pyrochlore as a novel, active and stable support for Pd for CO oxidation
Carrero et al. Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
Zhang et al. Dispersion–precipitation synthesis of highly active nanosized Co3O4 for catalytic oxidation of carbon monoxide and propane
Ma et al. Catalytic effect of two-phase intergrowth and coexistence CuO–CeO 2
Dutov et al. The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation
Cao et al. Low-temperature hydrolysis of carbonyl sulfide in blast furnace gas using Al2O3-based catalysts with high oxidation resistance
Abbasi et al. Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol–gel methods used for total oxidation of toluene
Djinović et al. Comparison of water–gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods
Wu et al. Comparative study for low-temperature catalytic oxidation of o-xylene over doped OMS-2 catalysts: Role of Ag and Cu
Liu et al. Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control
Liotta et al. Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances
Wang et al. Effect of precursor and preparation method on manganese based activated carbon sorbents for removing H2S from hot coal gas
Chen et al. Inverse CeO2/CuO catalysts prepared from heterobimetallic metal–organic framework precursor for preferential CO oxidation in H2-rich stream
Zhang et al. Metal-organic chemical vapor deposition of Cu (acac) 2 for the synthesis of Cu/ZSM-5 catalysts for the oxidation of toluene
Liu et al. CeO 2-La 2 O 3/ZSM-5 sorbents for high-temperature H 2 S removal
JP2013516306A (en) Catalyst and method for producing catalyst
AU2013270629A1 (en) Polymetallic capture mass for capturing heavy metals
US9561487B2 (en) Performance trapping mass and use thereof in heavy metal trapping
Zhou et al. Effects of preparation method on CeCu oxide catalyst performance