JP2018117088A - Substrate with reflecting member and manufacturing method thereof - Google Patents

Substrate with reflecting member and manufacturing method thereof Download PDF

Info

Publication number
JP2018117088A
JP2018117088A JP2017008416A JP2017008416A JP2018117088A JP 2018117088 A JP2018117088 A JP 2018117088A JP 2017008416 A JP2017008416 A JP 2017008416A JP 2017008416 A JP2017008416 A JP 2017008416A JP 2018117088 A JP2018117088 A JP 2018117088A
Authority
JP
Japan
Prior art keywords
substrate
reflecting member
semiconductor laser
groove
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017008416A
Other languages
Japanese (ja)
Other versions
JP6920823B2 (en
Inventor
純二 土屋
Junji Tsuchiya
純二 土屋
鳥海 和宏
Kazuhiro Chokai
和宏 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Original Assignee
Citizen Watch Co Ltd
Citizen Fine Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd, Citizen Fine Device Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2017008416A priority Critical patent/JP6920823B2/en
Publication of JP2018117088A publication Critical patent/JP2018117088A/en
Application granted granted Critical
Publication of JP6920823B2 publication Critical patent/JP6920823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in which a laser light is reflected by a reflecting surface of a reflecting member, but the reflecting member cannot fully reflect the laser light emitted from a semiconductor laser and a part of the laser light is absorbed in the reflecting member, and the absorbed light generates heat in the reflecting member, and thus the heat causes thermal expansion of the reflecting member and causes thermal deformation of the reflecting surface in a substrate provided with the reflecting member.SOLUTION: On a substrate 102 provided with a reflecting member 103, a first stepped portion 120a and a second stepped portion 120c are formed in the substrate 102, and heat of the reflecting member 103 can be efficiently released to the substrate 102 side as the reflecting member 103 is fixed so as to cover at least a part of the first stepped portion 120a and the second stepped portion 120c.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子から出射された光を反射するための反射部材を備える反射部材付基板及びその製造方法に関する。   The present invention relates to a substrate with a reflecting member including a reflecting member for reflecting light emitted from a light emitting element, and a method for manufacturing the same.

近年、医療機器、光通信、光ディスク等の光応用技術が大きく進歩しており、その光応用技術に利用される電子機器は大きな進化をとげている。特に発光装置は高出力化、小型化、低コスト化が求められている。
従来より、小型化した発光装置として、基板上に反射部材と発光素子を搭載した発光装置が提供されている。
In recent years, optical application technologies such as medical devices, optical communication, and optical discs have greatly advanced, and electronic devices used for the optical application technologies have greatly advanced. In particular, light emitting devices are required to have higher output, smaller size, and lower cost.
Conventionally, as a miniaturized light emitting device, a light emitting device in which a reflective member and a light emitting element are mounted on a substrate has been provided.

図14は、従来の発光装置の一例であり、発光素子である半導体レーザーをパッケージ化した半導体レーザーパッケージを説明するためのものである。
半導体レーザーパッケージ900は、容器904に半導体レーザーチップ910を搭載し、容器904を透明蓋体905により封止することで構成されている(例えば特許文献1参照。)。
半導体レーザーチップ910は、接合膜906aと906bが形成された基板902、半導体レーザー901、及び反射部材903からなる。
基板902に形成された接合膜906aは、半導体レーザー901と基板902との接合膜であり、接合膜906bは、反射部材903と基板902との接合膜である。接合膜906a、906bにより、基板902上に半導体レーザー901と反射部材903とが固定されている。反射部材903としては、シリコーン等の樹脂系材料に白色顔料等のフィラーを混ぜ合わせたものが広く使われている。
半導体レーザー901は、その出射口であるレーザー出射口901Eが、反射部材903の反射面903Sと対向するように基板902上に配置されている。
また、半導体レーザー901、基板902及び容器904には、それぞれを電気的に接続するための導電膜(不図示)が形成されており、それぞれに形成された導電膜はワイヤー915a、915bにより電気的に接続されている。
FIG. 14 is an example of a conventional light emitting device and is for explaining a semiconductor laser package in which a semiconductor laser as a light emitting element is packaged.
The semiconductor laser package 900 is configured by mounting a semiconductor laser chip 910 on a container 904 and sealing the container 904 with a transparent lid 905 (see, for example, Patent Document 1).
The semiconductor laser chip 910 includes a substrate 902 on which bonding films 906a and 906b are formed, a semiconductor laser 901, and a reflecting member 903.
A bonding film 906 a formed on the substrate 902 is a bonding film between the semiconductor laser 901 and the substrate 902, and a bonding film 906 b is a bonding film between the reflecting member 903 and the substrate 902. The semiconductor laser 901 and the reflecting member 903 are fixed on the substrate 902 by the bonding films 906a and 906b. As the reflecting member 903, a material obtained by mixing a resin material such as silicone with a filler such as a white pigment is widely used.
The semiconductor laser 901 is disposed on the substrate 902 so that a laser emission port 901E which is an emission port thereof faces the reflection surface 903S of the reflection member 903.
The semiconductor laser 901, the substrate 902, and the container 904 are formed with conductive films (not shown) for electrically connecting them, and the formed conductive films are electrically connected by wires 915a and 915b. It is connected to the.

半導体レーザーパッケージ900は、半導体レーザー901のレーザー出射口901Eからレーザー光911を、反射部材903の反射面903Sに向かって出射し、反射部材903の反射面903Sでレーザー光911の光軸を変更する。光軸が変更されたレーザー光911は、透明蓋体905を透過し、半導体レーザーパッケージ900の外部へ出射される。   The semiconductor laser package 900 emits laser light 911 from the laser emission port 901E of the semiconductor laser 901 toward the reflection surface 903S of the reflection member 903, and changes the optical axis of the laser light 911 by the reflection surface 903S of the reflection member 903. . The laser beam 911 whose optical axis has been changed passes through the transparent lid 905 and is emitted to the outside of the semiconductor laser package 900.

図15は、従来の半導体レーザーチップの製造方法を説明するための斜視図である。
半導体レーザーチップ910は、半導体レーザーチップ910を形成するためのチップ形成領域902chを複数有する基板用ウエハー902WFから作製される。
(1)まず、基板用ウエハー902WFの平坦な表面に導電膜及び接合膜906a、906bを形成する。
(2)次に、接合膜906b上にバー状の反射部材903を複数のチップ形成領域に跨るように設置し固定する。
(3)次に、接合膜906a上に半導体レーザー901を設置し固定する。
(4)次に、チップ形成領域の境界であるダイシングライン902DLに沿って基板用ウエハー902WFをダイシングし、半導体レーザーチップ910を個片化する。
(5)以上で、半導体レーザーチップ910が完成する。
FIG. 15 is a perspective view for explaining a conventional method of manufacturing a semiconductor laser chip.
The semiconductor laser chip 910 is manufactured from a substrate wafer 902WF having a plurality of chip formation regions 902ch for forming the semiconductor laser chip 910.
(1) First, a conductive film and bonding films 906a and 906b are formed on the flat surface of the substrate wafer 902WF.
(2) Next, a bar-like reflecting member 903 is installed and fixed on the bonding film 906b so as to straddle a plurality of chip formation regions.
(3) Next, the semiconductor laser 901 is installed and fixed on the bonding film 906a.
(4) Next, the substrate wafer 902WF is diced along the dicing line 902DL which is the boundary of the chip formation region, and the semiconductor laser chip 910 is separated into pieces.
(5) The semiconductor laser chip 910 is completed as described above.

特開2006−32765号公報JP 2006-32765 A

近年、発光素子を備える電子機器の高機能化にともない、発光装置、例えば半導体発光素子においては、その出力光が、数十mWレベル以下の低出力で利用されるのはもとより、数十〜数百mWレベルの中出力、さらには数Wレベル以上の高出力なものまで、幅広い出力範囲での利用が求められている。   In recent years, with the increase in functionality of electronic devices equipped with light emitting elements, in light emitting devices such as semiconductor light emitting elements, the output light is used at a low output of several tens of mW or less, and several tens to several tens. There is a demand for use in a wide output range, such as a medium output of a hundred mW level and a high output of several W level or more.

従来の反射部材付きの半導体レーザーパッケージにおいては、発光素子である半導体レーザーの出射口より出射されたレーザー光は、反射部材で反射し、半導体レーザーパッケージの外部に射出される。この際、レーザー光を反射する反射部材は、反射部材に入射するレーザー光のすべてを反射することが望ましい。
しかしながら、反射部材(例えば、樹脂製反射部材)に入射するすべてのレーザー光(例えば、半導体レーザーで出射するレーザー光)を反射することは、実質困難である。そして、反射部材で反射しきれなかったレーザー光の一部は、反射部材内に吸収されてしまい、吸収された光は反射部材に熱を発生させる。反射部材で発生した熱は、反射部材の熱膨張を引き起こし、反射面の熱変形を発生させる。さらに熱変形した反射面は、反射したレーザー光を規定の光軸から外れる軸ズレや光の散乱等を生じさせてしまい、出力するレーザー光の劣化を招く虞があった。
In a conventional semiconductor laser package with a reflecting member, laser light emitted from an emission port of a semiconductor laser that is a light emitting element is reflected by the reflecting member and emitted outside the semiconductor laser package. At this time, it is desirable that the reflecting member that reflects the laser light reflects all of the laser light incident on the reflecting member.
However, it is substantially difficult to reflect all laser light (for example, laser light emitted by a semiconductor laser) incident on a reflective member (for example, a resin-made reflective member). A part of the laser light that cannot be reflected by the reflecting member is absorbed in the reflecting member, and the absorbed light generates heat in the reflecting member. The heat generated in the reflecting member causes thermal expansion of the reflecting member and causes thermal deformation of the reflecting surface. Further, the heat-deformed reflective surface may cause the reflected laser beam to deviate from the prescribed optical axis, cause light scattering, and the like, leading to deterioration of the output laser beam.

特に、熱伝導性が低い樹脂系材料の反射部材は、反射部材内部の熱を外部に放出し難く、熱が反射部材内部にこもりやすいため反射部材の熱変形が起こりやすい。さらに、発光素子の出力が高い場合には、出射される光のエネルギー量も高くなるため、反射部材の熱吸収はより顕著となり、問題は大きくなる。
例えば、半導体レーザーを用いた高出力の発光装置としては、歯科医療用のペン型半導体レーザーメスがあげられ、その出力は3〜5W程度である。
In particular, a reflection member made of a resin material having low thermal conductivity hardly releases the heat inside the reflection member to the outside, and heat tends to stay inside the reflection member, so that the reflection member is likely to be thermally deformed. Furthermore, when the output of the light emitting element is high, the amount of energy of the emitted light is also high, so that the heat absorption of the reflecting member becomes more remarkable and the problem becomes large.
For example, as a high-power light emitting device using a semiconductor laser, there is a pen-type semiconductor laser knife for dentistry, and its output is about 3 to 5 W.

本発明は、以上の問題点を鑑みてなされたものであり、反射部材の熱変形を抑制した反射部材付基板及びその製造方法を提供することを目的とする。   This invention is made | formed in view of the above problem, and it aims at providing the board | substrate with a reflecting member which suppressed the thermal deformation of the reflecting member, and its manufacturing method.

基板と、前記基板上に反射部材とを備えた反射部材付基板において、
前記基板には、段差部が形成されており、前記反射部材は前記段差部の少なくとも一部を覆い固定されている反射部材付基板とする。
In the substrate with a reflecting member provided with the substrate and the reflecting member on the substrate,
A step portion is formed on the substrate, and the reflecting member is a substrate with a reflecting member that covers and is fixed to at least a part of the step portion.

前記基板の熱伝導率は、前記反射部材の熱伝導率より高いことが好ましい。   It is preferable that the thermal conductivity of the substrate is higher than the thermal conductivity of the reflecting member.

また、前記基板の前記凸起部は、1箇所乃至は複数個所に設けてもよい。   Moreover, you may provide the said protrusion part of the said board | substrate in one place or multiple places.

また、前記基板には溝部が形成されており、前記溝部により前記段差部を形成してもよい。   The substrate may be provided with a groove, and the step may be formed by the groove.

さらに、前記基板の前記溝部の底面より前記反射部材が形成されていてもよい。   Furthermore, the reflection member may be formed from the bottom surface of the groove portion of the substrate.

基板と、前記基板上に反射部材とを備えた反射部材付基板の製造方法において、
前記基板に段差部を形成する工程と、前記段差部の少なくとも一部を覆うように前記反射部材を前記基板に固定する工程とを有する反射部材付基板の製造方法とする。
In a method for manufacturing a substrate with a reflecting member comprising a substrate and a reflecting member on the substrate,
A method for manufacturing a substrate with a reflecting member, comprising: a step of forming a step portion on the substrate; and a step of fixing the reflecting member to the substrate so as to cover at least a part of the step portion.

前記反射部材を前記基板に固定する工程は、前記反射部材の外形状に対応した凹部を有する金型を前記凹部が前記段差部を覆うように前記基板にのせる工程と、前記反射部材を構成する材料を前記凹部に充填し、前記反射部材を形成する工程を有してもよい。   The step of fixing the reflective member to the substrate includes a step of placing a mold having a concave portion corresponding to the outer shape of the reflective member on the substrate so that the concave portion covers the step portion, and the reflective member is configured. The step of filling the concave portion with a material to be formed and forming the reflective member may be included.

また、前記反射部材を前記基板に固定する工程は、前記基板の上に前記反射部材を構成する材料をのせる工程と、前記反射部材を構成する材料を加工し、前記反射部材を形成してもよい。   Further, the step of fixing the reflecting member to the substrate includes a step of placing a material constituting the reflecting member on the substrate, processing the material constituting the reflecting member, and forming the reflecting member. Also good.

さらに、前記基板の上に前記反射部材を構成する材料をのせる工程のあとに、前記反射部材を形成してもよい。   Furthermore, you may form the said reflection member after the process of putting the material which comprises the said reflection member on the said board | substrate.

また、前記基板には、溝が形成されており、前記反射部材を構成する材料を加工するとともに前記溝を形成してもよい。   In addition, a groove may be formed in the substrate, and the groove may be formed while processing a material constituting the reflecting member.

本発明によれば、段差部を備えた基板に、段差部の少なくとも一部を覆い固定した反射部材を設けることによって、反射部材に発生する熱を基板へ効率的に放出し、反射部材の反射面の熱変形を抑制することができる。したがって、反射部材で反射する反射光の軸ズレや光の散乱等による反射光の劣化を抑制することができる。   According to the present invention, by providing a reflective member that covers and fixes at least a part of the stepped portion on the substrate provided with the stepped portion, the heat generated in the reflective member is efficiently released to the substrate, and the reflective member is reflected. Thermal deformation of the surface can be suppressed. Therefore, it is possible to suppress deterioration of the reflected light due to an axial shift of reflected light reflected by the reflecting member, light scattering, or the like.

本発明の実施形態1に係る半導体レーザーパッケージの説明図Explanatory drawing of the semiconductor laser package concerning Embodiment 1 of this invention 本発明の実施形態1に係る反射部材付基板の説明図。Explanatory drawing of the board | substrate with a reflecting member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板を示す図2A部を拡大した説明図。Explanatory drawing which expanded the FIG. 2A part which shows the board | substrate with a reflecting member which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る反射部材付基板の説明図。Explanatory drawing of the board | substrate with a reflecting member which concerns on Embodiment 2 of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the board | substrate with a reflecting member which concerns on another embodiment of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the board | substrate with a reflecting member which concerns on another embodiment of this invention. 本発明の別の実施形態に係る反射部材付基板の説明図。Explanatory drawing of the board | substrate with a reflecting member which concerns on another embodiment of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る反射部材付基板の製造方法の説明図。Explanatory drawing of the manufacturing method of the board | substrate with a reflecting member which concerns on Embodiment 2 of this invention. 従来の半導体レーザーパッケージの説明図。Explanatory drawing of the conventional semiconductor laser package. 従来の半導体レーザーチップの製造方法の説明図。Explanatory drawing of the manufacturing method of the conventional semiconductor laser chip.

以下、本発明の最良の実施形態を説明する。
反射部材付基板は、基板上に反射部材を搭載し、基板外又は基板上に備えられる発光素子から反射部材付基板に入射する光を反射する。
本実施形態では、反射部材付基板上に発光素子を搭載し、パッケージ化した半導体レーザーパッケージを例として、図1から図7を参照して本発明の反射部材付基板を、図8から図15を参照して本発明の反射部材付基板の製造方法について説明する。
ただし、本発明の反射部材付基板及びその製造方法は、本実施形態に限定されない。
例えば、固体レーザー、ガスレーザー、半導体レーザー、LED、光ファイバー(導波路)等の発光素子を搭載した発光装置に本発明を適用することもできる。
The best mode of the present invention will be described below.
The substrate with a reflecting member has a reflecting member mounted on the substrate, and reflects light incident on the substrate with the reflecting member from a light emitting element provided outside or on the substrate.
In this embodiment, the substrate with a reflecting member according to the present invention is illustrated with reference to FIGS. 1 to 7 as an example of a semiconductor laser package in which a light emitting element is mounted on a substrate with a reflecting member and packaged. The manufacturing method of the board | substrate with a reflecting member of this invention is demonstrated with reference to.
However, the board | substrate with a reflection member of this invention and its manufacturing method are not limited to this embodiment.
For example, the present invention can be applied to a light-emitting device equipped with a light-emitting element such as a solid-state laser, a gas laser, a semiconductor laser, an LED, and an optical fiber (waveguide).

実施形態1
図1は、本発明の反射部材付基板を有する半導体レーザーパッケージを説明するためのものである。
半導体レーザーパッケージ100は、図1に示すように、容器104と、容器104内に搭載される半導体レーザーチップ110と、容器104内の半導体レーザーチップ110を封止する透明蓋体105とを有する。
Embodiment 1
FIG. 1 illustrates a semiconductor laser package having a substrate with a reflecting member according to the present invention.
As shown in FIG. 1, the semiconductor laser package 100 includes a container 104, a semiconductor laser chip 110 mounted in the container 104, and a transparent lid 105 that seals the semiconductor laser chip 110 in the container 104.

半導体レーザーチップ110は、発光素子である半導体レーザー101と、基板102と、反射部材103とを有する。半導体レーザー101と反射部材103は、基板102の一方の面に搭載されている。また、基板102の他方の面には、基板102と容器104とを接合するための接合膜102eが設けられている。半導体レーザーチップ110は、半導体レーザー101のレーザー出射口101Eから出射されるレーザー光111を反射部材103で反射し、レーザー光111を半導体レーザーチップ110の上方に出射する。レーザー光111は、レーザー光111の光軸111Aに対し所定の角度をもってレーザー出射口101Eから出射される。   The semiconductor laser chip 110 includes a semiconductor laser 101 that is a light emitting element, a substrate 102, and a reflecting member 103. The semiconductor laser 101 and the reflecting member 103 are mounted on one surface of the substrate 102. A bonding film 102 e for bonding the substrate 102 and the container 104 is provided on the other surface of the substrate 102. The semiconductor laser chip 110 reflects the laser light 111 emitted from the laser emission port 101 </ b> E of the semiconductor laser 101 by the reflecting member 103 and emits the laser light 111 above the semiconductor laser chip 110. The laser beam 111 is emitted from the laser emission port 101E at a predetermined angle with respect to the optical axis 111A of the laser beam 111.

容器104は、平板で形成された底部104bを有し、その底部104bの周囲に筒形の壁部104cが立設され、底部104bと壁部104cとで囲われた空間として凹部104aを備えている。また、壁部104cの上部開口端には端面104fを有する。
また、凹部104aの開口する側の底部104bの面を底面104bbとし、その底面104bbには、半導体レーザーチップ110を搭載する搭載領域104bAを有する。搭載領域104bAには、半導体レーザーチップ110を固定するための薄膜からなる接合膜104eを有する。
The container 104 has a bottom portion 104b formed of a flat plate, a cylindrical wall portion 104c is erected around the bottom portion 104b, and a recess 104a is provided as a space surrounded by the bottom portion 104b and the wall portion 104c. Yes. In addition, an end face 104f is provided at the upper opening end of the wall 104c.
The bottom 104b on the opening side of the recess 104a is a bottom surface 104bb, and the bottom surface 104bb has a mounting region 104bA on which the semiconductor laser chip 110 is mounted. The mounting region 104bA has a bonding film 104e made of a thin film for fixing the semiconductor laser chip 110.

半導体レーザーチップ110と容器104は、接合膜102eと接合膜104eとを接合させ固定する。接合膜102eと接合膜104eは、互いに接合できる材料であればよく、より好ましくは、熱的伝導性の良い接合材とすればよい。例えば、接合膜102eには基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層された薄膜、接合膜104eには金錫半田(Au−Sn)を用いることができる。ここで、接合膜102e、接合膜104eに熱伝導性接合剤等を用いることで、半導体レーザーチップ110で発生する熱を容器104へ効率よく放出する熱的流路を確保することができる。
ここでは、半導体レーザーチップ110と容器104を金属材からなる接合膜102e、接合膜104eにより行っているが、接合膜102eと接合膜104eは、半導体レーザーチップ110と容器104を接合できればよく、例えば、樹脂系材料、ガラス等でもよい。より好ましくは、熱伝導性の良い材料がよい。
また、半導体レーザーチップ110と容器104にそれぞれ接合膜102e、接合膜104eを設けているが、これに限らず、基板102又は容器104のいずれか一方のみに接合膜を設けてもよい。
The semiconductor laser chip 110 and the container 104 are bonded and fixed to the bonding film 102e and the bonding film 104e. The bonding film 102e and the bonding film 104e may be any material that can be bonded to each other, and more preferably a bonding material with good thermal conductivity. For example, a thin film in which titanium-platinum-gold (Ti-Pt-Au) is stacked in this order from the substrate 102 side can be used for the bonding film 102e, and gold-tin solder (Au-Sn) can be used for the bonding film 104e. Here, by using a thermally conductive bonding agent or the like for the bonding film 102e and the bonding film 104e, it is possible to secure a thermal flow path that efficiently releases the heat generated in the semiconductor laser chip 110 to the container 104.
Here, the semiconductor laser chip 110 and the container 104 are formed by the bonding film 102e and the bonding film 104e made of a metal material. However, the bonding film 102e and the bonding film 104e only need to be able to bond the semiconductor laser chip 110 and the container 104. , Resin materials, glass, and the like. More preferably, a material having good thermal conductivity is preferable.
In addition, although the bonding film 102e and the bonding film 104e are provided on the semiconductor laser chip 110 and the container 104, respectively, the bonding film may be provided on only one of the substrate 102 and the container 104.

本実施形態の容器104の材質は、鉄(Fe)を使用している。
容器104の材質は、熱伝導性が高く、熱膨張係数が半導体レーザーチップ110に近い低熱膨張材料であることが好ましい。
この構成とすることで、半導体レーザーチップ110と容器104との熱膨張差により発生する半導体レーザーチップ110の歪みを抑制し、半導体レーザーチップ110と容器104との良好な固定状態を保つことができる。
なお、容器104の材質は本実施形態の材質に限るものではない。例えば、鉄系(Fe系)材料の他、熱伝導性が高く、熱膨張係数が半導体レーザーチップ110に近い材料、例えば、モリブデン(Mo)、銅(Cu)、コバール、42アロイ、ケイ素(Si)、窒化ケイ素(SiC)、サファイア、ポリ塩化ビフェニル(PCB)、窒化アルミ(AlNx)、アルミナ(Al)を用いることができる。また、これら以外にも、関連の用途で使用されるいずれかの既知の材料から形成することもできる。
The material of the container 104 of this embodiment uses iron (Fe).
The material of the container 104 is preferably a low thermal expansion material having high thermal conductivity and a thermal expansion coefficient close to that of the semiconductor laser chip 110.
With this configuration, distortion of the semiconductor laser chip 110 caused by a difference in thermal expansion between the semiconductor laser chip 110 and the container 104 can be suppressed, and a good fixed state between the semiconductor laser chip 110 and the container 104 can be maintained. .
In addition, the material of the container 104 is not restricted to the material of this embodiment. For example, in addition to an iron-based (Fe-based) material, a material having high thermal conductivity and a thermal expansion coefficient close to that of the semiconductor laser chip 110, for example, molybdenum (Mo), copper (Cu), Kovar, 42 alloy, silicon (Si ), Silicon nitride (SiC), sapphire, polychlorinated biphenyl (PCB), aluminum nitride (AlNx), and alumina (Al 2 O 3 ). Besides these, it can also be formed from any known material used in related applications.

透明蓋体105は、容器104の壁部104cの端面104f上に搭載され、容器104の凹部104aを封止するとともに、凹部104a内に搭載された半導体レーザーチップ110の半導体レーザー101で出射され、反射部材103で反射したレーザー光111を透過し、半導体レーザーパッケージ100の外部に放出する。   The transparent lid 105 is mounted on the end face 104f of the wall 104c of the container 104, seals the recess 104a of the container 104, and is emitted by the semiconductor laser 101 of the semiconductor laser chip 110 mounted in the recess 104a. The laser beam 111 reflected by the reflecting member 103 is transmitted and emitted to the outside of the semiconductor laser package 100.

透明蓋体105と、壁部104cの端面104fとの間には、接合膜104gが介在し、接合膜104gが透明蓋体105と容器104とを接合している。こうして透明蓋体105は、半導体レーザーパッケージ100を容器104内に封止する。   A bonding film 104g is interposed between the transparent lid 105 and the end face 104f of the wall 104c, and the bonding film 104g bonds the transparent lid 105 and the container 104 together. Thus, the transparent lid 105 seals the semiconductor laser package 100 in the container 104.

なお、本実施形態では、透明蓋体105の材質にガラスを用いているが、これに限るものではない。
透明蓋体105の材質は、レーザー光111を透過すればよく、例えば、光透過性に優れたサファイア等の結晶材料、透明アクリル樹脂等の樹脂系材料等でもよい。
ただし、透明蓋体105と容器104とは、それぞれの熱膨張差により発生する応力を抑えるため、熱膨張係数が近い値である材料を選択することが好ましい。
また、半導体レーザーパッケージ100を気密封止する必要がない場合は、透明蓋体を備えない構成としてもよい。
In the present embodiment, glass is used as the material of the transparent lid 105, but is not limited thereto.
The material of the transparent lid 105 only needs to transmit the laser beam 111. For example, the transparent lid 105 may be a crystal material such as sapphire excellent in light transmittance, or a resin material such as transparent acrylic resin.
However, for the transparent lid 105 and the container 104, it is preferable to select a material having a close thermal expansion coefficient in order to suppress a stress generated due to a difference in thermal expansion between them.
Further, when the semiconductor laser package 100 does not need to be hermetically sealed, a configuration without a transparent lid may be employed.

半導体レーザーチップ110は、反射部材103で反射したレーザー光111が光透明蓋体105で透過できる位置にあり、かつ反射部材103で反射されたれレーザー光111の軌道が容器104の壁部104cの内側面に当たらない、すなわち、レーザー光111が壁部104cで蹴られない位置で、容器104の底面104bbに搭載されている。   The semiconductor laser chip 110 is in a position where the laser beam 111 reflected by the reflecting member 103 can be transmitted by the light transparent lid 105, and the orbit of the laser beam 111 reflected by the reflecting member 103 is within the wall portion 104 c of the container 104. The laser beam 111 is mounted on the bottom surface 104bb of the container 104 at a position where it does not hit the side surface, that is, the laser beam 111 is not kicked by the wall portion 104c.

次に半導体レーザーチップ110について詳細に説明する。図2は、本発明の実施形態1に係る半導体レーザーチップ110を説明するための図である。半導体レーザーチップ110は、半導体レーザー101と、表面に導電膜108が形成され、半導体レーザー101を搭載する基板102と、半導体レーザー101を基板102に固定する導電性接合膜106aと、基板102に搭載され、半導体レーザー101のレーザー光111を反射する反射部材103とを有する。   Next, the semiconductor laser chip 110 will be described in detail. FIG. 2 is a diagram for explaining the semiconductor laser chip 110 according to the first embodiment of the present invention. The semiconductor laser chip 110 includes a semiconductor laser 101, a conductive film 108 formed on the surface, a substrate 102 on which the semiconductor laser 101 is mounted, a conductive bonding film 106 a that fixes the semiconductor laser 101 to the substrate 102, and a substrate 102. And a reflection member 103 that reflects the laser beam 111 of the semiconductor laser 101.

ここで、本実施形態における、半導体レーザーチップにおける方向の定義をする。半導体レーザーチップ110の状態において、レーザー出射口101Eより出射されるレーザー光111の光軸111Aの方向をX軸方向、X軸方向に直交し、半導体レーザー101が基板102に搭載される面に対して直行する方向をZ軸方向、X軸方向とZ軸方向に直交する方向をY軸方向とする。
X軸方向においてレーザー光111の出射方向をX軸方向の正方向とし、Z軸方向において半導体レーザー101が基板102に搭載される面側をZ軸方向の正方向とする。また、X軸、Y軸、Z軸を法線にもつ面をそれぞれ、X軸面、Y軸面、Z軸面をする。
Here, the direction in the semiconductor laser chip in this embodiment is defined. In the state of the semiconductor laser chip 110, the direction of the optical axis 111A of the laser light 111 emitted from the laser emission port 101E is orthogonal to the X-axis direction and the X-axis direction, and the surface on which the semiconductor laser 101 is mounted on the substrate 102 The direction orthogonal to the Z-axis direction and the direction orthogonal to the X-axis direction and the Z-axis direction are defined as the Y-axis direction.
The emission direction of the laser beam 111 in the X-axis direction is a positive direction in the X-axis direction, and the surface side on which the semiconductor laser 101 is mounted on the substrate 102 in the Z-axis direction is a positive direction in the Z-axis direction. In addition, the surfaces having the X axis, the Y axis, and the Z axis as normals are the X axis surface, the Y axis surface, and the Z axis surface, respectively.

半導体レーザー101は、直方体形状をなす。半導体レーザー101の一側面は、X軸面に平行なレーザー光111を出射するレーザー出射口101Eを備えたレーザー出射面101Cであり、レーザー出射面101Cと直行する一側面は、基板102への搭載面である下面101b(Y軸面に平行である。)であり、下面101bには、半導体レーザー101と基板102の導電膜108とを電気的に接続するための電極膜101pを備えている。また、下面101bと対向する一側面は上面101aであり、上面101aには、半導体レーザー101と容器104とを電気的に接続するための電極膜101nを備えている。電極膜101nと101pは半導体レーザー101の電源供給用の電極である。   The semiconductor laser 101 has a rectangular parallelepiped shape. One side surface of the semiconductor laser 101 is a laser emission surface 101C having a laser emission port 101E that emits a laser beam 111 parallel to the X-axis surface, and one side surface orthogonal to the laser emission surface 101C is mounted on the substrate 102. The lower surface 101b (parallel to the Y-axis surface), which is a surface, is provided with an electrode film 101p for electrically connecting the semiconductor laser 101 and the conductive film 108 of the substrate 102. One side surface facing the lower surface 101b is an upper surface 101a, and the upper surface 101a includes an electrode film 101n for electrically connecting the semiconductor laser 101 and the container 104. The electrode films 101n and 101p are electrodes for supplying power to the semiconductor laser 101.

電極膜101n、電極膜101pとしては、導電性や耐食性を考慮して金(Au)の薄膜を用いることが好ましい。また、電極膜101n、電極膜101pは、半導体レーザー101との密着性の観点から、例えば、半導体レーザー101表面からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜としてもよい。   As the electrode film 101n and the electrode film 101p, it is preferable to use a gold (Au) thin film in consideration of conductivity and corrosion resistance. The electrode film 101n and the electrode film 101p may be, for example, a thin film in which titanium-platinum-gold (Ti-Pt-Au) is laminated in this order from the surface of the semiconductor laser 101 from the viewpoint of adhesion to the semiconductor laser 101. .

半導体レーザー101は、レーザー出射口101Eから、所定の出射角をもつレーザー光111を出射する。レーザー光111は、半導体レーザー出射口101Eに対向するよう基板102上に配置された反射部材103で反射され、半導体レーザーパッケージ100の外部へ出射される。
一般的な半導体レーザーから出射されるレーザー光は楕円形に広がり出射される。これは半導体レーザーのレーザー出射口が矩形であるため起こる光の回折による現象であり、レーザー光の遠視野像は縦方向に長く、横方向に短い楕円形になる。
本実施形態の半導体レーザー110は、基板102に搭載した状態で、レーザー光111が、レーザー光111の光軸111Aに対し、Z軸方向に約±30°、Y軸方向に±8°の出射角をもってレーザー出射口101Eより出射されている。
The semiconductor laser 101 emits a laser beam 111 having a predetermined emission angle from a laser emission port 101E. The laser beam 111 is reflected by the reflecting member 103 disposed on the substrate 102 so as to face the semiconductor laser emission port 101E, and is emitted to the outside of the semiconductor laser package 100.
Laser light emitted from a general semiconductor laser spreads in an elliptical shape and is emitted. This is a phenomenon caused by the diffraction of light that occurs because the laser emission port of the semiconductor laser is rectangular, and the far-field image of the laser beam becomes an ellipse that is long in the vertical direction and short in the horizontal direction.
With the semiconductor laser 110 of this embodiment mounted on the substrate 102, the laser beam 111 is emitted about ± 30 ° in the Z-axis direction and ± 8 ° in the Y-axis direction with respect to the optical axis 111A of the laser beam 111. The light is emitted from the laser emission port 101E with a corner.

基板102は、半導体レーザー101を搭載する面でありZ軸面に平行な上面102aと、上面102aに対向しZ軸面に平行な下面102bとを有する。
基板102の上面102aには、導電膜108が成膜され、その導電膜108は導電性及び接合性の面で、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であることが好ましい。さらに、その導電膜108上の半導体レーザー101の搭載箇所には、半導体レーザー101と導電膜108とを接合する導電性接合膜106aが成膜されている。本実施形態における導電性接合膜106aの材質は、金錫半田(Au−Sn)が用いられる。
なお、基板102と半導体レーザー101との接合に用いられる導電性接合膜106aとしては、Sn−Pb、In等を用いることもでき、特に熱伝導率が高い材料が好ましい。
The substrate 102 is a surface on which the semiconductor laser 101 is mounted and has an upper surface 102a parallel to the Z-axis surface and a lower surface 102b facing the upper surface 102a and parallel to the Z-axis surface.
A conductive film 108 is formed on the upper surface 102 a of the substrate 102, and the conductive film 108 is conductive and bonding, and is laminated in the order of titanium-platinum-gold (Ti—Pt—Au) from the substrate 102 side. A thin film is preferred. Further, a conductive bonding film 106 a for bonding the semiconductor laser 101 and the conductive film 108 is formed at the mounting position of the semiconductor laser 101 on the conductive film 108. Gold tin solder (Au—Sn) is used as the material of the conductive bonding film 106a in the present embodiment.
Note that as the conductive bonding film 106 a used for bonding the substrate 102 and the semiconductor laser 101, Sn—Pb, In, or the like can be used, and a material having particularly high thermal conductivity is preferable.

基板102の下面102bには、容器104の底面104bbと固定するための接合膜102eが成膜されている。接合膜102eは、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層された薄膜である。   A bonding film 102e for fixing to the bottom surface 104bb of the container 104 is formed on the lower surface 102b of the substrate 102. The bonding film 102e is a thin film laminated in the order of titanium-platinum-gold (Ti-Pt-Au) from the substrate 102 side.

基板102の材質は、発熱する半導体レーザー101の取り付け等の観点から、半導体レーザー101の熱膨張係数(約6.5×10−6/℃)に近く、優れた熱伝導率(100W/(m・K)以上)特性を備えていることが好ましい。本実施形態での基板102の材質は、窒化アルミ(AlN)を用いており、その熱膨張係数は約5.0×10−6/℃、熱伝導率は約150W/(m・K)である。 The material of the substrate 102 is close to the thermal expansion coefficient (about 6.5 × 10 −6 / ° C.) of the semiconductor laser 101 from the viewpoint of mounting the semiconductor laser 101 that generates heat, and has an excellent thermal conductivity (100 W / (m -K) or more) It is preferable to have characteristics. The material of the substrate 102 in this embodiment is aluminum nitride (AlN), the thermal expansion coefficient is about 5.0 × 10 −6 / ° C., and the thermal conductivity is about 150 W / (m · K). is there.

なお、基板102の材質は、これらに限るものではない。基板102は、熱伝導性に優れ、熱膨係数が半導体レーザー101に近い材料が好ましく、例えばサファイア、アルミナ(Al)等があり、熱膨張係数が3〜10×10−6/℃で、熱伝導率が100W/(m・K)以上である材料としては、例えば炭化ケイ素(SiC)、タンガロイ(T−cBN)、Cu−W、Cu−Mo、ケイ素(Si)等がある。特に高出力のレーザーを用いる場合で熱伝導率を非常に大きくしなければならない時には、ダイアモンド等も用いることができる。 Note that the material of the substrate 102 is not limited to these. The substrate 102 is preferably made of a material excellent in thermal conductivity and having a thermal expansion coefficient close to that of the semiconductor laser 101, such as sapphire or alumina (Al 2 O 3 ). The thermal expansion coefficient is 3 to 10 × 10 −6 / ° C. Examples of the material having a thermal conductivity of 100 W / (m · K) or more include silicon carbide (SiC), tungalloy (T-cBN), Cu—W, Cu—Mo, silicon (Si), and the like. In particular, when a high-power laser is used and the thermal conductivity has to be very large, diamond or the like can be used.

半導体レーザー101と基板102の熱膨張係数を同じか近い数値とすることで、半導体レーザー101と基板102の熱膨張差により発生する応力を抑えることができ、半導体レーザー101と基板102との固定部分が外れたりすることを低減できる。
また、基板102の熱伝導性をできるだけ高くすることにより、半導体レーザー101で発生する熱を効率よく外部(容器104等)に逃がすことができる。
By setting the thermal expansion coefficients of the semiconductor laser 101 and the substrate 102 to the same or close numerical values, stress generated due to the difference in thermal expansion between the semiconductor laser 101 and the substrate 102 can be suppressed, and the fixed portion between the semiconductor laser 101 and the substrate 102 can be suppressed. Can be reduced.
Further, by making the thermal conductivity of the substrate 102 as high as possible, the heat generated by the semiconductor laser 101 can be efficiently released to the outside (such as the container 104).

図3は、図2におけるA部拡大図である。
基板102は、半導体レーザー101のレーザー出射面101CよりX軸の正方向に配置されており、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状である溝部112aを備える。
溝部112aは、溝部112aの底面部である溝底面112abと、溝部112aの側壁部である側壁面120Wbと、側壁面120WbよりX軸の正方向に位置し溝部112aの側壁部である側壁面120Waから構成され、溝底面112ab、側壁面120Wa、及び上面102aからなる第1段差部120aと、溝底面112ab、側壁面120Wb、及び上面102aからなる第2段差部120bを備える。なお、側壁面120Wa、側壁面120WbはX軸面に平行な面であり、溝底面112abはZ軸面に平行な面である。
FIG. 3 is an enlarged view of part A in FIG.
The substrate 102 is disposed in the positive direction of the X-axis from the laser emission surface 101C of the semiconductor laser 101, is formed so as to cross the substrate 102 in parallel to the Y-axis, and the cross-sectional shape of the Y-axis surface is a rectangular shape. 112a.
The groove portion 112a includes a groove bottom surface 112ab that is a bottom surface portion of the groove portion 112a, a side wall surface 120Wb that is a side wall portion of the groove portion 112a, and a side wall surface 120W that is located in the positive direction of the X axis from the side wall surface 120Wb And includes a first step 120a including the groove bottom surface 112ab, the side wall surface 120Wa, and the upper surface 102a, and a second step portion 120b including the groove bottom surface 112ab, the side wall surface 120Wb, and the upper surface 102a. The sidewall surface 120Wa and the sidewall surface 120Wb are surfaces parallel to the X-axis surface, and the groove bottom surface 112ab is a surface parallel to the Z-axis surface.

さらに、基板102は、溝部112aよりX軸の正方向に配置されており、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状に基板102の一部を切り欠いたL字型切欠部112bを備える。
L字型切欠部112bは、基板102の上面102aよりZ軸の負方向に位置する切欠底面112bbと、基板102の上面102aと切欠底面112bbとを接続する側壁面120Wcから構成され、切欠底面112bb、側壁面120Wc、及び上面102aからなる第3段差部120cを備える。なお、側壁面120WcはX軸面に平行であり、切欠底面112bbはZ軸面に平行な面である。
Further, the substrate 102 is arranged in the positive direction of the X axis from the groove 112a, is formed so as to cross the substrate 102 in parallel to the Y axis, and a part of the substrate 102 is formed so that the cross-sectional shape of the Y axis surface is a rectangular shape. A cutout L-shaped cutout 112b is provided.
The L-shaped notch portion 112b includes a notch bottom surface 112bb positioned in the negative direction of the Z-axis from the upper surface 102a of the substrate 102, and a side wall surface 120Wc that connects the upper surface 102a and the notch bottom surface 112bb of the substrate 102, and the notch bottom surface 112bb. , A side wall surface 120Wc, and a third stepped portion 120c including the upper surface 102a. Side wall surface 120Wc is parallel to the X-axis surface, and notch bottom surface 112bb is a surface parallel to the Z-axis surface.

また、基板102は、溝部112aとL字型切欠部112bとの間に、第1段差部120aと第3段差部120cとから構成される凸起部109を備える。凸起部109は、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状である。   In addition, the substrate 102 includes a protruding portion 109 configured by a first step portion 120a and a third step portion 120c between the groove portion 112a and the L-shaped notch portion 112b. The protruding portion 109 is formed so as to cross the substrate 102 in parallel to the Y axis, and the cross-sectional shape of the Y axis surface is a rectangular shape.

基板102上には、反射部材103が搭載されている。反射部材103は、半導体レーザー101のレーザー出射口101Eより出射されたレーザー光111を反射するための反射面103Sを備え、反射面103Sが半導体レーザー111のレーザー出射面101Cと対向するように設置される。反射面103Sは、X軸と平行なレーザー光111を半導体レーザーパッケージ100の外部へ出射するため、光軸111Aに対して所定の角度をもっており、本実施形態においては、Y軸に平行でありZ軸面に対し45°傾斜した面をもっている。反射部材103は、反射面103Sを一面としてもつ略三角柱状であり、Y軸面の断面形状が略三角形状である。   A reflective member 103 is mounted on the substrate 102. The reflection member 103 includes a reflection surface 103S for reflecting the laser beam 111 emitted from the laser emission port 101E of the semiconductor laser 101, and is installed so that the reflection surface 103S faces the laser emission surface 101C of the semiconductor laser 111. The The reflecting surface 103S has a predetermined angle with respect to the optical axis 111A in order to emit laser light 111 parallel to the X axis to the outside of the semiconductor laser package 100. In the present embodiment, the reflective surface 103S is parallel to the Y axis and Z It has a surface inclined by 45 ° with respect to the axial surface. The reflecting member 103 has a substantially triangular prism shape having the reflecting surface 103S as one surface, and the cross-sectional shape of the Y-axis surface is a substantially triangular shape.

反射部材103は、略三角柱状の一面が基板102への搭載面であり、その搭載面は、溝部112a、凸起部109及びL字型切欠部112bを覆っており、反射部材103はその搭載面を基板102に固定することで基板102に搭載される。
具体的には、反射部材103は、溝底面112abと、側壁面120Waと、基板102の上面102aと、側壁面120Wcと、切欠底面112bbとを覆い基板102に固定されており、反射部材103は基板102上の第1段差部120aと第3段差部120cを覆う構成となっている。
すなわち、基板102に搭載される反射部材103は、基板102の段差部の少なくとも一部を覆い固定されている。
The reflective member 103 has a substantially triangular prism-shaped one surface that is mounted on the substrate 102, and the mounting surface covers the groove 112a, the protruding portion 109, and the L-shaped notch 112b, and the reflective member 103 is mounted thereon. The surface is fixed to the substrate 102 and mounted on the substrate 102.
Specifically, the reflecting member 103 covers the groove bottom surface 112ab, the side wall surface 120Wa, the upper surface 102a of the substrate 102, the side wall surface 120Wc, and the notch bottom surface 112bb, and is fixed to the substrate 102. The first step 120a and the third step 120c on the substrate 102 are covered.
That is, the reflecting member 103 mounted on the substrate 102 is fixed so as to cover at least a part of the stepped portion of the substrate 102.

本実施形態における反射部材103は、樹脂系材料の生地に、フィラーを均一に含有したものであり、具体的には、シリコーン樹脂系材料を生地とし、フィラーとして、アルミナ(Al)、窒化アルミ(AlN)、チタニア(TiO)等を含有している。
窒化アルミ(AlN)等の熱伝導性の高い材料をフィラーとして樹脂系材料の生地に含有させることで、樹脂のみからなる反射部材と比べ熱伝導性を高めることができる。
なお、白色系のアルミナ(Al)等の反射率の高い材料をフィラーとすることで、反射部材の反射率を高めることができる。
The reflecting member 103 in the present embodiment is a resin-based material cloth that contains a filler uniformly. Specifically, a silicone resin-based material is used as a cloth, and the filler is alumina (Al 2 O 3 ), It contains aluminum nitride (AlN), titania (TiO 2 ) and the like.
By including a material having high thermal conductivity such as aluminum nitride (AlN) as a filler in the cloth of the resin-based material, the thermal conductivity can be increased as compared with a reflecting member made of only resin.
Incidentally, a high reflectance such as white alumina (Al 2 O 3) material by a filler, it is possible to increase the reflectance of the reflecting member.

反射部材103の熱伝導率は、0.2〜10.0W/(m・K)がよく、より好ましくは0.4〜5.0W/(m・K)がよい。また、反射部材103の反射率は、80%以上のものが好ましく、より好ましくは90%以上がよい。
反射部材の生地は、本実施形態で用いるシリコーン樹脂系材料に限らず、例えば、エポキシ樹脂系材料やアクリル樹脂系材料等を用いることもできる。
The thermal conductivity of the reflecting member 103 is preferably 0.2 to 10.0 W / (m · K), more preferably 0.4 to 5.0 W / (m · K). Further, the reflectance of the reflecting member 103 is preferably 80% or more, and more preferably 90% or more.
The cloth of the reflecting member is not limited to the silicone resin material used in the present embodiment, and for example, an epoxy resin material or an acrylic resin material can be used.

また、熱伝導性向上の観点から、フィラーは、高純度アルミナ(Al(99.9%))に、窒化アルミ(AlN)、窒化ホウ素(BN)を含有させたものを用いてもよい。また、アルミニウム(Al)と酸化ケイ素(SiO)、銀(Ag)と酸化ケイ素(SiO)との組み合わせをフィラーとしてもよく、酸化ケイ素(SiO)の成分比を適切にすることで、熱伝導率の向上と光の反射率を向上させることも可能である。また、熱伝導率や反射率等、求める特性に応じて樹脂やフィラーの材料を適宜選択することができ、種々の材料を組み合わせて使用してもよい。 Further, from the viewpoint of improving the thermal conductivity, the filler may be a high purity alumina (Al 2 O 3 (99.9%)) containing aluminum nitride (AlN) or boron nitride (BN). Good. Also, a combination of aluminum (Al) and silicon oxide (SiO 2 ), silver (Ag) and silicon oxide (SiO 2 ) may be used as a filler, and by making the component ratio of silicon oxide (SiO 2 ) appropriate, It is also possible to improve thermal conductivity and light reflectance. In addition, a resin or filler material can be appropriately selected according to desired characteristics such as thermal conductivity and reflectance, and various materials may be used in combination.

反射部材103の反射面103Sの表面粗さは、反射率に影響するため、平坦な鏡面であることが好ましい。反射面103Sの表面粗さはRaを40nm以下、より好ましくは表面粗さRaを10nm以下である。   Since the surface roughness of the reflecting surface 103S of the reflecting member 103 affects the reflectance, it is preferably a flat mirror surface. As for the surface roughness of the reflective surface 103S, Ra is 40 nm or less, more preferably, the surface roughness Ra is 10 nm or less.

本発明では、反射面103Sを備える反射部材103は、基板102に設けられた段差部を構成する溝底面112ab、凸起部109及び切欠底面112bbを覆うように固定されている。
それによって、反射部材103と基板102は、溝底面112ab、凸起部109及び切欠底面112bbからなる複数の面で固定されるため、従来のように反射部材と基板との接触面が互いに平坦な接合面で固定する形態に比べ、反射部材103と基板102との接触面積が増し、反射部材103と基板102とを固定する力が増す効果を得ることができる。また、基板102は比較的熱伝導性が高い材料で形成されている一方、反射部材103は熱伝導性に優れたフィラーを含有した場合においても基板102の熱伝導性に比べると熱伝導性は遥かに低いが、反射部材103と基板102との接触面積が大きいため、結果として、反射部材103から基板102へ効率的に熱を伝えることができる。
In the present invention, the reflecting member 103 including the reflecting surface 103S is fixed so as to cover the groove bottom surface 112ab, the protruding portion 109, and the cutout bottom surface 112bb that constitute the stepped portion provided on the substrate 102.
Accordingly, the reflecting member 103 and the substrate 102 are fixed on a plurality of surfaces including the groove bottom surface 112ab, the protruding portion 109, and the notched bottom surface 112bb, so that the contact surfaces of the reflecting member and the substrate are flat with each other as in the prior art. The contact area between the reflecting member 103 and the substrate 102 is increased as compared with the case of fixing with the bonding surface, and an effect of increasing the force for fixing the reflecting member 103 and the substrate 102 can be obtained. Further, while the substrate 102 is formed of a material having a relatively high thermal conductivity, the reflective member 103 has a thermal conductivity that is higher than the thermal conductivity of the substrate 102 even when the reflective member 103 contains a filler having excellent thermal conductivity. Although much lower, since the contact area between the reflecting member 103 and the substrate 102 is large, as a result, heat can be efficiently transferred from the reflecting member 103 to the substrate 102.

さらに、反射部材103が基板102の段差部の少なくとも一部を覆う構成、つまり反射部材103に基板102の段差部が食い込んだ構成であるため、従来の反射部材と基板との接触面が互いに平坦な接合面で固定する形態における反射部材の一部を、基板102の材質に置き換えたこととなり、熱伝導性の低い反射部材の熱を、熱伝導性の高い基板へより効率的に伝えることができる。   Further, since the reflecting member 103 covers at least a part of the stepped portion of the substrate 102, that is, the stepped portion of the substrate 102 bites into the reflecting member 103, the contact surface between the conventional reflecting member and the substrate is flat with each other. A part of the reflecting member in the form of fixing with a simple joining surface is replaced with the material of the substrate 102, so that the heat of the reflecting member having low thermal conductivity can be more efficiently transferred to the substrate having high thermal conductivity. it can.

したがって、本発明の実施形態では、レーザー光111の一部を吸収してしまい、反射部材103にこもる熱をより効率的に基板102へ伝えることで、反射部材103の熱膨張がもたらす反射面103Sの熱変形を抑え、反射光の軸ズレや反射光の劣化を抑制する効果が得られる。   Therefore, in the embodiment of the present invention, a part of the laser beam 111 is absorbed, and the heat accumulated in the reflection member 103 is more efficiently transmitted to the substrate 102, whereby the reflection surface 103S caused by the thermal expansion of the reflection member 103 is brought about. The effect of suppressing the thermal deformation of the film and suppressing the axial deviation of the reflected light and the deterioration of the reflected light can be obtained.

次に、本実施形態に係る副次的な効果を次に示す。
レーザー光111の出射方向、出射角の観点から、半導体レーザー101を基板102の上面102aに搭載する位置は、レーザー出射面101Cが溝部112aの側壁面120Wb(X軸面に対し平行な面)に平行であり、レーザー出射面101Cが側壁面120Wbと反射面103Sとの間にあることが好ましく、レーザー出射面101Cと側壁面120Wbと同一なX軸面にあることがより好ましい。
Next, secondary effects according to the present embodiment will be described below.
From the viewpoint of the emission direction and emission angle of the laser beam 111, the position where the semiconductor laser 101 is mounted on the upper surface 102a of the substrate 102 is such that the laser emission surface 101C is on the side wall surface 120Wb (a surface parallel to the X-axis surface) of the groove 112a. It is preferable that the laser emission surface 101C is between the side wall surface 120Wb and the reflection surface 103S, and more preferably the same X-axis surface as the laser emission surface 101C and the side wall surface 120Wb.

また、溝部112aの側壁面120Wbと側壁面120Waとの間隔、いわゆる溝幅は、X軸方向に適宜設けられている。その溝幅は、Y軸に平行でありZ軸面に対し45°傾斜した面である反射面103Sを一面としてもつ反射部材103が成形できるよう設定されている。   Further, a distance between the side wall surface 120Wb and the side wall surface 120Wa of the groove portion 112a, that is, a so-called groove width is appropriately provided in the X-axis direction. The groove width is set so that the reflecting member 103 having a reflecting surface 103S parallel to the Y axis and inclined by 45 ° with respect to the Z axis can be formed.

従来の半導体レーザーチップは、溝部(実施形態1でいう溝部112a)を基板上に備えないため、レーザー出射口101Eより出射角±30°で出射するレーザー光111の−30°側(Z軸負方向の半分)のレーザー光の一部が、基板上面で蹴られ光の損失を生じていた。   Since the conventional semiconductor laser chip does not include the groove (groove 112a in the first embodiment) on the substrate, the −30 ° side (Z-axis negative) of the laser beam 111 emitted from the laser emission port 101E at an emission angle of ± 30 °. A part of the laser beam (half of the direction) was kicked by the upper surface of the substrate, causing loss of light.

一方、本実施形態の半導体レーザーチップ110は、溝部112aを基板102の上面102aに設けることで、レーザー光111が上面102aで蹴られることはない。
具体的には、レーザー出射口101Eより出射角±30°で出射されるレーザー光111の−30°側(Z軸の負方向側)は、溝底面112abから形成された反射部材103の反射面103Sによって反射されるため、レーザー光111の蹴られることはない。結果として、半導体レーザー101で出射されたレーザー光111は、光の損失なく、より効率的に反射面103Sへ送るこむことができる。
On the other hand, in the semiconductor laser chip 110 of this embodiment, the laser beam 111 is not kicked by the upper surface 102a by providing the groove 112a on the upper surface 102a of the substrate 102.
Specifically, the −30 ° side (the negative direction side of the Z axis) of the laser beam 111 emitted from the laser emission port 101E at an emission angle of ± 30 ° is the reflection surface of the reflection member 103 formed from the groove bottom surface 112ab. Since it is reflected by 103S, the laser beam 111 is not kicked. As a result, the laser beam 111 emitted from the semiconductor laser 101 can be more efficiently sent to the reflecting surface 103S without loss of light.

また、基板102の上面102aに溝部112aを備えることで、半導体レーザーチップ110の小型化、低背化の効果が得られる。
具体的には、レーザー光111のレーザー出射口101Eの高さ位置を下げることで、半導体レーザー101のZ軸方向の厚さを薄く抑えることで、半導体レーザーチップ110の低背化ができる。
さらに、溝部112a内で反射された反射光であるレーザー光111が半導体レーザー101のレーザー出射面101Cで蹴られない半導体レーザー101の厚さ(Z軸方向)まで薄く抑えることで、半導体レーザー101のレーザー出射面101Cと反射部材103の反射面103SとのX軸方向の距離を短くすることができる。さらに、レーザー出射面101Cと反射面103SとのX軸方向の距離を短くすることで、反射面103Sに投影される視野像が小さくできることから、反射部材103を小型化、低背化することができる。
したがって、本実施形態において、基板102に溝部112aを備え、その溝部112aから反射面103Sを形成し、半導体レーザー101を薄型化することで、従来半導体レーザーチップに比べ、より小型化かつ低背化させる効果がえられる。
Further, by providing the groove 112a on the upper surface 102a of the substrate 102, the effect of reducing the size and height of the semiconductor laser chip 110 can be obtained.
Specifically, the height of the semiconductor laser chip 110 can be reduced by reducing the thickness of the semiconductor laser 101 in the Z-axis direction by lowering the height position of the laser emission port 101E of the laser beam 111.
Further, the laser beam 111 that is the reflected light reflected in the groove 112 a is suppressed to the thickness (Z-axis direction) of the semiconductor laser 101 that is not kicked by the laser emission surface 101 </ b> C of the semiconductor laser 101. The distance in the X-axis direction between the laser emitting surface 101C and the reflecting surface 103S of the reflecting member 103 can be shortened. Further, by shortening the distance in the X-axis direction between the laser emitting surface 101C and the reflecting surface 103S, the field image projected onto the reflecting surface 103S can be reduced, and thus the reflecting member 103 can be reduced in size and height. it can.
Therefore, in the present embodiment, the substrate 102 is provided with the groove portion 112a, the reflection surface 103S is formed from the groove portion 112a, and the semiconductor laser 101 is thinned, so that the size and the height are reduced as compared with the conventional semiconductor laser chip. The effect to make is obtained.

半導体レーザー101と反射部材103とを同一の基板102上に搭載する際は、その基板102上に溝部112aを設けることで、半導体レーザー101と反射部材103とを溝部112aの側壁面120Wbと溝底面112abの一部により、分け隔てることができ、そうすることで、半導体レーザー101が駆動する際に生じる熱を、反射部材側103側へ伝わり難くい。   When the semiconductor laser 101 and the reflecting member 103 are mounted on the same substrate 102, the groove portion 112a is provided on the substrate 102, so that the semiconductor laser 101 and the reflecting member 103 are connected to the side wall surface 120Wb and the groove bottom surface of the groove portion 112a. 112ab can be separated by a part, and by doing so, heat generated when the semiconductor laser 101 is driven is hardly transmitted to the reflecting member side 103 side.

さらに、基板102の上面102aと溝部112aの溝底面112abとの高低差、すなわち溝部112aの溝深さは、基板102の上面102aと下面102bとからなる基板102の厚さ(Z軸方向)に対して1/3〜2/3倍が好ましく、より好ましくは基板102の厚さ(Z軸方向)に対して2/3よりも深い程よい。   Further, the height difference between the upper surface 102a of the substrate 102 and the groove bottom surface 112ab of the groove portion 112a, that is, the groove depth of the groove portion 112a is the thickness (Z-axis direction) of the substrate 102 composed of the upper surface 102a and the lower surface 102b of the substrate 102. On the other hand, it is preferably 1/3 to 2/3 times, and more preferably deeper than 2/3 with respect to the thickness (Z-axis direction) of the substrate 102.

よって、適度な溝部112aの溝深さを備えることで、半導体レーザー101と反射部材103とを結ぶ熱流路を溝深さの分だけ減少させることができるため、反射部材103へ熱の流れ込みが低減し、反射部材の熱変形等の悪影響を抑制する効果が期待できる。   Therefore, by providing an appropriate groove depth of the groove 112a, the heat flow path connecting the semiconductor laser 101 and the reflecting member 103 can be reduced by the groove depth, so that the heat flow into the reflecting member 103 is reduced. And the effect which suppresses bad influences, such as a heat deformation of a reflection member, can be anticipated.

本実施形態の凸起部109の高さ位置は、基板102の製造コスト低減の観点から、半導体レーザー101が搭載される基板102の上面102aと同じ高さで成形されている。
なお、凸起部109の高さ及びその形状は、本実実施形態に限るものではない。例えば、凸起部109は半導体レーザー101が搭載される基板102の上面102aと同じ高さに限らず、さらに、凸起部の形状を傾斜面、曲面等としてもよい。
The height position of the protruding portion 109 of the present embodiment is formed at the same height as the upper surface 102a of the substrate 102 on which the semiconductor laser 101 is mounted from the viewpoint of reducing the manufacturing cost of the substrate 102.
Note that the height and shape of the protruding portion 109 are not limited to the present embodiment. For example, the protruding portion 109 is not limited to the same height as the upper surface 102a of the substrate 102 on which the semiconductor laser 101 is mounted, and the shape of the protruding portion may be an inclined surface, a curved surface, or the like.

実施形態2
図4は、本発明の実施形態2に係る半導体レーザーチップ210を説明するための断面図である。
実施形態2は、実施形態1の反射部材付基板の変形例である。なお、実施形態2における反射部材付基板を構成する各部材の材質は、実施形態1で説明したものと同一である。また、実施形態2の半導体レーザーパッケージへの半導体レーザーチップ210の搭載は、実施形態1と同一の構成であるため説明を省略する。
Embodiment 2
FIG. 4 is a cross-sectional view for explaining a semiconductor laser chip 210 according to the second embodiment of the present invention.
The second embodiment is a modification of the substrate with a reflecting member of the first embodiment. In addition, the material of each member which comprises the board | substrate with a reflecting member in Embodiment 2 is the same as what was demonstrated in Embodiment 1. FIG. The mounting of the semiconductor laser chip 210 on the semiconductor laser package of the second embodiment has the same configuration as that of the first embodiment, and thus the description thereof is omitted.

ここで、本実施形態における、半導体レーザーチップ210における方向の定義をする。半導体レーザーチップ210の状態において、レーザー出射口201Eより出射されるレーザー光211の光軸211Aの方向をX軸方向、X軸方向に直交し、半導体レーザー201が基板202に搭載される面に対して直行する方向をZ軸方向、X軸方向とZ軸方向に直交する方向をY軸方向とする。
X軸方向においてレーザー光211の出射方向をX軸方向の正方向とし、Z軸方向において半導体レーザー201が基板202に搭載される面側をZ軸方向の正方向とする。
また、X軸、Y軸、Z軸のそれぞれの軸を法線にもつ面を、X軸面、Y軸面、Z軸面をする。
Here, the direction in the semiconductor laser chip 210 in this embodiment is defined. In the state of the semiconductor laser chip 210, the direction of the optical axis 211A of the laser light 211 emitted from the laser emission port 201E is orthogonal to the X-axis direction and the X-axis direction, and the surface on which the semiconductor laser 201 is mounted on the substrate 202 The direction orthogonal to the Z-axis direction and the direction orthogonal to the X-axis direction and the Z-axis direction are defined as the Y-axis direction.
The emission direction of the laser beam 211 in the X-axis direction is a positive direction in the X-axis direction, and the surface side on which the semiconductor laser 201 is mounted on the substrate 202 in the Z-axis direction is a positive direction in the Z-axis direction.
Further, the surfaces having the normal axes of the X axis, the Y axis, and the Z axis are the X axis surface, the Y axis surface, and the Z axis surface.

基板202は、基板202の上面である上面202aをX軸の負方向側で、Y軸面の断面形状が矩形形状でありY軸方向に横断して、 基板202の一部を切り欠いた、L字型切欠部212aを備える。
L字型切欠部212aは、L字型切欠部212aの底面部である切欠底面212abと、L字型切欠部212aの側壁部である側壁面220Waから構成され、切欠底面212ab、側壁面220Wa、及び上面202aからなる第1段差部220aを備える。なお、側壁面220WaはX軸面に平行な面であり、切欠底面212abはZ軸面に平行な面である。
The substrate 202 has an upper surface 202a which is the upper surface of the substrate 202 on the negative direction side of the X-axis, the cross-sectional shape of the Y-axis surface is a rectangular shape, and a part of the substrate 202 is cut away in the Y-axis direction. An L-shaped notch 212a is provided.
The L-shaped notch portion 212a includes a notch bottom surface 212ab that is a bottom surface portion of the L-shaped notch portion 212a and a side wall surface 220Wa that is a side wall portion of the L-shaped notch portion 212a, and the notch bottom surface 212ab, the side wall surface 220Wa, And a first stepped portion 220a comprising the upper surface 202a. The side wall surface 220Wa is a surface parallel to the X-axis surface, and the notch bottom surface 212ab is a surface parallel to the Z-axis surface.

基板202の切欠底面212abは、基板202に搭載される半導体レーザー201のレーザー出射面201Cの位置よりX軸の正方向、かつ側壁面220WaよりX軸の負方向に配置されており、Y軸に平行に基板202の切欠底面212abを横断して形成されたV字型溝部212cを備える。
V字型溝部212cは、Y軸面の断面形状がV字型形状であり、基板202のX軸の負方向側の側壁部である側壁面220Wdと、X軸の正方向側の側壁部である側壁面220Weから構成される。
なお、側壁面220Wdは、X軸面に平行な面であり、側壁面220WeはX軸面に対してX軸の正方向に傾斜した面である。
さらに、基板202は、L字型切欠部212aよりX軸の正方向に配置されており、Y軸に平行に基板202を横断して形成され、Y軸面の断面形状が矩形形状に基板202の一部を切り欠いたL字型切欠部212bを備える。
L字型切欠部212bは、L字型切欠部212bの底面部である切欠底面212bbと、L字型切欠部212bの側壁部である側壁面220Wcから構成され、切欠底面212bb、側壁面220Wc、及び基板202の上面である上面202aからなる第2段差部220cを備える。なお、側壁面220WcはX軸面に平行な面であり、切欠底面212bbはZ軸面に平行な面である。
また、基板202は、L字型切欠部212aとL字型切欠部212bとの間に、第1段差部220aと第2段差部220cとから構成される凸起部209を備える。
凸起部209は、Y軸に平行に基板202を横断して形成され、Y軸面の断面形状が矩形形状である。
なお、基板202の切欠底面212abには、導電膜208が成膜され、さらに、その導電膜208上の所定箇所には、半導体レーザー201搭載用の導電性接合膜206aが成膜されている。そして、導電性接合膜206a上には、半導体レーザー201が搭載される。
The notch bottom surface 212ab of the substrate 202 is disposed in the positive direction of the X axis from the position of the laser emission surface 201C of the semiconductor laser 201 mounted on the substrate 202, and in the negative direction of the X axis from the side wall surface 220Wa. A V-shaped groove 212c formed in parallel across the notch bottom surface 212ab of the substrate 202 is provided.
The V-shaped groove 212c has a V-shaped cross-section on the Y-axis surface, and includes a side wall surface 220Wd that is a side wall on the negative side of the X axis of the substrate 202 and a side wall on the positive side of the X axis. It consists of a certain side wall surface 220We.
The side wall surface 220Wd is a surface parallel to the X-axis surface, and the side wall surface 220We is a surface inclined in the positive direction of the X axis with respect to the X-axis surface.
Further, the substrate 202 is disposed in the positive direction of the X axis from the L-shaped notch 212a, is formed to cross the substrate 202 in parallel to the Y axis, and the cross-sectional shape of the Y axis surface is a rectangular shape. An L-shaped notch 212b is cut out.
The L-shaped notch 212b includes a notch bottom 212bb that is the bottom of the L-shaped notch 212b and a side wall surface 220Wc that is a side wall of the L-shaped notch 212b. The notch bottom 212bb, the side wall 220Wc, And a second stepped portion 220c including an upper surface 202a which is the upper surface of the substrate 202. Side wall surface 220Wc is a surface parallel to the X-axis surface, and notch bottom surface 212bb is a surface parallel to the Z-axis surface.
In addition, the substrate 202 includes a protruding portion 209 including a first stepped portion 220a and a second stepped portion 220c between the L-shaped notched portion 212a and the L-shaped notched portion 212b.
The protruding portion 209 is formed across the substrate 202 in parallel to the Y axis, and the cross-sectional shape of the Y axis surface is a rectangular shape.
Note that a conductive film 208 is formed on the cutout bottom surface 212ab of the substrate 202, and further, a conductive bonding film 206a for mounting the semiconductor laser 201 is formed at a predetermined position on the conductive film 208. The semiconductor laser 201 is mounted on the conductive bonding film 206a.

基板202上には、反射部材203が搭載されている。
反射部材203は、半導体レーザー201のレーザー出射口201Eより出射されたレーザー光211を反射するための反射面203Sを備え、反射面203Sが半導体レーザー201のレーザー出射面201Cと対向するよう設置される。
反射面203Sは、レーザー光211の光軸211Aに対して所定の角度をもっており、本実施形態においては、Y軸に平行でありZ軸面に対し45°傾斜した面である。反射部材203は、反射面203Sを一面としてもつ略三角柱状であり、Y軸面の断面形状が略三角形状である。
A reflective member 203 is mounted on the substrate 202.
The reflection member 203 includes a reflection surface 203S for reflecting the laser beam 211 emitted from the laser emission port 201E of the semiconductor laser 201, and is installed so that the reflection surface 203S faces the laser emission surface 201C of the semiconductor laser 201. .
The reflecting surface 203S has a predetermined angle with respect to the optical axis 211A of the laser light 211, and in this embodiment is a surface that is parallel to the Y axis and inclined by 45 ° with respect to the Z axis surface. The reflecting member 203 has a substantially triangular prism shape having the reflecting surface 203S as one surface, and the cross-sectional shape of the Y-axis surface is a substantially triangular shape.

反射部材203は、略三角柱状の一面が基板202への搭載面であり、その搭載面は、L字型切欠部212a、凸起部209及びL字型切欠部212bを覆っており、反射部材203はその搭載面を基板202に固定することで基板202に搭載される。
具体的には、反射部材203は、L字型切欠部212bと、側壁面220Waと、基板上面202aと、側壁面220Wcと、切欠底面212bbとを覆い基板202に固定されており、反射部材203は基板202上の第1段差部220aと第2段差部220cを覆う構成となっている。
すなわち、基板202に搭載される反射部材203は、基板202の段差部の少なくともその一部を覆い固定されている。
The reflecting member 203 has a substantially triangular prism-shaped one surface that is a mounting surface on the substrate 202, and the mounting surface covers the L-shaped notch 212a, the protruding portion 209, and the L-shaped notch 212b. 203 is mounted on the substrate 202 by fixing its mounting surface to the substrate 202.
Specifically, the reflecting member 203 covers the L-shaped notch 212b, the side wall surface 220Wa, the substrate upper surface 202a, the side wall surface 220Wc, and the notched bottom surface 212bb, and is fixed to the substrate 202. Is configured to cover the first stepped portion 220a and the second stepped portion 220c on the substrate 202.
That is, the reflection member 203 mounted on the substrate 202 is fixed so as to cover at least a part of the step portion of the substrate 202.

実施形態1と同様に、本実施形態もまた、反射部材203が基板202の切欠底面212ab、凸起部209及び切欠底面212bbとからなる段差部を覆い固定されることで、レーザー光211の一部を吸収することで反射部材203内に発生する熱を基板202へ効率的に放出することができる。   Similar to the first embodiment, in the present embodiment, the reflecting member 203 covers and fixes the stepped portion formed by the cut-out bottom surface 212ab, the protruding portion 209, and the cut-out bottom surface 212bb of the substrate 202. By absorbing the portion, heat generated in the reflecting member 203 can be efficiently released to the substrate 202.

反射部材203と切欠底面212abとの接触面は、V字型溝部212cの側壁面220Weと切欠底面212abとが接する稜線からX軸方向の正方向であり、第1段差部220aの側壁面220Waまでの間にある。
なお、本実施形態では、反射部材203と切欠底面212abとの接触面のX軸の負方向における最端部は、側壁面220Weと切欠底面212abとが接する稜線上に位置する。
The contact surface between the reflecting member 203 and the notch bottom surface 212ab is a positive direction in the X-axis direction from the ridge line where the side wall surface 220We of the V-shaped groove 212c and the notch bottom surface 212ab contact each other, up to the side wall surface 220Wa of the first stepped portion 220a. Between.
In the present embodiment, the extreme end portion in the negative X-axis direction of the contact surface between the reflecting member 203 and the notch bottom surface 212ab is located on the ridge line where the side wall surface 220We and the notch bottom surface 212ab are in contact.

V字型溝部212cを備えることで、半導体レーザー201と反射部材203とを結ぶ熱流路を溝深さの分だけ減少させることできるため、反射部材203へ熱の流れ込みが低減し、反射部材203の熱変形等の悪影響を抑制する効果が期待できる。   By providing the V-shaped groove 212c, the heat flow path connecting the semiconductor laser 201 and the reflecting member 203 can be reduced by the depth of the groove, so that the flow of heat into the reflecting member 203 is reduced, and the reflecting member 203 The effect of suppressing adverse effects such as thermal deformation can be expected.

半導体レーザー201のレーザー出射口201Eは、実施形態1と比べて、基板202の切欠底面212abに対し高い位置に設けられている。
こうすることで、半導体レーザー201より所定の出射角をもって出射されるレーザー光211が、基板202の切欠底面212abの面上及びV字型溝部212cの側壁面220Weで蹴られるのを避けることができる。
The laser emission port 201E of the semiconductor laser 201 is provided at a higher position than the cutout bottom surface 212ab of the substrate 202 as compared with the first embodiment.
By doing so, it is possible to avoid that the laser beam 211 emitted from the semiconductor laser 201 with a predetermined emission angle is kicked on the surface of the notch bottom surface 212ab of the substrate 202 and the side wall surface 220We of the V-shaped groove 212c. .

別の実施形態
次に、本発明の反射部材付基板の別の実施形態を説明する。
図5は、本発明に係る反射部材付基板の別の実施形態を説明するための斜視図である。ここでは、実施形態1の基板102の凸起部109の変形例を図5(a)〜(b)、図6(c)〜(d)、図7(e)〜(f)にて示し、反射部材付基板の段差部の5つの形態を説明する。なお、図5〜図7において反射部材は、基板の形状を明瞭に示すため、透明体として示している。
Another Embodiment Next, another embodiment of the substrate with a reflecting member of the present invention will be described.
FIG. 5 is a perspective view for explaining another embodiment of the substrate with a reflecting member according to the present invention. Here, the modification of the protrusion part 109 of the board | substrate 102 of Embodiment 1 is shown in FIG.5 (a)-(b), FIG.6 (c)-(d), FIG.7 (e)-(f). The five forms of the step portion of the substrate with a reflecting member will be described. 5 to 7, the reflecting member is shown as a transparent body in order to clearly show the shape of the substrate.

図5(a)は、基板102の凸起部109を2箇所以上の凸起部に分割した形態の斜視図である。基板102の凸起部109は、その上面102aにおいて、Y軸に平行に基板102を横断して形成され、Y軸面の断面形状が矩形形状の割溝部112sを備える。その割溝部112sの両側面部である側壁面120Ws、側壁面120Wtが立設し、割溝部112sの底部を溝底面112sbとする。また、溝底面112sb、側壁面120Ws、側壁面120Wt及び上面102aとから段差部が形成され、それらの段差部によって少なくとも2箇所以上の凸起部109を形成する。   FIG. 5A is a perspective view of a form in which the protruding portion 109 of the substrate 102 is divided into two or more protruding portions. The protruding portion 109 of the substrate 102 is formed on the upper surface 102a thereof so as to cross the substrate 102 in parallel to the Y axis, and includes a dividing groove portion 112s having a rectangular cross-sectional shape on the Y axis surface. Side wall surfaces 120Ws and side wall surfaces 120Wt which are both side surfaces of the split groove portion 112s are erected, and the bottom portion of the split groove portion 112s is defined as a groove bottom surface 112sb. Further, a step portion is formed from the groove bottom surface 112sb, the side wall surface 120Ws, the side wall surface 120Wt, and the upper surface 102a, and at least two protruding portions 109 are formed by these step portions.

本実施形態では凸起部109に割溝部112sを3箇所設けることで、凸起部109を4箇所形成する。また、それらの割溝部112sの溝幅は、凸起部109の上面102aのX軸方向の幅に対応した適宜なサイズで均等に割りあてられている。割溝部112sの溝深さは、L字型切欠部112bの切欠底面112bbの位置にあるZ軸平面までとする。
なお、割溝部の数、割溝の形状は本実施形態に限るものではなくは、割溝の数は1つ乃至は複数備えてもよく、割溝部の形状は、例えば、Y軸面の断面がV溝形状、U字型状であってものよい。
また、反射部材103の樹脂系材料は、これらの割溝部112sにも隙間なく充填され、反射部材103の基板102上の搭載位置に固定され、反射部材103が実施形態1と同様に基板102上へ搭載される。
In the present embodiment, four protruding portions 109 are formed by providing three protruding groove portions 112 s in the protruding portion 109. In addition, the groove widths of the dividing groove portions 112s are evenly allocated with an appropriate size corresponding to the width of the upper surface 102a of the protruding portion 109 in the X-axis direction. The groove depth of the dividing groove portion 112s is set to the Z-axis plane at the position of the notch bottom surface 112bb of the L-shaped notch portion 112b.
The number of the dividing grooves and the shape of the dividing grooves are not limited to the present embodiment, but one or a plurality of dividing grooves may be provided. The shape of the dividing grooves may be, for example, a cross section of the Y-axis surface. May be V-shaped or U-shaped.
In addition, the resin material of the reflecting member 103 is filled in the dividing grooves 112s without any gaps, and is fixed at the mounting position of the reflecting member 103 on the substrate 102. The reflecting member 103 is mounted on the substrate 102 as in the first embodiment. Mounted on.

図5(b)は、図5(a)の凸起部109における割溝部112sの方向をY軸方向からX軸方向へ変更した形態であり、図5(a)と同様に少なくとも2箇所以上の凸起部109を形成する。
本実施形態では凸起部109に割溝部112sを4箇所設けることで、凸起部109を5箇所形成している。また、それらの割溝部の溝幅は、凸起部109の上面102aのY軸方向の幅に対応した適宜なサイズで均等に割りあてている。
なお、図5(a)の実施形態と図5(b)の実施形態とをかけ合わせた、Y軸方向とX軸方向で交わる分割溝部を備える形態としてもよい。
FIG. 5B shows a form in which the direction of the dividing groove 112s in the protruding portion 109 in FIG. 5A is changed from the Y-axis direction to the X-axis direction, and at least two or more places as in FIG. 5A. The protruding portion 109 is formed.
In the present embodiment, five protruding portions 109 are formed by providing four dividing groove portions 112 s in the protruding portion 109. In addition, the groove widths of these dividing groove portions are evenly allocated with an appropriate size corresponding to the width in the Y-axis direction of the upper surface 102a of the protruding portion 109.
In addition, it is good also as a form provided with the division groove part which cross | intersects embodiment of Fig.5 (a), and embodiment of FIG.5 (b) which cross | intersects a Y-axis direction and a X-axis direction.

図6(c)は、図5(b)で示す四角柱状の凸起部109を複数もつ形態の変形例であり、凸起部109を円柱状にした実施形態である。
さらに、凸起部109のY軸面における断面形状は、矩形形状に限らず、凸起部109の断面が多角形あるいは曲線を交えた断面形状であってもよい。例えば、凸起部109の上面102a上に、階段形状をなす階段状凸起部109st(斜視図6(d))を備えてもよい。
さらに、凸起部109の段差部のY軸面の断面形状が、第1段差部120aの角部で曲線形状をなしてもよい(斜視図を図7(e))
FIG. 6C is a modified example of a form having a plurality of quadrangular columnar protruding portions 109 shown in FIG. 5B, and is an embodiment in which the protruding portions 109 are formed in a columnar shape.
Furthermore, the cross-sectional shape of the protruding portion 109 on the Y-axis surface is not limited to a rectangular shape, and the cross-sectional shape of the protruding portion 109 may be a polygonal shape or a cross-sectional shape with a curve. For example, a stepped protrusion 109st (perspective view 6 (d)) having a step shape may be provided on the upper surface 102a of the protrusion 109.
Furthermore, the cross-sectional shape of the Y-axis surface of the stepped portion of the protruding portion 109 may form a curved shape at the corner of the first stepped portion 120a (the perspective view is shown in FIG. 7 (e)).

凸起部109は、そのY軸面又はX軸面における断面形状が凸起部先端部のサイズよりも凸起部根元部のサイズを小さく設定することで、その断面を逆台状としもよい。図7(f)は、Y軸面における断面形状が逆台形である凸起部109を備えている。具体的には、その凸起部109が、凸起部109の側壁面120WcをY軸に平行でX軸面に対し正方向に傾斜させることで、凸起部109のY軸面の断面が先端部のX軸方向のサイズよりも凸起部109の根元部のX軸方向のサイズが小さい逆台形の凸起部を形成する。   The protruding portion 109 may have an inverted trapezoidal cross section by setting the cross-sectional shape of the Y-axis surface or the X-axis surface to be smaller than the size of the protruding portion tip portion. . FIG. 7F includes a protruding portion 109 whose cross-sectional shape in the Y-axis plane is an inverted trapezoid. Specifically, the protruding portion 109 inclines the side wall surface 120Wc of the protruding portion 109 in a positive direction parallel to the Y axis and in the positive direction with respect to the X axis surface, so that the cross section of the Y axis surface of the protruding portion 109 is increased. An inverted trapezoidal protruding portion is formed in which the size of the root portion of the protruding portion 109 in the X-axis direction is smaller than the size of the tip portion in the X-axis direction.

凸起部109の先端部サイズよりも付根部のサイズが小さい形状にすることで、釣り針で見られるかえしに似た効果が得られる。この効果により、反射部材103と基板102とがより強固に固定することができ、反射部材103と基板102とが剥がれるのを抑制する効果が得られる。 By making the size of the root portion smaller than the tip portion size of the protruding portion 109, an effect similar to the barb seen with a fishing hook can be obtained. With this effect, the reflecting member 103 and the substrate 102 can be more firmly fixed, and an effect of suppressing the peeling of the reflecting member 103 and the substrate 102 can be obtained.

本発明において、凸起部の形状、突出する方向、凸起部の数については、上述の実施形態の限りではない。また、凸起部形状は、実施形態1、実施形態2、及び別の実施形態(a)〜(f)のすべての構成のうち、いずれかとの組み合わせで構成された凸起部としもよい。   In the present invention, the shape of the protruding portion, the protruding direction, and the number of protruding portions are not limited to the above-described embodiment. Further, the protruding portion shape may be a protruding portion configured by a combination with any of all the configurations of the first embodiment, the second embodiment, and the other embodiments (a) to (f).

本発明において、凸起部109を備える基板102は、基板102と凸起部とを別体で成型し半田等の接合膜で接合し形成してもよいが、熱伝達性、熱伝導性及び製造コストの観点から一体であることがより好ましい。   In the present invention, the substrate 102 including the protruding portion 109 may be formed by molding the substrate 102 and the protruding portion separately and bonding them with a bonding film such as solder. It is more preferable that it is integrated from the viewpoint of manufacturing cost.

本発明は、基板102と容器104とが別体で構成し述べられているが、これに限るものではなく、基板102と容器104とが一体で形成されてもよい。   In the present invention, the substrate 102 and the container 104 are separately configured and described. However, the present invention is not limited to this, and the substrate 102 and the container 104 may be integrally formed.

本発明は、近年の、半導体レーザーチップのより一層の高性能化、小型化、低背化、耐久性向上に係る需要に適応させることができる。例えば、半導体レーザーチップの小型化は、基板の小型化でもあり、その結果、基板102と反射部材103との固定部面積を減少させ、結果として固定部の固定強度を低下させる問題を引き起こす。
このような課題に対して、限られた固定面積で十分な固定強度を保つ反射部材付基板を構成するには、基板102に凸起部109を設け、その凸起部109を反射部材103で覆うことで固定強度を向上させる効果が期待できる。
The present invention can be adapted to the recent demand for higher performance, smaller size, lower height, and improved durability of semiconductor laser chips. For example, downsizing of the semiconductor laser chip is also downsizing of the substrate. As a result, the area of the fixing portion between the substrate 102 and the reflecting member 103 is reduced, and as a result, the fixing strength of the fixing portion is reduced.
In order to configure a substrate with a reflecting member that maintains a sufficient fixing strength with a limited fixed area, a protruding portion 109 is provided on the substrate 102, and the protruding portion 109 is formed by the reflecting member 103. The effect of improving the fixing strength can be expected by covering.

上記、本発明は発光素子として半導体レーザーについて説明したが、発光素子はこれに限定されるものではない。本発明に係るところの発光素子とは、例えば、LED、白熱灯、蛍光灯、ハロゲンランプ等の光を発する光源であればよい。
<製造方法>
Although the present invention has been described with reference to a semiconductor laser as a light emitting element, the light emitting element is not limited to this. The light emitting element according to the present invention may be a light source that emits light such as an LED, an incandescent lamp, a fluorescent lamp, and a halogen lamp.
<Manufacturing method>

次に、本発明の反射部材付基板の製造方法について、実施形態1の半導体レーザーチップ110を例にあげて図8〜図10を用いて説明する。
なお、実施形態1に係る半導体レーザーチップ110の構成については、実施形態1に付した符号の説明とする。
ここでは、大判の基板用ウエハーから半導体レーザーチップ110を複数製造する工程について説明する。その工程は、次のSTEPで行われる。
Next, the manufacturing method of the board | substrate with a reflection member of this invention is demonstrated using the semiconductor laser chip 110 of Embodiment 1 as an example, using FIGS. 8-10.
In addition, about the structure of the semiconductor laser chip 110 which concerns on Embodiment 1, it is set as description of the code | symbol attached | subjected to Embodiment 1. FIG.
Here, a process of manufacturing a plurality of semiconductor laser chips 110 from a large substrate wafer will be described. The process is performed in the next STEP.

[STEP1]
図8は、本発明の反射部材付基板の製造方法を説明するための図であり、(a)は基坂用ウエハーに導電膜、接合膜及び導電性接合膜の形成工程を示す図であり、(b)は段差部形成工程を示す図である。
まず、窒化アルミ(AlN)からなる厚さ300μm程度の基板用ウエハー102WFを用意する。基板用ウエハー102WFは、半導体レーザーチップ110に対応するチップ形成領域102chを複数備えている。基板用ウエハー102WFの上面102aの全面には、半導体レーザー101に電力を伝えるための導電膜108と、基板用ウエハー102WFの下面102bの全面は、容器104とを固定するための接合膜102eとを成膜する。導電膜108及び接合膜102eは、例えば、基板102側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であり、スパッタリング法や蒸着法などにより成膜する。次に、導電膜108上にフォトリソグラフィーによりレジストパターン(不図示)を形成し、このレジストパターンをマスクとして、導電膜108上の半導体レーザー101が固定される所定箇所に金錫半田(Au−Sn)等の導電性接合膜106aを成膜する(図8(a))。導電性接合膜106aは、スパッタリング法や蒸着法などにより成膜する。
[STEP1]
FIG. 8 is a diagram for explaining a method for manufacturing a substrate with a reflecting member according to the present invention. FIG. 8A is a diagram illustrating a process of forming a conductive film, a bonding film, and a conductive bonding film on a wafer for base slope. (B) is a figure which shows a level | step-difference part formation process.
First, a substrate wafer 102WF made of aluminum nitride (AlN) and having a thickness of about 300 μm is prepared. The substrate wafer 102WF includes a plurality of chip formation regions 102ch corresponding to the semiconductor laser chips 110. A conductive film 108 for transmitting power to the semiconductor laser 101 is formed on the entire upper surface 102a of the substrate wafer 102WF, and a bonding film 102e for fixing the container 104 to the entire lower surface 102b of the substrate wafer 102WF. Form a film. The conductive film 108 and the bonding film 102e are thin films that are stacked in the order of titanium-platinum-gold (Ti-Pt-Au) from the substrate 102 side, for example, and are formed by a sputtering method, an evaporation method, or the like. Next, a resist pattern (not shown) is formed on the conductive film 108 by photolithography, and using this resist pattern as a mask, gold-tin solder (Au—Sn) is bonded to a predetermined portion on the conductive film 108 where the semiconductor laser 101 is fixed. ) Or the like is formed (FIG. 8A). The conductive bonding film 106a is formed by a sputtering method, an evaporation method, or the like.

[STEP2]
次に、基板用ウエハー102WFの上面102aに溝部112a、溝部112bを形成し、これらの溝部により凸起部109を形成する。
溝部112a、溝部112bは、ダイシングにより基板用ウエハー102WFをハーフカットすることで形成する。本実施形態では、溝部112aの溝幅は300μm、溝深さを100μmであり、溝部112bの溝幅は300μm、溝深さを80μmである。溝部112bは、基板用ウエハー102WFを各半導体レーザーチップ110へ個片化された際に、L字型切欠部112bとなる(図8(b))。
なお、溝部112a、溝部112bは、同時に複数加工することが効率的であり好ましいが、これとは別に、例えば、複数回に分けて加工し形成してもよい。
[STEP2]
Next, the groove 112a and the groove 112b are formed on the upper surface 102a of the substrate wafer 102WF, and the protruding portion 109 is formed by these grooves.
The groove 112a and the groove 112b are formed by half-cutting the substrate wafer 102WF by dicing. In this embodiment, the groove 112a has a groove width of 300 μm and a groove depth of 100 μm, and the groove 112b has a groove width of 300 μm and a groove depth of 80 μm. The groove 112b becomes an L-shaped notch 112b when the substrate wafer 102WF is divided into individual semiconductor laser chips 110 (FIG. 8B).
In addition, although it is efficient and preferable to process the groove part 112a and the groove part 112b simultaneously, it is sufficient to process and form separately in multiple times, for example.

[STEP3]
図9は、本発明の反射部材付基板の製造方法を説明するための図であり、(c)は基板用ウエハー上に金型をのせた図であり、(d)は基板用ウエハー上に反射部材を形成した図である。
基板用ウエハー102WF上に反射部材103を形成する。
反射部材103は、基板用ウエハー102WFに金型150をのせ(図9(c))、トランスファーモールドにより形成する(図9(d))。
[STEP3]
FIG. 9 is a view for explaining the method for manufacturing a substrate with a reflecting member according to the present invention, (c) is a view showing a mold placed on a substrate wafer, and (d) is a view showing on a substrate wafer. It is the figure which formed the reflection member.
The reflecting member 103 is formed on the substrate wafer 102WF.
The reflecting member 103 is formed by transfer molding (FIG. 9D) by placing the mold 150 on the substrate wafer 102WF (FIG. 9C).

金型150は、反射部材103の外形状に対応した凹部150aを有する。金型150は、凹部150aが凸起部109を覆うように基板用ウエハー102WF上にのせられる。
金型150を基板用ウエハー102WF上にのせるための位置決め基準面は、基板用ウエハー102WF上面と溝部112aの側壁面120Wbとする。
基板用ウエハー102WFに金型150をのせた後、基板用ウエハー102WFと金型150との間に形成された空間(凹部150a)に、反射部材103を構成するフィラーを含有した樹脂系材料(以下、樹脂と呼ぶ。)を充填し、その樹脂を熱硬化する。その後、金型150を取り外す。
The mold 150 has a recess 150 a corresponding to the outer shape of the reflecting member 103. The mold 150 is placed on the substrate wafer 102WF so that the concave portion 150a covers the protruding portion 109.
The positioning reference surface for placing the mold 150 on the substrate wafer 102WF is the upper surface of the substrate wafer 102WF and the side wall surface 120Wb of the groove 112a.
After placing the mold 150 on the substrate wafer 102WF, a resin material (hereinafter referred to as “filler”) that contains a filler constituting the reflecting member 103 in a space (recess 150a) formed between the substrate wafer 102WF and the mold 150. , Called resin), and the resin is thermoset. Thereafter, the mold 150 is removed.

以下に反射部材103の形成方法を具体的に説明する。
反射部材103は、基坂用ウエハー102WFの凸起部109を形成する第1段差部120aと第3段差部120cの少なくとも一部を覆い、基坂用ウエハー102WFに固定する。
ここで、反射部材103を溝部112aの溝底面112abより形成し、反射部材103のZ軸方向の最大高さは基板用ウエハー102WFの上面102aから300μmであり、反射部材103のX軸方向の最大長さは400μmである。
A method for forming the reflecting member 103 will be specifically described below.
The reflecting member 103 covers at least a part of the first step portion 120a and the third step portion 120c forming the protruding portion 109 of the base slope wafer 102WF, and is fixed to the base slope wafer 102WF.
Here, the reflecting member 103 is formed from the groove bottom surface 112ab of the groove portion 112a, and the maximum height in the Z-axis direction of the reflecting member 103 is 300 μm from the upper surface 102a of the substrate wafer 102WF, and the maximum in the X-axis direction of the reflecting member 103 is. The length is 400 μm.

[STEP4]
図10は、本発明の反射部材付基板の製造方法を説明するための図であり、(e)は基板用ウエハーを個片化する工程を示す図であり、(f)は半導体レーザーを搭載する工程を示す図である。
基板用ウエハー102WF上の複数のチップ形成領域102chを区切るダイシングライン102DLにそって(図10(e))、基板用ウエハー102WFを、ダイシグブレード(不図示)を用いてダイシングし個片化することで反射部材103付き基板102を形成する。
[STEP4]
FIG. 10 is a view for explaining a method of manufacturing a substrate with a reflecting member according to the present invention, (e) is a view showing a process of dividing a wafer for a substrate, and (f) is a semiconductor laser mounted. It is a figure which shows the process to do.
Along the dicing line 102DL that divides the plurality of chip formation regions 102ch on the substrate wafer 102WF (FIG. 10E), the substrate wafer 102WF is diced using a dicing blade (not shown) to be separated into individual pieces. Thus, the substrate 102 with the reflecting member 103 is formed.

[STEP5]
個片化した反射部材103付き基板102の上に半導体レーザー101を搭載する。
半導体レーザー101は、レーザー出射面101Cが反射部材103と対向する位置で、反射部材103付き基板102上の導電性接合膜106a上に載置し、リフローすることで基板102の上面102a上に固定する(図10(f))。
[STEP5]
The semiconductor laser 101 is mounted on the separated substrate 102 with the reflecting member 103.
The semiconductor laser 101 is mounted on the conductive bonding film 106a on the substrate 102 with the reflecting member 103 at a position where the laser emitting surface 101C faces the reflecting member 103, and fixed on the upper surface 102a of the substrate 102 by reflowing. (FIG. 10 (f)).

ここで、半導体レーザー101は、導電性接合膜106aが成膜された基板102の上面102aと、溝部112aの側壁面120Wbとを位置決め基準面として搭載する。
半導体レーザー101と金型150との基準面を、基板102の上面102aと溝部112aの側壁面120Wbとし共通化することで、共通化しない場合に比べ、半導体レーザー101に対する反射部材103の位置を高精度に保つことができる。そのためレーザー光111の反射光における光軸111Aの軸ズレ等を抑える効果が期待でき、高品質な半導体レーザーチップ110を製造することができる。
さらに、本実施形態の製造方法は、反射部材を基板上で成形によって形成することで、バー状の反射部材を基板上に固定する従来の製造方法と違い、本発明にあるような段差部をもつ基板にも反射部材を容易に形成することができる上、ウエハー基板上の反射部材を一括で形成することができることから量産性にも優れている。
Here, the semiconductor laser 101 mounts the upper surface 102a of the substrate 102 on which the conductive bonding film 106a is formed and the side wall surface 120Wb of the groove 112a as a positioning reference surface.
By making the reference surface of the semiconductor laser 101 and the mold 150 common to the upper surface 102a of the substrate 102 and the side wall surface 120Wb of the groove 112a, the position of the reflecting member 103 with respect to the semiconductor laser 101 can be increased compared with the case where the reference surface is not shared. The accuracy can be maintained. Therefore, it is possible to expect the effect of suppressing the axial deviation of the optical axis 111A in the reflected light of the laser light 111, and the high-quality semiconductor laser chip 110 can be manufactured.
Furthermore, the manufacturing method of the present embodiment is different from the conventional manufacturing method in which the reflecting member is formed on the substrate by molding, thereby fixing the bar-shaped reflecting member on the substrate, and the step portion as in the present invention is provided. The reflective member can be easily formed on the substrate having the same, and the reflective member on the wafer substrate can be formed in a lump so that the mass productivity is excellent.

また、反射部材の反射面は凹面で曲面等の複雑形状とすることができ、反射部材の基板との固定部も複雑形状とすることができる。成形を用いた反射部材の形成方法ではこのような複雑形状も容易に製造することができる。
なお、本実施形態では、STEP4、STEP5の工程順で進められているが、この順序に限るものではなく、例えば、STEP4とSTEP5とが入れ替えられた工程順にしてもよい。
Further, the reflecting surface of the reflecting member is concave and can be a complicated shape such as a curved surface, and the fixing part of the reflecting member to the substrate can also be a complicated shape. Such a complicated shape can be easily manufactured by the forming method of the reflecting member using molding.
In this embodiment, the process is performed in the order of STEP4 and STEP5. However, the order is not limited to this order. For example, the order of STEP4 and STEP5 may be changed.

[STEP6]
以上で、半導体レーザーチップ110が完成する。
[STEP6]
Thus, the semiconductor laser chip 110 is completed.

次に、本発明の反射部材付基板の製造方法の別の実施形態について、実施形態2の半導体レーザーチップ210を例にあげて図11〜図13を用いて説明する。
なお、実施形態2に係る半導体レーザーチップ210の構成については、実施形態2に付した符号の説明とする。
ここでは、大判の基板用ウエハーから半導体レーザーチップ210を複数製造する工程について説明する。その工程は、次のSTEPで行われる。
Next, another embodiment of the method for manufacturing a substrate with a reflecting member of the present invention will be described with reference to FIGS. 11 to 13 by taking the semiconductor laser chip 210 of Embodiment 2 as an example.
In addition, about the structure of the semiconductor laser chip 210 which concerns on Embodiment 2, it is set as description of the code | symbol attached | subjected to Embodiment 2. FIG.
Here, a process of manufacturing a plurality of semiconductor laser chips 210 from a large substrate wafer will be described. The process is performed in the next STEP.

[STEP1]
図11は、本発明の反射部材付基板の製造方法を説明するための図であり、(a)は段差部形成工程を示す図であり、(b)は基坂用ウエハーに導電膜、接合膜及び導電性接合膜の形成工程を示す図である。
まず、窒化アルミ(AlN)からなる厚さ300μm程度の基板用ウエハー202WFを用意する。基板用ウエハー202WFは、半導体レーザーチップ210に対応するチップ形成領域202chを複数備えている。
[STEP1]
11A and 11B are diagrams for explaining a method for manufacturing a substrate with a reflecting member according to the present invention. FIG. 11A is a diagram showing a stepped portion forming process, and FIG. It is a figure which shows the formation process of a film | membrane and an electroconductive joining film.
First, a substrate wafer 202WF made of aluminum nitride (AlN) and having a thickness of about 300 μm is prepared. The substrate wafer 202WF includes a plurality of chip formation regions 202ch corresponding to the semiconductor laser chips 210.

基板用ウエハー202WFの上面202aに溝部212a、溝部212bを形成し、これらの溝部により凸起部209を形成する。
溝部212a、溝部212bは、ダイシングにより基板用ウエハー202WFをハーフカットすることで形成する。本実施形態では、溝部212aの溝幅は2250μm、溝深さを100μmであり、溝部212bの溝幅は300μm、溝深さを80μmである(図11(a))。
A groove 212a and a groove 212b are formed on the upper surface 202a of the substrate wafer 202WF, and a protruding portion 209 is formed by these grooves.
The groove portions 212a and 212b are formed by half-cutting the substrate wafer 202WF by dicing. In the present embodiment, the groove 212a has a groove width of 2250 μm and a groove depth of 100 μm, and the groove 212b has a groove width of 300 μm and a groove depth of 80 μm (FIG. 11A).

溝部212a、溝部212bは、基板用ウエハー202WFを各半導体レーザーチップ210へ個片化された際に、L字型切欠部212a、L字型切欠部212bとなる。
なお、溝部212a、溝部212bは、同時に複数加工することが効率的であり好ましいが、これとは別に、例えば、複数回に分けて加工し形成してもよい。
The groove 212a and the groove 212b become an L-shaped notch 212a and an L-shaped notch 212b when the substrate wafer 202WF is separated into the respective semiconductor laser chips 210.
In addition, although it is efficient and preferable to process the groove part 212a and the groove part 212b simultaneously, it is preferable to process and form it in several steps separately.

[STEP2]
次に、基板用ウエハー202WFの溝部212aの溝底面212abの全面には、半導体レーザー201に電力を伝えるための導電膜208と、基板用ウエハー202WFの下面202bの全面には接合膜202eとを成膜する。導電膜208及び接合膜202eは、例えば、基板202側からチタン−白金−金(Ti−Pt−Au)の順に積層させた薄膜であり、スパッタリング法や蒸着法などにより成膜する。次に、導電膜208上にフォトリソグラフィーによりレジストパターン(不図示)を形成し、このレジストパターンをマスクとして、導電膜208上の半導体レーザー201が固定される所定箇所に金錫半田(Au−Sn)等の導電性接合膜206aを成膜する(図11(b))。導電性接合膜206aは、スパッタリング法や蒸着法などにより成膜する。
[STEP2]
Next, a conductive film 208 for transmitting power to the semiconductor laser 201 is formed on the entire surface of the groove bottom surface 212ab of the groove portion 212a of the substrate wafer 202WF, and a bonding film 202e is formed on the entire surface of the lower surface 202b of the substrate wafer 202WF. Film. The conductive film 208 and the bonding film 202e are thin films that are stacked in the order of titanium-platinum-gold (Ti-Pt-Au) from the substrate 202 side, for example, and are formed by a sputtering method, an evaporation method, or the like. Next, a resist pattern (not shown) is formed on the conductive film 208 by photolithography, and using this resist pattern as a mask, a gold-tin solder (Au—Sn) is formed at a predetermined position where the semiconductor laser 201 on the conductive film 208 is fixed. ) Or the like is formed (FIG. 11B). The conductive bonding film 206a is formed by a sputtering method, an evaporation method, or the like.

[STEP3]
図12は、本発明の反射部材付基板の製造方法を説明するための図であり、(c)は基板用ウエハー上に反射部材203を形成するための樹脂系材料を塗布した図であり、(d)は基板用ウエハー上に研削加工により反射部材を形成した図である。
[STEP3]
FIG. 12 is a diagram for explaining a method for producing a substrate with a reflective member of the present invention, and (c) is a diagram in which a resin material for forming the reflective member 203 is applied on a substrate wafer; (D) is the figure which formed the reflective member by grinding on the wafer for substrates.

基板用ウエハー202WF上に反射部材203を形成する。
反射部材203は、基板用ウエハー202WFにスクリーン印刷を用いて反射部材203を構成するフィラーを含有した樹脂系材料(以下、樹脂と呼ぶ。)を塗布し、その樹脂を熱硬化して、前成形体203Pを形成する(図12(c))。前成形体203Pを研削加工して反射部材203を形成する。なお、反射部材203の成形と同時に、基坂用ウエハー202WFの切欠底面212abにV字型溝部212cを形成する(図12(d))。
The reflecting member 203 is formed on the substrate wafer 202WF.
The reflection member 203 is applied to a substrate wafer 202WF by applying a resin material (hereinafter referred to as a resin) containing a filler constituting the reflection member 203 using screen printing, and thermosetting the resin to perform pre-molding. A body 203P is formed (FIG. 12C). The reflecting member 203 is formed by grinding the pre-formed body 203P. Simultaneously with the formation of the reflecting member 203, a V-shaped groove 212c is formed in the notch bottom surface 212ab of the base slope wafer 202WF (FIG. 12D).

以下に反射部材203及びV字型溝部212cの形成方法を具体的に説明する。
基板用ウエハー202WF上にスクリーン印刷用のスクリーンマスクを置き、スクリーンマスクの上に反射部材203を構成する樹脂をのせる。次に、スキージでスクリーンマスク上の樹脂を延ばし、基坂用ウエハー202WF上に所定形状パターンの樹脂を転写する。その後、基坂用ウエハー202WF上の樹脂を熱硬化することで、Y軸面の断面形状が半円でY軸方向に平行な略矩形状である、反射部材203のもとである前成形体203Pを基板用ウエハー202WF上に形成する(図12(c))。
Hereinafter, a method for forming the reflecting member 203 and the V-shaped groove 212c will be specifically described.
A screen mask for screen printing is placed on the substrate wafer 202WF, and the resin constituting the reflecting member 203 is placed on the screen mask. Next, the resin on the screen mask is extended with a squeegee, and the resin having a predetermined pattern is transferred onto the base slope wafer 202WF. Thereafter, the resin on the base slope wafer 202WF is thermally cured, so that the cross-sectional shape of the Y-axis surface is a semicircle and is a substantially rectangular shape parallel to the Y-axis direction. 203P is formed on the substrate wafer 202WF (FIG. 12C).

反射部材203のもとである前成形体203Pは、基坂用ウエハー202WFの凸起部209を形成する第1段差部220aと第2段差部220cの少なくとも一部を覆い、基坂用ウエハー202WFに固定される。
つづいて、前成形体203Pを、研削加工機を用いて反射部材203の形状に削りだす。こうして、反射部材203が形成される。また、反射部材203の反射面203Sを加工する際、同時に基坂用ウエハー202WFの切欠底面212abにV字型溝部212cを形成する。V字型溝部212cの側壁面220Wdは、基板202のX軸面に平行な面となるように形成する(図12(d))。また反射面203SとV字型溝部212cを研削加工することで、基板用ウエハー202WFの切欠底面212abとV字型溝部212cの側壁面220Wdとが半導体レーザー210を搭置する際の位置決め基準面となる。
The pre-formed body 203P that is the base of the reflecting member 203 covers at least a part of the first stepped portion 220a and the second stepped portion 220c that form the protruding portion 209 of the base slope wafer 202WF, and the base slope wafer 202WF. Fixed to.
Subsequently, the pre-formed body 203P is cut into the shape of the reflecting member 203 using a grinding machine. Thus, the reflection member 203 is formed. Further, when the reflecting surface 203S of the reflecting member 203 is processed, a V-shaped groove 212c is formed in the notch bottom surface 212ab of the base slope wafer 202WF at the same time. The side wall surface 220Wd of the V-shaped groove 212c is formed to be a surface parallel to the X-axis surface of the substrate 202 (FIG. 12D). Further, by grinding the reflecting surface 203S and the V-shaped groove 212c, the notch bottom surface 212ab of the substrate wafer 202WF and the side wall surface 220Wd of the V-shaped groove 212c are positioned as a positioning reference surface when the semiconductor laser 210 is mounted. Become.

[STEP4]
図13は、本発明の反射部材付基板の製造方法を説明するための図であり、(e)は基板用ウエハーを個片化する工程を示す図であり、(f)は半導体レーザーを搭載する工程を示す図である。
基板用ウエハー202WF上の複数のチップ形成領域202chを区切るダイシングライン202DLにそって(図13(e))、基板用ウエハー202WFを、ダイシグブレード(不図示)を用いてダイシングし個片化することで反射部材203付き基板202を形成する。
[STEP4]
FIGS. 13A and 13B are diagrams for explaining a method of manufacturing a substrate with a reflecting member according to the present invention, FIG. 13E is a diagram showing a process of separating a substrate wafer, and FIG. It is a figure which shows the process to do.
Along the dicing line 202DL that divides a plurality of chip formation regions 202ch on the substrate wafer 202WF (FIG. 13E), the substrate wafer 202WF is diced using a dicing blade (not shown) to be separated into individual pieces. Thus, the substrate 202 with the reflecting member 203 is formed.

[STEP5]
個片化した反射部材203付き基板202の上に半導体レーザー201を搭載する。
半導体レーザー201は、レーザー出射面201Cが反射部材203と対向する位置で、反射部材203付き基板202上の導電性接合膜206a上に載置し、リフローすることで基板202の上面202a上に固定する(図13(f))。
[STEP5]
The semiconductor laser 201 is mounted on the separated substrate 202 with the reflecting member 203.
The semiconductor laser 201 is mounted on the conductive bonding film 206a on the substrate 202 with the reflecting member 203 at a position where the laser emitting surface 201C faces the reflecting member 203, and fixed on the upper surface 202a of the substrate 202 by reflowing. (FIG. 13 (f)).

ここで、半導体レーザー201は、導電性接合膜206aが成膜された基板202の切欠底面212abと、V字型溝部212cの側壁面220Wdとを位置決め基準面として搭載する。
半導体レーザー201を搭置する位置決め基準面と、V字型溝部212cの側壁面220Wdからなる位置決め基準面とを共通化することで、共通化しない場合に比べ、半導体レーザー201に対する反射部材203の位置を高精度に保つことができる。そのためレーザー光211の反射光における光軸211Aの軸ズレ等を抑える効果が期待でき、高品質な半導体レーザーを製造することができる。
Here, the semiconductor laser 201 mounts the notch bottom surface 212ab of the substrate 202 on which the conductive bonding film 206a is formed and the side wall surface 220Wd of the V-shaped groove 212c as positioning reference surfaces.
Since the positioning reference surface on which the semiconductor laser 201 is placed and the positioning reference surface formed by the side wall surface 220Wd of the V-shaped groove 212c are made common, the position of the reflecting member 203 relative to the semiconductor laser 201 can be compared to the case where the semiconductor laser 201 is not made common. Can be maintained with high accuracy. Therefore, it is possible to expect an effect of suppressing the axial deviation of the optical axis 211A in the reflected light of the laser light 211, and a high-quality semiconductor laser can be manufactured.

さらに、本実施形態の製造方法は、反射部材を基板上で成形によって形成することで、バー状の反射部材を基板上に固定する従来の製造方法と違い、本発明にあるような段差部をもつ基板にも反射部材を容易に形成することができる上、ウエハー基板上の反射部材を一括で形成することができることから量産性にも優れている。
なお、本実施形態では、STEP4、STEP5の工程順で進められているが、この順序に限るものではなく、例えば、STEP4とSTEP5とが入れ替えられた工程順にしてもよい。
Furthermore, the manufacturing method of the present embodiment is different from the conventional manufacturing method in which the reflecting member is formed on the substrate by molding, thereby fixing the bar-shaped reflecting member on the substrate, and the step portion as in the present invention is provided. The reflective member can be easily formed on the substrate having the same, and the reflective member on the wafer substrate can be formed in a lump so that the mass productivity is excellent.
In this embodiment, the process is performed in the order of STEP4 and STEP5. However, the order is not limited to this order. For example, the order of STEP4 and STEP5 may be changed.

[STEP6]
以上で、半導体レーザーチップ210が完成する。
[STEP6]
Thus, the semiconductor laser chip 210 is completed.

本発明における実施形態の製造方法では、反射部材の反射面の表面粗さは、反射率に影響するため、平坦な鏡面であることが好ましい。例えば、金型成形を用いた射出成形、あるいは研削等で反射面を形成する際は、その反射面は鏡面を確保する。反射面の表面は表面粗さRaを40nm以下、より好ましくは表面粗さRaを10nm以下である。   In the manufacturing method according to the embodiment of the present invention, since the surface roughness of the reflecting surface of the reflecting member affects the reflectance, it is preferably a flat mirror surface. For example, when the reflective surface is formed by injection molding using mold molding, grinding, or the like, the reflective surface secures a mirror surface. The surface of the reflecting surface has a surface roughness Ra of 40 nm or less, more preferably a surface roughness Ra of 10 nm or less.

また、本発明における実施形態の製造方法では、凸起部109乃至は209を備えることで、基板102乃至は202と、反射部材103乃至は203との固定面積が増し、固定部境界面で剥がれが発生し難しくなるため、製造工程等での研削あるいはダイシング等で好適な機能をはたす。   In the manufacturing method according to the embodiment of the present invention, since the protruding portions 109 to 209 are provided, the fixing area between the substrates 102 to 202 and the reflecting members 103 to 203 is increased, and the substrate is peeled off at the fixing portion boundary surface. Therefore, a suitable function is achieved by grinding or dicing in the manufacturing process.

以上、本発明の基板及び基板の製造方法を実施形態に基づき説明したが、本発明の基板及び基板の製造方法は本実施形態に限定されるものではなく、その各構成は同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成が付加されていてもよい   As mentioned above, although the board | substrate and the manufacturing method of the board | substrate of this invention were demonstrated based on embodiment, the board | substrate and board | substrate manufacturing method of this invention are not limited to this embodiment, Each structure has the same function. Any configuration can be substituted. In addition, any other configuration may be added to the present invention.

100 半導体レーザーパッケージ
101 半導体レーザー
101a 上面
101b 下面
101n 電極膜
101p 電極膜
101C レーザー出射面
101E レーザー出射口
102 基板
102a 上面
102b 下面
102e 接合膜
102ch チップ形成領域
102DL ダイシングライン
102WF 基板用ウエハー
103 反射部材
103S 反射面
104 容器
104a 凹部
104b 底部
104bb 底面
104bA 搭載領域
104c 壁部
104e 接合膜
104f 端面
104g 接合膜
105 透明蓋体
106a 導電性接合膜
108 導電膜
109 凸起部
109st 階段状凸起部
110 半導体レーザーチップ
111 レーザー光
111A 光軸
112a 溝部
112ab 溝底面
112b L字型切欠部(溝部)
112bb 切欠底面
112s 割溝部
112sb 溝底面
120a 第1段差部
120b 第2段差部
120c 第3段差部
120Ws 側壁面
120Wt 側壁面
120Wa 側壁面
120Wb 側壁面
120Wc 側壁面
150 金型
150a 凹部
201 半導体レーザー
201C レーザー出射面
201E レーザー出射口
202 基板
202a 上面
202ch チップ形成領域
202e 接合膜
202DL ダイシングライン
202WF 基板用ウエハー
203 反射部材
203P 前成形体
203S 反射面
206a 導電性接合膜
208 導電膜
209 凸起部
210 半導体レーザーチップ
211 レーザー光
211A 光軸
212a L字型切欠部(溝部)
212ab 切欠底面
212b L字型切欠部(溝部)
212bb 切欠底面
212c V字型溝部
220a 第1段差部
220c 第2段差部
220Wa 側壁面
220Wc 側壁面
220Wd 側壁面
220We 側壁面
900 半導体レーザーパッケージ
901 半導体レーザー
901E レーザー出射口
902 基板
902ch チップ形成領域
902WF 基板用ウエハー
902DL ダイシングライン
903 反射部材
903S 反射面
904 容器
905 透明蓋体
906a 接合膜
906b 接合膜
910 半導体レーザーチップ
911 レーザー光
915a ワイヤー
915b ワイヤー

100 Semiconductor laser package 101 Semiconductor laser 101a Upper surface 101b Lower surface 101n Electrode film 101p Electrode film 101C Laser emission surface 101E Laser emission port 102 Substrate 102a Upper surface 102b Lower surface 102e Bonding film 102ch Chip formation region 102DL Dicing line 102WF Substrate wafer 103 Reflective member 103S Reflection Surface 104 Container 104a Recess 104b Bottom 104bb Bottom 104bA Mounting area 104c Wall 104e Bonding film 104f End face 104g Bonding film 105 Transparent lid 106a Conductive bonding film 108 Conductive film 109 Projecting part 109st Step-like protruding part 110 Semiconductor laser chip 111 Laser beam 111A Optical axis 112a Groove 112ab Groove bottom 112b L-shaped notch (groove)
112bb Notched bottom 112s Split groove 112sb Groove bottom 120a First step 120b Second step 120c Third step 120Ws Side wall surface 120Wt Side wall surface 120Wa Side wall surface 120Wb Side wall surface 120Wc Side wall surface 150 Mold 150a Recess 201 Semiconductor laser 201C Laser emission Surface 201E Laser emission port 202 Substrate 202a Upper surface 202ch Chip formation region 202e Bonding film 202DL Dicing line 202WF Substrate wafer 203 Reflecting member 203P Pre-formed body 203S Reflecting surface 206a Conductive bonding film 208 Conductive film 209 Protruding portion 210 Semiconductor laser chip 211 Laser beam 211A Optical axis 212a L-shaped notch (groove)
212ab Notch bottom 212b L-shaped notch (groove)
212bb Notched bottom surface 212c V-shaped groove 220a First stepped portion 220c Second stepped portion 220Wa Side wall surface 220Wc Side wall surface 220Wd Side wall surface 220We Side wall surface 900 Semiconductor laser package 901 Semiconductor laser 901E Laser emission port 902 Substrate 902ch Chip formation region 902WF For substrate Wafer 902DL Dicing line 903 Reflective member 903S Reflective surface 904 Container 905 Transparent lid 906a Bonding film 906b Bonding film 910 Semiconductor laser chip 911 Laser beam 915a Wire 915b Wire

Claims (11)

基板と、前記基板上に反射部材とを備えた反射部材付基板において、
前記基板には、段差部が形成されており、前記反射部材は前記段差部の少なくとも一部を覆い固定されていること特徴とする反射部材付基板。
In the substrate with a reflecting member provided with the substrate and the reflecting member on the substrate,
A stepped portion is formed on the substrate, and the reflecting member covers and fixes at least a part of the stepped portion.
前記基板の熱伝導率は、前記反射部材の熱伝導率より高いことを特徴とする請求項1記載の反射部材付基板。   The board | substrate with a reflection member of Claim 1 whose thermal conductivity of the said board | substrate is higher than the thermal conductivity of the said reflection member. 前記基板の前記段差部は、1箇所又は複数個所に設けられることを特徴とする請求項1又は請求項2記載の反射部材付基板。   The said step part of the said board | substrate is provided in one place or multiple places, The board | substrate with a reflecting member of Claim 1 or Claim 2 characterized by the above-mentioned. 前記基板には溝部が形成されており、前記溝部により前記段差部が形成されることを特徴とする請求項1から請求項3記載の反射部材付基板。   The substrate with a reflecting member according to claim 1, wherein a groove portion is formed in the substrate, and the step portion is formed by the groove portion. 前記基板の前記溝部の底面に前記反射部材の少なくとも一部が固定されていることを特徴とする請求項4記載の反射部材付基板。   The substrate with a reflecting member according to claim 4, wherein at least a part of the reflecting member is fixed to a bottom surface of the groove portion of the substrate. 前記基板の前記段差部は、基板表面から突出する凸起部を形成することを特徴とする請求項1から請求項5記載の反射部材付基板。   6. The substrate with a reflecting member according to claim 1, wherein the step portion of the substrate forms a protruding portion protruding from the surface of the substrate. 基板と、前記基板上に反射部材とを備えた反射部材付基板の製造方法において、
前記基板に段差部を形成する工程と、前記段差部の少なくとも一部を覆うように前記反射部材を前記基板に固定する工程とを有することを特徴とする反射部材付基板の製造方法。
In a method for manufacturing a substrate with a reflecting member comprising a substrate and a reflecting member on the substrate,
The manufacturing method of the board | substrate with a reflecting member characterized by including the process of forming a level | step-difference part in the said board | substrate, and the process of fixing the said reflecting member to the said board | substrate so that at least one part of the said level | step-difference part may be covered.
前記反射部材を前記基板に固定する工程は、前記反射部材の外形状に対応した凹部を有する金型を前記凹部が前記段差部を覆うように前記基板にのせる工程と、前記反射部材を構成する材料を前記凹部に充填し、前記反射部材を形成する工程を有することを特徴とする請求項7記載の反射部材付基板の製造方法。   The step of fixing the reflective member to the substrate includes a step of placing a mold having a concave portion corresponding to the outer shape of the reflective member on the substrate so that the concave portion covers the step portion, and the reflective member is configured. The method for manufacturing a substrate with a reflecting member according to claim 7, further comprising a step of filling the concave portion with the material to be formed and forming the reflecting member. 前記反射部材を前記基板に固定する工程は、前記基板の上に前記反射部材を構成する材料をのせる工程と、前記反射部材を構成する材料を加工し、前記反射部材を形成する工程を有することを特徴とする請求項7記載の反射部材付基板の製造方法。   The step of fixing the reflecting member to the substrate includes a step of placing a material constituting the reflecting member on the substrate, and a step of forming the reflecting member by processing the material constituting the reflecting member. The manufacturing method of the board | substrate with a reflecting member of Claim 7 characterized by the above-mentioned. 前記基板の上に前記反射部材を構成する材料をのせる工程のあとに、前記反射部材を形成する工程を行うことを特徴とする請求項9記載の反射部材付基板の製造方法。   The method for manufacturing a substrate with a reflecting member according to claim 9, wherein the step of forming the reflecting member is performed after the step of placing the material constituting the reflecting member on the substrate. 前記基板は、溝が形成されており、前記反射部材を構成する材料を加工するとともに前記溝を形成することを特徴とする請求項10記載の反射部材付基板の製造方法。

11. The method for manufacturing a substrate with a reflecting member according to claim 10, wherein the substrate is formed with a groove, and the groove is formed while processing a material constituting the reflecting member.

JP2017008416A 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method Active JP6920823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017008416A JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008416A JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018117088A true JP2018117088A (en) 2018-07-26
JP6920823B2 JP6920823B2 (en) 2021-08-18

Family

ID=62984350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008416A Active JP6920823B2 (en) 2017-01-20 2017-01-20 Substrate with reflective member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6920823B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080539A1 (en) * 2018-10-19 2020-04-23 京セラ株式会社 Optical element mounting package, electronic device, and electronic module
CN112805821A (en) * 2018-10-04 2021-05-14 京瓷株式会社 Electronic component mounting substrate, electrical device, and light-emitting device
JP2021090044A (en) * 2019-12-02 2021-06-10 シャープ福山レーザー株式会社 Laser device
EP4040614A4 (en) * 2019-09-30 2023-11-01 Kyocera Corporation Package for mounting photonic device, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166590A (en) * 1997-08-15 1999-03-09 Toshiba Corp Optical integrated unit, optical pickup apparatus and dvd system
JP2002228904A (en) * 2001-02-06 2002-08-14 Alps Electric Co Ltd Optical member made of resin and method of manufacturing for the same
JP2002529787A (en) * 1998-11-06 2002-09-10 ハルティング エレクトロ−オプティッシェ バウタイレ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト ELECTRO-OPTICAL COMPONENTS AND METHOD OF MANUFACTURING THE COMPONENTS
JP2006032765A (en) * 2004-07-20 2006-02-02 Nichia Chem Ind Ltd Semiconductor laser package
JP2008294152A (en) * 2007-05-23 2008-12-04 Sumitomo Electric Ind Ltd Optical module
JP2009053529A (en) * 2007-08-28 2009-03-12 Tdk Corp Method of forming optical component attachment surface and method of manufacturing optical pickup
CN104426053A (en) * 2013-09-06 2015-03-18 福州高意通讯有限公司 Semiconductor laser device packaging structure
US20160359296A1 (en) * 2015-06-05 2016-12-08 Lumentum Operations Llc Reflector and a laser diode assembly using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1166590A (en) * 1997-08-15 1999-03-09 Toshiba Corp Optical integrated unit, optical pickup apparatus and dvd system
JP2002529787A (en) * 1998-11-06 2002-09-10 ハルティング エレクトロ−オプティッシェ バウタイレ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト ELECTRO-OPTICAL COMPONENTS AND METHOD OF MANUFACTURING THE COMPONENTS
JP2002228904A (en) * 2001-02-06 2002-08-14 Alps Electric Co Ltd Optical member made of resin and method of manufacturing for the same
JP2006032765A (en) * 2004-07-20 2006-02-02 Nichia Chem Ind Ltd Semiconductor laser package
JP2008294152A (en) * 2007-05-23 2008-12-04 Sumitomo Electric Ind Ltd Optical module
JP2009053529A (en) * 2007-08-28 2009-03-12 Tdk Corp Method of forming optical component attachment surface and method of manufacturing optical pickup
CN104426053A (en) * 2013-09-06 2015-03-18 福州高意通讯有限公司 Semiconductor laser device packaging structure
US20160359296A1 (en) * 2015-06-05 2016-12-08 Lumentum Operations Llc Reflector and a laser diode assembly using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805821A (en) * 2018-10-04 2021-05-14 京瓷株式会社 Electronic component mounting substrate, electrical device, and light-emitting device
WO2020080539A1 (en) * 2018-10-19 2020-04-23 京セラ株式会社 Optical element mounting package, electronic device, and electronic module
CN112868147A (en) * 2018-10-19 2021-05-28 京瓷株式会社 Package for mounting optical element, electronic device, and electronic module
JPWO2020080539A1 (en) * 2018-10-19 2021-09-02 京セラ株式会社 Optical element mounting package, electronic device and electronic module
JP7150044B2 (en) 2018-10-19 2022-10-07 京セラ株式会社 Optical device mounting package, electronic device and electronic module
EP4040614A4 (en) * 2019-09-30 2023-11-01 Kyocera Corporation Package for mounting photonic device, and electronic device
JP2021090044A (en) * 2019-12-02 2021-06-10 シャープ福山レーザー株式会社 Laser device
CN112993740A (en) * 2019-12-02 2021-06-18 夏普福山激光株式会社 Laser device
JP7016933B2 (en) 2019-12-02 2022-02-07 シャープ福山レーザー株式会社 Laser device

Also Published As

Publication number Publication date
JP6920823B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US11978725B2 (en) Light-emitting device, integrated light-emitting device, and light-emitting module
US9595806B2 (en) Laser light-emitting apparatus
KR100985452B1 (en) Light emitting device
JP6790416B2 (en) Light emitting device
WO2016103547A1 (en) Light emitting device and method for manufacturing same
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
CA2999401A1 (en) Light-emitting device, integrated light-emitting device, and light-emitting module
JP6920823B2 (en) Substrate with reflective member and its manufacturing method
JP2008505504A (en) Light emitting diode device
JP6457099B2 (en) Wavelength conversion member and light emitting device
JP2006086176A (en) Sub-mount for led and its manufacturing method
JP2015159322A (en) Light emitting device
JP2016181653A (en) Light-emitting device, package and method of manufacturing light-emitting device
JP5347681B2 (en) Light emitting device
JP6019758B2 (en) Light source device
JP6521032B2 (en) Optical semiconductor device and method of manufacturing the same
CN112636160B (en) Laser device
JP5837006B2 (en) Manufacturing method of optical semiconductor device
JP7288173B2 (en) Method for manufacturing light-emitting device, method for manufacturing light-emitting module, and light-emitting device
WO2023042461A1 (en) Semiconductor light-emitting device
JP5155539B2 (en) Light emitting device
JP5721894B2 (en) Optical semiconductor device
JP5747947B2 (en) Light emitting device and manufacturing method thereof
JP4702539B2 (en) Optical member and light source device using the same
CN111025441A (en) Optical component, method for manufacturing the same, and light-emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210727

R150 Certificate of patent or registration of utility model

Ref document number: 6920823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150