JP2018108038A - Cell culture carrier - Google Patents

Cell culture carrier Download PDF

Info

Publication number
JP2018108038A
JP2018108038A JP2016256576A JP2016256576A JP2018108038A JP 2018108038 A JP2018108038 A JP 2018108038A JP 2016256576 A JP2016256576 A JP 2016256576A JP 2016256576 A JP2016256576 A JP 2016256576A JP 2018108038 A JP2018108038 A JP 2018108038A
Authority
JP
Japan
Prior art keywords
well
cell culture
culture carrier
cells
wells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016256576A
Other languages
Japanese (ja)
Inventor
由希子 菊地
Yukiko Kikuchi
由希子 菊地
今泉 幸文
Yukifumi Imaizumi
幸文 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2016256576A priority Critical patent/JP2018108038A/en
Publication of JP2018108038A publication Critical patent/JP2018108038A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cell culture carrier that can highly efficiently hold uniform spheroid into wells for a long period of time without discharging cells in wells outside the wells when replacing culture medium.SOLUTION: A cell culture carrier has a plurality of wells that culture cells on the top face of a base material, in which the diameter of the well opening is 70 μm or more and 1000 μm or less, the well depth is 100 μm or more and 1500 μm or less, and the ratio of the well depth to the opening diameter is 1.5 or more and 3.0 or less.SELECTED DRAWING: Figure 1

Description

本発明は、細胞の培養などに用いられる細胞培養担体に関する。   The present invention relates to a cell culture carrier used for cell culture and the like.

近年、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)を医療や創薬研究に応用することへの注目が高まっている。そのためには、上記幹細胞を効率よく大量培養し、目的とする組織細胞に短期間で的確に分化・誘導する技術が重要であり、開発が求められている。   In recent years, attention has been focused on applying embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) to medicine and drug discovery research. For this purpose, a technique for efficiently culturing the above-mentioned stem cells in large quantities and accurately differentiating and inducing the desired tissue cells in a short period of time is important, and development is required.

上記の幹細胞は、高い分化能を保持するためにスフェロイドと呼ばれる細胞凝集塊の形成することが望ましいが、シャーレに接着させる従来の培養方法では均一な大きさのスフェロイドを作ることが難しく、また高密度化が困難であった。この課題を解決すべく、細胞をスフェロイドとして培養できる細胞培養担体や、細胞培養技術の開発が進められている。   The above stem cells are desirable to form cell aggregates called spheroids in order to maintain high differentiation ability. However, it is difficult to produce spheroids of uniform size with conventional culture methods that adhere to petri dishes. Densification was difficult. In order to solve this problem, cell culture carriers capable of culturing cells as spheroids and cell culture techniques have been developed.

これまでに様々な形態の細胞培養担体が報告されているが、たとえば特許文献1では基板表面に複数のウェルが設けられた細胞培養担体を作製し、ウェル内で均一なスフェロイドを効率よく大量培養できることが開示されている。   Various forms of cell culture carriers have been reported so far. For example, in Patent Document 1, a cell culture carrier having a plurality of wells provided on the surface of a substrate is produced, and uniform spheroids are efficiently mass-cultured in the wells. It is disclosed that it can be done.

特開2012−50426号JP2012-50426

しかしながら、上記特許文献1に記載された細胞培養担体は、スフェロイドの担体表面への接着が非常に弱く、培地交換などのピペッテイング操作でウェル内からスフェロイドが剥がれ、ウェルの外へ容易に流出してしまう問題があった。この傾向は、細胞を回収するという点では利点であるが、分化誘導のために長期間培養すると、培地交換毎に細胞数が減少し、最終的な回収率が低下する恐れがあるという技術的課題があった。   However, the cell culture carrier described in Patent Document 1 has very weak adhesion of spheroids to the carrier surface, and spheroids are peeled off from the well by pipetting operations such as medium exchange, and easily flow out of the well. There was a problem. This tendency is advantageous in terms of collecting cells, but if cultured for a long period of time to induce differentiation, the number of cells decreases with each medium change, and the final recovery rate may decrease. There was a problem.

本発明は、上記技術的課題を解決するためになされたものであり、培地交換時にウェル内の細胞をウェル外へ流出させることなく、長期にわたり均一なスフェロイドをウェル内に高効率に保持できる細胞培養担体を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, and can maintain high-efficiency spheroids in a well over a long period of time without causing the cells in the well to flow out of the well during medium exchange. The object is to provide a culture carrier.

上記目的を達成するためになされた本発明にかかる細胞培養担体は、基材の上面に細胞を培養する複数のウェルを有し、前記ウェル開口部の直径が70μm以上1000μm以下、ウェル深さが100μm以上1500μm以下、かつ前記開口部直径に対する前記ウェル深さの比が1.5以上3.0以下であることを特徴としている。   The cell culture carrier according to the present invention made to achieve the above object has a plurality of wells for culturing cells on the upper surface of a substrate, and the well opening has a diameter of 70 μm or more and 1000 μm or less, and a well depth. The well depth is not less than 100 μm and not more than 1500 μm, and the ratio of the well depth to the diameter of the opening is not less than 1.5 and not more than 3.0.

ウェル開口部とウェル深さがこのような関係である担体を用いることにより、培地交換時にウェル内からスフェロイドを流出するのを抑制することができる。また長期にわたり均一なサイズのスフェロイドをウェル内に高効率に保持することができる。   By using a carrier having such a relationship between the well opening and the well depth, it is possible to suppress spheroids from flowing out of the well during medium exchange. In addition, spheroids having a uniform size over a long period can be held in the well with high efficiency.

なお、前記ウェルの最底部と前記基材の下面との厚さが50μm以上200μm以下であることが望ましい。 In addition, it is desirable that the thickness of the bottom of the well and the lower surface of the substrate is 50 μm or more and 200 μm or less.

このような厚さにすることにより、細胞培養担体を細胞培養モジュールに組み込んだ際に、基材下面から吸引することにより、ウェル内に細胞を効率よく納めることができ、さらにウェル内の通液時の圧力損失を抑えることができ、スフェロイドに与える抵抗を減らせるため、より均一で球形の細胞塊を得ることができる。   With such a thickness, when the cell culture carrier is incorporated into the cell culture module, the cells can be efficiently stored in the well by sucking from the lower surface of the base material. Since the pressure loss at the time can be suppressed and the resistance given to the spheroids can be reduced, a more uniform and spherical cell mass can be obtained.

前記ウェル最底部と前記基材下面との厚さが、前記ウェル深さの0.03倍以上1倍以下であるが望ましい。 The thickness of the bottom of the well and the lower surface of the substrate is preferably 0.03 to 1 times the well depth.

ウェル最底部と基材下面の厚さが、ウェル深さとの比がこのような関係であることにより、スフェロイドにかかる大きな圧力を抑制することができるため、スフェロイドの崩壊を防ぎ、均一なサイズのスフェロイドを高効率で得ることができる。   Since the ratio of the thickness of the bottom of the well and the bottom surface of the base material to the well depth is such a relationship, it is possible to suppress a large pressure applied to the spheroid, thereby preventing the spheroid from collapsing and having a uniform size. Spheroids can be obtained with high efficiency.

前記細胞培養担体は、アルミナ、チタニア、ジルコニア、ハイドロキシアパタイト、イットリア、イットリウム・アルミニウム・ガーネット(YAG)、ガラス、プラスチックから選ばれる少なくとも1つの材質からなることが望ましい。   The cell culture carrier is preferably made of at least one material selected from alumina, titania, zirconia, hydroxyapatite, yttria, yttrium aluminum garnet (YAG), glass, and plastic.

培地交換等の水流により細胞培養担体のウェル内からスフェロイドが流出するのを抑制し、長期間にわたりスフェロイドをウェル内に保持することができる。ウェル内で均一なサイズのスフェロイドを高効率で得ることができる。   It is possible to suppress spheroids from flowing out of the well of the cell culture carrier by a water flow such as medium exchange, and to keep the spheroids in the well for a long period of time. Spheroids having a uniform size in the well can be obtained with high efficiency.

図1は、本発明の細胞培養担体を示す概念図(斜視図)である。FIG. 1 is a conceptual diagram (perspective view) showing a cell culture carrier of the present invention. 図2は、図1のI−I断面図である。2 is a cross-sectional view taken along the line II of FIG. 図3は、本発明の細胞培養担体を用いて細胞を培養した際の細胞培養担体に接着した細胞のマイクロスコープ写真である。FIG. 3 is a microscope photograph of cells adhered to a cell culture carrier when cells are cultured using the cell culture carrier of the present invention.

以下、本発明にかかる細胞培養担体の実施形態ついて、図1及び図2に基づいてより詳細に説明する。
図示するように、この実施形態の細胞培養担体1は、上面2に複数のウェル3を有している。前記ウェル3は、ウェル開口部の直径aが70μm以上1000μm以下、ウェルの深さbが100μm以上1500μm以下であり、かつ前記ウェル開口部の直径aに対する前記ウェルの深さの比(b/a)が1.5以上3.0以下に形成されている。
Hereinafter, embodiments of the cell culture carrier according to the present invention will be described in more detail with reference to FIG. 1 and FIG.
As shown in the figure, the cell culture carrier 1 of this embodiment has a plurality of wells 3 on the upper surface 2. The well 3 has a well opening having a diameter a of 70 μm or more and 1000 μm or less, a well depth b of 100 μm or more and 1500 μm or less, and a ratio of the depth of the well to the diameter a of the well opening (b / a ) Between 1.5 and 3.0.

このように、細胞培養担体1に形成されたウェル3が特定の開口径及び深さを有するため、ウェル内で培養されている細胞がウェル開口部からの培地の流れを受けたとしても、ウェル内に留まることができ、容易にウェル外へ流出するのを防ぐことができる。これにより、細胞をウェル内に長期間留まらせることができるため、均一なサイズのスフェロイドを高効率で保持することができる。   Thus, since the well 3 formed in the cell culture carrier 1 has a specific opening diameter and depth, even if the cells cultured in the well receive the flow of the medium from the well opening, the well 3 It is possible to stay inside and to prevent outflow from the well easily. Thereby, since a cell can stay in a well for a long period of time, a uniform-sized spheroid can be hold | maintained with high efficiency.

具体的には、ウェル開口部の直径が70μm未満であると、形成できるスフェロイドは直径70μm未満と小さく、増殖するとウェル内が狭いために満杯になりやすく、隙間なく過密になるとウェル外にはみ出して隣接するウェルと合体したり、ウェルから回収できなくなり好ましくなく、1000μmを超える場合にはウェルに合わせた大きさのスフェロイドでは中止部まで酸素が供給できずに性能が劣化し死滅する恐れがあり、細胞播種数を減らしてスフェロイドを小さくすると、空間の自由度が高くなるため形状の制御が困難になり好ましくない。
また、ウェルの深さが100μm未満であると、培地の流れにより容易にウェル外へ流出するため、好ましくなく、1500μmを超える場合は、ウェルからのピペッティングでの細胞回収が困難になるため好ましくない。
Specifically, if the diameter of the well opening is less than 70 μm, the spheroids that can be formed are as small as less than 70 μm in diameter, and when grown, the inside of the well is narrow and easily fills up. It is not preferable that it merges with an adjacent well or cannot be recovered from the well, and if it exceeds 1000 μm, the spheroid of a size matched to the well may not be able to supply oxygen to the stop part and the performance may deteriorate and die. If the number of seeded cells is reduced to make the spheroids smaller, the degree of freedom in space increases, which makes it difficult to control the shape.
In addition, if the depth of the well is less than 100 μm, the medium will easily flow out of the well due to the flow of the medium. This is not preferable, and if it exceeds 1500 μm, it is difficult to recover the cells by pipetting from the well. Absent.

さらにウェル開口部の直径に対するウェル深さの比が1.5未満であると、培地の流れにより容易にウェル外へ流出するため、好ましくなく、3.0を超える場合は、ピペッティングでのウェルからの細胞回収が困難になるであるため、好ましくない。   Further, if the ratio of the well depth to the diameter of the well opening is less than 1.5, it is not preferable because the medium flows out of the well easily. This is not preferable because cell recovery from the cell becomes difficult.

また、ウェル最底部5と基材下面4との厚さcが50μm以上200μm以下に形成されることが好ましい。
これにより、細胞培養担体1を細胞培養モジュールに組み込んだ際に、基材下面から吸引することにより、ウェル内に細胞を効率よく納めることができ、さらにウェル内の通液時の圧力損失を抑えることができ、スフェロイドに与える抵抗を減らせるため、より均一で球形の細胞塊を得ることができる。
ここで、ウェル最底部とは、ウェルの最も深い部分を指す。例えば、図2に示すような形状の場合は、点Dを最底部とする。なお、ウェルの形状については、円筒状、円錐状、中央部が凹んだ湾曲形状、半球状等特に限定されるものではないが、細胞が凝集しやすく、スフェロイドが真球に近い形状をとりやすくなるため、中央部が凹んだ湾曲形状または半球状がより好ましい。
In addition, it is preferable that the thickness c between the well bottom 5 and the lower surface 4 of the substrate is 50 μm or more and 200 μm or less.
As a result, when the cell culture carrier 1 is incorporated into the cell culture module, the cells can be efficiently stored in the well by sucking from the lower surface of the base material, and further, pressure loss during liquid passage in the well is suppressed. Since the resistance given to the spheroids can be reduced, a more uniform and spherical cell mass can be obtained.
Here, the bottom of the well refers to the deepest part of the well. For example, in the case of the shape as shown in FIG. 2, the point D is the bottom. The shape of the well is not particularly limited, such as a cylindrical shape, a conical shape, a curved shape with a recessed central portion, a hemispherical shape, etc., but the cells tend to aggregate and the spheroids can easily take a shape close to a true sphere. Therefore, a curved shape or hemispherical shape in which the central portion is recessed is more preferable.

また、ウェル最底部と基材下面との厚さcが、ウェル深さbに対し0.03倍以上1倍以下に形成することが好ましい。これにより、細胞培養担体を細胞培養モジュールに組み込んだ際、ウェル内の通液時の圧力損失を抑えることができる。すなわち、スフェロイドにかかる大きな圧力を抑制することができるため、スフェロイドの崩壊を防ぎ、均一なサイズのスフェロイドを高効率で得ることができる。   In addition, it is preferable that the thickness c between the bottom of the well and the lower surface of the base material is 0.03 to 1 times the well depth b. Thereby, when the cell culture carrier is incorporated into the cell culture module, it is possible to suppress a pressure loss when liquid is passed through the well. That is, since a large pressure applied to the spheroid can be suppressed, the spheroid can be prevented from collapsing and a spheroid having a uniform size can be obtained with high efficiency.

細胞培養担体1は、アルミナ、ジルコニア、チタニア、ハイドロキシアパタイト、イットリア、イットリウム・アルミニウム・ガーネット(YAG)から選ばれる1つ以上のセラミックス、ガラス、またはプラスチックからなることが好ましい。特に生体安全性が確認されている、アルミナ、ジルコニア、ハイドロキシアパタイト、チタニアがより好ましい。特にジルコニアまたはアルミナが好ましい。
さらに前記細胞培養担体1は、前記材料を用いて作製される平均気孔径0.01μm以上0.3μm以下、気孔率30%以上50%以下の多孔質体であることが特に好ましく、これによりウェル内の細胞にも培養液を十分供給できる。
The cell culture carrier 1 is preferably made of one or more ceramics, glass, or plastic selected from alumina, zirconia, titania, hydroxyapatite, yttria, yttrium aluminum garnet (YAG). Particularly preferred are alumina, zirconia, hydroxyapatite and titania, which have been confirmed to be biosafety. Zirconia or alumina is particularly preferable.
Furthermore, the cell culture carrier 1 is particularly preferably a porous body having an average pore diameter of 0.01 μm or more and 0.3 μm or less and a porosity of 30% or more and 50% or less produced using the above material. The culture solution can be sufficiently supplied to the cells inside.

(実施例1)
24ウェルプレートのウェルに、直径a300μm、深さb450μm、底部厚みc300μm(アスペクト比:1.5)のマイクロウェルが配列したアルミナ製の細胞培養担体を入れた。ここにフィーダーフリー環境で培養した人工多能性幹細胞(iPS)を1×106個播種し、ROCK阻害剤Y−27632を添加した専用培地(ESSENTIAL8)で37℃、5% CO2の条件下で培養した。培養1日後にY−27632無添加の培地に交換後、Y−27632無添加の培地に1日毎に交換を行いながら、2週間培養した。担体にiPSを播種後、1,3,7日後にマイクロスコープにて観察し、ウェル内に凝集塊の存在するウェル数を数えた。
その結果、培養1日目のウェル内には細胞凝集体が100%充填されており、その後7日間で92%まで維持されていた。
Example 1
A cell culture support made of alumina in which microwells having a diameter of a 300 μm, a depth of b 450 μm, and a bottom thickness c of 300 μm (aspect ratio: 1.5) were arranged was placed in a well of a 24-well plate. Here, 1 × 10 6 induced pluripotent stem cells (iPS) cultured in a feeder-free environment were seeded, and cultured under conditions of 37 ° C. and 5% CO 2 in a dedicated medium (ESSENTIAL 8) to which the ROCK inhibitor Y-27632 was added. did. After 1 day of culture, the medium was replaced with a medium without addition of Y-27632, and then cultured for 2 weeks while replacing the medium without addition of Y-27632 every day. After inoculating the carrier with iPS, the cells were observed with a microscope 1, 3, and 7 days later, and the number of wells in which agglomerates were present was counted.
As a result, the wells on the first day of culture were filled with 100% of cell aggregates, and maintained up to 92% in 7 days thereafter.

(比較例1)
24ウェルプレートのウェルに、直径a300μm、深さb300μm、底部厚みc300μm(アスペクト比:1)のマイクロウェルが配列したアルミナ製の細胞培養担体を入れた。ここにフィーダーフリー環境で培養した人工多能性幹細胞(iPS)を1×106個播種し、ROCK阻害剤Y−27632を添加した専用培地(ESSENTIAL8)で37℃、5% CO2の条件下で培養した。培養1日後にY−27632無添加の培地に交換後、1日毎にY−27632無添加の培地交換を行いながら、2週間培養した。担体にiPSを播種後、1,2,3,7,14日後にマイクロスコープにて観察し、ウェル内に凝集塊の存在するウェル数を数えた。
その結果、培養1日目のウェル内には細胞凝集体が100%充填されていたが、その後7日間培養すると、培地交換毎に細胞がウェルから乖離し、充填率は81%まで減少した。
(Comparative Example 1)
A cell culture support made of alumina in which microwells having a diameter of 300 μm, a depth of b of 300 μm, and a bottom thickness of c of 300 μm (aspect ratio: 1) were arranged was placed in a well of a 24-well plate. Here, 1 × 10 6 induced pluripotent stem cells (iPS) cultured in a feeder-free environment are seeded, and cultured under conditions of 37 ° C. and 5% CO 2 in a dedicated medium (ESSENTIAL 8) to which the ROCK inhibitor Y-27632 is added. did. After 1 day of culture, the medium was replaced with a medium without addition of Y-27632 and cultured for 2 weeks while changing the medium without addition of Y-27632 every day. After inoculating the carrier with iPS, 1, 2, 3, 7, and 14 days later, it was observed with a microscope, and the number of wells in which aggregates existed was counted.
As a result, the wells on the first day of culture were filled with 100% of cell aggregates, but when cultured for 7 days thereafter, the cells were detached from the wells every time the medium was changed, and the filling rate was reduced to 81%.

Figure 2018108038
Figure 2018108038

1 細胞培養担体
2 基材上面
3 ウェル
4 基材下面
5 ウェル最底部
a ウェル開口部直径
b ウェル深さ
c ウェル最底部と基材下面との厚さ
DESCRIPTION OF SYMBOLS 1 Cell culture carrier 2 Base material upper surface 3 Well 4 Base material lower surface 5 Well bottom part a Well opening diameter b Well depth c Thickness of well bottom part and base material bottom face

Claims (4)

基材の上面に細胞を培養する複数のウェルを有する細胞培養担体であって、
前記ウェル開口部の直径が70μm以上1000μm以下、ウェル深さが100μm以上1500μm以下、かつ前記開口部直径に対する前記ウェル深さの比が1.5以上3.0以下であることを特徴とする細胞培養担体。
A cell culture carrier having a plurality of wells for culturing cells on the upper surface of a substrate,
A cell having a diameter of the well opening of 70 μm to 1000 μm, a well depth of 100 μm to 1500 μm, and a ratio of the well depth to the diameter of the opening of 1.5 to 3.0 Culture carrier.
前記ウェルの最底部と前記基材の下面との厚さが50μm以上200μm以下であることを特徴とする請求項1に記載の細胞培養担体。   The cell culture carrier according to claim 1, wherein the thickness of the bottom of the well and the lower surface of the base material is 50 µm or more and 200 µm or less. 前記ウェル最底部と前記基材下面との厚さが、前記ウェル深さの0.03倍以上1倍以下であることを特徴とする請求項2に記載の細胞培養担体。   The cell culture carrier according to claim 2, wherein the thickness of the bottom of the well and the lower surface of the base material is 0.03 to 1 times the well depth. 前記細胞培養担体は、アルミナ、チタニア、ジルコニア、ハイドロキシアパタイト、イットリア、イットリウム・アルミニウム・ガーネット(YAG)、ガラス、プラスチックから選ばれる少なくとも1つの材質からなることを特徴とする請求項1乃至3に記載の細胞培養担体。   4. The cell culture carrier is made of at least one material selected from alumina, titania, zirconia, hydroxyapatite, yttria, yttrium aluminum garnet (YAG), glass, and plastic. Cell culture carrier.
JP2016256576A 2016-12-28 2016-12-28 Cell culture carrier Pending JP2018108038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016256576A JP2018108038A (en) 2016-12-28 2016-12-28 Cell culture carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016256576A JP2018108038A (en) 2016-12-28 2016-12-28 Cell culture carrier

Publications (1)

Publication Number Publication Date
JP2018108038A true JP2018108038A (en) 2018-07-12

Family

ID=62843814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016256576A Pending JP2018108038A (en) 2016-12-28 2016-12-28 Cell culture carrier

Country Status (1)

Country Link
JP (1) JP2018108038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131026A (en) * 2019-02-12 2020-08-31 ポーラ化成工業株式会社 Skin analysis method, skin analysis system, and skin analysis program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263868A (en) * 2009-05-18 2010-11-25 Covalent Materials Corp Cell culture carrier
WO2014061244A1 (en) * 2012-10-18 2014-04-24 株式会社クラレ Toxicity screening method
WO2016069885A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Perfusion bioreactor platform
WO2016069892A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Devices and methods for generation and culture of 3d cell aggregates
WO2016103002A1 (en) * 2014-12-22 2016-06-30 Ecole Polytechnique Federale De Lausanne (Epfl) Devices for high-throughput aggregation and manipulation of mammalian cells
JP2016202172A (en) * 2015-04-16 2016-12-08 国立大学法人京都大学 Production method of pseudoislet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263868A (en) * 2009-05-18 2010-11-25 Covalent Materials Corp Cell culture carrier
WO2014061244A1 (en) * 2012-10-18 2014-04-24 株式会社クラレ Toxicity screening method
WO2016069885A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Perfusion bioreactor platform
WO2016069892A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Devices and methods for generation and culture of 3d cell aggregates
WO2016103002A1 (en) * 2014-12-22 2016-06-30 Ecole Polytechnique Federale De Lausanne (Epfl) Devices for high-throughput aggregation and manipulation of mammalian cells
JP2016202172A (en) * 2015-04-16 2016-12-08 国立大学法人京都大学 Production method of pseudoislet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131026A (en) * 2019-02-12 2020-08-31 ポーラ化成工業株式会社 Skin analysis method, skin analysis system, and skin analysis program

Similar Documents

Publication Publication Date Title
KR100836827B1 (en) Cell culture dish for the embryoid body formation from embryonic stem cells
Ouyang et al. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation
Ozawa et al. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture
WO2014196204A1 (en) Culture vessel and culture method
JP2020036621A (en) Cell culture support, cell culture device, cell culture kit, and cell sheet
JP2009521228A5 (en)
WO2014142161A1 (en) Cell culture vessel, cell culture apparatus, and cell culture method
EP1748064A4 (en) Cultured periodontal membrane cell sheet, process for producing the same and method of use thereof
JP2010161952A (en) Method for producing biological tissue
TWI732842B (en) Cell culture container, support frame of cell culture container and cell culture method
EP1970436A1 (en) Carrier for undifferentiated cell culture and subculture method thereof
JP2016202180A (en) Device and system for cell culture
CN111826285B (en) Single cell clone culture method
Nakazawa et al. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes
JP2010136706A (en) Cell culture carrier
JP2018108038A (en) Cell culture carrier
TWI547694B (en) Microfluidic bio-reactor device, its kits and methods thereof
KR101395203B1 (en) Micro fluidic culture apparatus for cell culture, process of thereof and method for cell culture using the same
JP2015126719A (en) Cell culture device
JP6868242B2 (en) Cell culture module
JP2018143168A (en) Cell culture carrier
WO2023019978A1 (en) Method for preparing mofs-coated myocardial cell core-shell structure
JP5713086B2 (en) Production method of living tissue
LINDSTROeM et al. Nanoporous titania coating of microwell chips for stem cell culture and analysis
JP5868244B2 (en) Cell culture carrier

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201029