JP2018104222A - Glass composition for treating wound, wound covering material and method for producing the same - Google Patents

Glass composition for treating wound, wound covering material and method for producing the same Download PDF

Info

Publication number
JP2018104222A
JP2018104222A JP2016251131A JP2016251131A JP2018104222A JP 2018104222 A JP2018104222 A JP 2018104222A JP 2016251131 A JP2016251131 A JP 2016251131A JP 2016251131 A JP2016251131 A JP 2016251131A JP 2018104222 A JP2018104222 A JP 2018104222A
Authority
JP
Japan
Prior art keywords
glass
wound
cotton
glass composition
wound dressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016251131A
Other languages
Japanese (ja)
Inventor
拡志 澤里
Hiroshi Sawazato
拡志 澤里
長壽 研
Ken Choju
研 長壽
俊輔 藤田
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016251131A priority Critical patent/JP2018104222A/en
Publication of JP2018104222A publication Critical patent/JP2018104222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wound covering material that provides a wet environment, promotes cell proliferation and angiogenesis, and has a bactericidal action to prevent critical settlement of bacteria on a wound surface and their infection.SOLUTION: A glass composition for treating a wound comprises a glass fiber containing, as a glass composition, in mass% in terms of oxides, SiO5-70%, BO5-40.0%, CaO 1-50%, and ZnO 0.1-30%.SELECTED DRAWING: None

Description

本発明は、切創、裂傷、挫傷、火傷、褥瘡などの創面に対し、優れた治癒効果を示すガラス組成物、これを用いて作製した創傷被覆材及びその製造方法に関する。   The present invention relates to a glass composition exhibiting an excellent healing effect on wound surfaces such as cuts, lacerations, bruises, burns, and pressure sores, a wound dressing produced using the same, and a method for producing the same.

従来、創傷の治療としてまず消毒を行い、その後ガーゼで創面を保護する治療が行われている。しかしこのような治療方法は消毒によって表皮の細胞が死んでしまう。また創面が乾燥することによって表皮の細胞が増殖しにくくなることが近年分かってきた。   Conventionally, as a treatment for wounds, first, disinfection is performed, and then treatment for protecting the wound surface with gauze is performed. However, such treatment methods kill epidermal cells by disinfection. In addition, it has been found in recent years that the cells of the epidermis are difficult to proliferate when the wound surface is dried.

そこで形成外科医の夏井睦らは、消毒液とガーゼを用いた治療を行う代わりに創面の湿潤環境を保ち、細胞増殖を促進する治療法(moist wound healing)を提唱し、現在ではこの治療方法が広く普及している。(非特許文献1)
創傷被覆材はドレッシング材とも呼ばれ、創傷治療において創面の湿潤環境を保つために用いられる。現在普及している創傷被覆材にはポリウレタンフィルム、ハイドロコロイド被覆材、ポリウレタンフォーム被覆材、アルギン酸塩被覆材などがあり、これらの製品は創面から流出する血液あるいは滲出液を保持し、湿潤環境を構築する働きがある。
So instead of performing treatment with antiseptic solution and gauze, plastic surgeons Natsuki et al. Proposed a treatment method that maintains a moist environment on the wound surface and promotes cell growth (moist wound healing). Widely used. (Non-Patent Document 1)
Wound dressings are also called dressings and are used to maintain a moist environment on the wound surface in wound treatment. Currently available wound dressings include polyurethane film, hydrocolloid dressing, polyurethane foam dressing, alginate dressing, etc. These products retain the blood or exudates that flow from the wound surface and create a moist environment There is work to do.

これからの創傷治療 夏井 睦 著 医学書院 (2003/08 )Future wound treatment Satoshi Natsui, Medical School (2003/08)

創傷治癒のステップは(1)止血凝固期、(2)炎症期、(3)肉芽形成期、(4)成熟期の4ステップからなる。炎症期では、好中球やマクロファージと言った貧食細胞が創面の雑菌や異物を排除し、組織の再生に最適な場を構築する。肉芽形成期では、繊維芽細胞が細胞外マトリクスの主成分であるコラーゲンを産出し、血管内皮細胞が血管を形成する。ここで細胞外マトリクスは、細胞増殖の足場として働き、組織の構築において必要とされる。また血管は細胞増殖において、細胞が必要とする栄養素を送り届ける役割を果たすことから、組織が持続的に再生されるためには、血管新生が必要となる。このような治癒サイクルを経て細胞外マトリクス、細胞、血管の複合体である肉芽が形成され、成熟期へと移行する。特に炎症期、肉芽形成期では、サイトカインと呼ばれる成長因子と細胞が互いに関与しながら創傷治癒を進行させる。湿潤環境下では創面にサイトカインが豊富に存在するため、上述の細胞の増殖や遊走が促進され、結果として炎症期や肉芽形成期が短縮される。   The wound healing step consists of four steps: (1) hemostatic coagulation phase, (2) inflammation phase, (3) granulation phase, and (4) maturation phase. In the inflammatory phase, phagocytic cells such as neutrophils and macrophages eliminate the germs and foreign bodies on the wound surface, creating an optimal site for tissue regeneration. In the granulation stage, fibroblasts produce collagen, the main component of the extracellular matrix, and vascular endothelial cells form blood vessels. Here, the extracellular matrix acts as a scaffold for cell proliferation and is required for tissue construction. In addition, since blood vessels play a role in delivering nutrients required by cells in cell growth, angiogenesis is necessary for the tissue to be continuously regenerated. Through such a healing cycle, granulation, which is a complex of extracellular matrix, cells, and blood vessels, is formed and transitions to the mature stage. In particular, during the inflammation phase and granulation phase, wound healing proceeds while growth factors called cells and cells are involved with each other. In a moist environment, since there are abundant cytokines on the wound surface, the above-mentioned cell proliferation and migration are promoted, and as a result, the inflammation phase and granulation phase are shortened.

ポリウレタンフィルム、ハイドロコロイド被覆材、ポリウレタンフォーム被覆材、アルギン酸塩被覆材などの創傷被覆材は創面から流出する滲出液を保持し、湿潤環境を構築することによって、患者が持つ本来の自然治癒力を最大限に引き出すことが可能である。しかし高齢者など治癒能力が低い患者の場合、創傷が褥瘡の場合、創面開口部の体積、面積が大きい場合、創面に継続的に力が加わる場合などは、これらの創傷被覆材を使用して治療をしたとしても治癒に相当な期間を要する。治癒時間の増加は、滲出液の多量流出やコラーゲンの異常産出などを引き起こし、表皮の炎症や瘢痕形成などが生じる懸念がある。   Wound dressings such as polyurethane films, hydrocolloid dressings, polyurethane foam dressings, and alginate dressings retain exudate flowing from the wound surface and create a moist environment to maximize the patient's natural healing power. It is possible to draw out to the limit. However, these wound dressings should be used for patients with low healing ability such as the elderly, when the wound is a pressure ulcer, when the volume and area of the wound opening is large, or when continuous force is applied to the wound surface. Even if treated, it takes a considerable amount of time to heal. An increase in healing time may cause a large amount of exudate to flow out or abnormal production of collagen, which may cause inflammation of the epidermis or scar formation.

さらに糖尿病患者の場合は創傷被覆材を使用したとしても免疫機能の異常、蛋白質の不足状態、酸素の不足などが原因となって創傷治癒遅延を発症し、創面からの細菌が侵入する事によって重篤な合併症を引き起こす可能性がある。   Furthermore, even in the case of diabetic patients, even if a wound dressing is used, wound healing delays due to abnormal immune function, protein deficiency, oxygen deficiency, etc. May cause serious complications.

また近年、創傷治療に消毒剤を使わないという方針が変化してきている。詳述すると、創面に細菌が定着しているのみの場合や、細菌が増殖していても宿主に影響を与えない場合は消毒しなくてよい。しかし細菌数が多くなり創感染に移行しそうな場合や、細菌が組織内部に侵入して宿主に実害を及ぼす場合は消毒剤の使用が必要とされるようになってきている。   In recent years, the policy of not using disinfectants for wound treatment has changed. More specifically, disinfection is not necessary if bacteria are only colonized on the wound surface, or if bacteria are growing and do not affect the host. However, it is becoming necessary to use a disinfectant when the number of bacteria is likely to shift to wound infection or when bacteria enter the tissue and cause harm to the host.

本発明は、上記事情に鑑みなされたものであり、細胞増殖や血管新生を促進するとともに、創面への細菌の臨界的定着、感染を防止するための殺菌性を有する創傷治療用ガラス組成物を提供することを目的とする。また本発明は、上記に加えて湿潤環境を構築可能な創傷被覆材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a glass composition for treating wounds that promotes cell proliferation and angiogenesis, has critical germs on the wound surface, and has bactericidal properties to prevent infection. The purpose is to provide. Another object of the present invention is to provide a wound dressing capable of constructing a moist environment in addition to the above.

本発明者の検討の結果、各成分の割合を厳密に規制することにより、上記課題を解決できることを見出した。即ち、本発明の創傷治療用ガラス組成物は、酸化物換算の質量%で、SiO 5〜70%、B 5〜40.0%、CaO 1〜50%、ZnO 0.1〜30%を含有することを特徴とする。ここで「創傷治療用」とは、創傷を被覆して治療する場合を含め、創傷治療のためのあらゆる形態で使用される用途を指す。 As a result of the study by the present inventors, it has been found that the above problem can be solved by strictly regulating the ratio of each component. That is, the wound care glass composition of the present invention, in mass% of oxide equivalent, SiO 2 5~70%, B 2 O 3 5~40.0%, CaO 1~50%, ZnO 0.1~ It is characterized by containing 30%. Here, “for wound treatment” refers to an application used in all forms for wound treatment, including the case of covering and treating a wound.

上記構成を有する本発明の創傷治療用組成物は、生体適合性を有する。また創面から流出する血液あるいは滲出液に溶解し、細胞増殖を促進するCa(カルシウム)、細菌に対して殺菌効果を有するB(ホウ素)、及び細胞増殖や血管新生を促進するZn(亜鉛)を創傷面に供給することができる。   The composition for wound treatment of the present invention having the above configuration has biocompatibility. Also dissolved in blood or exudate flowing out from the wound surface, Ca (calcium) that promotes cell growth, B (boron) that has a bactericidal effect on bacteria, and Zn (zinc) that promotes cell growth and angiogenesis Can be supplied to the wound surface.

また本発明の創傷治療用ガラス組成物においては、酸化物換算の質量%で、さらにMgO 0〜20%、NaO 0〜20%、KO 0〜40%、P 0〜20%を含有することが好ましい。 In wound care glass compositions of the invention also in terms of% by mass on the oxide basis, further 0~20% MgO, Na 2 O 0~20 %, K 2 O 0~40%, P 2 O 5 0~ It is preferable to contain 20%.

また本発明の創傷治療用ガラス組成物においては、酸化物換算の質量%で、NaO+KO 5〜40%であることが好ましい。ここで「NaO+KO」とは、NaOとKOの含有量の合量を意味する。 In the wound care glass composition of the present invention, in mass percent on the oxide basis, it is preferably Na 2 O + K 2 O 5~40 %. Here, “Na 2 O + K 2 O” means the total content of Na 2 O and K 2 O.

また本発明の創傷治療用ガラス組成物においては、300〜500μmの粒度に分級された比重×0.256の重量分のガラスを37℃、60mlの擬似体液中に2日間浸漬し、1回/日の撹拌を行った溶出試験において、擬似体液中のB濃度が0.1〜70mMかつCa濃度が2.6 〜20mMかつZn濃度が0.0005mM〜1.1mMとなることが好ましい。   Moreover, in the glass composition for wound treatment of this invention, the glass of the specific gravity x0.256 weight classified into the particle size of 300-500 micrometers was immersed in the simulated body fluid of 37 degreeC and 60 ml for 2 days, once / In the dissolution test in which the agitation was performed on the day, the B concentration in the simulated body fluid is preferably 0.1 to 70 mM, the Ca concentration is 2.6 to 20 mM, and the Zn concentration is 0.0005 mM to 1.1 mM.

上記構成を採用すれば、創傷治療に必要なCa、B及びZnを十分に創傷面に供給することができる。   If the said structure is employ | adopted, Ca, B, and Zn required for wound treatment can fully be supplied to a wound surface.

また本発明の創傷治療用ガラス組成物においては、液相粘度が100.5dPa・s以上であることが好ましい。ここで「液相粘度」とは、以下の方法で求めた値である。まず塊状のガラス試料を粉砕し、300〜500μmの範囲の粒度となるように調整する。次に粉砕したガラス試料を、耐火性の容器に適切な嵩密度を有する状態で充填する。続いてこの耐火性容器を間接加熱型の温度勾配炉内に入れて静置し、16時間大気雰囲気中で加熱操作を行い、温度勾配炉から、耐火性容器ごと試験体を取り出し、室温まで冷却する。その後、ガラス試料を光学顕微鏡で観察して結晶析出箇所を判定し、温度勾配炉内の温度分布情報から結晶析出温度(液相温度)を特定する。このようにして求めた結晶析出温度を用いて、結晶析出温度に相当する粘度を、別途用意した粘度曲線から求める。 Moreover, in the glass composition for wound treatment of this invention, it is preferable that liquid phase viscosity is 10 0.5 dPa * s or more. Here, the “liquid phase viscosity” is a value obtained by the following method. First, a massive glass sample is pulverized and adjusted to have a particle size in the range of 300 to 500 μm. Next, the crushed glass sample is filled in a fireproof container in a state having an appropriate bulk density. Subsequently, this refractory container is placed in an indirect heating type temperature gradient furnace, left to stand, and subjected to a heating operation in an air atmosphere for 16 hours. The test specimen is taken out from the temperature gradient furnace together with the refractory container and cooled to room temperature. To do. Thereafter, the glass sample is observed with an optical microscope to determine the crystal precipitation location, and the crystal precipitation temperature (liquidus temperature) is specified from the temperature distribution information in the temperature gradient furnace. Using the thus obtained crystal precipitation temperature, the viscosity corresponding to the crystal precipitation temperature is obtained from a separately prepared viscosity curve.

上記構成を採用すれば、成形時にガラスが失透しにくくなり、また材料中に混入するビーズを少なくすることが可能になる。   If the said structure is employ | adopted, it will become difficult to devitrify glass at the time of shaping | molding, and it will become possible to reduce the bead mixed in in a material.

また本発明の創傷治療用ガラス組成物においては、101.0dPa・sの粘度に相当する温度が1500℃以下であることが好ましい。ここで「101.0dPa・sの粘度に相当する温度」は、以下の方法で求めた値である。まず塊状のガラス試料を適正な寸法に破砕し、なるべく気泡が巻き込まれないようにアルミナ製坩堝に投入する。続いてアルミナ坩堝を加熱して試料を融液状態とし、白金球引き上げ法によって複数の温度におけるガラスの粘度の計測値を求める。続いてガラス粘度の計測値を用いて、Vogel−Fulcher式の定数を算出して粘度曲線粘度曲線を作成し、その内挿によって101.0dPa・sとなる温度を算出する方法により測定した温度を指す。なお101.0dPa・sの粘度は、メルトブロー法等による繊維化に適した粘度であり、この粘度に相当する温度を本発明では「紡糸温度」と呼ぶ。 Moreover, in the glass composition for wound treatment of this invention, it is preferable that the temperature corresponded to the viscosity of 10 1.0 dPa * s is 1500 degrees C or less. Here, “temperature corresponding to a viscosity of 10 1.0 dPa · s” is a value obtained by the following method. First, a massive glass sample is crushed to an appropriate size and put into an alumina crucible so that bubbles are not caught as much as possible. Subsequently, the alumina crucible is heated to bring the sample into a molten state, and measured values of the viscosity of the glass at a plurality of temperatures are obtained by a platinum ball pulling method. Subsequently, using the measured value of the glass viscosity, a constant of the Vogel-Fulcher formula was calculated to create a viscosity curve viscosity curve, and this was measured by a method of calculating a temperature of 10 1.0 dPa · s by interpolation. Refers to temperature. The viscosity of 10 1.0 dPa · s is a viscosity suitable for fiberization by a melt blow method or the like, and a temperature corresponding to this viscosity is referred to as “spinning temperature” in the present invention.

上記構成を採用すれば、成形時に使用する貴金属製の繊維化装置の長寿命化を図ることができる。また繊維化装置の交換頻度を少なくすることができることから、生産コストを低減することが可能になる。   If the said structure is employ | adopted, the lifetime improvement of the fiberizing apparatus made from a noble metal used at the time of shaping | molding can be achieved. Moreover, since the replacement frequency of the fiberizing apparatus can be reduced, the production cost can be reduced.

本発明の創傷被覆材は、上記したガラス組成物からなる綿状体又は不織布であることを特徴とする。ここで「綿状体」とは、多数の繊維が不規則に絡み合っており、且つ繊維間に存在する空隙によって三次元的に圧縮可能な不定形の繊維塊を指す。「不織布」とは、多数の繊維が不規則に絡み合っており、シート状又は布状に成形された綿状体の圧縮体を指す。   The wound dressing of the present invention is characterized by being a cotton-like body or a nonwoven fabric made of the glass composition described above. Here, the “cotton-like body” refers to an irregular fiber mass in which a large number of fibers are intertwined irregularly and can be compressed three-dimensionally by voids existing between the fibers. “Nonwoven fabric” refers to a cotton-like compressed body in which a large number of fibers are irregularly entangled and formed into a sheet or cloth.

上記構成を有する本発明の創傷被覆材は、細胞増殖を促進するCa、細菌に対して殺菌効果を有するB、及び細胞増殖や血管新生を促進するZnを提供しつつ、創面から流出する滲出液を保持することができることから、表皮細胞の増殖に必要な湿潤環境を提供することができる。   The wound dressing material of the present invention having the above-described configuration is exudate that flows out from the wound surface while providing Ca that promotes cell growth, B that has a bactericidal effect on bacteria, and Zn that promotes cell growth and angiogenesis. Therefore, it is possible to provide a moist environment necessary for the growth of epidermal cells.

また滲出液の多い創面の治療に用いる場合は、綿状体の形態で用いることが好ましい。綿状体の形態で用いれば、創傷被覆材の吸水量が増加し、過剰な湿潤環境に伴う皮膚のふやけを防ぐことができる。さらに滲出液が創外に流出するトラブルが起こりにくくなる。一方、滲出液の少ない創面の治療に用いる場合は、不織布の形態で用いることが好ましい。不織布の形態で用いれば、創傷被覆材の吸水量が低下し、創面の乾燥を防ぐことができる。   Moreover, when using it for the treatment of a wound surface with much exudate, it is preferable to use with the form of a cotton-like body. If used in the form of a cotton-like body, the amount of water absorbed by the wound dressing increases, and it is possible to prevent skin dandruff associated with an excessively moist environment. Furthermore, troubles that the exudate flows out of the wound are less likely to occur. On the other hand, when used for treatment of a wound surface with little exudate, it is preferably used in the form of a nonwoven fabric. If used in the form of a non-woven fabric, the water absorption of the wound dressing material can be reduced, and the wound surface can be prevented from drying.

また本発明の創傷被覆材においては、綿状体や不織布を構成するガラス繊維の平均繊維径が100nm〜10μmであることが好ましい。ここで「ガラス繊維の平均繊維径」は、走査型電子顕微鏡(HITACHI s−3400N typeII)を用いてガラス繊維の二次電子像または反射電子像を撮像し、前記走査型電子顕微鏡の測長機能を用いて50本のガラス繊維の直径を測定し、その平均値を平均繊維径とする方法により求めたものである。   Moreover, in the wound dressing of this invention, it is preferable that the average fiber diameter of the glass fiber which comprises a cotton-like body and a nonwoven fabric is 100 nm-10 micrometers. Here, the “average fiber diameter of the glass fiber” refers to a length measuring function of the scanning electron microscope by taking a secondary electron image or a reflected electron image of the glass fiber using a scanning electron microscope (HITACHI s-3400N type II). The diameter of 50 glass fibers was measured by using and the average value was determined by the method of making the average fiber diameter.

上記構成を採用すれば、血液や体液を保持するのに十分な形状を維持しつつ、体液への溶解量を十分に確保することが容易になる。   If the said structure is employ | adopted, it will become easy to ensure sufficient dissolution amount to a bodily fluid, maintaining the shape sufficient to hold | maintain blood and a bodily fluid.

また本発明の創傷被覆材においては、綿状体や不織布中にガラスビーズが混入しており、その混入量が質量%基準で綿状体又は不織布全体の50%以下であることが好ましい。本発明において「ガラスビーズ」とは、表面張力によって溶融ガラスが略球状となったものを指す。ここで「ガラスビーズの混入量」は前記綿状体又は不織布を所定量秤量し、ビーカーに投入した後アルコールを注入し、例えばマグネティックスターラーを用いて3分撹拌、撹拌停止後ビーズが沈殿するまで20秒待ち、その後ただちに沈殿物を残した上澄み液を別のビーカーに移し、この作業を繰り返して採取した沈殿物を乾燥させ、その後沈殿物の重量を測定し、前記綿状体又は不織布に対する沈殿物の重量比を算出する方法により求めたものである。   Moreover, in the wound dressing of this invention, it is preferable that the glass bead mixes in a cotton-like body or a nonwoven fabric, and the amount of the mixture is 50% or less of the whole cotton-like body or a nonwoven fabric on the mass% basis. In the present invention, “glass beads” refers to those in which the molten glass has become substantially spherical due to surface tension. Here, the “mixed amount of glass beads” is a predetermined amount of the cotton-like or non-woven fabric weighed, poured into a beaker, injected with alcohol, stirred for 3 minutes using a magnetic stirrer, for example, until the beads settled after stirring was stopped Wait 20 seconds, then immediately transfer the supernatant liquid with the precipitate to another beaker, repeat this operation to dry the collected precipitate, then measure the weight of the precipitate, and settling on the cotton or non-woven fabric It is obtained by a method of calculating the weight ratio of the object.

溶融ガラスを繊維化して綿状体や不織布を作製する際に、一部のガラスがビーズ状となって綿状体や不織布中に混入する場合がある。ビーズは繊維に比べて単位質量あたりの比表面積が小さいことから、体液等に溶解しにくい傾向にある。それゆえ混入するガラスビーズの割合が多くなると、綿状体や不織布から十分な量のCaやB、Znが溶出し難くなる。しかし上記構成を採用すれば、ガラス繊維の含有量が多いことから、体液への溶解量を十分に確保することが容易になる。また綿状体や不織布のザラツキ感等が少なくなることから、表皮の炎症や瘢痕形成を引き起こし難くなる。また創面に埋入する際の患者の痛みを軽減できる。   When a molten glass is made into a fiber and a cotton-like body or a nonwoven fabric is produced, a part of the glass may become a bead shape and be mixed into the cotton-like body or the nonwoven fabric. Since beads have a smaller specific surface area per unit mass than fibers, they tend to be less soluble in body fluids. Therefore, when the ratio of the glass beads to be mixed increases, a sufficient amount of Ca, B, or Zn is not easily eluted from the cotton-like body or the nonwoven fabric. However, if the said structure is employ | adopted, since there is much content of glass fiber, it will become easy to ensure fully the amount of melt | dissolution in a bodily fluid. Moreover, since the feeling of roughness of the cotton-like body or the nonwoven fabric is reduced, it becomes difficult to cause inflammation of the epidermis and scar formation. Moreover, the pain of the patient at the time of embedding in a wound surface can be reduced.

また本発明の創傷被覆材においては、ガラスビーズの平均直径が500μm以下であることが好ましい。ここで「ガラスビーズの平均直径」は光学顕微鏡の測長機能を用いて50個のビーズの直径を測定し、その平均値をガラスビーズの平均直径とする方法で求めたものである。   Moreover, in the wound dressing of this invention, it is preferable that the average diameter of a glass bead is 500 micrometers or less. Here, the “average diameter of glass beads” is obtained by measuring the diameters of 50 beads using the length measuring function of an optical microscope and setting the average value as the average diameter of glass beads.

上記構成を採用すれば、ガラスビーズの比表面積が大きくなり、体液への溶解量を十分に確保することが容易になる。また綿状体や不織布のザラツキ感等が少なくなることから、表皮の炎症や瘢痕形成を引き起こし難くなる。また創面に埋入する際の患者の痛みを軽減できる。   If the said structure is employ | adopted, the specific surface area of a glass bead will become large and it will become easy to ensure the amount of melt | dissolution in a bodily fluid. Moreover, since the feeling of roughness of the cotton-like body or the nonwoven fabric is reduced, it becomes difficult to cause inflammation of the epidermis and scar formation. Moreover, the pain of the patient at the time of embedding in a wound surface can be reduced.

本発明の創傷被覆材の製造方法は、上記したガラス組成物となるように調合した原料バッチをガラス溶融炉で溶融し、溶融ガラスをガラス吐出ノズルから連続的に流出させるとともに、前記ガラス吐出ノズル周囲にエアーを噴射して、ガラスを綿状に成形することを特徴とする。   The method for producing a wound dressing according to the present invention comprises melting a raw material batch prepared so as to be the glass composition described above in a glass melting furnace and continuously flowing out the molten glass from the glass discharge nozzle. The glass is formed into a cotton shape by injecting air around.

上記構成を有する本発明の方法は、溶融ガラスにエアーを吹き付けてガラスを吹き飛ばしながら繊維状に延伸する、いわゆるメルトブロー法を採用するため、繊維が絡み合った綿状の創傷被覆材を容易に得ることができる。   The method of the present invention having the above configuration employs a so-called melt blowing method in which air is blown to molten glass and the glass is blown away, so that a cotton-like wound dressing material in which fibers are intertwined can be easily obtained. Can do.

また本発明の方法は、上記した組成、特性を有するガラスを使用することから、得られる創傷被覆材は創傷治療効果が高い。   Moreover, since the method of this invention uses the glass which has an above-described composition and characteristic, the wound dressing obtained has a high wound treatment effect.

また本発明の創傷被覆材の製造方法は、綿状に成形されたガラスを圧縮して不織布に成形することを特徴とする。   Moreover, the manufacturing method of the wound dressing material of this invention is characterized by compressing the glass shape | molded in cotton shape, and shape | molding in a nonwoven fabric.

以下、本発明の創傷治療用ガラス組成物について、ガラスを構成する成分の作用と、その含有量を上記のように規定した理由を説明する。尚、各成分の含有範囲の説明において、%表示は質量%を指す。   Hereinafter, the reason for having prescribed | regulated the effect | action of the component which comprises glass, and its content as mentioned above about the glass composition for wound treatment of this invention is demonstrated. In addition, in description of the containing range of each component,% display points out the mass%.

SiOは、ガラス骨格構造を形成する主要成分である。また、ガラスの粘度を上昇させる成分である。さらにガラスの溶解速度を大きく低下させる成分である。SiOの含有量は5〜70%、好ましくは8〜60%、より好ましくは12〜55%、特に好ましくは15〜45%、さらに好ましくは16〜40%、最も好ましくは18〜34%である。SiOの含有量が多くなりすぎるとガラスの血液あるいは滲出液に対する溶解速度が低下して、創傷被覆材として必要な細胞増殖の効果、殺菌効果が得にくくなる。また繊維化温度(101.0dPa・sの粘度に相当する温度)が高くなって繊維化するためのコストが増加する。SiOの含有量が少なすぎると、ZnOがガラス骨格構造に取り込まれ易くなり、特にZnOが少ない組成ではZnが血液や滲出液に溶出し難くなる。またガラスの粘度が低下し、液相粘度が著しく低下して、綿状体又は不織布に成形した場合にビーズ混入量が増加する。さらにガラスの機械的強度が低下して綿状体が圧縮されやすくなって綿状体内に必要な空間を確保することができなくなるため、血液あるいは滲出液の保持量が低下し、湿潤環境を維持しにくくなる。 SiO 2 is a main component that forms a glass skeleton structure. Moreover, it is a component which raises the viscosity of glass. Further, it is a component that greatly reduces the melting rate of glass. The content of SiO 2 is 5 to 70%, preferably 8 to 60%, more preferably 12 to 55%, particularly preferably 15 to 45%, still more preferably 16 to 40%, and most preferably 18 to 34%. is there. If the content of SiO 2 is too large, the dissolution rate of glass with respect to blood or exudate decreases, and it becomes difficult to obtain the cell proliferation effect and bactericidal effect required as a wound dressing. In addition, the fiberizing temperature (temperature corresponding to a viscosity of 10 1.0 dPa · s) increases and the cost for fiberizing increases. If the content of SiO 2 is too small, ZnO is likely to be taken into the glass skeleton structure. In particular, in a composition with a small amount of ZnO, it is difficult to elute Zn into blood or exudate. Moreover, the viscosity of glass falls, a liquid phase viscosity falls remarkably, and when it shape | molds to a cotton-like body or a nonwoven fabric, the amount of bead mixture increases. In addition, the mechanical strength of the glass is reduced and the flocculent body is easily compressed, making it impossible to secure the necessary space in the flocculent body, reducing the amount of blood or exudate retained and maintaining a moist environment. It becomes difficult to do.

は、SiOと同様にガラス網目構造において、その骨格をなす成分であるが、SiOのようにガラスの溶融温度を高くすることはなく、むしろ溶融温度を低下させる働きがある。また、血液あるいは滲出液に溶出することにより、殺菌効果を発揮する成分である。さらにガラスの溶解速度を大きく増加させる成分である。Bの含有量は5〜40%であり、7〜39%、10〜35%、10〜30%、10〜28%、特に12〜26%であることが好ましい。Bの含有量が少なすぎると創面への細菌の臨界的定着、感染を防止するための殺菌性を得ることができない。さらにガラスの溶解速度が低下して、創傷被覆材として必要な細胞増殖の効果や、殺菌効果が得にくくなる。Bの含有量が多すぎると同様に創面に対して過剰な殺菌効果が働いて創傷治癒速度が低下する。またガラスの粘度が低下したり、液相粘度が低くなったりすることから、創傷被覆材をメルトブロー法等の方法で作製する場合にはビーズ混入量が増加する。 B 2 O 3 is in the glass network structure similar to the SiO 2, is a component that forms the skeleton, rather than by increasing the melting temperature of the glass as SiO 2, there is work to rather lower the melting temperature . Moreover, it is a component which exhibits a bactericidal effect by eluting into blood or exudate. Furthermore, it is a component that greatly increases the melting rate of glass. The content of B 2 O 3 is 5 to 40%, preferably 7 to 39%, 10 to 35%, 10 to 30%, 10 to 28%, and particularly preferably 12 to 26%. If the content of B 2 O 3 is too small, it will not be possible to obtain bactericidal properties to prevent critical colonization of the wound surface and infection. Furthermore, the dissolution rate of the glass is lowered, and it becomes difficult to obtain the cell proliferation effect and bactericidal effect necessary as a wound dressing. B 2 O 3 rate of wound healing worked excessive bactericidal effect on the wound surface as well when the content is too much is reduced. Moreover, since the viscosity of glass falls or a liquid phase viscosity becomes low, when producing a wound dressing by methods, such as a melt blow method, the amount of bead mixture increases.

CaOはガラスの粘度を低下させる成分であり、また血液あるいは滲出液に溶出して、繊維芽細胞の増殖と分化を促進する効果を発揮する成分である。CaOの含有量は1〜50%、好ましくは2〜45%、より好ましくは3〜40%、特に好ましくは5〜38%、さらに好ましくは5〜30%、最も好ましくは8〜25%である。CaOの含有量が少なすぎると細胞増殖を促進する効果が得にくくなる。CaOの含有量が多すぎると液相温度が高くなって、ガラス溶融時に失透し、均質なガラスを得にくくなる。また過剰なCaの溶出は、角化細胞の増殖や遊走を遅らせるおそれがある。   CaO is a component that lowers the viscosity of glass, and is a component that is eluted in blood or exudate and exhibits an effect of promoting the proliferation and differentiation of fibroblasts. The content of CaO is 1 to 50%, preferably 2 to 45%, more preferably 3 to 40%, particularly preferably 5 to 38%, still more preferably 5 to 30%, and most preferably 8 to 25%. . If the content of CaO is too small, it is difficult to obtain the effect of promoting cell growth. When there is too much content of CaO, liquidus temperature will become high, it will devitrify at the time of glass melting, and it will become difficult to obtain homogeneous glass. Excessive Ca elution may delay the growth and migration of keratinocytes.

ZnOは、ガラス構造の網目を構成する成分にも、網目を修飾する成分にもなりうる。また、ガラスの溶解速度を低下させる成分である。さらに、血液あるいは滲出液に溶出すると成長因子の様に働き、細胞増殖や血管新生を促進し傷口の炎症を抑える効果がある。ZnOの含有量は0.1〜30%であり、0.5〜20%、1〜20%、3〜18%、特に5〜15%であることが好ましい。ZnOの含有量が少なすぎると、Znによる細胞増殖や血管新生の効果、抗炎症作用が得にくくなる。ZnOの含有量が多すぎるとガラス全体の溶解速度が極端に低下して、創傷治癒促進に必要なB,Caの溶出量が得にくくなる。また過剰なZnの溶出は、細胞のカルシウム依存経路を阻害するおそれがある。   ZnO can be a component constituting a network of glass structure or a component for modifying the network. Moreover, it is a component which reduces the melt | dissolution rate of glass. Furthermore, when it elutes into blood or exudate, it works like a growth factor and has the effect of promoting cell proliferation and angiogenesis and suppressing inflammation at the wound. The content of ZnO is 0.1 to 30%, preferably 0.5 to 20%, 1 to 20%, 3 to 18%, and particularly preferably 5 to 15%. When there is too little content of ZnO, it will become difficult to obtain the effect of cell proliferation and angiogenesis, and anti-inflammatory action by Zn. When there is too much content of ZnO, the melt | dissolution rate of the whole glass will fall extremely, and it will become difficult to obtain the elution amount of B and Ca required for wound healing promotion. Excessive Zn elution may inhibit the calcium-dependent pathway of cells.

MgOは、ガラス原料を溶融し易くする融剤としての働きを有する成分であると同時に溶融温度の低下に非常に有効であり、溶融時にガラスの泡切れを良くし、均質なガラスを作るのに役立つ成分である。MgOの含有量は好ましくは0〜20%、より好ましくは0〜10%、さらに好ましくは0.5〜8%である。MgO含有量が多すぎるとガラスの粘度が低下し、液相粘度が低くなったりすることから、創傷被覆材をメルトブロー法等の方法で作製する場合にはビーズ混入量が増加する。さらに、血液あるいは滲出液へのMg(マグネシウム)の溶出量が増加し、相対的にCaの溶出量が著しく低下する。   MgO is a component having a function as a flux that makes it easy to melt glass raw materials, and at the same time, is very effective in lowering the melting temperature. It is a useful ingredient. The content of MgO is preferably 0 to 20%, more preferably 0 to 10%, still more preferably 0.5 to 8%. If the MgO content is too high, the viscosity of the glass is lowered and the liquid phase viscosity is lowered. Therefore, when the wound dressing is produced by a method such as a melt blow method, the amount of mixed beads increases. Furthermore, the elution amount of Mg (magnesium) into blood or exudate increases, and the elution amount of Ca relatively decreases remarkably.

アルカリ金属酸化物であるNaO、KOはガラスの粘度を低下させ、溶融性や成形性を高める成分である。NaO及びKOの含有量の合量(NaO+KO)は、好ましくは5〜40%、より好ましくは10〜30%、さらに好ましくは9〜18%である。NaO+KOが少なすぎると、ガラスの紡糸温度が高くなって繊維化するためのコストが増加する。NaO+KOが多すぎると、血液あるいは滲出液へのNa(ナトリウム)及びK(カリウム)の溶出量が増加し、相対的にCaの溶出量が著しく低下する。またガラスの粘度が低下したり、液相粘度が著しく低くなったりすることから、創傷被覆材をメルトブロー法等の方法で作製する場合にはビーズ混入量が増加する。 Na 2 O is an alkali metal oxide, K 2 O reduces the viscosity of the glass is a component for enhancing the meltability and formability. The total content of Na 2 O and K 2 O (Na 2 O + K 2 O) is preferably 5 to 40%, more preferably 10 to 30%, and even more preferably 9 to 18%. When Na 2 O + K 2 O is too small, the cost for fiberizing higher spinning temperature of the glass increases. When there is too much Na 2 O + K 2 O, the elution amount of Na (sodium) and K (potassium) into blood or exudate increases, and the elution amount of Ca is remarkably lowered. Moreover, since the viscosity of glass falls or a liquid phase viscosity becomes remarkably low, when producing a wound dressing by a method such as a melt blow method, the amount of mixed beads increases.

NaOはガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。NaOの含有量は好ましくは0〜20%、より好ましくは2〜15%、さらに好ましくは3〜10%である。NaOの含有量が多すぎるとガラスの粘度が低下し、液相粘度が著しく低くなったりすることから、創傷被覆材をメルトブロー法等の方法で作製する場合にはビーズ混入量が増加する。さらに、血液あるいは滲出液へのNaの溶出量が増加し、相対的にCaの溶出量が著しく低下する。 Na 2 O is a component that improves the meltability and moldability of the glass by reducing the viscosity of the glass. The content of Na 2 O is preferably 0 to 20%, more preferably 2 to 15%, and further preferably 3 to 10%. When the content of Na 2 O is too large, the viscosity of the glass is lowered and the liquid phase viscosity is remarkably lowered. Therefore, when the wound dressing is produced by a method such as a melt-blowing method, the amount of mixed beads increases. . Furthermore, the elution amount of Na into the blood or exudate increases, and the elution amount of Ca relatively decreases remarkably.

Oはガラスの粘度を低下させることによって、ガラスの溶融性や成形性を高める成分である。KOの含有量は好ましくは0〜40%、より好ましくは3〜30%、さらに好ましくは5〜20%、特に好ましくは6〜15%である。KOの含有量が多すぎると、ガラスの粘度が低下し、液相粘度が著しく低くなったりすることから、創傷被覆材をメルトブロー法等の方法で作製する場合にはビーズ混入量が増加する。さらに、血液あるいは滲出液へのKの溶出量が増加し、相対的にCaの溶出量が著しく低下する。 K 2 O is a component that improves the meltability and moldability of the glass by reducing the viscosity of the glass. The content of K 2 O is preferably 0 to 40%, more preferably 3 to 30%, still more preferably 5 to 20%, and particularly preferably 6 to 15%. If the content of K 2 O is too large, the viscosity of the glass will decrease and the liquid phase viscosity will be significantly reduced. Therefore, when the wound dressing is produced by a method such as the melt-blowing method, the amount of beads mixed will increase. To do. Furthermore, the elution amount of K into the blood or exudate increases, and the elution amount of Ca relatively decreases remarkably.

はそれ自身でガラス化し、ガラスの網目を構成する成分である。Pの含有量は好ましくは0〜20%、より好ましくは0〜10%、さらに好ましくは0〜5%である。P含有量が多すぎると、ガラスの血液あるいは滲出液に対する溶解速度が低下する。さらに溶解したガラスの表面にP(リン)とCaを含有する反応層が形成されやすくなり、ガラスの溶解を阻害したり、Caの一部が反応層の形成に消費されたりすることによってCaの溶出量が低下する。 P 2 O 5 is a component that vitrifies itself and constitutes the network of the glass. The content of P 2 O 5 is preferably 0 to 20%, more preferably 0 to 10%, and still more preferably 0 to 5%. When P 2 O 5 content is too large, decrease the rate of dissolution in blood or exudate glass. Furthermore, it becomes easy to form a reaction layer containing P (phosphorus) and Ca on the surface of the molten glass, and the dissolution of the glass is inhibited, or a part of Ca is consumed for the formation of the reaction layer. Elution amount decreases.

また本発明の創傷治療用ガラス組成物は、上記した成分(SiO、B、CaO、MgO、NaO、KO、P、ZnO)以外の成分を含みうる。ただし上記した成分の含有量が合量で98%以上、特に99%以上となるように組成を調節することが望ましい。その理由は、これらの成分の合量が98%未満の場合、意図しない異種成分の混入によってCa、B、Znの血液あるいは滲出液へのガラスの溶解速度が低下して創傷被覆材としての特性が低下したり、液相粘度が著しく低下してビーズ混入量が増加したり、生体適合性が低下したりする等の不都合が生じ易いためである。 The wound care glass composition of the present invention may comprise ingredients (SiO 2, B 2 O 3 , CaO, MgO, Na 2 O, K 2 O, P 2 O 5, ZnO) and other components described above. However, it is desirable to adjust the composition so that the total content of the above components is 98% or more, particularly 99% or more. The reason is that, when the total amount of these components is less than 98%, the dissolution rate of the glass into the blood or exudate of Ca, B, Zn decreases due to unintentional mixing of different components, and the properties as a wound dressing This is because inconveniences such as a decrease in the viscosity, a decrease in the liquid phase viscosity and an increase in the amount of mixed beads, and a decrease in biocompatibility are likely to occur.

上記した成分以外の成分として、例えばH、CO、CO、HO、He、Ne、Ar、N等の微量成分をそれぞれ0.1%まで含有してもよい。また、ガラス中にPt、Rh、Au等の貴金属元素を500ppmまで含有してもよい。 As components other than the above-described components, for example, trace components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, and N 2 may be contained up to 0.1%. Moreover, you may contain noble metal elements, such as Pt, Rh, and Au, up to 500 ppm in glass.

さらに殺菌効果の向上のために、Cu、Ag、Sr、Ba、Fe、F、Mo、Au、Mn、Sn、Ce、Cl、La、W、Nb、Y等を合量で2%まで含有してもよい。   In order to further improve the bactericidal effect, Cu, Ag, Sr, Ba, Fe, F, Mo, Au, Mn, Sn, Ce, Cl, La, W, Nb, Y, etc. are contained up to 2% in total. May be.

本発明の創傷治療用ガラス組成物は、300〜500μmの粒度に分級された比重×0.256の重量分のガラスを37度、60mlの擬似体液中に2日間浸漬し、1回/日の撹拌を行った溶出試験において、擬似体液中のB濃度が0.1〜70mM(特に0.5〜40mM)かつCa濃度が2.6 〜20mM(特に3.0〜5.0mM)かつZn濃度が0.0005mM〜1.1mM(特に0.001〜0.1mM)となることが好ましい。この溶出試験による擬似体液中のB濃度が低すぎる場合、創傷被覆材として必要な殺菌効果が得にくくなる。一方、B濃度が高すぎる場合、患者自身の細胞の増殖が抑制される可能性がある。Ca濃度が低すぎる場合、創傷被覆材として必要な細胞増殖の効果が得にくくなる。一方、Ca濃度が高すぎる場合、細胞増殖の効果が持続しにくくなり、頻繁に創傷被覆材を交換する必要が生じる。Zn濃度が低すぎる場合、創傷被覆材として必要な細胞増殖の効果を得にくくなる。一方、Zn濃度が高すぎる場合、細胞増殖の効果が持続しにくくなり、頻繁に創傷被覆材を交換する必要が生じる。   In the glass composition for wound treatment of the present invention, a glass having a specific gravity of 0.256 weight classified to a particle size of 300 to 500 μm is immersed in a simulated body fluid at 37 ° C. for 2 days for 2 days. In the dissolution test with stirring, the B concentration in the simulated body fluid is 0.1 to 70 mM (particularly 0.5 to 40 mM), the Ca concentration is 2.6 to 20 mM (particularly 3.0 to 5.0 mM), and the Zn concentration Is preferably 0.0005 mM to 1.1 mM (particularly 0.001 to 0.1 mM). If the B concentration in the simulated body fluid by this dissolution test is too low, it becomes difficult to obtain the bactericidal effect necessary as a wound dressing. On the other hand, if the B concentration is too high, the growth of the patient's own cells may be suppressed. When the Ca concentration is too low, it becomes difficult to obtain the effect of cell proliferation required as a wound dressing. On the other hand, when the Ca concentration is too high, the effect of cell proliferation is difficult to sustain, and it is necessary to frequently replace the wound dressing. When the Zn concentration is too low, it becomes difficult to obtain the effect of cell proliferation necessary as a wound dressing. On the other hand, if the Zn concentration is too high, the effect of cell proliferation is difficult to sustain, and it is necessary to frequently replace the wound dressing.

また本発明の創傷治療用ガラス組成物は、液相粘度が好ましくは100.5dPa・s以上、100.6dPa・s以上、特に100.8dPa・s以上である。液相粘度が低すぎると、溶融ガラスを繊維化して綿状体や不織布を作製する際に、混入するガラスビーズの量が多くなってしまう。 Moreover, the glass composition for wound treatment of the present invention preferably has a liquidus viscosity of 10 0.5 dPa · s or more, 10 0.6 dPa · s or more, particularly 10 0.8 dPa · s or more. If the liquidus viscosity is too low, the amount of glass beads mixed in when a molten glass is made into a fiber and a cotton-like body or nonwoven fabric is produced increases.

また本発明の創傷治療用ガラス組成物は、101.0dPa・sの粘度に相当する温度(紡糸温度)が好ましくは1500℃以下、1400℃以下、1300℃以下、特に1200℃以下である。紡糸温度が高すぎると、高温で紡糸を行う必要があることから、貴金属製の紡糸装置の損傷が激しくなり、交換頻度が高くなって生産コストが高くなる。 The glass composition for wound treatment of the present invention has a temperature (spinning temperature) corresponding to a viscosity of 10 1.0 dPa · s, preferably 1500 ° C. or lower, 1400 ° C. or lower, 1300 ° C. or lower, particularly 1200 ° C. or lower. . If the spinning temperature is too high, it is necessary to perform spinning at a high temperature, so that the spinning device made of precious metal is severely damaged, the replacement frequency is increased, and the production cost is increased.

本発明の創傷被覆材は、上記した組成、特性を有する創傷治療ガラス組成物からなる。より具体的には上記組成、特性を有する多数のガラス繊維が不規則に絡み合った不定形の綿状体や不織布であることが好ましい。なお綿状体は、繊維間に存在する空隙によって三次元的に圧縮可能である。   The wound dressing of the present invention comprises a wound treatment glass composition having the composition and characteristics described above. More specifically, it is preferably an irregular cotton-like body or nonwoven fabric in which a large number of glass fibers having the above composition and characteristics are intertwined irregularly. Note that the cotton-like body can be compressed three-dimensionally due to the voids existing between the fibers.

創傷被覆材を構成するガラス繊維は、繊維径が不均一であってよいが、その平均繊維径は100nm〜10μmの範囲、特に500〜5μmの範囲にあることが好ましい。平均繊維径が小さすぎるとガラス繊維の機械的強度が低下する。さらに綿状体の形態で使用する場合は、綿状体が圧縮されやすくなるため、血液あるいは滲出液の保持量が低下し、湿潤環境を維持しにくくなる。平均繊維径が大きくなりすぎると綿状体や不織布の比表面積が小さくなることから、ガラスの溶解速度が低下して、CaやBやZnを血液あるいは滲出液へ十分に提供することが難しくなり、創傷被覆材としての特性が低下する。   The glass fiber constituting the wound dressing may have a non-uniform fiber diameter, but the average fiber diameter is preferably in the range of 100 nm to 10 μm, particularly in the range of 500 to 5 μm. When the average fiber diameter is too small, the mechanical strength of the glass fiber is lowered. Further, when used in the form of a flocculent body, the flocculent body is easily compressed, so that the amount of blood or exudate retained is reduced, making it difficult to maintain a moist environment. If the average fiber diameter becomes too large, the specific surface area of the cotton-like body or non-woven fabric becomes small, so the glass dissolution rate decreases, making it difficult to sufficiently provide Ca, B, or Zn to blood or exudate. The characteristics as a wound dressing are reduced.

創傷被覆材を構成する綿状体や不織布には、ガラスビーズが混入していても差し支えない。この場合、綿状体や不織布に占めるガラスビーズの割合は、質量%で50%以下、40%以下、特に30%以下であることが好ましい。ガラスビーズの割合が多くなりすぎると、綿状体や不織布の比表面積が小さくなることから、ガラスの溶解速度が低下して、CaやBやZnを血液あるいは滲出液へ十分に提供することが難しくなり、創傷被覆材としての特性が低下する。また、ガラスビーズが表皮を刺激して、治癒後の皮膚に違和感や炎症、外傷性刺青、肥厚性瘢痕を引き起こす懸念がある。さらに創面に埋入する際に、患者の痛みを伴う場合がある。   Glass beads may be mixed in the cotton-like body or the nonwoven fabric constituting the wound dressing. In this case, the ratio of the glass beads to the cotton-like body or the nonwoven fabric is preferably 50% or less, 40% or less, particularly 30% or less in mass%. If the ratio of the glass beads increases too much, the specific surface area of the cotton-like body or the nonwoven fabric decreases, so that the dissolution rate of the glass decreases, and Ca, B, and Zn can be sufficiently provided to blood or exudate. It becomes difficult and the characteristic as a wound dressing is lowered. In addition, there is a concern that glass beads may irritate the epidermis and cause discomfort and inflammation, traumatic tattoos, and hypertrophic scars after healing. Furthermore, it may be painful for the patient when it is placed in the wound surface.

ガラスビーズの平均直径は、500μm以下、特に100μm以下であることが好ましい。ガラスビーズの平均直径が大きすぎると、綿状体や不織布の比表面積が小さくなることから、ガラスの溶解速度が低下して、CaやBやZnを血液あるいは滲出液へ十分に提供することが難しくなり、創傷被覆材としての特性が低下する。また、ガラスビーズが表皮を刺激して、表皮の炎症や瘢痕形成を引き起こす懸念がある。さらに創面に埋入する際に、患者の痛みを伴う場合がある。   The average diameter of the glass beads is preferably 500 μm or less, particularly preferably 100 μm or less. If the average diameter of the glass beads is too large, the specific surface area of the cotton-like body or non-woven fabric will be reduced, so that the dissolution rate of the glass will decrease, and Ca, B and Zn can be sufficiently provided to blood or exudate. It becomes difficult and the characteristic as a wound dressing is lowered. There is also a concern that glass beads may irritate the epidermis and cause inflammation and scar formation of the epidermis. Furthermore, it may be painful for the patient when it is placed in the wound surface.

なお本発明の創傷被覆材は、ガラス繊維やガラスビーズの他にも粉末状、フレーク状等種々の形状のガラス体を含んでいてもよい。また綿状体や不織布内に各種薬剤を添加、含浸させておくこともできる。   In addition, the wound dressing of this invention may contain the glass body of various shapes, such as a powder form and flake form other than glass fiber and a glass bead. Moreover, various chemical | medical agents can also be added and impregnated in a cotton-like body or a nonwoven fabric.

次に本発明の創傷被覆材を製造する方法を、メルトブロー法を例にして説明する。なお本発明の創傷被覆材は、メルトブロー法以外の方法でも作製することが可能である。例えばガラス吐出ノズルと該ノズル部材に対向するように配置されたターゲット電極との間に高電圧を印加し、前記吐出ノズルから吐出される帯電した前記溶融ガラスを前記電極部材側に引き寄せつつ繊維状に成形する、いわゆるエレクトロスピニング法や、溶融ガラスをフォアハースから流下させてスピナー(回転体)に導入し、このスピナーを高速回転させてスピナー側壁部に設けられたオリフィスから繊維状ガラスを吐出する、いわゆる遠心法を採用することもできる。   Next, a method for producing the wound dressing of the present invention will be described by taking a melt blow method as an example. The wound dressing of the present invention can be produced by a method other than the melt blow method. For example, a high voltage is applied between a glass discharge nozzle and a target electrode arranged so as to face the nozzle member, and the charged molten glass discharged from the discharge nozzle is drawn toward the electrode member while being fibrous. The so-called electrospinning method, or the molten glass is flowed down from the fore hearth and introduced into a spinner (rotary body), and the spinner is rotated at a high speed to discharge the fibrous glass from an orifice provided on the side wall of the spinner. A so-called centrifugation method can also be employed.

まず上記組成のガラスとなるようにガラス原料を調合する。なおガラス原料の一部又は全部にガラスカレットを使用してもよい。ガラス組成やその特性等については既述の通りであり、ここでは説明を省略する。   First, a glass raw material is prepared so as to obtain a glass having the above composition. Glass cullet may be used for a part or all of the glass raw material. The glass composition and its characteristics are as described above, and the description is omitted here.

次いで、調合したガラス原料バッチをガラス溶融炉に投入し、ガラス化し、溶融、均質化する。溶融温度は900〜1600℃程度が好適である。   Subsequently, the prepared glass raw material batch is put into a glass melting furnace, vitrified, melted and homogenized. The melting temperature is preferably about 900 to 1600 ° C.

続いて溶融ガラスを紡糸してガラス繊維に成形する。詳述すると、溶融ガラスを吐出する吐出ノズルを備えた貴金属製のノズル部材に溶融ガラスを供給する。ノズル部材に供給された溶融ガラスは、その底面に設けられた一つ以上のガラス吐出ノズルから流下する。このようにして流下した溶融ガラスに対し、吐出ノズルの側面、両面または全周から高速エアーを吹き付け、延伸して繊維状に成形することにより、綿状のガラス繊維で構成される創傷被覆材を得ることができる。さらに、このようにして作製した綿状体を圧縮して不織布とする。例えば、金属製ネットを有するコンベア上に均一な厚みになるように連続的に堆積させ、ローラーで圧縮する方法等を利用することができる。なおガラス吐出ノズルの内径は、好ましくは直径2mm以下、より好ましく1.5mm以下、さらに好ましくは1.0mm以下である。前記高速エアーの温度は好ましくは500℃以上であり、より好ましくは800℃以上、さらに好ましくは900℃以上である。また創傷被覆材の特徴については既述の通りであり、ここでは説明を省略する。   Subsequently, molten glass is spun and formed into glass fibers. More specifically, the molten glass is supplied to a noble metal nozzle member having a discharge nozzle for discharging the molten glass. The molten glass supplied to the nozzle member flows down from one or more glass discharge nozzles provided on the bottom surface. By blowing high-speed air from the side surface, both sides or the entire circumference of the discharge nozzle to the molten glass flowing down in this way, the wound dressing composed of cotton-like glass fibers is formed by stretching and forming into a fiber shape. Can be obtained. Furthermore, the cotton-like body produced in this way is compressed into a nonwoven fabric. For example, a method of continuously depositing on a conveyor having a metal net to have a uniform thickness and compressing with a roller can be used. The inner diameter of the glass discharge nozzle is preferably 2 mm or less, more preferably 1.5 mm or less, and even more preferably 1.0 mm or less. The temperature of the high-speed air is preferably 500 ° C. or higher, more preferably 800 ° C. or higher, and still more preferably 900 ° C. or higher. The characteristics of the wound dressing are as described above, and the description thereof is omitted here.

なお本発明の創傷治療用ガラス組成物は、上記したような創傷被覆材としての利用に限られるものではない。例えば粉末状、リボン状、フレーク状、中空球状等の形状に成形し、種々の用途に供してもよい。例えば粉末状に成形し、ワセリンなどの軟膏やクリーム、ローションなどと混合し、創面に使用することも可能である。   Note that the glass composition for wound treatment of the present invention is not limited to use as a wound dressing as described above. For example, it may be formed into a powder shape, ribbon shape, flake shape, hollow sphere shape, etc. and used for various purposes. For example, it can be formed into a powder and mixed with an ointment such as petrolatum, cream, lotion, etc., and used on the wound surface.

以下、実施例に基づいて、本発明を詳細に説明する。
表1〜4は、本発明の実施例(試料No.1〜17)及び比較例(試料No.18)を示している。
Hereinafter, based on an Example, this invention is demonstrated in detail.
Tables 1 to 4 show examples (sample Nos. 1 to 17) and comparative examples (sample No. 18) of the present invention.

表の各試料は、次のようにして調製した。   Each sample in the table was prepared as follows.

まず、各表中のガラス組成になるように、天然原料、化成原料等の各種ガラス原料を秤量、混合して、ガラスバッチを作製した。次に、このガラスバッチを白金ロジウム合金製坩堝に投入した後、間接加熱電気炉内で1200〜1550℃で4時間加熱して、溶融ガラスを得た。尚、均質な溶融ガラスを得るために、加熱時に、耐熱性撹拌棒を用いて、溶融ガラスを複数回攪拌した。続いて、得られた溶融ガラスを耐火性鋳型内に流し出し、空気中で放冷して塊状のガラス試料を得た。得られた各試料につき、溶出試験を行って擬似体液中のB、Ca、Zn濃度を測定した。また、紡糸温度及び液相温度を測定した。   First, various glass raw materials, such as a natural raw material and a chemical raw material, were weighed and mixed so that it might become the glass composition in each table | surface, and the glass batch was produced. Next, after putting this glass batch into a crucible made of platinum rhodium alloy, it was heated at 1200 to 1550 ° C. for 4 hours in an indirect heating electric furnace to obtain a molten glass. In order to obtain a homogeneous molten glass, the molten glass was stirred a plurality of times using a heat-resistant stirring rod during heating. Subsequently, the obtained molten glass was poured into a refractory mold and allowed to cool in air to obtain a massive glass sample. About each obtained sample, the elution test was done and B, Ca, and Zn density | concentration in a simulated body fluid were measured. Further, the spinning temperature and the liquidus temperature were measured.

溶出試験は次のようにして測定した。まず、塊状のガラス試料を粉砕し、直径300〜500μmの粒度のガラスを比重×0.256の重量分だけ精秤し、続いて容量100mlのポリプロピレン容器(PP容器)に擬似体液60mlを入れ、ガラス試料を浸漬して、37℃、2日間の条件で溶出試験を行った。その際、1回/日の撹拌を行った。撹拌は前記PP容器を手で数回振る事によって行った。溶出試験後に試験溶液を濾過し、ICP−OESを用いて試験溶液中のB、Ca、Zn濃度を定量した。   The dissolution test was measured as follows. First, a massive glass sample is pulverized, glass having a particle size of 300 to 500 μm is precisely weighed by the specific gravity × 0.256, and then 60 ml of a simulated body fluid is placed in a polypropylene container (PP container) having a capacity of 100 ml. A glass sample was immersed, and an elution test was performed at 37 ° C. for 2 days. At that time, stirring was performed once / day. Stirring was performed by shaking the PP container by hand several times. The test solution was filtered after the dissolution test, and the B, Ca, and Zn concentrations in the test solution were quantified using ICP-OES.

なお、擬似体液は以下のようにして作製した。まず100mlの蒸留水を入れたビーカーをスターラーにセットした。次に各試薬(7.995g/LのNaCl、0.353g/LのNaHCO、0.224g/LのKCl、0.174g/LのKHPO、0.305g/LのMgCl・6HO、0.368g/LのCaCl・2HO、0.071g/LのNaSO)を秤量し、それぞれの試薬が完全に溶けてから次の試薬を順に蒸留水に加えて溶かし、溶液を作製した。なお薬包紙についた試薬は、蒸留水をかけて溶液に溶かした。次に10mlの35%塩酸に蒸留水90mlを加えて希釈塩酸を作製し、これを濁りがなくなるまで溶液に少しずつ加えた。次に溶液を2Lのビーカーに移し、825mlの蒸留水を加えてホットスターラーで撹拌した。次にpHメーターを準備し、スポイトで希釈塩酸を徐々に入れて溶かし、pH2にした。続いて6.057(g/L)のトリスヒドロキシメチルアミノメタン(トリスバッファー)を溶液に入れて溶かし、pH8にした後、ホットスターラーで加熱しながら希釈塩酸を徐々に加え、最終的に液温37℃においてpH7.25の溶液にした。この溶液を有栓メスシリンダーに移し、蒸留水を加えて1Lにし、溶液が混合されるようによく振り混ぜた。このようにして得られた溶液をポリビンに移したのち、冷蔵庫内で1日以上保管して、実験に用いる疑似体液を得た。 The simulated body fluid was prepared as follows. First, a beaker containing 100 ml of distilled water was set on a stirrer. Each reagent (7.995 g / L NaCl, 0.353 g / L NaHCO 3 , 0.224 g / L KCl, 0.174 g / L K 2 HPO 4 , 0.305 g / L MgCl 2. 6H 2 O, 0.368 g / L CaCl 2 · 2H 2 O, 0.071 g / L Na 2 SO 4 ), and after each reagent is completely dissolved, add the next reagent to distilled water in order. And dissolved to prepare a solution. The reagent attached to the medicine wrapper was dissolved in the solution with distilled water. Next, 90 ml of distilled water was added to 10 ml of 35% hydrochloric acid to prepare diluted hydrochloric acid, which was added little by little to the solution until it became turbid. The solution was then transferred to a 2 L beaker and 825 ml of distilled water was added and stirred with a hot stirrer. Next, a pH meter was prepared, and diluted hydrochloric acid was gradually added with a dropper to obtain pH 2. Subsequently, 6.057 (g / L) of trishydroxymethylaminomethane (Tris buffer) was dissolved in the solution, adjusted to pH 8, and diluted hydrochloric acid was gradually added while heating with a hot stirrer. The solution was brought to pH 7.25 at 37 ° C. This solution was transferred to a stoppered graduated cylinder, distilled water was added to 1 L, and the mixture was shaken well so that the solution was mixed. The solution thus obtained was transferred to a polybin, and then stored in a refrigerator for 1 day or longer to obtain a simulated body fluid used for the experiment.

このようにして作製した擬似体液中の無機イオン濃度の理論値は、Naが142.0、Kが5.0、Mg2+が1.5、Ca2+が2.5、Clが148.8、HPO4−が1.0である。(単位はすべてmM)。 The theoretical values of the inorganic ion concentration in the simulated body fluid thus prepared are as follows: Na + is 142.0, K + is 5.0, Mg 2+ is 1.5, Ca 2+ is 2.5, and Cl is 148. .8, HPO 4- is 1.0. (All units are mM).

紡糸温度の測定は次のようにして行った。まず、塊状のガラス試料を適正な寸法に破砕し、なるべく気泡が巻き込まれないようにアルミナ製坩堝に投入した。続いてアルミナ坩堝を加熱して、試料を融液状態とし、白金球引き上げ法によって複数の温度におけるガラスの粘度を求めた。その後、得られた複数の計測値から粘度曲線を作成し、その内挿によって101.0dPa・sとなる温度を算出した。 The spinning temperature was measured as follows. First, a blocky glass sample was crushed to an appropriate size and put into an alumina crucible so that bubbles were not caught as much as possible. Subsequently, the alumina crucible was heated to bring the sample into a molten state, and the viscosity of the glass at a plurality of temperatures was determined by a platinum ball pulling method. Then, a viscosity curve was created from the obtained plurality of measured values, and a temperature at which 10 1.0 dPa · s was obtained was calculated by interpolation.

液相温度の測定は次のようにして行った。まず、塊状のガラス試料を粉砕し、300〜500μmの範囲の粒度となるように調整した状態で耐火性の容器に適切な嵩密度を有する状態に充填した。続いてこの耐火性容器を、間接加熱型の温度勾配炉内に入れて静置し、16時間大気雰囲気中で加熱操作を行った。その後、温度勾配炉から、耐火性容器ごと試験体を取り出し、室温まで冷却後、光学顕微鏡によって結晶析出箇所を判定し、あらかじめ作成した温度勾配炉内の温度分布を用いて結晶析出温度(液相温度)を求める方法によって液相温度を特定した。
The liquid phase temperature was measured as follows. First, a massive glass sample was pulverized and filled in a fire-resistant container with an appropriate bulk density in a state adjusted to a particle size in the range of 300 to 500 μm. Subsequently, the refractory container was placed in an indirect heating type temperature gradient furnace and allowed to stand, and a heating operation was performed in an air atmosphere for 16 hours. Thereafter, the test specimen is taken out from the temperature gradient furnace together with the refractory container, cooled to room temperature, the crystal precipitation location is determined by an optical microscope, and the crystal precipitation temperature (liquid phase) is determined using the temperature distribution in the temperature gradient furnace prepared in advance. The liquid phase temperature was specified by a method for obtaining (temperature).

Claims (12)

酸化物換算の質量%で、SiO 5〜70%、B 5〜40%、CaO 1〜50%、ZnO 0.1〜30%を含有することを特徴とする創傷治療用ガラス組成物。 A glass composition for wound treatment, containing 5 to 70% of SiO 2 , 5 to 40% of B 2 O 3 , 1 to 50% of CaO and 0.1 to 30% of ZnO in terms of mass% in terms of oxide. object. 酸化物換算の質量%で、さらにMgO 0〜20%、NaO 0〜20%、KO 0〜40%、P 0〜20%を含有することを特徴とする請求項1に記載の創傷治療用ガラス組成物。 2. Further, MgO 0 to 20%, Na 2 O 0 to 20%, K 2 O 0 to 40%, and P 2 O 5 0 to 20% are contained by mass% in terms of oxide. The glass composition for wound treatment according to 1. 酸化物換算の質量%で、NaO+KO 5〜40%であることを特徴とする請求項1又は2に記載の創傷治療用ガラス組成物。 3. The glass composition for wound treatment according to claim 1, wherein the composition is Na 2 O + K 2 O 5 to 40% by mass% in terms of oxide. 300〜500μmの粒度に分級された比重×0.256の重量分のガラスを37℃、60mlの擬似体液中に2日間浸漬し、1回/日の撹拌を行った溶出試験において、擬似体液中のB濃度が0.1〜70mMかつCa濃度が2.6 〜20mMかつZn濃度が0.0005mM〜1.1mMとなることを特徴とする請求項1〜3の何れかに記載の創傷治療用ガラス組成物。   In an elution test in which a glass having a specific gravity of 0.256 weight classified to a particle size of 300 to 500 μm and a weight of 0.256 is immersed in a simulated body fluid at 37 ° C. for 2 days and stirred once per day, The B concentration is 0.1 to 70 mM, the Ca concentration is 2.6 to 20 mM, and the Zn concentration is 0.0005 mM to 1.1 mM, for wound treatment according to any one of claims 1 to 3 Glass composition. 液相粘度が100.5dPa・s以上であることを特徴とする請求項1〜4の何れかに記載の創傷治療用ガラス組成物。 The glass composition for wound treatment according to any one of claims 1 to 4, wherein the liquid phase viscosity is 10 0.5 dPa · s or more. 101.0dPa・sの粘度に相当する温度が1500℃以下であることを特徴とする請求項1〜5の何れかに記載の創傷治療用ガラス組成物。 The glass composition for wound treatment according to any one of claims 1 to 5, wherein a temperature corresponding to a viscosity of 10 1.0 dPa · s is 1500 ° C or lower. 請求項1〜6の何れかに記載のガラス組成物からなる綿状体又は不織布であることを特徴とする創傷被覆材。   A wound dressing comprising a cotton-like body or a nonwoven fabric comprising the glass composition according to any one of claims 1 to 6. 綿状体又は不織布を構成するガラス繊維の平均繊維径が100nm〜10μmであることを特徴とする請求項7に記載の創傷被覆材。   The wound dressing according to claim 7, wherein an average fiber diameter of glass fibers constituting the cotton-like body or the nonwoven fabric is 100 nm to 10 µm. 綿状体又は不織布中にガラスビーズが混入しており、その混入量が質量%基準で綿状体全体の50%以下であることを特徴とする請求項7又は8に記載の創傷被覆材。   The wound dressing according to claim 7 or 8, wherein glass beads are mixed in the cotton-like body or non-woven fabric, and the amount of the mixture is 50% or less of the whole cotton-like body on a mass% basis. ガラスビーズの平均直径が500μm以下であることを特徴とする請求項9に記載の創傷被覆材。   The wound dressing according to claim 9, wherein the average diameter of the glass beads is 500 µm or less. 請求項1〜6の何れかのガラス組成物となるように調合した原料バッチをガラス溶融炉で溶融し、溶融ガラスをガラス吐出ノズルから連続的に流出させるとともに、前記ガラス吐出ノズル周囲にエアーを噴射して、ガラスを綿状に成形することを特徴とする創傷被覆材の製造方法。   The raw material batch prepared so as to be the glass composition of any one of claims 1 to 6 is melted in a glass melting furnace, and the molten glass is continuously discharged from the glass discharge nozzle, and air is supplied around the glass discharge nozzle. A method for producing a wound dressing, characterized by spraying and forming glass into a cotton shape. 綿状に成形されたガラスを圧縮して不織布に成形することを特徴とする請求項11に記載の創傷被覆材の製造方法。
12. The method for producing a wound dressing according to claim 11, wherein the glass formed into a cotton shape is compressed into a non-woven fabric.
JP2016251131A 2016-12-26 2016-12-26 Glass composition for treating wound, wound covering material and method for producing the same Pending JP2018104222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251131A JP2018104222A (en) 2016-12-26 2016-12-26 Glass composition for treating wound, wound covering material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251131A JP2018104222A (en) 2016-12-26 2016-12-26 Glass composition for treating wound, wound covering material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018104222A true JP2018104222A (en) 2018-07-05

Family

ID=62786515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251131A Pending JP2018104222A (en) 2016-12-26 2016-12-26 Glass composition for treating wound, wound covering material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018104222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111399A (en) * 2021-02-02 2022-08-09 엘지전자 주식회사 Antibacterial glass composition, preparing method of antibacterial glass coating film using the same, and electric home appliance including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220111399A (en) * 2021-02-02 2022-08-09 엘지전자 주식회사 Antibacterial glass composition, preparing method of antibacterial glass coating film using the same, and electric home appliance including the same
WO2022169200A1 (en) * 2021-02-02 2022-08-11 엘지전자 주식회사 Antibacterial glass composition, method for manufacturing antibacterial glass coating film using same, and home appliance comprising same
KR102492940B1 (en) 2021-02-02 2023-01-27 엘지전자 주식회사 Antibacterial glass composition, preparing method of antibacterial glass coating film using the same, and electric home appliance including the same

Similar Documents

Publication Publication Date Title
US9486554B2 (en) Wound care compositions comprising borate (B2O3) glass-based particles
Barrioni et al. Evaluation of in vitro and in vivo biocompatibility and structure of cobalt-releasing sol-gel bioactive glass
Jung Bioactive borate glasses
CN101301487A (en) Gelatine/biological activity glass composite sponge dressing and preparation thereof
Homaeigohar et al. Bioactive glass-based fibrous wound dressings
US8821919B2 (en) Wound debridement
Li et al. Bioglass for skin regeneration
CN118159504A (en) Glass compositions with improved bioactivity
Özarslan et al. Development, structural and rheological characterization, and in vitro evaluation of the zinc-doped 45S5 bioactive glass-vaseline ointment for potential wound healing applications
JP2018104222A (en) Glass composition for treating wound, wound covering material and method for producing the same
Miguez-Pacheco et al. Bioactive glasses for soft tissue engineering applications
JP2018050647A (en) Wound covering material
JP2018050648A (en) Wound dressing
JP2019000285A (en) Wound dressing
JPWO2016093211A1 (en) Wound treatment glass composition, wound dressing and method for producing the same
JP2018104223A (en) Glass composition for treating wound, wound covering material and method for producing the same
JP2017217178A (en) Wound dressing and manufacturing method thereof
Kaur et al. Bioactive Glasses in Angiogenesis and Wound Healing: Soft Tissue Repair
Baino et al. Glasses and glass–ceramics for biomedical applications
CN113227004A (en) Bioactive phosphate glass
JP2017114722A (en) Wound dressing material
JP2012533352A (en) Trace element-containing scaffolds for mammalian tissue regeneration
JP2017113352A (en) Wound dressing
JP2020103501A (en) Wound dressing material and method of producing the same
JP2018029643A (en) Wound covering material