JP2018101463A - Inductively-coupled antenna unit and plasma processing device - Google Patents

Inductively-coupled antenna unit and plasma processing device Download PDF

Info

Publication number
JP2018101463A
JP2018101463A JP2016245036A JP2016245036A JP2018101463A JP 2018101463 A JP2018101463 A JP 2018101463A JP 2016245036 A JP2016245036 A JP 2016245036A JP 2016245036 A JP2016245036 A JP 2016245036A JP 2018101463 A JP2018101463 A JP 2018101463A
Authority
JP
Japan
Prior art keywords
antenna
antenna unit
lid
antenna conductor
inductively coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016245036A
Other languages
Japanese (ja)
Other versions
JP6468521B2 (en
JP2018101463A5 (en
Inventor
鈴木 泰雄
Yasuo Suzuki
泰雄 鈴木
正則 渡邉
Masanori Watanabe
正則 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Ion Assist Co Ltd
Original Assignee
Plasma Ion Assist Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Ion Assist Co Ltd filed Critical Plasma Ion Assist Co Ltd
Priority to JP2016245036A priority Critical patent/JP6468521B2/en
Publication of JP2018101463A publication Critical patent/JP2018101463A/en
Publication of JP2018101463A5 publication Critical patent/JP2018101463A5/ja
Application granted granted Critical
Publication of JP6468521B2 publication Critical patent/JP6468521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an inductively-coupled antenna unit easy to attach to/detach from a vacuum chamber, and operable to generate high-density discharge plasma in a process chamber; and a plasma processing device having a plurality of such antenna units and a high productivity in an arbitrary area.SOLUTION: An inductively-coupled antenna unit of the present application is an antenna unit which is to be attached to an opening provided in a wall face of a vacuum chamber of a plasma processing device with a hermetic condition kept. The inductively-coupled antenna unit comprises: one or more inductively-coupled antenna conductors; and a lid covering the opening. The one or more antenna conductors are disposed substantially in parallel on an inner face of the lid. In the inductively-coupled antenna unit, a center portion of the antenna conductor is connected to a radio frequency power source; and both ends of the antenna conductor are fixed to the lid and connected to a ground potential through the lid. The antenna unit is structured to be readily attached to/detached from the opening provided in the vacuum chamber wall.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマを用いて被処理基板の表面に薄膜形成やエッチング等の処理を施すプラズマ処理装置及びそのプラズマ処理装置に用いられる誘導結合型アンテナユニットに関するものである。   The present invention relates to a plasma processing apparatus that performs processing such as thin film formation and etching on the surface of a substrate to be processed using plasma, and an inductively coupled antenna unit used in the plasma processing apparatus.

被処理基板の表面をプラズマ処理する装置としては、高周波電力の印加によって真空チャンバ内にプラズマを発生させる高周波アンテナを具備するプラズマ処理装置が一般的に使用されている。   As an apparatus for plasma processing the surface of a substrate to be processed, a plasma processing apparatus including a high frequency antenna that generates plasma in a vacuum chamber by applying high frequency power is generally used.

特許文献1には、誘電体筐体と、該筐体の蓋体と、該蓋体に装着したU字形のアンテナ導体とからなり、該アンテナ導体のU字形部分が前記筐体内に収容され、一体化された構造の誘導結合型アンテナユニット技術が開示されている。当該技術によれば、アンテナ導体の一方の端部に給電し、他方の端部を接地する給電方式である。従って、大面積の基板を処理するプラズマ処理装置に使用する場合、アンテナ導体が長くなり、高周波電流路のインピーダンスが大きくなる。従って、両端の電位差が大きくなり、前記アンテナ導体の長手方向に対して不均一な密度の放電プラズマが発生する。また、給電端子近傍で異状放電が発生する、などの課題があった。   Patent Document 1 includes a dielectric housing, a lid of the housing, and a U-shaped antenna conductor attached to the lid, and the U-shaped portion of the antenna conductor is accommodated in the housing. An inductively coupled antenna unit technology with an integrated structure is disclosed. According to this technique, a power feeding system is used in which power is supplied to one end of an antenna conductor and the other end is grounded. Therefore, when used in a plasma processing apparatus for processing a large-area substrate, the antenna conductor becomes long and the impedance of the high-frequency current path increases. Accordingly, the potential difference between both ends becomes large, and discharge plasma with a non-uniform density is generated in the longitudinal direction of the antenna conductor. In addition, there is a problem that abnormal discharge occurs near the power supply terminal.

特開2010−225296号公報JP 2010-225296 A

そこで本発明は、上記問題点を解決すべくなされたものであって、均一かつ高密度なプラズマを発生させる誘導結合型アンテナユニットを提供し、当該アンテナユニットを装着した安価なプラズマ処理装置を提供することを主たる課題とする。また、このプラズマ処理装置により大面積基板の表面処理を可能とするものである。   The present invention has been made to solve the above problems, and provides an inductively coupled antenna unit that generates uniform and high-density plasma, and provides an inexpensive plasma processing apparatus equipped with the antenna unit. The main task is to do. In addition, this plasma processing apparatus enables surface treatment of a large area substrate.

本発明は、下記の誘導結合型アンテナユニット及び当該誘導結合型アンテナユニットを用いたプラズマ処理装置を提供する。本発明に係る誘導結合型アンテナユニットはプラズマ処理装置等の真空チャンバの壁面に設けた開口部に気密を保って装着される誘導結合型アンテナユニットであって、1又は複数のアンテナ導体の中央部に高周波電力を給電し、前記アンテナ導体の両端部を接地する構成であることを特徴とする。従って、前記アンテナ導体の中央部から左右に延びる2本のアンテナ導体部に1台の高周波電源で給電することができる。従来のアンテナ導体の一方の端部に高周波電力を給電し、他方の端部を接地する誘導結合型アンテナの給電方式と比較すれば、アンテナ導体の長さを実質的に2分の1にすることができる。従って、本発明は従来方式の課題であった高周波電流路のインピーダンスを略2分の1に低減することができ、アンテナ導体両端の電位差を小さくできる。従って、均一性に優れた放電プラズマを生成することができるものである。本発明は下記の発明項目を含む。   The present invention provides the following inductively coupled antenna unit and a plasma processing apparatus using the inductively coupled antenna unit. An inductively coupled antenna unit according to the present invention is an inductively coupled antenna unit that is attached in an airtight manner to an opening provided on a wall surface of a vacuum chamber of a plasma processing apparatus or the like, and is a central portion of one or more antenna conductors The high frequency power is fed to the antenna conductor and both ends of the antenna conductor are grounded. Therefore, it is possible to supply power to the two antenna conductor portions extending left and right from the central portion of the antenna conductor with a single high-frequency power source. Compared with a conventional method of feeding an inductively coupled antenna in which high-frequency power is fed to one end of an antenna conductor and the other end is grounded, the length of the antenna conductor is substantially halved. be able to. Therefore, the present invention can reduce the impedance of the high-frequency current path, which has been a problem of the conventional method, to approximately half, and can reduce the potential difference between both ends of the antenna conductor. Therefore, it is possible to generate discharge plasma with excellent uniformity. The present invention includes the following invention items.

請求項1に係る発明は、1又は複数の誘導結合型アンテナ導体と、気密を保持して前記開口部を覆う蓋体とからなり、前記アンテナ導体が前記蓋体の内面にほぼ平行に配置され、前記アンテナ導体の中央部が給電端子板に接続され、前記アンテナ導体の両端部が前記蓋体に固定され、当該蓋体を介して接地電位に接続されていることを特徴とする誘導結合型アンテナユニットである。
この構成ならば、アンテナ導体のインピーダンスを略2分の1に低減でき、均一な放電プラズマを励起できるだけでなく、1台の高周波電源と整合器で複数のアンテナ導体を駆動することができる。また、最短距離の給電路でアンテナ導体に給電でき、最短距離の接地路で接地できるため、高周波電力を無駄なくプラズマ励起に投入できる。更に、プラズマ処理装置への脱着やアンテナユニットのクリーニング等が容易になる。
The invention according to claim 1 includes one or a plurality of inductively coupled antenna conductors and a lid that covers the opening while maintaining airtightness, and the antenna conductor is disposed substantially parallel to the inner surface of the lid. The inductive coupling type is characterized in that a central portion of the antenna conductor is connected to a feeding terminal plate, and both end portions of the antenna conductor are fixed to the lid body and connected to a ground potential through the lid body. It is an antenna unit.
With this configuration, it is possible to reduce the impedance of the antenna conductor to about one-half and excite uniform discharge plasma, and it is possible to drive a plurality of antenna conductors with a single high-frequency power source and matching unit. Further, since the antenna conductor can be fed with the shortest distance feed path and grounded with the shortest distance ground path, the high frequency power can be input to the plasma excitation without waste. Furthermore, it becomes easy to attach to and remove from the plasma processing apparatus and to clean the antenna unit.

請求項2に係る発明は、請求項1に記載のアンテナ導体が金属パイプであって一方の端部から他方の端部へと冷却媒体を流してアンテナ導体を冷却できる構成であることを特徴とする誘導結合型アンテナユニットである。
この構成ならば、前記アンテナ導体を水冷することができ、高周波電流による前記アンテナ導体の温度上昇を抑制できる効果がある。
The invention according to claim 2 is characterized in that the antenna conductor according to claim 1 is a metal pipe, and the antenna conductor can be cooled by flowing a cooling medium from one end to the other end. This is an inductively coupled antenna unit.
If it is this structure, the said antenna conductor can be water-cooled and there exists an effect which can suppress the temperature rise of the said antenna conductor by a high frequency current.

請求項3に係る発明は、請求項1または2に記載の前記アンテナ導体が誘電体管又は誘電体材料で被覆されていることを特徴とする誘導結合型アンテナユニットである。
この構成ならば、前記アンテナ導体のスパッタリングによる金属不純物の飛散を防止することができる。
The invention according to claim 3 is an inductively coupled antenna unit, wherein the antenna conductor according to claim 1 or 2 is covered with a dielectric tube or a dielectric material.
With this configuration, scattering of metal impurities due to sputtering of the antenna conductor can be prevented.

請求項4に係る発明は、請求項1から3のいずれか一項に記載の前記アンテナ導体の中央部が、前記蓋体の内面との間隔が、両端部の間隔より大きいV字形状、或いは円弧形状であることを特徴とする誘導結合型アンテナユニットである。
この構成ならば、前記アンテナ導体の両端部のプラズマ密度を抑制することができ、アンテナ導体の全面に亘って均一な密度のプラズマを励起することができる。
According to a fourth aspect of the present invention, the central portion of the antenna conductor according to any one of the first to third aspects is V-shaped, wherein the distance from the inner surface of the lid is larger than the distance between both ends, or An inductively coupled antenna unit having an arc shape.
With this configuration, the plasma density at both ends of the antenna conductor can be suppressed, and plasma with a uniform density can be excited over the entire surface of the antenna conductor.

請求項5に係る発明は、請求項1から4のいずれか一項に記載の誘導結合型アンテナユニットが長方形の枠体とその底壁に設けた誘電体窓板とからなる筐体内にアンテナ導体を収容したことを特徴とするものである。
この構成ならば、前記筐体の底壁に穿設する窓の形状を調整することによって真空チャンバ内に均一な放電プラズマを励起することができる。
According to a fifth aspect of the present invention, there is provided an antenna conductor in a casing in which the inductively coupled antenna unit according to any one of the first to fourth aspects is formed of a rectangular frame and a dielectric window plate provided on a bottom wall thereof. It is characterized by housing.
With this configuration, uniform discharge plasma can be excited in the vacuum chamber by adjusting the shape of the window drilled in the bottom wall of the casing.

請求項6に係る発明は、請求項1から5のいずれか一項に記載の前記蓋体が前記真空チャンバの壁の一部であることを特徴とするものである。
この構成ならば、前記アンテナ導体の着脱が容易になるためプラズマ処理装置のメンテナンスが容易になる。
The invention according to claim 6 is characterized in that the lid according to any one of claims 1 to 5 is a part of a wall of the vacuum chamber.
With this configuration, since the antenna conductor can be easily attached and detached, maintenance of the plasma processing apparatus is facilitated.

請求項7に係る発明は、前記真空チャンバの壁に設けた1又は複数の開口部又は内壁面に、請求項1から6のいずれか一項に記載の誘導結合型アンテナユニットを装着していることを特徴とするプラズマ処理装置である。
この構成ならば、複数個の前記誘導結合型アンテナユニットを真空チャンバの壁面に並列に装着することによって、大面積に亘って均一な高密度の放電プラズマを励起することができる。
According to a seventh aspect of the present invention, the inductively coupled antenna unit according to any one of the first to sixth aspects is mounted on one or a plurality of openings or an inner wall surface provided on the wall of the vacuum chamber. This is a plasma processing apparatus.
With this configuration, it is possible to excite uniform high-density discharge plasma over a large area by mounting a plurality of inductively coupled antenna units in parallel on the wall surface of the vacuum chamber.

本発明によれば、アンテナ導体の中央部に高周波電力を給電し、両端部を接地する構成であるため,(a)アンテナ導体のインピーダンスを実質的に2分の1に低減でき、(b)1台の高周波電源と整合器で複数のアンテナ導体を駆動できる。従って、(c)均一かつ高密度のプラズマを発生させることができ、被処理基板に所望のプラズマ処理を施すことができる。また、(d)誘導結合型アンテナユニットの着脱が容易であり、クリーニング等が容易になる。   According to the present invention, since the high frequency power is fed to the central portion of the antenna conductor and both ends are grounded, (a) the impedance of the antenna conductor can be substantially reduced by half, and (b) A plurality of antenna conductors can be driven by one high-frequency power source and matching unit. Therefore, (c) uniform and high-density plasma can be generated, and a desired plasma treatment can be performed on the substrate to be processed. Further, (d) the inductively coupled antenna unit can be easily attached and detached, and cleaning and the like are facilitated.

本発明に係る一実施形態であるプラズマ処理装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the plasma processing apparatus which is one Embodiment which concerns on this invention. 同実施形態の誘導結合型アンテナニットを説明するための模式図である。It is a schematic diagram for demonstrating the inductive coupling type antenna knit of the embodiment. 誘導結合型アンテナの実施形態を説明するための模式図である。It is a schematic diagram for demonstrating embodiment of an inductively coupled antenna. 誘導結合型アンテナユニットの他の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating other embodiment of an inductively coupled antenna unit. アンテナユニットの枠体部を上方から見た模式図である。It is the schematic diagram which looked at the frame part of the antenna unit from the upper part. 誘導結合型アンテナユニットの他の実施形態を説明するための模式図である。It is a schematic diagram for demonstrating other embodiment of an inductively coupled antenna unit. アンテナ導体の長手方向のプラズマ密度分布を示す図である。It is a figure which shows the plasma density distribution of the longitudinal direction of an antenna conductor.

以下に本発明に係る誘導結合型アンテナユニット(以下、ICPアンテナユニットとも記す)及び当該アンテナユニットを装着したプラズマ処理装置の一実施形態について図面を参照して説明する。   An embodiment of an inductively coupled antenna unit (hereinafter also referred to as an ICP antenna unit) according to the present invention and a plasma processing apparatus equipped with the antenna unit will be described below with reference to the drawings.

本実施形態に係る誘導結合型アンテナユニット200を図1に示す。誘導結合型アンテナ(以下、ICPアンテナとも記す)に高周波電流を流すことで発生する電磁界を用いて放電プラズマを励起させる、いわゆる誘導結合型プラズマ(ICP:Inductively Coupled Plasma)方式によるものである。   An inductively coupled antenna unit 200 according to this embodiment is shown in FIG. This is based on a so-called inductively coupled plasma (ICP) system in which discharge plasma is excited using an electromagnetic field generated by applying a high-frequency current to an inductively coupled antenna (hereinafter also referred to as an ICP antenna).

図1に前記ICPアンテナユニット200を装着したプラズマ処理装置100の模式図を示す。前記プラズマ処理装置100は、例えば液晶ディスプレイに用いられる基板等の被処理基板12を収容する真空チャンバ11と、当該真空チャンバ内に高周波放電プラズマを励起させるICPアンテナユニット200とを具備するものである。また、図示しない真空排気手段と作業ガスを導入するためのガス導入手段を具備する。   FIG. 1 shows a schematic diagram of a plasma processing apparatus 100 equipped with the ICP antenna unit 200. As shown in FIG. The plasma processing apparatus 100 includes a vacuum chamber 11 that accommodates a substrate 12 to be processed such as a substrate used for a liquid crystal display, and an ICP antenna unit 200 that excites high-frequency discharge plasma in the vacuum chamber. . Further, a vacuum evacuation unit (not shown) and a gas introduction unit for introducing a working gas are provided.

真空チャンバ11内は、前記真空排気手段と前記ガス導入手段によって所定の真空度に保持される。例えばアルゴンと水素との混合ガスを導入して所定の圧力、例えば1Paに調整し、前記ICPアンテナユニット200の蓋体23に取り付けられた誘導結合型アンテナ導体21(以下、アンテナ導体とも記す)に高周波電流を流すことによって前記真空チャンバ11内に放電プラズマを励起するものである。   The inside of the vacuum chamber 11 is maintained at a predetermined degree of vacuum by the evacuation unit and the gas introduction unit. For example, a mixed gas of argon and hydrogen is introduced and adjusted to a predetermined pressure, for example, 1 Pa, and applied to an inductively coupled antenna conductor 21 (hereinafter also referred to as an antenna conductor) attached to the lid 23 of the ICP antenna unit 200. A discharge plasma is excited in the vacuum chamber 11 by flowing a high-frequency current.

具体的には、この真空チャンバ11は、図1に示すように、その上壁111に上方から見て矩形状の開口部112が形成されており、この開口部112に後述するICPアンテナユニット200を真空シール部材24を狭持して嵌め込むことにより真空チャンバ内部を密閉するように構成されている。前記真空チャンバ11内には前記ICPアンテナユニット200に対向して被処理基板12が配置されている。被処理基板は架台14に取り付けられた基板支持具13表面に載置されている。   Specifically, as shown in FIG. 1, the vacuum chamber 11 has a rectangular opening 112 formed in the upper wall 111 when viewed from above, and an ICP antenna unit 200 described later is formed in the opening 112. Is configured to seal the inside of the vacuum chamber by sandwiching the vacuum seal member 24. A substrate 12 to be processed is disposed in the vacuum chamber 11 so as to face the ICP antenna unit 200. The substrate to be processed is placed on the surface of the substrate support 13 attached to the gantry 14.

図1に示すICPアンテナユニット200及び図2に示すICPアンテナユニット300は、1又は複数のアンテナ導体21と、当該アンテナ導体を固定し、前記開口部112を覆う蓋体23とからなる。前記アンテナ導体21は前記蓋体23の内壁面と所定間隔を保ってほぼ平行に配置され、前記アンテナ導体の中央部は給電端子板25で連結されている。前記アンテナ導体21の両端部は前記蓋体23に固定され、一体化されている。前記蓋体23は導電性材料、例えばステンレス鋼板やアルミニウム材で構成され、処理チャンバの上壁111に真空シール部材24を狭持して図示しない螺子等により着脱可能に取り付けられて接地されている。前記給電端子板25は、例えばフィードスルー27を介して給電線26に接続されている。給電線26は整合器42を介して高周波電源41に接続されている。   The ICP antenna unit 200 shown in FIG. 1 and the ICP antenna unit 300 shown in FIG. 2 include one or a plurality of antenna conductors 21 and a lid 23 that fixes the antenna conductors and covers the opening 112. The antenna conductor 21 is disposed substantially parallel to the inner wall surface of the lid body 23 at a predetermined interval, and the central portion of the antenna conductor is connected by a feeding terminal plate 25. Both ends of the antenna conductor 21 are fixed to and integrated with the lid body 23. The lid 23 is made of a conductive material, such as a stainless steel plate or aluminum, and is detachably attached to the upper wall 111 of the processing chamber by a screw or the like (not shown) with a vacuum seal member 24 interposed therebetween and grounded. . The power supply terminal plate 25 is connected to the power supply line 26 via, for example, a feedthrough 27. The power supply line 26 is connected to a high frequency power supply 41 via a matching unit 42.

前記ICPアンテナの一実施形態を図3に示す。図3に示すICPアンテナ201は、図1及び図2に示すICPアンテナユニット200、300のアンテナ導体21を上方から見たときの概略図である。ほぼ平行に配置した2本のアンテナ導体を中央部で給電端子板25によって連結したものである。前記2本のアンテナ導体21が作る平面が前記蓋体23の内面に略平行に設置される。前記アンテナ導体の両端部は折り曲げて蓋体23に真空シール部材、例えばOリング28等を狭持して図示しない固定治具によって固定されている。従って、前記アンテナ導体21と蓋体23とは一体化され、図示しない螺子等によって前記上壁111の開口部112に取り付けられている。   One embodiment of the ICP antenna is shown in FIG. The ICP antenna 201 shown in FIG. 3 is a schematic view when the antenna conductor 21 of the ICP antenna units 200 and 300 shown in FIGS. 1 and 2 is viewed from above. Two antenna conductors arranged substantially in parallel are connected by a feeding terminal plate 25 at the center. A plane formed by the two antenna conductors 21 is installed substantially parallel to the inner surface of the lid body 23. Both ends of the antenna conductor are bent, and a vacuum seal member such as an O-ring 28 is sandwiched between the lid 23 and fixed by a fixing jig (not shown). Therefore, the antenna conductor 21 and the lid body 23 are integrated and attached to the opening 112 of the upper wall 111 by screws or the like (not shown).

前記アンテナ導体21の素材は特定されるものではないが、高周波電力、例えば13.56MHzの高周波電力を給電するため、導電性のよい金属材料、例えば銅材やアルミニウム材等であることが好ましい。また、アンテナ導体は高周波電流を流すと数100℃に加熱されるため冷却、例えば水冷等が可能な金属パイプであることが好ましい。本発明によれば、アンテナ導体の両端が接地される構成であるため水冷等による冷却が容易である。   Although the material of the antenna conductor 21 is not specified, it is preferable to use a metal material with good conductivity, such as a copper material or an aluminum material, in order to supply high-frequency power, for example, 13.56 MHz. The antenna conductor is preferably a metal pipe that can be cooled, for example, water-cooled, because it is heated to several hundred degrees Celsius when a high-frequency current is passed. According to the present invention, since both ends of the antenna conductor are grounded, cooling by water cooling or the like is easy.

本実施形態では前記アンテナ導体21は真空チャンバ内に装着されるため放電プラズマ中に曝される。従って、処理条件によってはアンテナ導体21の表面はイオン照射によってスパッタリングされ、アンテナ導体金属が不純物として飛散する恐れがある。スパッタリングによる汚染を抑制するためには前記アンテナ導体表面を誘電体材料、例え石英管22等で被覆することが好ましい。   In the present embodiment, since the antenna conductor 21 is mounted in a vacuum chamber, it is exposed to discharge plasma. Therefore, depending on the processing conditions, the surface of the antenna conductor 21 may be sputtered by ion irradiation, and the antenna conductor metal may be scattered as impurities. In order to suppress contamination due to sputtering, the surface of the antenna conductor is preferably covered with a dielectric material, such as a quartz tube 22.

前記蓋体23に取り付けるアンテナ導体21の数、長さ及び各アンテナ導体の間隔等は特定されるものではなく、プラズマ処理の目的やプラズマ処理装置の仕様等によって決定されるべきものである。図1に示すように略直線状のICPアンテナの場合、アンテナ導体の長さが比較的短い、例えば30cm以下であればアンテナ導体の長手方向のプラズマ密度に大きな差は生じないが、例えば50cm以上のアンテナ導体を有するICPアンテナの場合、図7に点線で示すように、アンテナ導体の中央部のプラズマ密度が両端部領域の密度より小さくなる。この原因は高周波電力の給電端子領域では電界強度が大きくプラズマの拡散損失が大きいためと考えられている。特に、長尺のアンテナ導体の場合に大きな課題である。   The number and length of the antenna conductors 21 attached to the lid 23 and the interval between the antenna conductors are not specified, and should be determined according to the purpose of the plasma processing, the specifications of the plasma processing apparatus, and the like. In the case of a substantially linear ICP antenna as shown in FIG. 1, if the length of the antenna conductor is relatively short, for example, 30 cm or less, there is no significant difference in the plasma density in the longitudinal direction of the antenna conductor, but for example, 50 cm or more. In the case of an ICP antenna having a plurality of antenna conductors, the plasma density in the central portion of the antenna conductor is smaller than the density in both end regions, as shown by the dotted line in FIG. This is thought to be because the electric field strength is large and the plasma diffusion loss is large in the high-frequency power feeding terminal region. This is a big problem particularly in the case of a long antenna conductor.

図2に示すICPアンテナユニット300は前記アンテナ導体21をV字形状或いは円弧形状にしたものである。本願発明によれば、アンテナ導体をV字形状こすることによって中央部のプラズマ密度と両端部の密度とが略等しくなることが明らかになった。V字形状のアンテナ導体全長に亘って均一なプラズマ密度を得るには、アンテナ導体の長さにも依存するが、アンテナ導体の蓋体内面に対する傾斜角度が1〜15度であることが好ましい。より好適な角度は2〜10度である。   The ICP antenna unit 300 shown in FIG. 2 has the antenna conductor 21 in a V shape or an arc shape. According to the present invention, it has been clarified that the plasma density at the center and the densities at both ends become substantially equal by rubbing the antenna conductor in a V shape. In order to obtain a uniform plasma density over the entire length of the V-shaped antenna conductor, the inclination angle of the antenna conductor with respect to the inner surface of the lid body is preferably 1 to 15 degrees, depending on the length of the antenna conductor. A more preferable angle is 2 to 10 degrees.

本願発明に係るICPアンテナユニットの他の実施形態ついて説明する。本実施形態は図4に示すように、真空チャンバの上壁111に設けた開口部112に前記ICPアンテナ201を収容したICPアンテナユニット400を嵌め込むものである。該アンテナユニットはICPアンテナを収容する枠体31と誘電体窓板32及び蓋体23とからなる。即ち、図4に示すように枠体31を金属材、例えばステンレス鋼材やアルミニウム材で構成し、当該枠体の底壁35に真空シール部材24を挟持して前記誘電体窓板32を取り付けた構成である。   Another embodiment of the ICP antenna unit according to the present invention will be described. In the present embodiment, as shown in FIG. 4, an ICP antenna unit 400 accommodating the ICP antenna 201 is fitted into an opening 112 provided in the upper wall 111 of the vacuum chamber. The antenna unit includes a frame body 31 for accommodating an ICP antenna, a dielectric window plate 32 and a lid body 23. That is, as shown in FIG. 4, the frame 31 is made of a metal material such as stainless steel or aluminum, and the dielectric window plate 32 is attached with the vacuum seal member 24 sandwiched between the bottom wall 35 of the frame. It is a configuration.

前記ICPアンテナユニット400は概略直方体形状をなす筐体であり、内部に図3に示すICPアンテナ201を収容する。ICPアンテナユニット400は高周波電力を前記真空チャンバ11内に誘導するため、少なくとも前記窓板32は誘電体材料である必要がある。窓板32は高周波電界に対して誘電体損失の小さい誘電体材料であることが望ましい。好適な誘電体材料としては石英、アルミナ、ジルコニア、窒化珪素、或いは炭化硅素などである。また、前記枠体31は、その開口部周辺に鍔部33を有し、該鍔部は真空チャンバ11の上壁部111にシール部材24を挟持して固定され、前記開口部112に着脱可能に装着できる構造である。   The ICP antenna unit 400 is a case having a substantially rectangular parallelepiped shape, and accommodates the ICP antenna 201 shown in FIG. Since the ICP antenna unit 400 induces high-frequency power into the vacuum chamber 11, at least the window plate 32 needs to be made of a dielectric material. The window plate 32 is preferably made of a dielectric material having a small dielectric loss with respect to a high frequency electric field. Suitable dielectric materials are quartz, alumina, zirconia, silicon nitride, silicon carbide, and the like. The frame body 31 has a flange portion 33 around the opening. The flange portion is fixed to the upper wall 111 of the vacuum chamber 11 with the seal member 24 interposed therebetween, and can be attached to and detached from the opening 112. It is a structure that can be attached to.

前記枠体31を上方から見たときの枠体構造を図5に示す。前記枠体31の底壁35に穿設する窓36の形状を調整することによって両端部のプラズマ密度と中央部の密度を略同一にすることができる。前記枠体31の底壁35に穿設する窓形状をアンテナ導体21の中央部、即ち給電端子領域に対応する部分の窓幅を広くし、両端部を狭くすることによって前記処理チャンバ内に浸透する高周波電力の強度を調整することができる。即ち、中央部の窓幅と両端部の窓幅を調整することによって、アンテナ導体の長手方向のプラズマ密度を均一にすることができる。中央部の窓幅に対する両端部の好適な窓幅比率は0.95〜0.65である。より好適な窓幅比率は0.9〜0.75である。   FIG. 5 shows a frame structure when the frame 31 is viewed from above. By adjusting the shape of the window 36 formed in the bottom wall 35 of the frame 31, the plasma density at both ends and the density at the center can be made substantially the same. The shape of the window drilled in the bottom wall 35 of the frame body 31 penetrates into the processing chamber by widening the window width of the central portion of the antenna conductor 21, that is, the portion corresponding to the feeding terminal region, and narrowing both ends. The intensity of the high frequency power to be adjusted can be adjusted. That is, the plasma density in the longitudinal direction of the antenna conductor can be made uniform by adjusting the window width at the center and the window width at both ends. A suitable window width ratio at both ends with respect to the window width at the center is 0.95 to 0.65. A more preferable window width ratio is 0.9 to 0.75.

本発明の他の実施形態について図6を用いて説明する。図6に示すICPアンテナユニット500は、前記蓋体23を前記真空チャンバ11の上壁111で代替するもので、前記上壁111の内面にアンテナ導体21を図示しない螺子等によって取り付けたものである。前記アンテナ導体の中央部に対応する部分の上壁にフィードスルー27を配置し、当該フィードスルーを介して前記アンテナ導体21に給電できる構成である。前記上壁面とアンテナ導体との間隔は特定されるものではないが、高周波電力の容量結合を抑制できる程度の間隔があればよい。具体的には、1〜10cm、より好ましくは3〜7cmである。   Another embodiment of the present invention will be described with reference to FIG. An ICP antenna unit 500 shown in FIG. 6 replaces the lid body 23 with the upper wall 111 of the vacuum chamber 11, and has the antenna conductor 21 attached to the inner surface of the upper wall 111 with a screw or the like (not shown). . A feedthrough 27 is disposed on the upper wall of the portion corresponding to the central portion of the antenna conductor, and power can be supplied to the antenna conductor 21 through the feedthrough. Although the space | interval of the said upper wall surface and an antenna conductor is not specified, what is necessary is just a space | interval which can suppress the capacitive coupling of high frequency electric power. Specifically, it is 1 to 10 cm, more preferably 3 to 7 cm.

図6に示すICPアンテナユニット500はアンテナ導体として棒状又は板状の導体を用いた実施形態を示すが、アンテナ導体の冷却が必要な場合は、前記実施例と同様に金属パイプを用いてもよい。また、必要に応じて前記アンテナ導体を誘電体材料で被覆することができる。   The ICP antenna unit 500 shown in FIG. 6 shows an embodiment in which a rod-like or plate-like conductor is used as an antenna conductor. However, when the antenna conductor needs to be cooled, a metal pipe may be used as in the above-described example. . Further, the antenna conductor can be coated with a dielectric material as required.

更に、本発明によれば前記真空チャンバの壁の一部、例えば、上壁部111に一定間隔で複数の開口部112を設け、各開口部に前記ICPアンテナユニットを装着して各ICPアンテナ導体に高周波電力を給電すれば、大面積の真空チャンバ内に略均一な放電プラズマを発生させることができる。また、各ICPアンテナユニットに給電する高周波電力を制御することによって放電プラズマの密度分布を調整し、均一化するこができる。   Furthermore, according to the present invention, a plurality of openings 112 are provided at a certain interval in a part of the wall of the vacuum chamber, for example, the upper wall 111, and the ICP antenna unit is mounted in each opening to provide each ICP antenna conductor. If high-frequency power is supplied to, substantially uniform discharge plasma can be generated in a large-area vacuum chamber. Further, the density distribution of the discharge plasma can be adjusted and made uniform by controlling the high frequency power supplied to each ICP antenna unit.

また、前記真空チャンバ11の任意の内壁面に図6に示すアンテナ導体21とフィードスルー27を取り付けることによって、真空チャンバ11内に高周波放電プラズマを励起することができる。   Further, by attaching the antenna conductor 21 and the feedthrough 27 shown in FIG. 6 to an arbitrary inner wall surface of the vacuum chamber 11, high frequency discharge plasma can be excited in the vacuum chamber 11.

本願発明によれば、1又は複数のアンテナ導体21の中央部に高周波電力を給電し、両端部を直接接地する構成にすることによって、給電路及び接地路の長さを数cm以下に短縮することができるため高周波電力の電送路による損失を10%以下にすることができる。また、アンテナ導体の中央部に給電し、端部を直接接地することによって左右複数本のアンテナ導体に同一の高周波電流を流すことができる。本願発明の長所は1台の高周波電源と整合器で複数のアンテナ導体を駆動でき、均一かつ高密度の放電プラズマを励起できることである。
<実施例1>
According to the present invention, the length of the feeding path and the grounding path is reduced to several centimeters or less by supplying high-frequency power to the central part of one or a plurality of antenna conductors 21 and grounding both ends directly. Therefore, the loss due to the high-frequency power transmission path can be reduced to 10% or less. Further, the same high-frequency current can be supplied to the left and right antenna conductors by supplying power to the central portion of the antenna conductor and directly grounding the end portion. The advantage of the present invention is that a plurality of antenna conductors can be driven by one high-frequency power source and matching unit, and uniform and high-density discharge plasma can be excited.
<Example 1>

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。本実施例では図1に示すプラズマ処理装置100を用い、上壁111に長さ66cm、幅14cmの開口部112を設け、ICPアンテナユニット200を装着して実施した。ICPアンテナユニット200は、長さ70cm、幅20cmの蓋体23に外径1.27cm、平坦部の長さ60cmの銅パイプ2本を採用し、中央部を給電端子板25で連結し、両端部は折り曲げて蓋体23に固定した。2本のアンテナ導体の間隔は10cmとし、前記蓋体内面との間隔を2.5cm(平行アンテナ)とした。蓋体の中央部にフィードスルー27を配置し、給電線26と前記給電端子板25とを接続した。 Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In this embodiment, the plasma processing apparatus 100 shown in FIG. 1 was used, an opening 112 having a length of 66 cm and a width of 14 cm was provided on the upper wall 111, and the ICP antenna unit 200 was mounted. The ICP antenna unit 200 employs two copper pipes with an outer diameter of 1.27 cm and a flat part length of 60 cm on a lid 23 having a length of 70 cm and a width of 20 cm, and the central part is connected by a power supply terminal plate 25 and both ends. The part was bent and fixed to the lid 23. The distance between the two antenna conductors was 10 cm, and the distance from the inner surface of the lid was 2.5 cm (parallel antenna). A feedthrough 27 is disposed in the center of the lid, and the power supply line 26 and the power supply terminal plate 25 are connected.

上記ICPアンテナユニットを前記処理チャンバの上壁111に設けた開口部112に真空シール部材24を挟持して装着し、ガス漏れが起こらないようにした。真空排気手段によって予め真空チャンバ内を1×10−3Pa以下の高真空に排気した。引き続いてガス導入手段によって真空チャンバ11内にアルゴンと水素の混合ガスを導入してガス圧力を約1Paに調整した。 The ICP antenna unit is mounted by sandwiching the vacuum seal member 24 in the opening 112 provided in the upper wall 111 of the processing chamber so that no gas leakage occurs. The inside of the vacuum chamber was previously evacuated to a high vacuum of 1 × 10 −3 Pa or less by a vacuum exhaust means. Subsequently, a mixed gas of argon and hydrogen was introduced into the vacuum chamber 11 by the gas introduction means, and the gas pressure was adjusted to about 1 Pa.

前記給電線26に周波数13.56MHz、出力1kWの高周波電力を給電して真空チャンバ内に放電プラズマを発生させた。放電プラズマは真空チャンバ11内に充満した。前記アンテナ導体21面から10cm離れた位置におけるプラズマ密度は約6×1010/cmであった。図7に点線(平行アンテナ)で示すように、ICPアンテナの中央部(給電部領域)のプラズマ密度が両端部(接地部領域)より約10%低い結果が得えられた。
<実施例2>
High frequency power with a frequency of 13.56 MHz and an output of 1 kW was supplied to the power supply line 26 to generate discharge plasma in the vacuum chamber. The discharge plasma filled the vacuum chamber 11. The plasma density at a position 10 cm away from the surface of the antenna conductor 21 was about 6 × 10 10 / cm 3 . As shown by the dotted line (parallel antenna) in FIG. 7, the plasma density at the central portion (feeding region) of the ICP antenna was about 10% lower than both ends (grounding region).
<Example 2>

実施例2では、図2に示すように前記アンテナ導体21をV字形状に湾曲し、中央部が真空チャンバ内に突出する形状としたICPアンテナユニット300を用いた。具体的には、前記蓋体内面に対してICPアンテナの張る角度を約4°とし、左右両端部の蓋体内面からの間隔を約2.5cm、中央部の間隔を約4.6cmとした。また、前記アンテナ導体の両端部はOリング28を狭持して気密を保って蓋体に取り付け、水冷ホースを接続して水冷した。その他の実施態様は実施例1と同じとした。   In Example 2, as shown in FIG. 2, the ICP antenna unit 300 was used in which the antenna conductor 21 was curved in a V shape and the center portion protruded into the vacuum chamber. Specifically, the angle at which the ICP antenna is stretched with respect to the inner surface of the lid is about 4 °, the distance between the left and right ends from the inner surface of the lid is about 2.5 cm, and the distance between the center is about 4.6 cm. . Further, both ends of the antenna conductor were attached to the lid while holding an O-ring 28 to keep airtight, and water-cooled hose was connected and water-cooled. Other embodiments were the same as those in Example 1.

実施例1と同じプラズマ励起条件で実施した結果を図7に示す。同図に実線(V字アンテナ)で示すように、ICPアンテナの中央部と両端部のプラズマ密度は略±3%以内であることが確認された。   FIG. 7 shows the results obtained under the same plasma excitation conditions as in Example 1. As indicated by the solid line (V-shaped antenna) in the figure, it was confirmed that the plasma density at the center and both ends of the ICP antenna was within about ± 3%.

上記実施例では、高周波電力として周波数13.56MHzの高周波を用いたが、これに特定されるものではなく、周波数30kHz〜30MHzの高周波電力を適用することができる。また、上記実施例では2本のアンテナ導体21を用いたが、2本に特定されるものではなく、1本または3本以上であってもよい。   In the said Example, although the high frequency of frequency 13.56MHz was used as high frequency power, it is not specified to this, High frequency power of frequency 30kHz-30MHz is applicable. In the above embodiment, the two antenna conductors 21 are used. However, the number is not limited to two, and may be one or three or more.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。前記ICPアンテナユニットの装着は真空チャンバの上壁に特定されるものではなく、プラズマ処理装置の形態によって、例えば処理装置の側壁或いは下壁に装着してもよい。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. The mounting of the ICP antenna unit is not specified on the upper wall of the vacuum chamber, and may be mounted on, for example, the side wall or the lower wall of the processing apparatus depending on the form of the plasma processing apparatus.

11・・真空チャンバ、12・・被処理基板、100・・プラズマ処理装置、21・・アンテナ導体、23・・蓋体、25・・給電端子板、200、300、400,500・・ICPアンテナユニット、201・・ICPアンテナ、31・・枠体、32・・窓板、35・・底壁、41・・高周波電源、42・・整合器





























11..Vacuum chamber, 12..Substrate to be processed, 100..Plasma processing apparatus, 21..Antenna conductor, 23..Cover body, 25..Power supply terminal plate, 200, 300, 400,500..ICP antenna Unit 201 ·· ICP antenna 31 ·· Frame body 32 · · Window plate 35 · · Bottom wall 41 · · High frequency power supply · 42 · · Matching unit





























Claims (7)

プラズマ処理装置等の真空チャンバの壁面に設けられた開口部に気密を保持して装着される誘導結合型アンテナユニットであって、1又は複数の誘導結合型アンテナ導体と、気密を保持して前記開口部を覆う蓋体とからなり、前記アンテナ導体が前記蓋体の内面にほぼ平行に配置され、前記アンテナ導体の中央部が給電端子板に接続され、前記アンテナ導体の両端部が前記蓋体に固定され、当該蓋体を介して接地電位に接続されていることを特徴とする誘導結合型アンテナユニット。 An inductively coupled antenna unit that is mounted in an airtight manner in an opening provided on a wall surface of a vacuum chamber of a plasma processing apparatus or the like, the one or a plurality of inductively coupled antenna conductors, A lid covering the opening, wherein the antenna conductor is disposed substantially parallel to the inner surface of the lid, the central portion of the antenna conductor is connected to a power supply terminal plate, and both ends of the antenna conductor are the lid And an inductive coupling type antenna unit, wherein the inductive coupling type antenna unit is connected to a ground potential through the lid. 前記アンテナ導体が金属パイプであって一方の端部から他方の端部へと冷却媒体を流してアンテナ導体を冷却できる構成であることを特徴とする請求項1に記載の誘導結合型アンテナユニット。   2. The inductively coupled antenna unit according to claim 1, wherein the antenna conductor is a metal pipe, and the antenna conductor can be cooled by flowing a cooling medium from one end to the other end. 前記アンテナ導体が誘電体管又は誘電体材料で被覆されていることを特徴とする請求項1または2に記載の誘導結合型アンテナユニット。   The inductively coupled antenna unit according to claim 1 or 2, wherein the antenna conductor is covered with a dielectric tube or a dielectric material. 前記アンテナ導体の中央部が、前記蓋体の内面との間隔が両端部より大であるV字形状、或いは円弧形状であることを特徴とする請求項1から3のいずれか一項に記載の誘導結合型アンテナユニット。   The center portion of the antenna conductor has a V shape or a circular arc shape in which the distance from the inner surface of the lid is larger than both end portions. Inductively coupled antenna unit. 長方形の枠体とその底壁に設けた誘電体窓板とからなる筐体内にアンテナ導体を収容したことを特徴とする請求項1から4のいずれか一項に記載の誘導結合型アンテナユニット。   5. The inductively coupled antenna unit according to claim 1, wherein an antenna conductor is housed in a casing made of a rectangular frame and a dielectric window plate provided on a bottom wall thereof. 前記蓋体が前記真空チャンバの壁の一部であることを特徴とする請求項1から5のいずれか一項に記載の誘導結合型アンテナユニット。   6. The inductively coupled antenna unit according to claim 1, wherein the lid is a part of a wall of the vacuum chamber. 真空チャンバの壁に設けた1又は複数の開口又は内壁面に、請求項1から6のいずれか一項に記載の前記誘導結合型アンテナユニットを装着していることを特徴とするプラズマ処理装置。






A plasma processing apparatus, wherein the inductively coupled antenna unit according to any one of claims 1 to 6 is attached to one or a plurality of openings or inner wall surfaces provided in a wall of a vacuum chamber.






JP2016245036A 2016-12-19 2016-12-19 Inductively coupled antenna unit and plasma processing apparatus Active JP6468521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016245036A JP6468521B2 (en) 2016-12-19 2016-12-19 Inductively coupled antenna unit and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016245036A JP6468521B2 (en) 2016-12-19 2016-12-19 Inductively coupled antenna unit and plasma processing apparatus

Publications (3)

Publication Number Publication Date
JP2018101463A true JP2018101463A (en) 2018-06-28
JP2018101463A5 JP2018101463A5 (en) 2018-08-30
JP6468521B2 JP6468521B2 (en) 2019-02-13

Family

ID=62714402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245036A Active JP6468521B2 (en) 2016-12-19 2016-12-19 Inductively coupled antenna unit and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP6468521B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944443A (en) * 2018-09-25 2020-03-31 等离子体成膜有限公司 Plasma processing apparatus and method of driving the same
JP2020161264A (en) * 2019-03-26 2020-10-01 株式会社プラズマイオンアシスト Plasma processing device and plasma processing method
EP3813092A1 (en) * 2019-10-23 2021-04-28 EMD Corporation Plasma source
JP2021068694A (en) * 2019-10-23 2021-04-30 株式会社イー・エム・ディー Plasma source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220594A (en) * 2006-02-20 2007-08-30 Nissin Electric Co Ltd Plasma generation method and plasma generation device as well as plasma treatment device
JP2009142016A (en) * 2007-12-05 2009-06-25 Denso Corp Driving device for on-board power conversion circuit
JP2010212105A (en) * 2009-03-11 2010-09-24 Emd:Kk Plasma processing device
JP2010225296A (en) * 2009-03-19 2010-10-07 Emd:Kk Inductively coupled antenna unit and plasma processing device
JP2015187951A (en) * 2014-03-27 2015-10-29 株式会社プラズマイオンアシスト Plasma processing device and antenna unit for the same
JP2016134352A (en) * 2015-01-22 2016-07-25 株式会社Screenホールディングス Plasma processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220594A (en) * 2006-02-20 2007-08-30 Nissin Electric Co Ltd Plasma generation method and plasma generation device as well as plasma treatment device
JP2009142016A (en) * 2007-12-05 2009-06-25 Denso Corp Driving device for on-board power conversion circuit
JP2010212105A (en) * 2009-03-11 2010-09-24 Emd:Kk Plasma processing device
US20120031562A1 (en) * 2009-03-11 2012-02-09 Emd Corporation Plasma processing apparatus
JP2010225296A (en) * 2009-03-19 2010-10-07 Emd:Kk Inductively coupled antenna unit and plasma processing device
JP2015187951A (en) * 2014-03-27 2015-10-29 株式会社プラズマイオンアシスト Plasma processing device and antenna unit for the same
JP2016134352A (en) * 2015-01-22 2016-07-25 株式会社Screenホールディングス Plasma processing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944443A (en) * 2018-09-25 2020-03-31 等离子体成膜有限公司 Plasma processing apparatus and method of driving the same
EP3629362A1 (en) 2018-09-25 2020-04-01 Plasma Ion Assist Co. Ltd. Plasma treatment apparatus and driving method thereof
KR20200035226A (en) 2018-09-25 2020-04-02 가부시키가이샤 프라즈마 이온 아시스토 Plasma treatment apparatus and driving method thereof
JP2020053169A (en) * 2018-09-25 2020-04-02 株式会社プラズマイオンアシスト Plasma processing apparatus
KR102200085B1 (en) * 2018-09-25 2021-01-08 가부시키가이샤 프라즈마 이온 아시스토 Plasma treatment apparatus and driving method thereof
US11164728B2 (en) 2018-09-25 2021-11-02 Plasma Ion Assist Co., Ltd. Plasma treatment apparatus and driving method thereof
JP2020161264A (en) * 2019-03-26 2020-10-01 株式会社プラズマイオンアシスト Plasma processing device and plasma processing method
JP7202641B2 (en) 2019-03-26 2023-01-12 株式会社プラズマイオンアシスト Plasma processing apparatus and plasma processing method
EP3813092A1 (en) * 2019-10-23 2021-04-28 EMD Corporation Plasma source
JP2021068694A (en) * 2019-10-23 2021-04-30 株式会社イー・エム・ディー Plasma source
JP7426709B2 (en) 2019-10-23 2024-02-02 株式会社イー・エム・ディー plasma source

Also Published As

Publication number Publication date
JP6468521B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP5747231B2 (en) Plasma generating apparatus and plasma processing apparatus
KR101016147B1 (en) Plasma processing system, antenna, and use of plasma processing system
KR100471728B1 (en) Plasma treatment device
JP6468521B2 (en) Inductively coupled antenna unit and plasma processing apparatus
KR101088876B1 (en) Plasma processing apparatus, power supply apparatus and method for using plasma processing apparatus
KR100812746B1 (en) Plasma producing method and apparatus as well as plasma processing apparatus
TWI701704B (en) Plasma producing apparatus and method of plasma processing a substrate
US20080302761A1 (en) Plasma processing system and use thereof
KR101594636B1 (en) High frequency antenna unit and plasma processing apparatus
JP2018101463A5 (en)
JP2007149638A (en) Plasma generation method and device and plasma treatment device
JP2010225296A (en) Inductively coupled antenna unit and plasma processing device
KR101743306B1 (en) Plasma processing apparatus
KR100501777B1 (en) Plasma processing device
KR20110066105A (en) Plasma process apparatus
KR20090127219A (en) Microwave plasma processing apparatus
JP2005191056A (en) Processor
Nagatsu et al. Production of large-area surface-wave plasmas with an internally mounted planar cylindrical launcher
JP5461040B2 (en) Microwave plasma processing equipment
TWI770144B (en) Plasma processing device
KR20090009369A (en) Plasma reactor having inductively coupled plasma source with heater
CN115279938A (en) Sputtering device
JP4127488B2 (en) Plasma processing equipment
US20150371825A1 (en) Plasma processing apparatus
JP7398630B2 (en) plasma processing equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6468521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250