JP2018100885A - Method for measuring strength of regenerated carbon fiber - Google Patents

Method for measuring strength of regenerated carbon fiber Download PDF

Info

Publication number
JP2018100885A
JP2018100885A JP2016246670A JP2016246670A JP2018100885A JP 2018100885 A JP2018100885 A JP 2018100885A JP 2016246670 A JP2016246670 A JP 2016246670A JP 2016246670 A JP2016246670 A JP 2016246670A JP 2018100885 A JP2018100885 A JP 2018100885A
Authority
JP
Japan
Prior art keywords
regenerated carbon
strength
carbon fiber
bundle
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016246670A
Other languages
Japanese (ja)
Inventor
寛 守富
Hiroshi Moritomi
寛 守富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu University NUC
Carbon Fiber Recycle Industry Co Ltd
Original Assignee
Gifu University NUC
Carbon Fiber Recycle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University NUC, Carbon Fiber Recycle Industry Co Ltd filed Critical Gifu University NUC
Priority to JP2016246670A priority Critical patent/JP2018100885A/en
Publication of JP2018100885A publication Critical patent/JP2018100885A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an easy, accurate, and efficient method for measuring strength of regenerated carbon fiber that can reflect strength of an actual regenerated carbon fiber.SOLUTION: The method for measuring strength of regenerated carbon fiber includes the steps of: measuring fiber length of a bundle of regenerated carbon fibers; measuring weight of the bundle of the regenerated carbon fibers; determining cross section area of the bundle of the regenerated carbon fibers; determining breaking load of the bundle of the regenerated carbon fibers; and determining strength of the regenerated carbon fibers. The cross section area of the bundle of the regenerated carbon fibers can be calculated based on the weight of the regenerated carbon fibers, the density of the regenerated carbon fibers, and the fiber length of the bundle of the regenerated carbon fiber. The strength of the regenerated carbon fibers is determined by dividing the determined breaking load by the cross section area.SELECTED DRAWING: Figure 8

Description

本発明は、再生炭素繊維の強度の測定方法に関する。     The present invention relates to a method for measuring the strength of regenerated carbon fiber.

近年、航空機、自動車、タンク等の材料として、軽量で強度の高い炭素繊維強化プラスチック(CFRP)が普及している。用途の拡大に伴って、製造工程で生じる端材や、一度使用された炭素繊維強化プラスチックの廃材の相当量が、焼却されたり、埋め立てられている。しかし、炭素繊維強化プラスチックの端材や廃材から回収した炭素繊維の中には、十分な強度を有していて再利用が可能なものが存在すると考えられている。このため、一旦加工したり使用したあと再生処理を行って取り出した炭素繊維(以下、再生炭素繊維またはリサイクル炭素繊維とも言う)の強度を解析して、十分な強度を有する再生炭素繊維を再利用したいという要求がある。   In recent years, carbon fiber reinforced plastic (CFRP), which is lightweight and high in strength, has become widespread as a material for aircraft, automobiles, tanks and the like. With the expansion of applications, a considerable amount of scrap materials generated in the manufacturing process and carbon fiber reinforced plastic waste materials once used are incinerated or landfilled. However, it is considered that some carbon fibers recovered from the end materials and waste materials of carbon fiber reinforced plastic have sufficient strength and can be reused. For this reason, the strength of carbon fiber (hereinafter also referred to as regenerated carbon fiber or recycled carbon fiber) that has been processed and used and then reprocessed and taken out is analyzed, and recycled carbon fiber having sufficient strength is reused. There is a demand to do.

例えば、炭素繊維強化プラスチック(以下、CFRPとも言う)に適用された炭素繊維は、加工の工程と使用によって、強度が部分的に変化している可能性がある。さらに、炭素繊維強化プラスチックから炭素繊維を回収して再生する方法として、熱分解法、常圧溶解法、超臨界流体法、亜臨界流体法、触媒分解法などが知られているが、これらの方法は熱又は薬品で樹脂を除去して炭素繊維を取り出す方法であるので、さらに一部の炭素繊維の強度が変化していると考えられる。このため、図7に示すように、再生炭素繊維は、たとえ同一の製品から再生されたものであっても、繊維ごとに強度のばらつきが大きい。   For example, the strength of carbon fibers applied to carbon fiber reinforced plastic (hereinafter also referred to as CFRP) may vary partially depending on the process and use. Furthermore, as a method for recovering and recovering carbon fiber from carbon fiber reinforced plastic, a thermal decomposition method, a normal pressure dissolution method, a supercritical fluid method, a subcritical fluid method, a catalytic decomposition method, etc. are known. Since the method is a method in which the resin is removed by heat or chemicals and the carbon fiber is taken out, it is considered that the strength of some of the carbon fibers is further changed. For this reason, as shown in FIG. 7, even if the regenerated carbon fiber is regenerated from the same product, there is a large variation in strength for each fiber.

炭素繊維の繊維強度の試験方法に関して、JIS R7606「炭素繊維−単繊維の引張特性の試験方法」が定められている。JIS R7606の試験方法は、単繊維の試験片を、繊維が破断するまで一定の速度で引張り、引張荷重と伸びの関係を記録する方法である。また、特許文献1では、炭素繊維束に対して、JIS R7602の炭素繊維織物試験方法を適用して、強度を測定している。   JIS R7606 “Testing Method for Tensile Properties of Carbon Fiber-Single Fiber” is defined as a test method for fiber strength of carbon fibers. The test method of JIS R7606 is a method in which a single fiber test piece is pulled at a constant speed until the fiber breaks, and the relationship between tensile load and elongation is recorded. Moreover, in patent document 1, the carbon fiber fabric test method of JIS R7602 is applied with respect to a carbon fiber bundle, and the intensity | strength is measured.

しかし、強度のばらつきが大きい再生炭素繊維束について、単繊維の抜き取り試験で繊維束全体の強度を知るためには、極めて多くの試験回数が必要となる。また、再生炭素繊維束から単繊維を抜き出して試験機にセットする工程で、強度の弱い繊維は切れてしまっていることがあり、引張り試験のデータが得られた繊維は一定の強度を有する繊維に片寄っている可能性がある。抜き出し段階で切れなかった繊維だけで測定した結果は、実際の再生炭素繊維よりも高い強度を示している可能性がある。また、繊維束として強度を測定する場合、束を構成する繊維の本数を1本ずつ数えて確認してから測定することは非常に手間がかかり、現実的ではない。   However, in order to know the strength of the entire fiber bundle in a single fiber sampling test for a regenerated carbon fiber bundle with a large variation in strength, a very large number of tests are required. Also, in the process of extracting a single fiber from a recycled carbon fiber bundle and setting it in a testing machine, a weak fiber may be cut off, and a fiber from which tensile test data is obtained is a fiber having a certain strength There is a possibility that it is offset. The result of measuring only the fibers that were not cut at the extraction stage may indicate a higher strength than the actual recycled carbon fiber. Moreover, when measuring the strength as a fiber bundle, it is very time-consuming and time-consuming to measure after confirming the number of fibers constituting the bundle one by one.

特開2006−144168号公報JP 2006-144168 A

再生炭素繊維の引張強度を測定する方法として、短繊維を対象とした従来のJIS R7606の試験方法よりも効率の良い方法が求められている。また、単繊維を対象とした試験では、抜き出し工程で切れなかった繊維を対象とした測定が行われており、実際よりも引張強度が高く示される可能性がある。このため、簡易で効率の良い測定が可能で、且つ実際の再生炭素繊維の強度を反映した、精度の高い再生炭素繊維の強度測定方法が求められている。   As a method for measuring the tensile strength of regenerated carbon fiber, a method that is more efficient than the conventional JIS R7606 test method for short fibers is required. Moreover, in the test for the single fiber, the measurement for the fiber that was not cut in the extraction process is performed, and the tensile strength may be higher than the actual one. For this reason, there is a need for a highly accurate method for measuring the strength of regenerated carbon fiber that allows simple and efficient measurement and reflects the strength of the actual regenerated carbon fiber.

本発明の再生炭素繊維の強度測定方法は、再生炭素繊維の強度測定方法であって、再生炭素繊維の束の繊維長を測定する工程と、再生炭素繊維の束の重量を測定する工程と、再生炭素繊維の束の断面積を式1を用いて決定する工程と、再生炭素繊維の束の破断荷重を決定する工程と、再生炭素繊維の強度を式2を用いて決定する工程と、を備えている。   The strength measurement method of the regenerated carbon fiber of the present invention is a strength measurement method of the regenerated carbon fiber, the step of measuring the fiber length of the bundle of the regenerated carbon fiber, the step of measuring the weight of the bundle of the regenerated carbon fiber, A step of determining a cross-sectional area of the bundle of regenerated carbon fibers using Equation 1, a step of determining a breaking load of the bundle of regenerated carbon fibers, and a step of determining the strength of the regenerated carbon fibers using Equation 2. I have.

ここで再生炭素繊維の束の断面積S(m)を決定する式1は、

であり、Wが再生炭素繊維の束の重量(g)であり、ρが再生炭素繊維の密度(g/cm)であり、lが再生炭素繊維の束の繊維長(mm)である。
Here, Equation 1 for determining the cross-sectional area S (m 2 ) of the bundle of regenerated carbon fibers is

Where W is the weight (g) of the bundle of regenerated carbon fibers, ρ is the density of the regenerated carbon fibers (g / cm 3 ), and l is the fiber length (mm) of the bundle of regenerated carbon fibers.

再生炭素繊維の強度σ(MPa)を決定する式2は、

であり、Fが破断荷重(N)であり、Sが式1によって求めた再生炭素繊維の断面積(m)である。
Formula 2, which determines the strength σ (MPa) of the regenerated carbon fiber,

Where F is the breaking load (N), and S is the cross-sectional area (m 2 ) of the regenerated carbon fiber determined by Equation 1.

発明者は、再生炭素繊維の束に含まれる本数と、その重量との間に高い相関関係があり、さらに、再生炭素繊維の重量と破断強度との間に高い相関関係があることを見いだして、本発明をなすに至った。再生炭素繊維は、バージン炭素繊維の使用状態を反映して、多数の単繊維で構成された繊維束(フィラメント)あるいは1,000本から数万本のフィラメント束(トウ)の形状を残していることが多い。このフィラメント束(トウ)を用いて引張試験を行うことにより、抜き出し段階で切れる繊維も含めて強度を測定することができる。そして、測定された破断強度から、炭素繊維の強度を決定することができる。   The inventor has found that there is a high correlation between the number of regenerated carbon fibers contained in the bundle and the weight thereof, and that there is a high correlation between the weight of the regenerated carbon fibers and the breaking strength. The present invention has been made. Recycled carbon fiber reflects the state of use of virgin carbon fiber, leaving the shape of a fiber bundle (filament) composed of a large number of single fibers or 1,000 to tens of thousands of filament bundles (tow). There are many cases. By carrying out a tensile test using this filament bundle (tow), the strength can be measured including fibers that are cut in the extraction stage. Then, the strength of the carbon fiber can be determined from the measured breaking strength.

本発明の強度測定方法は、再生炭素繊維の引張特性を精度高く評価することができる。しかも、試験に供する再生炭素繊維の束に含まれる本数を数える代わりに、再生炭素繊維束の重量を測定し、その破断荷重を測定することで再生炭素繊維の実質的な強度を知ることができるので、短繊維の測定と比較すると、非常に効率よく迅速に炭素繊維の強度を知ることができる。   The strength measurement method of the present invention can accurately evaluate the tensile properties of the regenerated carbon fiber. Moreover, instead of counting the number of regenerated carbon fiber bundles used in the test, the weight of the regenerated carbon fiber bundle is measured, and the substantial strength of the regenerated carbon fiber can be determined by measuring the breaking load. Therefore, compared with the measurement of short fibers, the strength of carbon fibers can be known very efficiently and quickly.

図1は、本発明の再生炭素繊維の強度測定装置である。FIG. 1 is an apparatus for measuring the strength of recycled carbon fiber according to the present invention. 図2は、再生炭素繊維の本数と重量との関係を示す図である。FIG. 2 is a diagram showing the relationship between the number of regenerated carbon fibers and the weight. 図3は、再生炭素繊維の本数と破断荷重との関係を示す図である。FIG. 3 is a diagram showing the relationship between the number of regenerated carbon fibers and the breaking load. 図4は、再生炭素繊維の重量と破断荷重との関係を示す図である。FIG. 4 is a diagram showing the relationship between the weight of the regenerated carbon fiber and the breaking load. 図5は、再生炭素繊維の重量と破断荷重との関係を示す図である。FIG. 5 is a diagram showing the relationship between the weight of the regenerated carbon fiber and the breaking load. 図6は、再生炭素繊維の重量と破断荷重との関係を示す図である。FIG. 6 is a diagram showing the relationship between the weight of the regenerated carbon fiber and the breaking load. 図7は、再生炭素繊維の強度の分布を示す図である。FIG. 7 is a diagram showing the strength distribution of the regenerated carbon fiber. 図8は、再生炭素繊維の強度測定方法のフローチャートである。FIG. 8 is a flowchart of a method for measuring the strength of the regenerated carbon fiber.

種々の検討の結果、再生炭素繊維は、繊維長が一定の場合、本数と重量との間に正の相関関係を有していることが明らかとなっている。同時に、再生炭素繊維は、本数と破断強度との間に正の相関関係を有していることが明らかとなっている。図2は、一例として温度500oCで焼成処理を行った、繊維長が90mmの再生炭素繊維の本数Nと重量W(mg)との関係を示している。図3は、同一条件である500oCの焼成処理を行った、繊維長が90mmの同一種類の再生炭素繊維における、再生炭素繊維の束の本数Nと、この束を用いて引張り試験を行った場合の破断強度F(N)との関係を示している。これらを含めた多くの測定結果から、再生炭素繊維の本数と重量との間に正の相関関係があり、同時に、再生炭素繊維の本数と破断強度との間に正の相関関係がある事が確認された。その結果として、再生炭素繊維には、重量と破断強度との間に正の相関関係を有していることが確認された。   As a result of various studies, it has been clarified that the regenerated carbon fiber has a positive correlation between the number and the weight when the fiber length is constant. At the same time, it is clear that the regenerated carbon fiber has a positive correlation between the number and the breaking strength. FIG. 2 shows the relationship between the number N of regenerated carbon fibers having a fiber length of 90 mm and the weight W (mg), which was baked at a temperature of 500 ° C. as an example. FIG. 3 shows a case in which the number N of regenerated carbon fiber bundles in the same type of regenerated carbon fiber having a fiber length of 90 mm subjected to a firing process of 500 ° C. under the same conditions and a tensile test using this bundle. Shows the relationship with the breaking strength F (N). From many measurement results including these, there is a positive correlation between the number of regenerated carbon fibers and the weight, and at the same time, there is a positive correlation between the number of regenerated carbon fibers and the breaking strength. confirmed. As a result, it was confirmed that the regenerated carbon fiber has a positive correlation between the weight and the breaking strength.

図4に、炭素繊維を460oCで焼成処理して得た再生炭素繊維の重量W(mg)と破断強度F(N)との関係を示す。図5に、炭素繊維を480oCで焼成処理して得た再生炭素繊維の重量W(mg)と破断強度F(N)との関係を示す。図6に、炭素繊維を500oCで焼成処理して得た再生炭素繊維の重量W(mg)と破断強度F(N)との関係との関係を示す。測定を行った再生炭素繊維の束は、いずれも繊維長が90mmである。再生炭素繊維は、引張り試験時の保持具(クランプ装置)間の距離(h)を25mmとして、引っ張り試験を行っている。焼成温度を変更して得たこれらの再生炭素繊維の強度試験の測定結果からもまた、再生炭素繊維の重量と破断強度との間には正の強い相関関係があることが確認された。このことから、再生炭素繊維の繊維長および重量を測定し、さらにその破断強度を特定することで、再生炭素繊維の強度を特定できることが明らかとなった。   FIG. 4 shows the relationship between the weight W (mg) and the breaking strength F (N) of the regenerated carbon fiber obtained by firing the carbon fiber at 460 ° C. FIG. 5 shows the relationship between the weight W (mg) and the breaking strength F (N) of the regenerated carbon fiber obtained by firing the carbon fiber at 480 ° C. FIG. 6 shows the relationship between the weight W (mg) of the regenerated carbon fiber obtained by firing the carbon fiber at 500 ° C. and the relationship between the breaking strength F (N). All of the bundles of regenerated carbon fibers subjected to the measurement have a fiber length of 90 mm. The recycled carbon fiber is subjected to a tensile test with a distance (h) between holders (clamp devices) at the time of a tensile test of 25 mm. Also from the measurement results of the strength tests of these regenerated carbon fibers obtained by changing the firing temperature, it was confirmed that there was a strong positive correlation between the weight of the regenerated carbon fibers and the breaking strength. From this, it became clear that the strength of the regenerated carbon fiber can be specified by measuring the fiber length and weight of the regenerated carbon fiber and further specifying its breaking strength.

本発明の破断強度の測定に適用可能な、強度試験機1の一例を図1に挙げる。たとえば、(株)エー・アンド・デイ製、TENSIRON万能試験機RTF−1350が使用可能であり、試験方法は、用いる繊維の本数以外、JIS R7606に規定される試験方法と実質的に同一である。再生炭素繊維の束10は、所定の間隔(h)で上下の保持具2,2によって固定されており、保持具2,2が所定の速度で離間していくことで再生炭素繊維の束に加わる荷重が増大する。試料である再生炭素繊維の束10に加えた荷重は、検出器であるロードセル3で測定して出力し、応力−歪み曲線や破断強度の値として表示することができる。   An example of a strength tester 1 applicable to the measurement of the breaking strength of the present invention is shown in FIG. For example, A & D Co., Ltd., TENSIRON universal testing machine RTF-1350 can be used, and the test method is substantially the same as the test method defined in JIS R7606, except for the number of fibers used. . The bundle 10 of the regenerated carbon fibers is fixed by the upper and lower holders 2 and 2 at a predetermined interval (h), and the holders 2 and 2 are separated at a predetermined speed to form a bundle of regenerated carbon fibers. The applied load increases. The load applied to the bundle 10 of the regenerated carbon fiber that is a sample can be measured and output by the load cell 3 that is a detector, and can be displayed as a value of a stress-strain curve or a breaking strength.

本発明の再生炭素繊維の強度測定方法の各工程について、以下に説明する。図8に、再生炭素繊維の強度測定方法のフローチャートを示す。再生炭素繊維の強度測定方法は、再生炭素繊維の束の繊維長l(mm)を測定する工程(ステップ1)と、再生炭素繊維の束の重量を測定する工程(ステップ2)と、再生炭素繊維の束の断面積を式1を用いて決定する工程(ステップ3)と、再生炭素繊維の束の破断荷重を決定する工程(ステップ4)と、再生炭素繊維の強度を式2を用いて決定する工程(ステップ5)と、を備えている。   Each step of the method for measuring the strength of the regenerated carbon fiber of the present invention will be described below. FIG. 8 shows a flowchart of a method for measuring the strength of the regenerated carbon fiber. The strength measurement method of the regenerated carbon fiber includes a step of measuring the fiber length l (mm) of the bundle of regenerated carbon fibers (step 1), a step of measuring the weight of the bundle of regenerated carbon fibers (step 2), and the regenerated carbon. The step of determining the cross-sectional area of the bundle of fibers using Equation 1 (Step 3), the step of determining the breaking load of the bundle of recycled carbon fibers (Step 4), and the strength of the recycled carbon fibers using Equation 2. And a step of determining (step 5).

再生炭素繊維の束の繊維長l(mm)を測定する工程は、たとえばノギスや顕微鏡等の距離測定手段を用いて行うことができる。再生炭素繊維の束の重量W(g)を測定する工程は、たとえば電子天秤等の重量測定手段を用いて測定する行うことができる。   The step of measuring the fiber length l (mm) of the bundle of regenerated carbon fibers can be performed using a distance measuring means such as a caliper or a microscope. The step of measuring the weight W (g) of the bundle of regenerated carbon fibers can be performed using a weight measuring means such as an electronic balance.

ステップ3の再生炭素繊維の束の断面積S(m)の決定は、以下の式1を用いて行われる。

ここで、ρは再生炭素繊維の密度(g/cm)であり、lは、測定を行う再生炭素繊維の束の繊維長(mm)である。ρは原料であるバージン炭素繊維の密度の値と同一とすることができる。または、密度の値は、一旦測定を行えば、その後は、同一の種類の炭素繊維について、同一の値を使用することができる。
The determination of the cross-sectional area S (m 2 ) of the bundle of regenerated carbon fibers in Step 3 is performed using the following Equation 1.

Here, ρ is the density (g / cm 3 ) of the regenerated carbon fiber, and l is the fiber length (mm) of the bundle of regenerated carbon fiber to be measured. ρ can be the same as the density value of the virgin carbon fiber as a raw material. Or once the density value is measured, the same value can be used for the same type of carbon fiber.

再生炭素繊維の束の断面積S(m)を決定するもう一つの方法として、炭素繊維についての線密度の値tex(g/1000m)の値が既知であれば、
S = tex/(ρ×10) (式3)
から、断面積を計算により決定することができる。
As another method for determining the cross-sectional area S (m 2 ) of the bundle of regenerated carbon fibers, if the value of the linear density value tex (g / 1000 m) for the carbon fibers is known,
S = tex / (ρ × 10 9 ) (Formula 3)
From this, the cross-sectional area can be determined by calculation.

ステップ4の破断強度の決定工程は、強度試験機1を用いて、所定の間隔(h)で把持した再生炭素繊維の束の引張り試験を行い、破断強度を測定することで行われる。   The step 4 for determining the breaking strength is performed by performing a tensile test on the bundle of regenerated carbon fibers held at a predetermined interval (h) using the strength tester 1 and measuring the breaking strength.

ステップ5の再生炭素繊維の強度σ(MPa)の決定工程は、式2を用いて行われる。
ここで、Fは破断荷重(N)であり、Sは式1によって求めた再生炭素繊維の断面積(m)である。
The step of determining the strength σ (MPa) of the regenerated carbon fiber in Step 5 is performed using Equation 2.
Here, F is the breaking load (N), and S is the cross-sectional area (m 2 ) of the regenerated carbon fiber obtained by Equation 1.

以上のステップ1からステップ5の工程を行うことにより、再生炭素繊維の強度を、簡易且つ正確に知ることができる。本発明の再生炭素繊維の強度測定方法は、同一の種類の試料について、20回以上の繰り返し試験をおこなうことで、十分な信頼性を得ることができる。   By performing the steps 1 to 5 described above, the strength of the regenerated carbon fiber can be easily and accurately known. In the method for measuring the strength of the regenerated carbon fiber of the present invention, sufficient reliability can be obtained by performing the test 20 times or more on the same type of sample.

1 強度試験機
2 保持具
3 ロードセル
10 再生炭素繊維の束
1 Strength Tester 2 Holder 3 Load Cell 10 Bundle of Recycled Carbon Fiber

Claims (1)

再生炭素繊維の強度測定方法であって、
再生炭素繊維の束の繊維長を測定する工程と、
再生炭素繊維の束の重量を測定する工程と、
前記再生炭素繊維の束の断面積を、以下の式1を用いて決定する工程と、
前記再生炭素繊維の束の破断荷重を決定する工程と、
前記再生炭素繊維の強度を、以下の式2を用いて決定する工程と、
を備えており、
ここで式1が、


であり、Sが再生炭素繊維の束の断面積(m)であり、Wが測定した再生炭素繊維の束の重量(g)であり、ρが再生炭素繊維の密度(g/cm)であり、lが再生炭素繊維の束の繊維長(mm)であり、
且つ、式2が、
であり、σが再生炭素繊維の強度(MPa)であり、Fが炭素繊維の束の破断荷重(N)であり、Sが式1によって求めた再生炭素繊維の断面積(m)であることを特徴とする、
再生炭素繊維の強度測定方法。
A method for measuring the strength of recycled carbon fiber,
Measuring the fiber length of a bundle of recycled carbon fibers;
Measuring the weight of the bundle of regenerated carbon fibers;
Determining the cross-sectional area of the bundle of regenerated carbon fibers using Equation 1 below:
Determining a breaking load of the bundle of regenerated carbon fibers;
Determining the strength of the regenerated carbon fiber using Equation 2 below:
With
Where Equation 1 is


S is the cross-sectional area (m 2 ) of the bundle of regenerated carbon fibers, W is the weight (g) of the bundle of regenerated carbon fibers measured, and ρ is the density (g / cm 3 ) of the regenerated carbon fibers. Where l is the fiber length (mm) of the bundle of regenerated carbon fibers,
And Equation 2 is
Where σ is the strength (MPa) of the regenerated carbon fiber, F is the breaking load (N) of the bundle of carbon fibers, and S is the cross-sectional area (m 2 ) of the regenerated carbon fiber obtained by Equation 1. It is characterized by
A method for measuring the strength of recycled carbon fiber.
JP2016246670A 2016-12-20 2016-12-20 Method for measuring strength of regenerated carbon fiber Pending JP2018100885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016246670A JP2018100885A (en) 2016-12-20 2016-12-20 Method for measuring strength of regenerated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016246670A JP2018100885A (en) 2016-12-20 2016-12-20 Method for measuring strength of regenerated carbon fiber

Publications (1)

Publication Number Publication Date
JP2018100885A true JP2018100885A (en) 2018-06-28

Family

ID=62714240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016246670A Pending JP2018100885A (en) 2016-12-20 2016-12-20 Method for measuring strength of regenerated carbon fiber

Country Status (1)

Country Link
JP (1) JP2018100885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296766A (en) * 2023-05-22 2023-06-23 连云港鹰游工程技术研究院有限公司 Carbon fiber bundle transverse strength detection device and application method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187148A (en) * 1986-02-10 1987-08-15 三井化学株式会社 Hydraulic substance composition
JPH08226015A (en) * 1992-03-23 1996-09-03 Mitsui Petrochem Ind Ltd Drawing of high-molecular weight polyolefin and apparatus therefor
JP2005307121A (en) * 2004-04-26 2005-11-04 Toho Tenax Co Ltd Reclaimed carbon fiber and method for recovering the same
JP2006144168A (en) * 2004-11-19 2006-06-08 Toray Ind Inc Carbon fiber bundle
US20070243124A1 (en) * 2004-10-01 2007-10-18 University Of Texas At Dallas Polymer-Free Carbon Nanotube Assemblies (Fibers, Ropes, Ribbons, Films)
JP2010229578A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Polyacrylonitrile-based continuous carbon fiber bundle, and method for producing the same
JP2014141761A (en) * 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187148A (en) * 1986-02-10 1987-08-15 三井化学株式会社 Hydraulic substance composition
JPH08226015A (en) * 1992-03-23 1996-09-03 Mitsui Petrochem Ind Ltd Drawing of high-molecular weight polyolefin and apparatus therefor
JP2005307121A (en) * 2004-04-26 2005-11-04 Toho Tenax Co Ltd Reclaimed carbon fiber and method for recovering the same
US20070243124A1 (en) * 2004-10-01 2007-10-18 University Of Texas At Dallas Polymer-Free Carbon Nanotube Assemblies (Fibers, Ropes, Ribbons, Films)
JP2006144168A (en) * 2004-11-19 2006-06-08 Toray Ind Inc Carbon fiber bundle
JP2010229578A (en) * 2009-03-26 2010-10-14 Toray Ind Inc Polyacrylonitrile-based continuous carbon fiber bundle, and method for producing the same
JP2014141761A (en) * 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116296766A (en) * 2023-05-22 2023-06-23 连云港鹰游工程技术研究院有限公司 Carbon fiber bundle transverse strength detection device and application method thereof
CN116296766B (en) * 2023-05-22 2023-10-20 连云港鹰游工程技术研究院有限公司 Carbon fiber bundle transverse strength detection device and application method thereof

Similar Documents

Publication Publication Date Title
Hapke et al. Compressive failure of UD-CFRP containing void defects: In situ SEM microanalysis
Arif et al. In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity
CN104596845B (en) A kind of measuring method of the true stress―strain curve of metal weldedstructure
Frost Notch effects and the critical alternating stress required to propagate a crack in an aluminium alloy subject to fatigue loading
Jensen et al. Transition-behaviours in fatigue-driven delamination of GFRP laminates following step changes in block amplitude loading
Belingardi et al. Characterization and damage analysis of notched cross-ply and angle-ply fabric GFRP composite material
Kim et al. Statistical analysis of PPTA fiber strengths measured under high strain rate condition
JP2018100885A (en) Method for measuring strength of regenerated carbon fiber
Dourado et al. Estimate of resistance-curve in wood through the double cantilever beam test
JP2009281738A (en) Prediction method of largest inclusion diameter in steel product, and estimation method of rolling fatigue life of steel product
Yin et al. On the use of the Theory of Critical Distances to estimate the dynamic strength of notched 6063-T5 aluminium alloy
JP7313421B2 (en) Strength inspection method and strength inspection device
Sozańska et al. Investigation of stress corrosion cracking in magnesium alloys by quantitative fractography methods
Katunin et al. Evaluation of critical self-heating temperature of composite structures based on analysis of microcrack development
Deschanel et al. Mechanical response and fracture dynamics of polymeric foams
Burchill et al. The effect of crack growth retardation when comparing constant amplitude to variable amplitude loading in an aluminium alloy
Xu et al. Prediction of cleavage fracture in ferritic steels by small punch tests with a modified Weibull stress model
Ababkov et al. Non-destructive testing and diagnostics of the material after long-term operation in thermal power equipment
Lomov et al. Multi-instrument multi-scale experimental damage mechanics for fibre reinforced composites
Furmanski et al. Dynamic-tensile-extrusion of polyurea
Hu et al. Material Scatter in Crack Growth Rates of 7075-T7351 under Spectrum Loading
Unger et al. Evaluation of a novel test method for the determination of strain rate-dependent material properties of high-performance fibers
Kocsis et al. Experience acquired in tensile tests of plastics
Rodriguez et al. Passive infrared thermography for damage monitoring during structural testing of CFRP parts
JP7375605B2 (en) Fatigue strength evaluation method for composite materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330